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Critical universality and hyperscaling revisited for Ising models of general spin
using extended high-temperature series
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We have extended throughb23 the high-temperature expansion of the second field derivative of the suscep-
tibility for Ising models of general spin, with nearest-neighbor interactions, on the simple cubic and the
body-centered cubic lattices. Moreover, the expansions for the nearest-neighbor correlation function, the sus-
ceptibility, and the second correlation moment have been extended up tob25. Taking advantage of these new
data, we can improve the accuracy of direct estimates of critical exponents and of hyperuniversal combinations
of critical amplitudes such as the renormalized four-point couplinggr or the quantity usually denoted byRj

1 .
In particular, we obtaing51.2371(1), n50.6299(2), g454.3647(20),gr51.404(3), andRj

150.2668(5).
We have used a variety of series extrapolation procedures and, in some of the analyses, we have assumed that
the leading correction-to-scaling exponentu is universal and roughly known. We have also verified, to high
precision, the validity of the hyperscaling relation and of the universality property both with regard to the
lattice structure and to the value of the spin.

DOI: 10.1103/PhysRevB.65.144431 PACS number~s!: 75.10.Hk, 05.50.1q, 11.15.Ha, 64.60.Cn
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I. INTRODUCTION

The numerical study of the critical properties of the sp
S Ising models with nearest-neighbor interactions had an
portant historical role in the chain of arguments leading
the modern formulation of the universality hypothesis1–6 for
the critical phenomena and, in particular, to the concep
universality class. It was in a study of the susceptibil
x(b;S) for the general-spin Ising models on the fac
centered-cubic~fcc! lattice by high-temperature~HT! expan-
sions throughb6 that Domb and Sykes7 first pointed out that
the exponentg, which characterizes the divergence ofx, was
roughly independent ofS and guessed for it a universa
‘‘Daltonian’’ value g55/4. Later on, when longer series8–10

both for the fcc and for other lattices were derived, a we
dependence of the exponentsg andn on Semerged from the
HT analyses, but was soon correctly ascribed to the oc
rence of nonanalytic ‘‘confluent corrections to scalin
~CCS! rather than to a failure of the universality. In tho
years the existence of CCS had been inferred by var
authors both from the numerical analysis of HT series11–13

and from phenomenological fits14–16 to high-precision ex-
perimental data for some systems close to criticality. Ev
tually the status of the CCS was more firmly established17 in
the context of the renormalization group~RG! theory.3 It was
therefore recognized very early that accurate determina
of the critical exponents in numerical or experimental stud
and, as a consequence, the feasibility of stringent verifi
tions both of the universality hypothesis and of the scal
and hyperscaling relations require a close control over
CCS. For many years, however, in two and in three dim
sions, HT series were available only for few observables a
generally, they were barely sufficient to conjecture the pr
ence of CCS, but definitely too short to make a numerica
accurate discussion of these models possible.8,10,18,19 Still
presently, the expansions ofx(b;S) and of the second mo
0163-1829/2002/65~14!/144431~25!/$20.00 65 1444
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ment of the correlation functionm2(b;S) on the simplecubic
~sc! lattice, for spinS.1/2, can be found explicitly in the
literature9 only up to orderb12. The data files by Roskies an
Sackett20 made an extension of these series throughb15 fea-
sible for the sc and bcc lattices, but did not drastica
change the situation. On the fcc lattice, the HT series initia
derived throughb12 in Ref. 9, were later extended in Ref. 2
to orderb14. Fortunately, in the case of the body-centere
cubic ~bcc! lattice, decisive progress occurred already tw
decades ago, with the computation by Nickel22 of expansions
for x(b;S) and m2(b;S) throughb21. ~To our knowledge,
only the series forS51/2,1,2,̀ were published.23!

By allowing to some extent for the leading CCS, the fi
modern analyses of the extended bcc series22–28 improved
significantly the accuracy in the verification of universali
with respect to the magnitude of the spin. Moreover, in
mentioned studies~as well as in later analyses29 mainly de-
voted to theS51/2 case!, the central estimates of the su
ceptibility and the correlation-length exponents were redu
up to '1% with respect to the valuesg51.250(3) andn
50.638(2), initially guessed in Ref. 7 and late
confirmed31,32 by various studies. This development al
contributed to settle5 a long-standing controversy raised b
the results of Refs. 11 and 32–35, which stimulated the s
ies of Refs. 22–29 and 36–42, on the validity of hypersc
ing and, more generally, on the consistency of the res
from the HT analyses with the corresponding R
estimates,5,43–49 either in thee-expansion approach43 or in
the fixed-dimension perturbative scheme.44,45

One should also note that for the second field derivat
of the susceptibilityx4(b;S) and for the nearest-neighbo
correlation functionG(b;S), the published data are even le
abundant. On the sc lattice, series forx4(b;S) can be de-
rived from the data files of Ref. 50 up to orderb14 and up to
b10 from the data of Ref. 34 for the bcc lattice. On the f
lattice, series forx4(b;S) are available41 throughb13. For
©2002 The American Physical Society31-1
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general spin, only expansions9,21 of G(b;S) throughb14 on
the fcc lattice have been published. A summary of the
expansions available until now for the Ising models of ge
eral spin appears in Table I.

We have been pursuing a long-term project to improve
algorithms and the codes for HT expansions
two-dimensional51 and in three-dimensional52–56 lattice spin
models, keeping up with the steady increase of comp
performances and periodically updating the numerical an
ses whenever we could significantly extend the series.
using an appropriately renormalized linked-clus
method,34,50,57we have now added from 4 up to 13 terms
the HT expansions for various observables of the gen
spin-S Ising models on sc and bcc lattices. In this paper
shall examine the expansions ofx(b;S) andm2(b;S) up to
orderb25 and ofx4(b;S) up to b23 on both lattices. These
data have been derived by slightly improving the thoroug
tested code which recently produced56 our series throughb23

for x(b;1/2) andm2(b;1/2) on both lattices. The extensio
of the series is by far the hardest part of this work, but
will not enter here into the details of our procedure. To g
an idea of the required computational effort, it will suffice
mention that our improved codes take minutes of CPU ti
on a COMPAQ Alpha XP1000~500 MHz! single-processor
workstation to reproduce the known series throughb21,
whereas several days are necessary to add the following
orders. From the graph-theoretical point of view, it is t
expansion ofx4 throughb23 which involves the most labo
rious part of the calculation: in the simplest vertex renorm
ized expansion scheme50 it would require the generation an
the evaluation of over 109 topologically inequivalent graphs
However, devising a careful strategy of in-depth renorm
izations, the expected size of the calculation has been
duced by at least two orders of magnitude. On the ot
hand, from a purely computational standpoint, the calcu
tion of the sc lattice constants for the second moment of
correlation function is the most demanding part of the job
terms of CPU time.

The correctness of our codes is ensured by numerou
ternal consistency checks, as well as by their ability to rep
duce established results already available in simpler part
lar cases, such as the square-lattice two-dimensional spin

TABLE I. Orders of high-temperature expansions, published~or
obtainable from published data! before our work, for the nearest
neighbor correlation functionG(b;S), for the susceptibility
x(b;S), for the second moment of the correlation functio
m2(b;S), and for the second field derivative of the susceptibil
x4(b;S), in the case of the Ising models with general spinS.

Observable Lattice, order Lattice, order Lattice, orde

x(b;S) sc, 15a bcc, 21b fcc, 14c

m2(b;S) sc, 15a bcc, 21b fcc, 14c

x4(b;S) sc, 14d bcc, 10e fcc, 13f

G(b;S) fcc, 14c

aReference 20.
bReference 23.

fReference 41.

dReference 50.
eReference 34.

cReference 21.
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Ising model or the one-dimensional spin-S Ising models. Of
course, our codes also reproduce the old computation of
22 for S51,2,̀ on square and bcc lattices and, as far
there is overlap, also the recent computation of Ref. 58
S51/2 on the bcc lattice.

Using this vast library of partially new high-order serie
data and in particular our significantly extended series
x4(b;S), we can resume from a vantage point the very
curate studies performed on seriesO(b21) for x and m2 in
Refs. 22–26 and present an even more extensive and det
survey of the critical behavior for the spin-S Ising models. In
spite of the remarkable advances achieved by the calc
tions of Refs. 22–27 which removed away from the for
ground the universality and the hyperscaling issues, furt
extensions of the HT data still remain of great interest. Th
are instrumental in the continuing efforts to gain a high
accuracy in the estimates of the critical parameters and, m
generally, to perform more stringent tests of hyperscal
and of universality, with respect both to the value of the s
and to the lattice structure. These are certainly welcome
sults, since it is fair to say that the actual verification of su
basic properties is still only moderately accurate, although
doubts persist anymore about their validity. Of course, o
must be aware that the computational complexity of the c
culation of higher-order series coefficients grows much fas
than the precision in the evaluation of the critical paramet
that can be obtained from them by the presently availa
numerical tools. Therefore the higher-order computatio
should be accompanied also by an effort to improve the te
niques of analysis or, at least, by a careful comparison of
results obtained by a variety of methods.

The paper is organized as follows. In the next section,
set our notations and definitions. In Sec. III we state
assumptions underlying our analysis and its aims. The
merical procedures we have used—namely the modifi
ratio methods introduced in Ref. 24 or the differential a
proximant methods59,60—as well as the corresponding resu
of the series analysis are discussed in Secs. IV–VIII. In S
IX we compare our estimates with those of the most rec
literature. The last few sections present our results for
critical amplitudes of the observables that have been
panded and for some~hyper!universal combinations61 of
these amplitudes. In order to make our analysis comple
reproducible and to provide a convenient source of data
further work, without overburdening this paper, we have c
lected into a separate report,62 available on request, the com
plete expansions of the nearest-neighbor correlation funct
of the susceptibility, of the second moment of the correlat
function, and of the second field derivative of the susce
bility for spin S51/2,1,3/2,2,5/2,3,7/2,4,5,`, on square, sc,
and bcc lattices.

II. THE SPIN- S ISING MODELS

The spin-S Ising models are defined by the Hamiltonia

H$s%52
J

2 (
^xW ,xW8&

s~xW !s~xW8!, ~1!
1-2
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CRITICAL UNIVERSALITY AND HYPERSCALING . . . PHYSICAL REVIEW B65 144431
whereJ is the exchange coupling, ands(xW )5sz(xW )/S with
sz(xW ) a classical spin variable at the lattice sitexW , taking the
2S11 values2S,2S11, . . . ,S21,S. The sum runs over
all nearest-neighbor pairs of sites. We shall consider exp
sions in the usual HT variableb5J/kBT called ‘‘inverse
temperature’’ for brevity.

In the high-temperature phase, the basic observables
the connected 2n-spin correlation functions. Here we sha
limit our study to quantities related to the two-spin corre
tion functions^s(xW )s(yW )&c and to the four-spin correlation
functions^s(x)s(y)s(z)s(t)&c .

In particular, we shall consider the nearest-neighbor c
relation function

G~b;S!5^s~0W !s~dW !&c5(
r 50

`

hr~S!b r , ~2!

wheredW is a nearest-neighbor lattice vector.
The internal energy per spin is defined in terms

G(b;S) by

U~b;S!52
qJ

2
G~b;S!, ~3!

whereq is the lattice coordination number.
The specific heat is the temperature derivative of the

ternal energy at fixed zero external field:

CH~b;S!/kB5
qb2

2

dG~b;S!

db
. ~4!

In terms ofx(b;S), the zero-field reduced susceptibility

x~b;S!5(
xW

^s~0!s~xW !&c5(
r 50

`

cr~S!b r ~5!

and ofm2(b;S), the second moment of the correlation fun
tion,

m2~b;S!5(
xW

xW2^s~0!s~xW !&c5(
r 51

`

dr~S!b r , ~6!

the ‘‘second-moment correlation length’’j(b;S) is defined
by

j2~b;S!5
m2~b;S!

6x~b;S!
5(

r 51

`

t r~S!b r . ~7!

The second field derivative of the susceptibilityx4(b;S) is
defined by

x4~b;S!5 (
x,y,z

^s~0!s~x!s~y!s~z!&c5(
r 50

`

er~S!b r . ~8!

Notice that these definitions ensure the existence of a n
trivial limit as S→`.
14443
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III. ASSUMPTIONS AND AIMS OF THE SERIES
ANALYSIS

In the universality class of the spin-S Ising models, the
asymptotic behavior of the susceptibility asb→bc

#(S) from
below is expected to be

x#~b;S!.C#~S!t#~S!2g@11ax
#~S!t#~S!u1•••

1bx
#~S!t#~S!1•••#, ~9!

wheret#(S)512b/bc
#(S) is the reduced inverse temper

ture. We have introduced here the superscript # which sta
for either sc or bcc, as appropriate, and will be used herea
only when useful. Equation~9!, often called the Wegne
expansion,17 specifies how the dominant scaling behavi
characterized by the universal critical exponentg and by the
critical amplitude C#(S), is modified by analytic and
nonanalytic confluent corrections to scaling~CCS! in a close
vicinity of the critical point. The leading nonanalytic CCS
characterized by a universal exponentu and by an amplitude
ax

#(S). The critical amplitudesC#(S), ax
#(S), andbx

#(S), as
well as the inverse critical temperaturebc

#(S), are nonuni-
versal: namely, they depend on the spinS and on the lattice
structure, as stressed by the notation. The analog
asymptotic behaviors of the correlation length,

j#~b;S!. f #~S!t#~S!2n@11aj
#~S!t#~S!u1•••

1bj
#~S!t#~S!1•••#, ~10!

of the specific heat,

CH
# ~b;S!/kB.A#~S!t#~S!2a@11aC

# ~S!t#~S!u1•••

1bC
# ~S!t#~S!1•••#, ~11!

and ofx4(b;S),

x4
#~b;S!.2C4

#~S!t#~S!2g4@11a4
#~S!t#~S!u1•••

1b4
#~S!t#~S!1•••#, ~12!

as well as of the other singular observables, are character
by different critical exponents and by different~nonuniver-
sal! critical amplitudesf #(S),aj

#(S), etc., but all contain the
same leading confluent exponentu. Notice that we have
freely chosen in Eqs.~9!–~12! between the conventions o
Ref. 63 and those of Ref. 61, since the notation for the a
plitudes is not yet completely standardized.

Usually the exponentg4 is expressed in terms ofg and of
D, the ‘‘gap’’ exponent associated with the critical behavi
of the higher field derivatives of the free energy, as follow
g45g12D. Here D5b1g and b denotes the magnetiza
tion exponent only in this formula and in the scaling relati
to be quoted before Eq.~20!. From RG calculations43–49,64,65

it is expected thatu.0.5 for the Ising universality class.
For later use, we observe that, if the singularity closes

the origin in the complexb plane is the critical singularity,
then Eq.~9! implies the following asymptotic behavior fo
the expansion coefficientscn

#(S) of x#(b;S):
1-3
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cn
#~S!5Cx

#~S!
ng21

G~g!
bc

2n~S!F11
G~g!

G~g2u!

ax
#~S!

nu

1O~1/n!G . ~13!

In the Ising universality class, the expectedO(1/n2u) contri-
butions in Eq.~13! should be practically degenerate with th
analytic 1/n corrections. For bipartite lattices, the highe
order corrections in Eq.~13! include termsO(1/n11g2a)
with alternating signs, which reflect the presence66–68 of a
weak ‘‘antiferromagnetic’’ singularity atb52bc

#(S) with
exponent 12a. Analogous formulas for the asymptotic b
havior with respect to the order can be written for the exp
sion coefficientstn

#(S) of j#(b;S)2 anden
#(S) of x4

#(b;S).
In terms ofx,j, andx4, a ‘‘hyperuniversal’’ combination

of critical amplitudes denoted bygr and usually called the
‘‘dimensionless renormalized coupling constant’’ can be
fined in d dimensions by the limiting value of the ratio

g#~b;S![2
3v#x4

#~S;b!

16pj#~S;b!dx#~S;b!2
~14!

as t#(S)→01. Herev# denotes the volume per lattice si
~in three dimensionsvsc51 andvbcc54/3A3) and the nor-
malization factor 3/16p is chosen in order to match the co
ventional field theoretic definition ofgr .46 We shall call
g#(b;S) the ‘‘effective renormalized coupling constant’’ a
the inverse temperatureb.

By Eqs.~9!–~12!, g#(S;b) behaves as

g#~b;S!.grt
#~S!g1dn22D@11ag

#~S!t#~S!u1•••#
~15!

whent#(S)→01, with

gr52
3v#C4

#~S!

16p f #~S!dC#~S!2
. ~16!

The Gunton-Buckingham69–72 inequality

g1dn22D>0, ~17!

together with the Lebowitz73 inequalityx4
#(b;S)<0, ensures

that g#(b;S) remains bounded and non-negative ast#(S)
→01. The vanishing ofg#(bc

#20;S) is a sufficient condi-
tion for Gaussian behavior at criticality: namely, for the va
ishing of the four-spin and of the higher-order connec
correlation functions. In lattice field theory language, th
corresponds to the ‘‘triviality,’’3,74 numerically observed
whend54 and proved whend.4, for the continuum field
theory defined by the lattice model~with ferromagnetic
couplings75,76! in the critical limit. If the inequality ~17!
holds as an equality

g1dn22D50 ~18!

~called the ‘‘hyperscaling relation’’!, if there are no logarith-
mic corrections to the scaling behavior,77,78and if x4

#(b;S) is
nonvanishing, we have
14443
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g#~b;S!.gr@11ag
#~S!t#~S!u1•••#; ~19!

namely, the ‘‘effective coupling’’g#(b;S) tends to a univer-
sal nonzero limiting valuegr ast#(S)→01.

Using the Essam-Fisher79–81 scaling relationa12b1g
52, Eq. ~18! can be rewritten as a relation82,83 betweena
andn:

a522dn. ~20!

As a consequence, also the combination of critical am
tudesA#(S) and f #(S),

Rj
15S aA#~S!

v# D 1/d

f #~S!, ~21!

is hyperuniversal, as pointed out84 by Stauffer, Ferer, and
Wortis.

The ratiosaj /ax , a4 /ax , aC /ax , etc., of the amplitudes
of the leading CCS are less studied,61 but not less interesting
universal85–87 critical observables.

In the rest of this paper we shall employ our HT series
estimate the critical parameters defined by Eqs.~9!–~12!,
~19!, and~21!, to check the validity of Eqs.~18! and~20! and
of the universality property with respect to the value of t
spin and to the lattice structure.

In the actual numerical analysis of finite-order HT expa
sions, the presence of the CCS will generally beco
manifest8,22–24 by small apparent violations both of the hy
perscaling relations and of the universality properti
namely, by a weak apparent dependence of the unive
quantities on the lattice structure and on the valueS of the
spin. We shall point out this fact by explicitly indicating, i
our numerical estimates of the universal quantities, the va
of the spin and the lattice structure for the series used in
analysis. For instance,gbcc(S) will denote the numerical es
timate of the universal exponentg obtained from the series
xbcc(b;S). This notation will help to emphasize how sma
the mentioned effects of apparent nonuniversality are
duced if the HT expansions can be pushed to a sufficie
high order, provided that the numerical tools of the analy
can, at least approximately, allow for the leading CCS.

Part of our analysis will rely upon the main assumpti
that the exponentu of the leading CCS is universal an
roughly known. A recent accurate RG recalculation of u
versal critical data64,65 predicts the valueu50.504(8) in the
fixed-dimension perturbative approach, while within t
e-expansion scheme, the updated estimate isu50.512(13).
In the rest of this paper, we shall adopt as a reference v
the fixed-dimension RG estimateu re f50.504(8) when com-
puting the central values of critical parameters by procedu
biased withu. Even if one has no compelling reason to su
pose that the uncertainty of the RG prediction ofu is largely
underestimated~but this possibility is advocated in Ref. 88!,
the reliability of theu-biased analyses presented here will
greater whenever their results are not too sensitive to
precise value ofu. In the following sections, it will be clear
that, in most cases, we can tolerate an uncertainty of
exponent even several times larger than above indicated
1-4
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will show that most of our estimates biased withu re f

50.504(8) will be compatible also with higher values, su
as u50.52(3), proposed in Refs. 23,27, andu50.53(2) in
Ref. 89, or evenu50.54(3) from Refs. 25,26 and 90–9
We can add that both our direct HT evaluation ofu and the
part of our series analysis which is not biased with the va
of the exponentu will be completely consistent with the
above assumption.

If appropriate, we shall provide detailed information o
the u-biased numerical results reported in our tables fo
given quantityP by indicating together with the central est
mate also the derivative]P/]u evaluated at the referenc
value chosen foru. Similarly, in the cases where the param
eter estimates are biased with the value of a critical inve
temperaturebc

#re f(S) and/or of a critical exponent—for in
stance,g—we shall report the corresponding derivativ
]P/]bc and/or ]P/]g computed at the specified referen
values. As an example, for the critical amplitude of the s
ceptibility C#(S), our final estimate can be read as

C#~S!~error!1@]C#~S!/]bc#~bc2bc
re f!

1@]C#~S!/]g#~g2g re f!. ~22!

Here both the estimate and its derivatives are evaluated
sharp values ofbc5bc

re f and of g5g re f and the error at-
tached to the first term does not allow for the uncertainty
the bias parameters. Since the above expression desc
how the central estimate ofCx

#(S) changes under sma
variations of the bias parameters, comparisons with prev
results in the literature, often based on slightly different
sumptions, are made straightforward.

As a final general remark, it is worth mentioning that, d
to the higher coordination number of the lattice, the bcc
ries approach their asymptotic structure, Eq.~13!, generally
faster than the sc series. For this reason, the bcc serie
usually observed to yield more accurate estimates of
critical parameters than the corresponding sc series with
same number of coefficients and are often said to hav
greater ‘‘effective length.’’ This fact will be confirmed her
and will be one of the reasons to draw our final best e
mates from the analysis of the bcc series. Nevertheless
sc lattice series remain very interesting, in particular beca
the nonuniversal information obtained from them is direc
comparable to the data from simulation studies, traditiona
performed on the sc lattice. It is also interesting to not
that, for both lattices, the asymptotic behaviors set in m
slowly in the most widely studiedS51/2 case. This is no
surprising since the number of degrees of freedom per si
proportional to the magnitude of the spin. A slower conv
gence is observed also for the higher moments of the co
lation function, since in their construction larger weights a
given to the correlations between farther sites for which
expansions are effectively shorter. As a consequence, on
sc and bcc lattices, the expansions ofj show a slower con-
vergence than those ofx.

Based on the assumptions indicated above, our ana
will aim to exhibit, within the family of the spin-S Ising
models, some consequences of the universality property
14443
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the scaling, and of the hyperscaling laws for the correlat
functions, for the exponents, and for various universal co
binations of critical amplitudes. In particular our accura
verification of the universality property will strengthen th
justification of a technique advocated long ago
Zinn-Justin24 and independently by Chen, Fisher, a
Nickel25 to improve the precision in the computation of th
universal critical parameters of the Ising model. These
thors argued that numerical studies should address appr
ate families of spin models parametrized by a continuo
auxiliary variable and belonging to the same universa
class as the Ising model. For specific values of this variab
is possible to select representative models for which the
plitudes of the leading confluent corrections to scaling
negligible and, as a consequence, the determination of
universal critical parameters can be more accurate. By r
ing on a similar prescription, we will also obtain very acc
rate estimates of some universal critical parameters.

IV. ESTIMATES OF THE CRITICAL POINTS

In this section we shall examine the HT expansion of
susceptibility in zero field, for several values of the spinSon
sc and bcc lattices. The series coefficients of the suscept
ity generally show a very smooth dependence on the orde
expansion and a relatively fast approach to their asympt
forms. Therefore they are best suited to an accurate dete
nation of the critical temperatures. The estimates so obta
will also be adopted to bias the calculation of the critic
exponents and amplitudes.

As we have already argued in our previous study56 of the
HT series for theS51/2 case, the modified-ratio metho
introduced by Zinn-Justin24 ~see also Ref. 59! can lead to
estimates of the critical inverse temperatures with an ac
racy comparable or sometimes higher than the traditio
differential approximant~DA! methods. Perhaps, the pote
tial of this tool has not been properly appreciated, becaus
far it could not be used with series long enough.

The method consists in evaluatingbc
#(S) from the ap-

proximant sequence

„bc
#~S!…n5S cn22cn23

cncn21
D 1/4

expF sn1sn22

2sn~sn2sn22!G , ~23!

with

sn5F lnS cn22
2

cncn24
D 21

1 lnS cn23
2

cn21cn25
D 21GY2. ~24!

Since the expected value ofu is very nearly 1/2, by using
Eq. ~13!, the asymptotic behavior of the approximant s
quence can be expressed as follows:

„bc
#~S!…n5bc

#~S!F12
G~g!

2G~g2u!

u2~12u!ax
#~S!

n11u

1OS 1

n2D G . ~25!
1-5
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TABLE II. Estimates of the critical inverse temperatures for the spin-S Ising models on sc and bcc lattices, obtained in this work by
modified-ratio method biased with the leading correction-to-scaling exponentu. The sensitivity of the estimates to the bias value ofu is
characterized by the derivatives ofbc . For comparison, we have also reported some results obtained by simulation methods or fr
analysis of shorter series in the recent literature.

S51/2 S51 S53/2 S52 S55/2 S53 S5`

bc
sc(S) 0.221655~2! 0.312867~2! 0.368657~2! 0.406352~3! 0.433532~3! 0.454060~3! 0.601271~3!

]bc
sc(S)/]u 731026 431026 431026 431026 631026 631026 631026

bc
bcc(S) 0.1573725~10! 0.224656~1! 0.265641~1! 0.293255~2! 0.313130~2! 0.328119~2! 0.435085~3!

]bc
bcc(S)/]u 331026 1028 2331026 2631026 2631026 2631026 2631026

bc
sc(S)a 0.2216546~10!

bc
sc(S)b 0.2216595~15!

bc
sc(S)c 0.221655~1!

bc
bcc(S)d 0.157374~7! 0.224657~4! 0.293258~6! 0.435089~11!

bc
bcc(S)e 0.157373 0.224654 0.293255

aReference 93.
bReference 97.
cReference 98.

dReference 24.
eReference 28.
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It is interesting to observe also that, ifu51/2, the coeffi-
cient of the O(1/n2) correction in Eq.~25! is equal to
@ax

#(S)#2 times a very small positive factor. Moreover, th
coefficient of the 1/n term in Eq.~13! enters into Eq.~25!
only at next higher orders. Sinceax

#(S) is expected to be
small ~though generally not negligible!, these remarks help
to understand how this method works and why it is mu
more efficient than conventional ratio prescriptions. We c
say that Eq.~25! provides an estimate of the leading ‘‘finite
order effects’’: namely, of the corrections due to using ser
of finite length n. These are strictly analogous to the we
known ‘‘finite-size effects’’ which have to be carefully con
sidered to improve the data from simulations of finite s
tems. At the orders of expansion presently available Eq.~25!
has already a reasonably accurate quantitative meaning

Although devised specifically to deal with the expect
structure of the singularities, the procedure we have sketc
is unbiased: namely, no additional accurate information o
other critical parameters must be used together with the
ries in order to get the estimate sequence. However, at
present orders of expansion, then dependence of„bc(S)…n is
not saturated and, for sufficiently largen, the successive es
timates show an evident residual trend, very nearly linear
a 1/n11u plot, as expected from Eq.~25!. Small odd-even
oscillations are superimposed onto the main monotonic tr
as a consequence of the above-mentioned antiferromag
singularity @see the comments to Eq.~13!#. These observa
tions suggest that one can do something better than ta
the highest-order available term of the sequence, Eq.~23!, as
the final estimate ofbc

#(S). The most obvious improvemen
consists in using the assumed known value ofu to fit the
asymptotic behavior of the sequence and in taking the
trapolated value of the sequence as a better estimat
bc

#(S). As usual, one should separately extrapolate to largn
the odd and the even subsequences of„bc(S)…n , in order to
deal properly also with the oscillations due to the antifer
magnetic singularity. Our extrapolation will be based on
successive pairs of terms in the approximant subsequen
14443
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Eventually a further minor adjustment of the results might
performed by a second~purely visual! extrapolation in order
to allow also for a very small residual curvature of the plo
due to the higher corrections in Eq.~25!. For instance, in the
S51/2 case on the sc lattice, the highest-order estimate f
the extrapolation of the last pair in the odd-approximant s
sequence is 0.221 656 46. In order to allow for the sm
residual curvature of the extrapolation sequence, this fig
should probably be slightly reduced, to yield our final~and
very conservative! estimatebc

sc(1/2)50.221 655(2).
The set of our estimates forbc

#(S) is reported in Table II.
The errors we have indicated are small multiples~2–4! of
the differences between the extrapolations of the t
highest-order pairs of terms in the odd subsequences. In
same table, we have also reported]bc

#(S)/]u evaluated at
u5u re f. As shown by our data, the above-mentioned unc
tainty in the value ofu re f turns out to be unimportant in th
whole procedure, because it contributes only a small frac
of the final uncertainty of the estimates.

In order to give an idea of the qualitative features of t
method, for each valueS of the spin examined in this study
we have plotted in Fig. 1 the corresponding ‘‘normalize
approximant sequence„bc

bcc(S)…n /N(S) vs 1/n11u. We have
taken the average of the extrapolated values of the even
odd subsequences as the normalization factorN(S), intro-
duced only to make the various plots easily comparable
conveniently fit all of them into a single figure. We hav
drawn as solid lines the extrapolants of the last odd pair
terms in the sequences, whereas the dashed lines indicat
extrapolants of the last even pair. The difference between
extrapolated values of the odd and even normalized su
quences, which is generally very small~for instance, it is
'1026 in the bcc lattice case and at most 4 times as larg
the sc case!, provides a first rough indication that the osc
lating corrections due to the antiferromagnetic singular
give only a small contribution to the uncertainty of the r
sults. The final relative errors reported in Table II are gen
ally much larger.
1-6
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If we refer to Eq.~25!, the plots in Fig. 1 strongly sugges
that ax

bcc(1/2),0, whereasax
bcc(S).0 for S>2. Since

uax
bcc(1)u and uax

bcc(3/2)u are very small, we cannot yet b
completely sure about their sign. The smallness of these
fluent corrections is confirmed observing thatu]bc

bcc(1)/]uu
andu]bc

bcc(3/2)/]uu are much smaller than for the other va
ues ofS.

Simple model series with a structure specified by Eq.~13!
~including the antiferromagnetic oscillating corrections! can
mimic rather accurately the behavior of the spin-S Ising se-
ries for sufficiently high orders. Therefore numerical expe
mentation with these model series can give us some intui
on the virtues and the limitations of the modified-ra
method and help to assess its accuracy. These tests ad
ther confidence in our estimates of the relative error ofbc .
On the other hand, it may take series significantly lon
than those presently available to determineax(S) with a pre-
cision better than a few percent, since the slopes of the
proximant sequences provide only ‘‘effective’’ values
these amplitudes due to the residual influence of the hig
order corrections. Actually, the relative uncertainty ofax(S)
can be larger, particularly so if its absolute value is ve
small.

The sc lattice series have been studied in the same fas
and the results are illustrated by Fig. 2. The main differe
with respect to the bcc case is that all approximant seque
are decreasing, so thatax

sc(S),0 for all S. It is also clear
that, for this lattice, the rate of convergence of the appro

FIG. 1. The ‘‘normalized’’ modified-ratio approximant se
quences„bbcc(S)…n /Nbcc(S) for the critical inverse temperature o
the spin-S Ising models on the bcc lattice, plotted vs 1/n11u, with
u5u re f50.504. They are obtained from Eq.~23! using the coeffi-
cientscn

bcc(S) of the susceptibility series for the bcc lattice. In ord
to fit into a single figure the sequences for different values of
spin, each sequence has been normalized by the averageNbcc(S) of
the critical inverse temperatures obtained extrapolating separ
the even and odd subsequences. We have indicated by solid
the extrapolants of the odd subsequences, based on the last od
of approximants, while the dashed lines indicate the extrapolan
the even subsequences, based on the last even pair of approxim
14443
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mant sequences to their asymptotic behavior is distin
slower than in the bcc case.

In order to gain further confidence in the estimates by
modified-ratio method, we must confirm at least their ma
features also by numerical tests of a different nature or
volving different assumptions, thus reducing the probabi
of being misled by only apparent convergence. We ha
therefore performed also a more traditionalunbiasedanalysis
by first- and second-order inhomogeneous DA’s yielding v
ues of the critical inverse temperatures in essential ag
ment, to within their uncertainties, with those obtained fro
the modified-ratio method. In the case of the bcc lattice,
spin S51/2, the highest-order available DA estimates a
slightly larger than the estimates from the modified-ra
method. Nevertheless, the estimates from DA’s usingr series
coefficients show a slowly decreasing trend asr increases.
For S.2 the highest-order DA estimates are slightly smal
than the corresponding results from the modified-ra
method, but the estimate sequences show an increa
trend. If we make the reasonable assumption63 that also for
DA’s the dominant finite-order corrections are proportion
to the amplitudes of the leading nonanalytic corrections
scaling, these features of the results can be simply expla
by the pattern of signs and sizes of these amplitu
previously observed in the analysis. Taking account of th
trends and performing some purely visual extrapolation
the DA estimate sequences, we can reconcile the DA and
analyses by the modified-ratio method. We shall not rep
in Table II the DA results, but simply quote here the avera
of the highest-order DA data for a few values ofS.
The presence of residual trends in the sequence of DA e
mates will be indicated by asymmetric uncertainties roug
corresponding to the range of possible extrapolatio
For instance, from second-order unbiased DA’s,

e

ly
es
pair
of
nts.

FIG. 2. The same as in Fig. 1, but for the ‘‘normalized
modified-ratio approximant sequences„bsc(S)…n /Nsc(S) formed
from the coefficientscn

sc(S) of the susceptiblity series for the s
lattice.
1-7
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P. BUTERA AND M. COMI PHYSICAL REVIEW B65 144431
obtain bbcc(1/2)50.157 376(24)
(11) , bbcc(1)50.224 655(2),

bbcc(3/2)50.265 640(2), bbcc(2)50.293 255(2), and
bbcc(`)50.435 082(21)

(14) .
For the same reasons as above indicated, in the sc la

case, the values ofbc
sc(S) obtained from the DA’s are gen

erally slightly larger than those suggested by the modifi
ratio analysis. This upward shift is more pronounced in
caseS51/2, in which we obtainbsc(1/2)50.221 665(210)

(12) ,
whereas for higher values ofS the differences from the re
sults by modified-ratio method are much smaller: for e
ample,bsc(1)50.312 870(3), bsc(3/2)50.368 660(3), and
bsc(`)50.601 271(3).

In conclusion, our modified-ratio method~biased withu)
and the unbiased DA estimates of the critical inverse te
peratures on the sc and bcc lattices are consistent and
pare fairly well with, but sometimes are more accurate th
those already available in the literature for a few values
the spin and also reported in the table. A wider discussion
other estimates by different methods in theS51/2
case29,30,55,92–98can be found in our previous paper56 and in
recent reviews99–101 of Monte Carlo simulations and othe
studies of spin models. It is interesting to mention at t
point that the two most extensive simulations on the sc
tice, by a static93 and by a kinetic97 method, yield the esti-
mates bc

sc(1/2)50.221 654 6(10) and bc
sc(1/2)

50.221 659 5(15), respectively, which agree only with
two standard deviations.

V. MODIFIED-RATIO ESTIMATES
OF THE CRITICAL EXPONENTS

Modified-ratio methods can lead also to fairly goo
estimates56 of the exponentsg and n. Let us first focus on
the calculation of the exponentg to recall the prescription o
Refs. 24 and 59. An analogous procedure can be used
other exponents. For each value ofS, we form the approxi-
mant sequence

„g~S!…n511
2~sn1sn22!

~sn2sn22!2
, ~26!

wheresn is still defined by Eq.~24! in terms of the expansion
coefficientscn(S) of x(b;S).

Using Eq.~13!, we can compute the asymptotic behav
of the sequence„g(S)…n as follows:

„g~S!…n5g~S!2
G~g!

G~g2u!

u~12u2!ax
#~S!

nu
1OS 1

nD .

~27!

If u51/2, the 1/n term in Eq.~27! has a coefficient equa
to @ax

#(S)#2 times a small positive factor. The higher-ord
corrections contain powers ofg. As a consequence, for th
Ising model, the first important correction isO(1/n11u) and,
in general, the convergence of the sequence, Eq.~26!, will be
slower whenever the exponent under study is@1. This the
case ofg4 and, actually, we have observed that, at the pr
ently available orders, this procedure is not convenient
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estimatingg4, whereas a directly biased variant, to be d
scribed in the next section, is more successful. On the o
hand, for the calculation of the specific-heat exponenta,
there are difficulties of a different nature: the critical sing
larity is very weak and the number of nonzero coefficients
the HT expansion ofCH

# (b;S) is still too small. Because o
that, we have not been able to improve by modified-ra
methods the accuracy of the currentdirect HT
estimates52,102,103of a.

For sufficiently largen, the sequence of approximants d
fined by Eq.~26! is very nearly linear on a 1/nu plot. There-
fore, arguing like in the previous section, we are led to i
prove our estimates by extrapolating the odd~or even!
subsequences linearly in 1/nu. The higher-order correction
for the exponents are expected to be more important tha
the calculation ofbc and this is reflected in a larger unce
tainty of the extrapolation procedure. Just like in the formu
for bc , the limiting value of the approximant sequence
asymptotically approached from above, if the amplitu
ax

#(S) of the leading nonanalytic confluent correction to sc
ing is negative, or from below, if it is positive.

In Fig. 3 we have plotted the approximant sequen
„gbcc(S)…n for several values ofS between 1/2 and̀ . The
structure of the plots is generally consistent with the patt
of signs of the CCS amplitudes already emerged from
study of bc

bcc(S). For each sequence„gbcc(S)…n plotted in
the figure, we have drawn as a solid line the extrapol
based on the last odd pair of approximants, whereas a da
line represents the extrapolant based on the previous
pair. The small residual curvature of the approximant sub
quences, which is due to the higher-order corrections in

FIG. 3. The modified-ratio approximant sequences„gbcc(S)…n of
the susceptibility critical exponents for various values of the spinS,
plotted vs 1/nu, with u5u re f50.504. They are obtained using Eq
~26! from the susceptibility series coefficientscn

bcc(S). For each
value of the spin, we have indicated by a solid line the extrapola
to largen of the sequence, linearly in 1/nu, based on the last odd
pair of terms$„gbcc(S)…23,„gbcc(S)…25%. A dashed line indicates the
extrapolation based on the previous odd p
$„gbcc(S)…21,„gbcc(S)…23%.
1-8
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CRITICAL UNIVERSALITY AND HYPERSCALING . . . PHYSICAL REVIEW B65 144431
~27!, is made manifest in Fig. 3 by the splitting of the soli
and the dashed-line extrapolants. It can also be exhib
more directly by plotting~see Fig. 4! the sequence of ex
trapolations of the successive odd~or even! pairs of approxi-
mants.

In Table III, for both lattices and for several values of t
spin, we have reported the numerical values of the extra
lated exponents with an error corresponding to a small m
tiple of the difference between the solid and dashed extra
lations. We have also reported the derivatives of th
estimates with respect tou, computed at the reference valu
u re f50.504. For comparison, the same table also shows
exponent estimates obtained from DA’s, while the results
tained in other recent numerical studies using Monte Ca
methods, by shorter HT series, or in the RG approach,
be further discussed in Secs. VIII and IX and are collected
Table IV.

FIG. 4. The sequences of the extrapolations of the succes
odd pairs of modified-ratio approximants„gbcc(S)…n vs 1/n11u. The
solid lines are only guides to the eye.
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From Figs. 3 and 4, it is clear that not onlyax
bcc(S), but

also the amplitudes of the main subleading CCS change
as S varies between 1 and 2. This very favorable circu
stance, which can also be confirmed numerically–for
ample, by fitting the approximant subsequences to the sim
asymptotic form g1c1(S)/nu1c2(S)/n11u— makes us
very confident about the accuracy of the exponent estim
presented below. For each value ofS, a simple monotonic
behavior appears to have set in, since as shown in Fig. 4
subleading asymptotic correction in Eq.~27! generally works
in the expected ‘‘right’’ direction. Namely, it tends to lowe
the extrapolated exponent values obtained from the decr
ing approximant subsequences for spinS51/2 and S51,
while it tends to raise the extrapolated values obtained fr
the increasing subsequences forS>2. Only in theS53/2
case, in which both the amplitudes of the leading and of
subleading correction have the smallest absolute value,
approximant sequence is very slowly increasing and the
quence of extrapolated exponents is very slowly decreas
Thus we can expect that, as the number of available co
cients grows large, the range of variation with respect toSof
the extrapolated estimates ofgbcc(S) will continue to shrink,
further improving the verification of the universality of th
exponent with regard to the spin. More precisely, assum
that the general features of the behavior we have descr
persist as the order of the series increases, the succe
extrapolations of the sequences„gbcc(1/2)…n and „gbcc(1)…n
should provide decreasing sequences of upper bounds, w
those of the sequences„gbcc(2)…n , „gbcc(5/2)…n , etc., should
give increasing sequences of lower bounds forg.

At the present order of expansion, the exponent estim
obtained by our extrapolation prescription range orde
from 1.237 42 forS51/2 to 1.236 84 forS5`. Therefore, if
we nowassumethat universality is valid, in particular thatg
is independent ofS, the previous remarks suggest to ta
simply the averageg51.2371(4) of these extrema as a fir
rough approximation of the exponent with an uncertain
corresponding to the half-width of the range of variation. W

ve
c

ferential
TABLE III. Estimates of the critical exponentsg andn for the spin-S Ising model series on sc and bc
lattices obtained from extrapolation of the modified-ratio~MR! approximant sequences@defined by Eq.~26!#.
We have also reported the estimates obtained in this paper by second-order inhomogeneous dif
approximants~DA’s! biased withbc .

Exponent S51/2 S51 S53/2 S52 S55/2 S53 S5`

gsc(S)(MR) 1.2375~6! 1.2378~7! 1.2371~8! 1.2367~10! 1.2364~10! 1.2363~10! 1.2359~15!

]gsc(S)/]u 0.016 0.009 0.007 0.006 0.006 0.006 0.006
gbcc(S)(MR) 1.23742~20! 1.23730~16! 1.23710~3! 1.23699~10! 1.23694~10! 1.23691~10! 1.23685~15!

]gbcc(S)/]u 0.012 0.003 20.0005 20.002 20.003 20.004 20.006
gsc(S)(DA) 1.238~2! 1.239~2! 1.240~3! 1.239~2! 1.239~2! 1.239~2! 1.238~2!

gbcc(S)(DA) 1.2378~8! 1.2385~15! 1.2370~4! 1.2365~4! 1.2366~4! 1.2366~4! 1.2367~4!

nsc(S)(MR) 0.6277~30! 0.6279~30! 0.6283~20! 0.6285~20! 0.6286~20! 0.6286~20! 0.6288~20!

]nsc(S)/]u 0.021 0.014 0.010 0.0095 0.009 0.008 0.006
nbcc(S)(MR) 0.6283~20! 0.6294~8! 0.6297~6! 0.6298~6! 0.6299~6! 0.6299~6! 0.6301~5!

]nbcc(S)/]u 0.006 0.001 20.001 20.0015 20.002 20.0022 20.003
nsc(S)(DA) 0.632~2! 0.631~1! 0.631~1! 0.631~1! 0.631~1! 0.631~1! 0.631~1!

nbcc(S)(DA) 0.6308~10! 0.631~1! 0.6299~4! 0.6295~4! 0.6296~4! 0.6295~4! 0.6294~6!
1-9
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TABLE IV. Estimates of the exponentsg and n obtained in the recent literature by various kinds
analyses of shorter high-temperature series, by Monte Carlo methods, or by renormalization-group m
The estimates marked with an asterisk are obtained by procedures implying or assuming universalit

Exponent HT Monte Carlo RGe exp. RG fixed-D exp.

1.237~2!*a

1.2385~25!*b

1.2385~15!*c 1.2367~11!d 1.2378~6!*e

g 1.2395~4!* f 1.237~2!*g 1.2380~50!*h 1.2396~13!*h

1.2378~6!i 1.2372~17!* j

1.2373~1!k

1.2371~4!l

0.6300~15!*a

0.6305~15!*b 0.6296~7!d 0.6301~5!*e

n 0.632~1!* f 0.6301~8!*g 0.6305~25!*h 0.6304~13!*h

0.6311~3!* i 0.6303~6!* j

0.6300~2!k 0.6294~10!m

0.63002~23!* l

aReference 23.
bReference 24.
cReference 25.
dReference 89.
eReference 45.
fReference 26.
gReference 92.

hReference 64.
iReference 27.
jReference 93.
kReference 28.
lReference 113.
mReference 114.
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can further refine this estimate observing that, for values
the spin between 1 and 2, both the leading and the m
subleading CCS are very small, as it appears observing
the exponent approximant sequences have very small slo
clearly positive forS51 and negative forS53/2 andS52.
Moreover the extrapolated exponent estimates are fairly
sensitive to the bias value ofu @for instance, we have
]gbcc(1)/]u'0.003, ]gbcc(3/2)/]u'20.0005, and
]gbcc(2)/]u'20.002 at u5u re f#. Since „gbcc(1)…n and
„gbcc(2)…n are very close, a better estimate forg should lie
in between. The extrapolation of the last odd pair of terms
the sequence„gbcc(1)…n yields 1.237 30, whereas for the s
quence„gbcc(2)…n it leads to 1.236 99, and therefore th
rough estimate given above can be improved tog
51.237 15(15). Consideration also of the seque
„gbcc(3/2)…n suggests that we takeg51.2371(1) as our fina
best estimate.

A closely related procedure was proposed long ago
Refs. 26. These authors analyzed, but never published
tensive two-variable series in power ofb and of a continuous
Ising spin variable~made available by B.G. Nickel!, using
partial-differential approximant methods which indicated
‘‘effective fixed point’’ aroundS53/2. Within the precision
of the present calculations, the simple prescription of tak
the average of the extrapolations of„gbcc(1)…n and of
„gbcc(2)…n , or the extrapolation of„gbcc(3/2)…n as the best
approximation ofg, should be equally~or perhaps more!
effective since it also takes advantage of the vanishing of
main subleading correction.

Since it is not difficult to show that the leading CCS f
any observable must also vanish for the same value ofS, the
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same prescription can be used for extracting the best valu
n from the approximant sequences„nbcc(S)…n formed by the
series coefficients ofj2(b;S) and shown in Fig. 5. Figure 6
shows the sequence of the extrapolations of the succes
odd pairs of approximants. The slower convergence of
approximants to the correlation-length exponent should
be surprising, simply becausem2(b;S) enters into the defi-
nition of j2. At the present orders of expansion, the behav

FIG. 5. Same as in Fig. 3, but for the modified-ratio appro
mant sequences„nbcc(S)…n of the correlation-length critical expo
nent, as obtained from the expansion ofjbcc(b;S).
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of the sequence of the extrapolated exponent values is cle
not yet asymptotic forS51/2 andS51, while it is much
smoother and shows a slowly increasing trend for 3/2<S
<3 and a slowly decreasing trend forS.3. Thus arguing as
before, we can conclude thatn50.6299(2).

If we bias the extrapolation procedure with a larger va
of u re f, the range of variation ofgbcc(S) with S will be
expanded, to an extent that can be easily figured out from
data reported in Table III, but the estimated central value
gbcc will be practically unchanged. For instance, if we ado
the significantly larger valueu re f50.54, we findgbcc(1/2)
51.237 82 and gbcc(`)51.236 61, whereas gbcc(1)
51.237 41,gbcc(3/2)51.237 08, andgbcc(2)51.236 91 are
changed to a smaller extent. Averaging„gbcc(1)…n and
„gbcc(2)…n yieldsg51.237 16(25) and consideration also
„gbcc(3/2)…n leads to essentially the same final estimate
the one obtained foru re f50.504. In the case of the expone
n, the estimated central value is slightly lowered to 0.62
well within the error bars of our previous estimate.

Using the Fisher scaling relation,104 the exponenth de-
scribing the large distance falloff of the two-spin correlati
function at the critical temperature can be estimated
hbcc522gbcc/nbcc50.0360(8).

In Figs. 7 and 8 we show the results of the analogo
procedure of extrapolation for„gsc(S)…n and„nsc(S)…n . The
main features are similar to the bcc case, except, unfo
nately, for the sign pattern of the amplitudes of the lead
CCS, all of which now appear to be negative, consisten
with the study ofbc

sc(S) by the modified-ratio method. In
complete analogy with the bcc case, for both exponentg
and n, the residual curvature of the approximant sequen
tends to correct the extrapolations in the direction expec
in order that universality be realized. The accuracy of
exponent estimates is notably smaller, due to the anticip
slower convergence of the sc lattice series coefficients
their asymptotic form and perhaps to the presence of la
subleading corrections in Eq.~27!. The values of the expo

FIG. 6. Same as in Fig. 4, but for the sequences of the extra
lations of the successive odd pairs of modified-ratio approxima
„nbcc(S)…n vs 1/n11u.
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nentsg andn obtained from the sc series data are consist
with those from the bcc data, but they are affected by s
nificantly larger uncertainties: we can roughly estimateg
51.2368(10) andn50.6285(20).

The numerical progress achieved in this study is best
preciated by comparing our Figs. 3 and 5 with the analog
Figs. 1 and 2 of Ref. 24. We should first observe that in R
24 a straightforward extrapolation linear in 1/n was implied
for the sequences„gbcc(S)…n and „nbcc(S)…n . Due to this
choice of the plotting variable and to the smaller extension
the bcc series available two decades ago, the ‘‘relative m
mal spreads’’ with respect to the spinS of the extrapolated
exponent values are

o-
ts FIG. 7. Same as in Fig. 3, but for the modified-ratio appro
mant sequences„gsc(S)…n of the susceptibility critical exponent a
obtained fromxsc(b;S) using Eq.~26!.

FIG. 8. Same as in Fig. 3, but for the modified-ratio appro
mant sequences„nsc(S)…n of the correlation-length critical expo
nent, as obtained fromjsc(b;S).
1-11
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P. BUTERA AND M. COMI PHYSICAL REVIEW B65 144431
g~1/2!2g~`!

g~1/2!1g~`!
'2.531023

and

n~`!2n~1/2!

n~1/2!1n~`!
'7.631023,

respectively. In our study of the same lattice, the correspo
ing figures are smaller by nearly one order of magnitu
namely, the relative spread is now'2.331024 in the case of
g and'1.431023 for n. The values of these spreads can
taken as rough accuracy limits for the verification of t
universality with respect toS, which is thereby convincingly
corroborated by the new analysis.

We close this discussion with a few remarks. Our ext
sion of the series to orderb25 has been crucial in showin
that, in the bcc lattice case, the asymptotic structure of
HT expansion coefficients is already well stabilized, sin
the last six or seven modified-ratio method approximants
the critical inverse temperature or of the critical expone
show remarkably regular trends. Also in the sc lattice ca
there are indications from the last three or four appro
mants, obtained by the same method, that a similar tren
setting in, but clearly the convergence is not as fast as for
bcc lattice.

Some numerical experimentation with model series s
gests, also for the exponent analysis, that our error estim
are reasonable and quite conservative.

For both lattices, the CCS amplitudes can be estima
from the slopes of the exponent approximant sequence
will be further discussed in Sec. IX.

In conclusion, this simple modified-ratio approach co
firms accurately the universality ofg andn with respect to
the magnitude ofS and to the lattice structure and, co
versely,assuminguniversality and using the bcc series da
it yields very accurate estimates for these exponents.

VI. BIASED MODIFIED-RATIO METHOD
FOR THE EXPONENTS

In Ref. 24, Zinn-Justin proposed also a more dir
modified-ratio procedure for biasing the exponent estima
with the value ofu, in order to eliminate or strongly reduc
the influence of the leading confluent corrections to scali
The prescription involves the quantities

s̄n5~sn1sn21!/2 ~28!

and

bn5S 1

u
~ s̄n

u/22 s̄n22
u/2 ! D 2/(u21)

. ~29!

In terms ofbn the following approximant sequence can
formed:

„ĝ~S!…n511
~bn2bn22!2

2~bn1bn22!
. ~30!
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If we make the simplifying assumption thatu is exactly
1/2, also the correction termsO(1/n2u) will be eliminated by
this prescription, along with the regular correctionO(1/n),
and therefore

~ ĝ~S!!n5g~S!1OS 1

n3/2D . ~31!

By the remarks made at the beginning of the preced
section, these are not decisive improvements in the calc
tion of g andn, and indeed, for both sc and bcc lattices, t
results obtained by this procedure are consistent with but
more accurate than those of our previous analysis
modified-ratio methods. See, for example, Figs. 9 and
where, for convenience, we have plotted„ĝ(S)…n vs 1/n21u

rather than vs 1/n11u, because the plots of the approximan
appear to be more nearly linear~although with somewha
large corrections! with respect to former than to the latte
variable.

On the other hand, this biased variant of the modifie
ratio method is more successful in the analysis of the exp
sions that we have computed forx4. The sequences of biase
approximants„ĝ4

#(S)…n for the exponent ofx4
#(b,S) are

shown in Fig. 11 for the bcc lattice and in Fig. 12 for the
lattice. In order to avoid confusing the plots, we have in
cated only the extrapolations, linear in 1/n21u, based on the
last odd pair of terms$„ĝ4

#(S)…21,„ĝ4
#(S)…23% in the approxi-

mant sequences. When the spinS varies between 1/2 and̀,
the extrapolated values ofg4

sc(S) range from 4.366 forS
51/2 to 4.372 forS5`. Similarly, in the case of the bcc
lattice the values ofg4

bcc(S) vary between 4.369 and 4.375
We have reported in Table V the results obtained by t
method for several values ofS. From the sc lattice data we

FIG. 9. The directly biased modified-ratio approximant se

quences„ĝbcc(S)…n plotted vs 1/n21u. They are obtained from Eq
~30!, using as a bias the value ofu in order to reduce the influenc
of the confluent corrections to scaling. The solid lines are o
guides to the eye.
1-12
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CRITICAL UNIVERSALITY AND HYPERSCALING . . . PHYSICAL REVIEW B65 144431
can conclude thatg4
sc5g12D54.369(8) and from the bcc

lattice datag4
bcc5g12D54.372(8).

The accuracy in the verification of the validity of hype
scaling is often characterized quantitatively by quoting
value of the right-hand side of Eq.~18!: from our estimates
we haveg13n22D52g13n2g4520.0099(160) in the
sc lattice case and, analogously,g13n22D
520.0081(88) for the bcc lattice.

These results give strong support to the validity of t
hyperscaling relation and of the universality ofg4 with re-
spect both to the lattice structure and to the value ofS.

FIG. 10. Same as Fig. 8, but for thedirectly biased modified-

ratio approximant sequences„n̂bcc(S)…n plotted vs 1/n21u.

FIG. 11. The directly biased modified-ratio approximant se

quences„ĝ4
bcc(S)…n for the critical exponent ofx4

bcc(b;S) plotted vs
1/n21u. In order to keep the figure readable we have indicated o
the extrapolations of the odd approximant subsequences.
14443
e

VII. RATIO ESTIMATES FOR THE EXPONENT
OF THE LEADING CONFLUENT SINGULARITY

Assuming thatu is universal, the simplest prescription fo
estimating this exponent is based on the series with co
cients

qn~S1 ,S2!5
cn~S1!dn~S2!

cn~S2!dn~S1!
~32!

for n.0 and, of course,S1ÞS2. Herecn(S) are the coeffi-
cients of the susceptibility anddn(S) the coefficients of the
second correlation moment for spinS. From Eq.~13! we can
observe that, for largen,

qn~S1 ,S2!5A~S1 ,S2!F11
B~S1 ,S2!

nu
1O~1/n!G ~33!

and therefore

r n~S1 ,S2!5
qn~S1 ,S2!

qn12~S1 ,S2!
511

A8

nu11
1O~1/n2! ~34!

so that

„u~S1 ,S2!…n5
1

2 FnS r n~S1 ,S2!21

r n12~S1 ,S2!21
21D22G ~35!

is an approximant sequence foru. In the bcc lattice case, i
ly

FIG. 12. Same as in Fig. 11, but for thedirectly biased

modified-ratio approximant sequences„ĝ4
sc(S)…n for the critical ex-

ponent ofx4
sc(b;S) plotted vs 1/n21u.
1-13
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TABLE V. Estimates of the critical exponentg4 from the spin-S Ising model high-temperature series o
sc and bcc lattices obtained in this work by the modified-ratio~MR! methoddirectly biased with the leading
correction-to-scaling exponentu following Eq. ~30! or by second-order differential approximants biased w
bc . For comparison, we have also reported some results obtained by simulation methods or from
series in the recent literature.

Exponent S51/2 S51 S53/2 S52 S55/2 S53 S5`

g4
sc(S) ~DA! 4.372~8! 4.368~8! 4.369~8! 4.369~8! 4.368~8! 4.367~4! 4.366~4!

ĝ4
sc(S) ~MR! 4.3703~12! 4.3662~16! 4.3671~9! 4.3683~9! 4.3691~9! 4.3697~9! 4.3719~2!

]ĝ4
sc(S)/]u 0.027 0.023 0.015 0.009 0.004 0.002 20.007

g4
bcc(S) ~DA! 4.376~20! 4.3666~10! 4.3638~10! 4.3629~10! 4.3632~10! 4.3631~10! 4.3631~10!

ĝ4
bcc(S) ~MR! 4.3696~3! 4.3690~11! 4.3702~12! 4.3714~12! 4.3722 4.3729~12! 4.3749~10!

]ĝ4
bcc(S)/]u 0.02 20.008 20.014 20.023 20.028 20.032 20.043

g4
sc(S) a 4.361~8!

g4
bcc(S) a 4.366~6!

g4
bcc(S) b 4.370~14!

aReference 53.
bReference 42.
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we chooseS151/2, S2.2, and extrapolate only the even~or,
equivalently, the odd! subsequences linearly in 1/n11u, we
obtain Fig. 13. The results indicate very suggestively thau
50.5021

13, independently of the value ofS2.

VIII. ANALYSIS OF THE EXPONENTS BY DIFFERENTIAL
APPROXIMANTS

The modified-ratio methods employed in the last secti
have proved successful and suggestive both for the dete
nation of the critical temperatures and for the calculation
the exponentsg, n, and g4. Let us now turn to the more

FIG. 13. Approximant sequences„ubcc(S1 ,S2)…n for the
correction-to-scaling exponentu as obtained using Eq.~35! for
fixed S151/2 andS255/2,3,7/2,4,5,̀ . The symbols refer to the
values ofS2. The sequences are plotted vs 1/n11u, with u50.504.
In order to keep the figure readable we have indicated only
extrapolations of the odd approximant subsequences.
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traditional differential-approximant-based procedures of
ries analysis after recalling that their main difficulty is th
necessity of some further extrapolation with respect to
order of the series used, which is not straightforward, d
mainly to the lack of simple estimates for the finite-ord
corrections and to the spread of the various DA estimate
a given order of approximation. This fact also hampers
assessment of the errors, which can be realistic if not o
they reflect the spread of the values of the highest-order
proximants, but also allow for the possible residual trends
this respect, the modified-ratio methods might be easie
use, as we have suggested in the previous sections. We
already discussed in Sec. IV the DA estimates for the criti
points. For measuring the exponents, we have preferred
ries analyses using the inhomogeneous first- and sec
order DA’s biasedwith bc ~or in some cases with6bc), or
sometimes thesimplifiedinhomogeneous first-order differen
tial approximants defined in Ref. 52, in which we have fix
also the correction-to-scaling exponentu. The extrapolations
of the results from the biased DA’s and from the simplifi
DA’s may be performed with a smaller uncertainty, becau
the spread of the estimates tends to be narrower than
unbiased approximants. Moreover, in order to understand
least qualitatively, how the estimates on a given lattice
pend on the spin and to improve them, it will be sufficient
assume that the leading finite-order corrections are pro
tional to the amplitudes of the leading nonanalytic corre
tions to scaling.

A simpler approach105,106 similar to the simplified DA’s
consists in forming the conventional Pade´ approximants after
subjecting the series to the biased variable changew#(S)
512t#(S)u in order to regularize the leading CCS. Th
results obtained either by simplified DA’s or by Pade´ ap-
proximants~PA’s! in the variablew#(S) are sometimes nu
merically comparable, but the latter are generally affected
a larger uncertainty.

We have computed also theeffective exponents, intro-
duced long ago in Ref. 107 and more recently reconside
e
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CRITICAL UNIVERSALITY AND HYPERSCALING . . . PHYSICAL REVIEW B65 144431
and systematically studied in Refs. 14,63,108, and 109,
the susceptibility

ge f f
# ~b;S![2

d ln x#~b;S!

d ln t#~S!

5g~S!2uax
#~S!t#~S!u1O„t#~S!…, ~36!

for the correlation length

ne f f
# ~b;S![2@12t#~S!#

d ln j#~b;S!

d ln t#~S!

5n~S!2uaj
#~S!t#~S!u1O„t#~S!…, ~37!

and for the second field derivative of the susceptibility

g4e f f
# ~b;S![2

d ln x4
#~b;S!

d ln t#~S!

5g4~S!2ua4
#~S!t#~S!u1O„t#~S!…. ~38!

The critical exponentsg, n, andg4 are estimated by ex
trapolating the effective exponents to the critical singular
Of course, the factor@12t(S)# in Eq. ~37! is introduced
only to compensate for the singularity ofd ln j(b;S)/d ln t(S)
at b50 and is unimportant at the critical point.

It is interesting to plot the effective exponents over a w
vicinity of bc

#(S), not only to gain information on the leadin
correction amplitudesax

#(S), aj
#(S), anda4

#(S) through Eqs.
~36!–~38!, by examining whether and how fast they a
proach the critical limit from above or from below, but als
simply in order to display the variety110 of preasymptotic
critical behaviors which can occur within the same univ
sality class. The parametrizations of the approach to the c
cal behavior, proposed within various field-theoretic
approaches111,112to the RG, must confront also with this phe
nomenology.

In Figs. 14 and 15 we have shown the highest-order s
plified DA’s of the effective exponentsge f f

bcc(S) and, respec-
tively, ne f f

bcc(S) for spinS51/2,1, . . . ,̀ , over wide ranges of
inverse temperatures. In order to make the curves con
niently comparable for all values of the spin, we have plot
the effective exponents against the variable@tbcc(S)#u. The
sign of the leading CCS is revealed by the slope of the p
neartbcc(S)50.

While the simplified DA’s are quite sufficient to give
general view of the behavior of the effective exponents, m
accurate results for the exponentg are obtained extrapolatin
the effective exponent expansions by second-order inho
geneous DA’s biased withbc . The estimates thus obtaine
for g(S) range from gbcc(1/2)51.2385(6) to gbcc(`)
51.2367(5). They are reported in Table III. Our best D
estimate g51.2373(4) is obtained simply by averagin
gbcc(1) andgbcc(2) and taking into account also the valu
of gbcc(3/2). It agrees well with the estimate by modifie
ratio methods. The corresponding results for the correlat
length exponent range fromnbcc(1/2)50.6314(20) to
nbcc(`)50.6294(5) and our best estimate isn50.6301(4).
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In the sc lattice case, the analogous~but less well con-
verged! plots for ge f f

sc (b;S) and for ne f f
sc (b;S), obtained by

simplified DA’s, are shown in Figs. 16 and 17. This analy
also confirms that, on the sc lattice, the amplitudes of
leading CCS do not have a dependence onS similar to the
bcc case, but remain negative for all values of the spin. T
estimates ofgsc(S) and ofnsc(S) obtained by second-orde
biased DA’s are also reported in Table III.

FIG. 14. Highest-order simplified-differential approximants
the effective exponentge f f

bcc(b;S) of the susceptibilityxbcc(b;S) as
defined by Eq.~36!. For each value of the spinS the effective
exponent is plotted vstbcc(S)u5@12b/bc

bcc(S)#u. As indicated by
the symbols attached to them, the curves refer, from the hig
downwards, to the spin valuesS51/2,1,3/2,2,5/2,3,7/2,4,5,`.

FIG. 15. Highest-order simplified-differential approximants
the effective exponentne f f

bcc(b;S) of the correlation length
jbcc(b;S) as defined by Eq.~36!. For each value of the spinS the
effective exponent is plotted vstbcc(S)u5@12b/bc

bcc(S)#u. As in-
dicated by the symbols attached to them, the curves refer, f
the highest downwards, to the spin valuesS51/2,1,
3/2,2,5/2,3,7/2,4,5,̀.
1-15
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P. BUTERA AND M. COMI PHYSICAL REVIEW B65 144431
The simplified-DA analysis of the effective expone
g4e f f

bcc (S) of x4
bcc(b;S) yields estimates ofg4

bcc(S) ranging
between 4.3647 and 4.3653. It also indicates thata4

bcc(1/2)
anda4

bcc(1) are negative, whereasa4
bcc(S) is positive forS

.3/2. On the sc lattice, the corresponding estimates
g4

sc(S) vary between 4.363 and 4.373 anda4
sc(S).0 for all

S. We can conclude thatg454.366(2), independently of the
spin and the lattice, and in good agreement with the res

FIG. 16. Highest-order simplified-differential approximants
the effective exponentge f f

sc (b;S) of the susceptibiltyxsc(b;S) as
defined by Eq.~36!. For each value of the spinS the effective
exponent is plotted vstsc(S)u5@12b/bc

sc(S)#u. As indicated by
the symbols attached to them, the curves refer, from the hig
downwards, to the spin valuesS51/2,1,3/2,2,5/2,3,7/2,4,5,`.

FIG. 17. Highest-order simplified-differential approximants
the effective exponentne f f

sc (b;S) of the correlation lengthjsc(b;S)
as defined by Eq.~36!. For each value of the spinS the effective
exponent is plotted vstsc(S)u5@12b/bc

sc(S)#u. As indicated by
the symbols attached to them, the curves refer, from the hig
downwards, to the spin valuesS51/2,1,3/2,2,5/2,3,7/2,4,5,`.
14443
f

lts

of the analysis by modified-ratio methods. The accuracy
the verification of hyperscaling is now slightly improve
with respect to the biased modified-ratio methods of sec.
since we haveg13n22D520.0021(28).

As shown in Figs. 18 and 19, the pattern of signs for
confluent amplitudes ofx4

#(b;S) is consistent with the cor-
responding results forx#(b;S), as it must, since the ratio
a4

#(S)/ax
#(S) are expected to be universal.

The exponentg4
#(S) can also be evaluated extrapolatin

the effective exponents by inhomogeneous second-o
DA’s biased with bc

#(S). On the bcc lattice, our results
which appear in Table V, range between 4.376(8) forS

st

st

FIG. 18. Highest-order simplified-differential approximants
the effective exponentg4e f f

bcc (b;S) computed fromx4
bcc(b;S). For

each value of the spinS the effective exponent is plotted vs th
corresponding reduced inverse temperaturetbcc(S)u5@1
2b/bc

bcc(S)#u.

FIG. 19. Same as Fig. 18, but for the effective expon
g4e f f

sc (b;S) computed fromx4
sc(b;S).
1-16
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CRITICAL UNIVERSALITY AND HYPERSCALING . . . PHYSICAL REVIEW B65 144431
51/2 and 4.3631(4) forS5`. In particular we find
g4

bcc(1)54.3666(10), g4
bcc(3/2)54.3638(10) andg4

bcc(2)
54.3629(10). By the same arguments used in the modifi
ratio method analysis of the bcc lattice series, the best v
for the exponentg4 should lie between the estimates forS
51 and S52. This leads to our final estimateg4

54.3647(20), which is even more accurately consistent w
hyperscaling, since for the bcc lattice data we haveg
13n2g4520.0008(28).

Finally, it is worth mentioning briefly that the ration/g
can be determined, to a good precision, also study
the log-derivative ratios D ln(x4)/D ln(x) and
D ln(m2 /b)/D ln(x), either by DA’s biased inbc or by sim-
plified DA’s biased inbc and u. The values thus obtaine
from the bcc lattice expansions~except for S51/2) fall
within the error bars of our best resultn/g50.5092(2) from
modified-ratio methods. The accuracy of the estimates ca
further improved by focusing on the bcc lattice case a
arguing as usual that the best value ofn/g is simply an
average of the estimates forS51 andS52. We thus arrive
to the valuen/g50.5091(1). Theestimates of this ratio ob
tained from the sc series lie within twice the expected er
bars forS.2, but are slightly worse for smaller values ofS.
In the bcc lattice case, also the DA estimate ofg obtained
from the analysis of the ratio of the log derivatives ofx8 and
x, whose value at the critical point is 111/g, agrees very
closely with our best results by modified-ratio methods.

We have also examined the term-by-term divided seri

Q~x;S!5(
r>0

er~S!

pr~S!
xr , ~39!

whereer(S) are the expansion coefficients ofx4(b;S) and
pr(S) those ofx2(b;S). Using Eq.~13!, it is easily shown
that the auxiliary functionQ(x;S) has a critical point atx
51 with exponent 3n11, if hyperscaling holds. A second
order biased DA analysis of the effective exponent yields
estimaten50.6300(4) independently ofS and in complete
agreement with hyperscaling.

In conclusion, we have observed that if the sequence
modified-ratio method approximants are carefully extra
lated using as bias the value ofu derived by RG methods, th
estimates of the exponents obtained by the modified-r
method, for allS and on both lattices under consideratio
show good agreement with the results from DA’s biased o
with bc or simplified DA’s biased with bothbc andu. The
close consistency between the critical parameter estim
obtained by a number of different procedures adds furt
confidence that the HT series have now reached a fairly
extension and that we are not being misled by accide
apparent convergence, so that the uncertainties of the
estimates can be significantly reduced. The small resid
dependence of the exponent estimates on the spinS and on
the lattice structure can be confidently used to characte
how accurately universality is respected.
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IX. COMPARISON WITH OTHER EXPONENT
ESTIMATES

The agreement of our HT estimates with the valuesg
51.2396(13) andn50.6304(13), obtained in the context o
the RG by Borel summation of coupling-constant seven
order fixed-dimension perturbative expansions45,64,65or with
the valuesg51.2380(50) andn50.6305(25) obtained by
Borel summation of the fifth-ordere expansion,64,65 is still
reasonable. The valuesg51.2378(6)10.18(gr21.40) and
n50.6301(5)10.12(gr21.40) proposed in Ref. 45 on th
basis of a slightly different resummation of the fixe
dimension perturbative RG expansion are perhaps e
closer. At the presently available orders of HT expansion,
series estimates prefer central values forg andn which are
only slightly lower. It is appropriate to mention that ver
similar central estimates, though with larger uncertainti
were already obtained quite some time ago23,25–28from bcc
lattice series of orderb21 by the method24,25of Chen, Fisher,
Nickel, and Zinn-Justin. For instance, the analysis of Ref.
yielded g51.237(2) andn50.6300(15). A more recen
study113 of HT series throughO(b20) for the sc lattice, along
the same lines as in Refs. 23, 25 and 26, indicatesg
51.2371(4) andn50.630 02(23). All these results are als
quoted for comparison in our Table IV.

The technique24–26 of focusing the analysis on some pa
ticular model in the Ising universality class with negligib
amplitudes of the leading confluent corrections to scal
was advantageously adapted also to Monte Carlo simulat
in Refs. 92 and 93, which reportg51.2372(17) andn
50.6303(6). This procedure was further improved in Re
89, in which it led to the estimatesn50.6296(7) andh
50.0358(9), implying g51.2367(20). Even lower centra
estimates of the exponents—namely,g51.2353(25) andn
50.6294(10)—have been measured in a more conventio
Monte Carlo simulation of the spin-1/2 Ising model supp
mented by a finite-size scaling analysis114 which allows also
for the corrections to scaling. It is tempting to conjectu
that, for S51/2 on the sc lattice, our results from the e
trapolations of the modified-ratio approximants and the b
finite-size scaling analyses of the Monte Carlo simulatio
on the largest accessible lattices are subject to errors of
same nature. This would explain the rather small central v
ues of the quoted Monte Carlo estimates ofg and indicate
the need of simulations of a significantly larger scale in or
to obtain from spin-1/2 systems on the sc lattice expon
values in closer agreement with our bcc series estimates

Let us now comment briefly on the existing results forg4.
We recall that the validity of the hyperscaling relation, E
~18!, for the spin-1/2 Ising model was questioned33–35on the
basis of an analysis of 10–12 term series on sc, bcc, and
lattices, yielding the estimateg13n22D50.038(12). This
result was at the time interpreted as an indication of a sm
but clear, failure of hyperscaling. As already mentioned
the Introduction, the problem was convincingly settled on
when the HT series forx and j2 on the bcc lattice,
extended22 up to order 21, were analyzed with caref
allowance22–30for the CCS and indicated the insufficient a
curacy of the ‘‘classical’’ HT estimatesg51.250(3),n
1-17
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50.638(2), anda51/8 generally accepted31,32,36until then.
For general spin, a single study41 of x4, performed with

seriesO(b13) on the fcc lattice, can be found in the litera
ture. The log derivative of the seriesQ(x;S), defined by Eq.
~39!, was examined by PA’s. The analysis produced estim
of the exponent 2D2g ranging from 1.887(1) forS51/2 to
1.893(1) for S59/2. Of course, if hyperscaling is valid
2D2g53n. Thus the final estimate 2D2g51.890(3) indi-
cated the absence of hyperscaling violations of the size
dicted from Refs. 33–35, provided that the central valuen
50.630 suggested by the RG, rather than the ‘‘classical’’
estimaten50.638(2), wasadopted.

The expansion ofx4 on the sc lattice, forS51/2, was at
the time already available115 up to order 17, but it was ana
lyzed only later in Ref. 42. It yielded the estimateg4
54.370(5), still confirming the validity of hyperscaling, pro
vided that the revised values obtained from the RG in th
years were assumed forg andn. The series on the bcc lat
tice, for S51/2, was extended to the same order only mu
later53 and its analysis also confirmed the above conclus
Further support of these results came also from various m
recent Monte Carlo tests.116–119

It should be stressed that the finite-order effects are st
ger in the calculation ofx4 ~and of related quantities likegr)
than in the calculation of quantities defined in terms of tw
spin correlations, as we have already remarked in Ref.
and therefore that the accuracy of the results is corresp
ingly smaller. Our comparison with previous studies sho
however, that we have achieved some improvement not o
in the precision of the estimates ofg and n, but mainly of
g4, by taking advantage of our significantly extended exp
sions ofx4.

X. ESTIMATES OF CRITICAL AMPLITUDES

For proper reference and for comparison with the ear
studies, we have reported in Table VI a set of updated e
mates for the critical amplitudes ofx#(b;S), of j#(b;S), of
CH

# (b;S), and ofx4
#(b;S) as defined by Eqs.~9!–~12!.

We have evaluated the critical amplitudeC#(S) of
x#(b;S) as follows. We have adopted as a bias the valug
51.2371 and our estimates ofbc

#(S) to compute the HT
series of the ‘‘effective amplitude’’:

C#~b;S!5tgx#~b;S!.C#~S!@11ax
#~S!t#~S!u1•••

1bx
#~S!t#~S!1•••#. ~40!

The amplitudeC#(S) is then estimated by extrapolatin
the effective amplitudeC#(b;S) to the critical point. The
extrapolation has been performed either by first-order in
mogeneous simplified DA’s biased withbc

#(S) and withu in
order to allow for the confluent corrections to scali
or, more traditionally, by using second-order inhomogene
DA’s biased with6bc

#(S). Since these two procedures yie
fully consistent estimates, we have reported in Table
only the results obtained by the usual differential appro
mants, which do not need to be biased also withu. By the
same procedure, we have also studied the effective am
14443
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tudes for the correlation length and forx4 in order to evalu-
ate the corresponding critical amplitudes@ f #(S)#2

5 lim
t→01

t2nj#(b;S)2 and C4
#(S)52 lim

t→01
tg12D

3x4
#(b;S). The results are reported in the same table.

The above-mentioned difficulties in the analysis of t
critical behavior of the specific heat also result in larger
rors of the critical amplitudeA#(S). Therefore it seems more
convenient to compute this quantity from the second deri
tive of G#(b;S), which presents a sharper singularity.

Other estimates for some of the mentioned critical am
tudes, obtained from shorter HT series and under sligh
different biasing assumptions or by other numerical metho
can also be found in earlier studies.28,42,120–122For instance,
from Ref. 120 we have cited in Table VI the estimates
Asc(1/2),Csc(1/2), and f sc(1/2), obtained from series
O(b17),O(b19), and O(b12), respectively, under the as
sumptions a50.104,g51.237,n50.6325, and bc

sc(1/2)
50.221 620. From the same reference, we have also repo
the estimates ofAbcc(1/2) obtained from a seriesO(b17) and
of Cbcc(1/2) and f bcc(1/2) obtained from seriesO(b21) by
assuming bc

bcc(1/2)50.157 362 and the same values
above fora,g, andn.

Under various assumptions on the value ofa, estimates of
Asc(1/2) were derived in Ref. 123 from a simulation
which the energy and the specific heat were measured
straightforward interpolation, we can conclude that, fora
50.11, these data would imply the estimateAsc(1/2)
51.368(7), in reasonable agreement with ours.

From Ref. 121, we have quoted estimates ofC4
sc(1/2) and

of C4
bcc(1/2) obtained from the seriesO(b17) and O(b13),

respectively, assuming g454.375 and bc
sc(1/2)

50.221 630(16),bc
bcc(1/2)50.157 368(7).

In the same table, we have also reported estimates28 from
seriesO(b21) for Cbcc(1/2), Cbcc(1), andCbcc(2) assuming
g51.237 and the estimates off bcc(1/2),f bcc(1), and
f bcc(2), obtained assumingn50.6297,n50.6298, andn
50.6300, respectively, together with the values ofbc

bcc(S)
quoted in the same reference and reported in Table II.

In Ref. 122 the values ofCsc(1/2) and of f sc(1/2) have
been computed by a Monte Carlo method assumingg
51.237,n50.628, andbc

sc(1/2)50.221 65.
This brief review of some existing results shows how se

sitively the estimates of the critical amplitudes depend on
bias values chosen for the critical exponents and temp
tures and, of course, on the length of the series. If we a
allow properly for these sources of uncertainty, which ge
erally are not included in the error bars quoted in the lite
ture, many of the cited estimates can be considered es
tially compatible among themselves and with ours.

XI. ESTIMATES OF THE RENORMALIZED COUPLING

The value of the hyperuniversal renormalized coupli
constantgr can be obtained from our estimates of the critic
amplitudes. Alternatively, without biasing the computati
also with the critical exponents,gr can be computed, with a
smaller uncertainty by extrapolating to critical point the e
pansion of the auxiliary function
1-18
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TABLE VI. Estimates of the critical amplitudesA#(S) of the specific heatCH
# (b,S), C#(S) of the

susceptibilityx#(b;S), f #(S) of the correlation lengthj#(b;S) andC4
#(S) of x4

#(b;S) for the spin-S Ising
models on sc and bcc lattices. They are obtained by differential approximants biased with the critical
temperatures reported in Table II and with the critical exponents estimated in this work. For comparis
have also reported a few estimates obtained by simulation methods or from shorter series in the
literature. For some of them, no indication of error is available.

S51/2 S51 S53/2 S52 S55/2 S53 S5`

Asc(S) 1.34~1! 1.80~3! 2.00~2! 2.09~1! 2.15~2! 2.18~2! 2.28~1!

]Asc(S)/]bc
sc(S) 640 980 170 550 300 750 440

]Asc(S)/]a 220 226 228 232 232 232 233
Abcc(S) 1.302~6! 1.732~6! 1.911~6! 2.000~6! 2.051~6! 2.082~6! 2.171~6!

]Abcc(S)/]bc
bcc(S) 800 1000 950 900 1200 870 830

]Abcc(S)/]a 219 226 229 230 231 232 233
Asc(S) a 1.464~7!

Asc(S) b 1.368~7!

Abcc(S) a 1.431~9!

Csc(S) 1.127~3! 0.682~1! 0.545~1! 0.482~1! 0.443~1! 0.4184~6! 0.3073~2!

]Csc(S)/]bc
sc(S) 1900 1800 1900 1000 600 220 150

]Csc(S)/]g 29 28 27 27 25.5 25 23
Cbcc(S) 1.042~1! 0.622~1! 0.4967~3! 0.4379~3! 0.4045~4! 0.3826~4! 0.2817~4!

]Cbcc(S)/]bc
bcc(S) 3900 21300 170 750 500 480 310

]Cbcc(S)/]g 29 25 24.5 23.6 23.1 23 22.2
Csc(S) a 1.1025~10!

Csc(S) c 1.093~13!

Cbcc(S) d 1.026 0.620 0.4346
Cbcc(S) a 1.0312~10!

f sc(S) 0.506~1! 0.458~1! 0.443~1! 0.436~1! 0.432~1! 0.430~1! 0.423~1!

] f sc(S)/]bc
sc(S) 290 280 200 180 400 120 120

] f sc(S)/]n 24 24 23.5 24 24 23 23.5
f bcc(S) 0.4686~4! 0.4262~8! 0.4112~4! 0.4047~4! 0.4013~4! 0.3992~4! 0.3937~4!

] f bcc(S)/]bc
bcc(S) 500 450 500 230 200 170 1700

] f bcc(S)/]n 24 25 23 23 23 23 23
f sc(S) a 0.496(4)
f sc(S) c 0.501(2)
f sc(S) d 0.5192
f bcc(S) a 0.4590~1!

f bcc(S) d 0.46821 0.42605 0.4038
C4

sc(S) 3.87~1! 1.05~1! 0.606~1! 0.456~2! 0.375~1! 0.327~1! 0.169~1!

]C4
sc(S)/]bc

sc(S) 5000 3200 2900 2700 800 21300 350
]C4

sc(S)/]g4 220 29 27 26 25 21.5 21.5
C4

bcc(S) 3.410~8! 0.912~3! 0.523~1! 0.3884~6! 0.3230~5! 0.2847~5! 0.1478~5!

]C4
bcc(S)/]bc

bcc(S) 15000 8000 460 630 470 450 190
]C4

bcc(S)/]g4 224 29.5 23 22.5 22 22 21
C4

sc(S) e 3.70~3!

C4
sc(S) f 3.630(217)

(13)

C4
bcc(S) f 3.236~2!

aReference 120.
bReference 123.
cReference 122.

dReference 28.
eReference 42.
fReference 121.
l

y#~b;S!5@gr
#~b;S!#22/3 ~41!

or of the function

z#~b;S!5@b/bc
#~S!#3/2gr

#~b;S!. ~42!
14443
Unlike the effective couplinggr
#(b;S), both y#(b;S) and

z#(b;S) are regular analytic atb50, so that they can be
expanded in powers ofb and extrapolated to the critica
point by Pade` approximants, DA’s, or simplified DA’s. Due
1-19
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P. BUTERA AND M. COMI PHYSICAL REVIEW B65 144431
to the finite extension of the series, the numerical estima
of gr derived from Eq.~41! or from Eq. ~42! are of course
~very! slightly different. In order to allow for the expecte
leading confluent corrections to scaling, in our calculatio
we have used first- and second-order DA’s biased inbc

#(S)
or simplified DA’s biased withbc

#(S) and with the confluent
exponentu. In Fig. 20 we have plotted vstbcc(S) the effec-
tive coupling gr

bcc(b;S) as obtained from the function
zbcc(b;S) for various values of the spinS. The curves, com-
puted in the simplest way by simplified DA’s, show th
strong influence of the CCS nearby the critical point a
indicate thatgr

bcc(S) is independent ofS within a very good
approximation. Comparison with Fig. 21, which shows t
effective couplinggr

sc(b;S) plotted vstsc(S), similarly in-
dicates that the renormalized couplinggr

sc'gr
bcc'1.41 is in-

dependent not only ofS, but also of the lattice structure
Using Eq.~19!, we can infer from Fig. 20 that the amplitude
of the CCS are generally large and, more precisely,
ag

bcc(S).0 for S51/2 and 1, whereasag
bcc(S),0 for S

.2. Analogously, from Fig. 21 we can conclude th
ag

sc(S).0 for all S. These qualitative conclusions are co
sistent with RG estimates61,124 in the fixed-dimension ap
proach indicating thatag /ax lies in a range from'23 to
'22.

In order to reach higher precision in the calculation ofgr ,
we have preferred to use first- and second-order DA’s bia
with bc . In the bcc lattice case, we notice that, forS51/2
and 1, approximants which use an increasing number of
efficients show a residual slowly decreasing trend, while,
S>2, they show an increasing trend. We shall indicate
asymmetric uncertainties these features of the approxim
sequences. Again arguing as for the critical exponentsg,n,
andg4, we can expect that the most reliable estimate ofgr
obtained from the bcc lattice series will be nearly equal

FIG. 20. Highest-order simplified differential approximants
the effective dimensionless renormalized coupling cons
gr(b;S), as obtained from the bcc lattice series. The effective c
pling is computed from the auxiliary functionzbcc(b;S) defined in
Eq. ~42! and is plotted vstbcc(S)512b/bc

bcc(S).
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the average ofgr
bcc(1) andgr

bcc(2) or to the valuegr
bcc(3/2).

Thus we conclude thatgr51.404(3). The central value of
our updated estimate is slightly lower than our previo
result53 gr51.407(6), based on a seriesO(b17) for the bcc
lattice in theS51/2 case, in which the convergence is slo
est. However, our revised result is slightly closer to the va
gr51.400 advocated by Murray and Nickel45 in the context
of the RG fixed-dimension approach and is compatible w
the more recent HT result113 gr51.402(2) obtained by the
method of Refs. 24 and 25 from sc lattice series extendin
orderb18. Our numerical estimates ofgr

#(S), for several val-
ues of S and on both lattices, are reported in Table V
Notice that in the bcc case the DA estimates are large
smaller ~in the sc case generally larger! than the expected
best value, consistently with the signs of the CCS am
tudes. In the same table we have quoted for comparison
some recent Monte Carlo estimates116,118 of gr , as well as
other results from the HT and RG methods.

XII. ESTIMATES OF Rj
¿

The combination of critical amplitudesRj
1 , defined by

Eq. ~21!, can be computed either from the estimates of
critical amplitudesA#, f # and of the exponenta5223n or,
more directly, by extrapolating to the critical point the e
pansion of the auxiliary function

F~b;S!

5
2qn3bc~S!

2vb

d2G~b;S!

db2 S b3/2

bc
3/2~S!

d„1/j~b;S!…

db D 23

~43!

t
-

FIG. 21. Highest-order simplified differential approximants
the effective dimensionless renormalized coupling constantgr(b;S)
as obtained from the sc lattice series. The effective coupling
computed from the auxiliary functionzsc(b;S) defined by Eq.~42!
and is plotted vstsc(S)512b/bc

sc(S).
1-20
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TABLE VII. Estimates of the universal renormalized couplinggr using the auxiliary functionz#(b;S) of
Eq. ~42! for the spin-S Ising model series on sc and bcc lattices. They are obtained by differential app
mants biased with the modified-ratio estimates of the critical inverse temperatures reported in Table
comparison, we have also reported other estimates obtained by simulation methods or from shorter s
the recent literature.~For some of them, no indication of error is available.! The values marked with an
asterisk have been obtained either by renormalization-group methods or by high-temperature method
assume universality and therefore they refer to the Ising universality class although, for simplicity, th
reported in the column of theS51/2 results.

S51/2 S51 S53/2 S52 S55/2 S53 S5`

gr
sc(S) ~DA! 1.40~1! 1.410~6! 1.404~6! 1.414~10! 1.415~10! 1.414~10! 1.412~10!

gr
bcc(S) ~DA! 1.408(24)

(11) 1.409~4! 1.404~3! 1.401(21)
(14) 1.400(21)

(15) 1.400(21)
(15) 1.398(21)

(16)

gr
bcc a 1.401~8!

gr
sc a 1.403~7!

gr
bcc b 1.459~9!

gr
c 1.402~2!*

gr
d 1.40*

gr
e 1.411~4!*

aReference 116. dReference 45.
bReference 121. eReference 64.
cReference 113.
a
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since the validity of the hyperscaling relation, Eq.~20! im-
plies F„bc(S)20;S…5(Rj

1)31O(1/nu). We have assumed
n50.6299 and evaluatedF(b;S) by first-order differential
approximants biased with6bc

#(S). The estimates ofRj
1 ob-

tained by this prescription are shown in Table VIII. Within
fair approximation, they are independent ofS and of the
lattice structure and compatible with the estimates obtai
combining the amplitudes reported in Table VI.

Our final estimate isRj
150.2668(5). This result is

slightly smaller than that the valueRj
150.272(4) reported in

our previous study52 of the singleS51/2 case employing
shorter series.
14443
d

In Table VIII we have also shown values ofRj
1 obtained

via the RG, either by the fixed-dimension perturbati
expansion to fifth order125 or by e-expansion to second
order.126 We have also quoted the estimateRj

150.270(4)
that would be obtained from the Monte Carlo measures
Ref. 123 assuminga50.11 and the recent HT resultRj

1

50.2659(4) taken from Ref. 113 as a representative of v
ous nearly equal central estimates from studies52,113,120per-
formed at different times, with different techniques, und
different assumptions on the values ofn and a and using
series of different extensions. The discrepancy from our
timate should probably be taken as an indication of the
d with

ure. The
erature

or sim-
TABLE VIII. Estimates of the universal quantityRj
1 using the auxiliary functionF of Eq. ~43! for the

spin-S Ising model series on sc and bcc lattices. They are obtained by differential approximants biase
the critical inverse temperatures reported in Table II and with the value ofn obtained in this study. We have
also reported some estimates obtained by other methods or from shorter series in the recent literat
estimates marked with an asterisk are obtained by renormalization-group methods or by high-temp
methods that assume universality and therefore they refer to the Ising universality class although, f
plicity, they are reported in the column of theS51/2 results.

S51/2 S51 S53/2 S52 S55/2 S53 S5`

Rj
1sc(S) 0.2664~10! 0.2669~12! 0.2671~11! 0.2673~12! 0.2679~15! 0.2674~10! 0.2673~10!

Rj
1bcc(S) 0.2664~4! 0.2667~3! 0.2668~3! 0.2669~4! 0.2669~4! 0.2669~4! 0.2670~4!

Rj
1a 0.2659~4!

Rj
1b 0.270~4!

Rj
1c 0.270~1!*

Rj
1d 0.27*

Rj
1e 0.284~18!

Rj
1f 0.265~6!

aReferences 84, 120, and 113. dReference 126.
bReference 123. eReference 127.
cReference 125. fReference 128.
1-21
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TABLE IX. Estimates of the universal ratioaj /ax for the spin-S Ising model series on the bcc lattice. Fo
comparison, we have also reported some estimates obtained by renormalization-group methods.~For some of
them, no indication of error is available.! Although they refer to the Ising universality class, for simplicit
they are reported in the column of theS51/2 results.

S51/2 S51 S53/2 S52 S55/2 S53 S5`

ax
bcc(S) 20.129(3) 20.0363(10) 0.0079~8! 0.0307~10! 0.0436~10! 0.0515~10! 0.0742~20!

aj
bcc(S) 20.100(4) 20.0279(15) 0.0061~6! 0.0233~10! 0.0331~20! 0.0390~20! 0.0560~20!

ax
bcc(S) a 20.119 20.034 0.023

aj
bcc(S) a 20.1085 20.033 0.0225

ax
bcc(S) b 20.13

aj
bcc(S) b 20.11

aj
bcc(S)/ax

bcc(S) 0.78~5! 0.77~6! 0.77~16! 0.76~6! 0.76~6! 0.76~5! 0.76~5!

aj /ax
b 0.85

aj /ax
c 0.65~5!*

aj /ax
d 0.65*

aReference 28. cReference 129.
bReference 23. dReference 124
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maining difficulty of accurately evaluating the specific-he
amplitude.

Finally, it is worth while to quote two recent very accura
measurements on binary mixtures:Rj

150.284(18), per-
formed in a microgravity experiment,127 andRj

150.265(6),
obtained in a conventional environment.128

XIII. ESTIMATING THE RATIOS OF CONFLUENT-
SINGULARITY AMPLITUDES

From the extended series presented here, we have
tried to evaluate the universal ratioaj(S)/ax(S). We recall
that, for the bcc lattice, our analysis ofx andj by modified-
ratio methods had shown that, as the spinSvaries between 1
and 2, the leading correction amplitudesax(S) and aj(S)
vary from small negative values to small positive valu
whereas in the sc lattice case no change of the sign of
confluent amplitudes is observed. As we have emphasi
some knowledge of these amplitudes is necessary to un
stand how the various numerical estimates obtained for e
value ofS approach the true values of the universal critic
parameters. A simple prescription to compute accurately
universal quantities consists in using series on the bcc la
with spins between 1 and 2, for which the amplitudes of
leading confluent corrections to scaling are very small. C
versely, the numerical methods to evaluate the amplitu
and the exponent of the leading CCS can be expecte
work with fair accuracy only when the confluent correctio
arenot too small. ForS51/2 the size of the leading CCS
largest, but unfortunately also the higher-order correcti
seem to be still important, as shown by the steep behavio
the extrapolated sequences in Fig. 4. Therefore,
most reliable results are likely to come from the bcc ser
for S.2.

We have obtained reasonably accurate estimates of
CCS amplitudes forx simply by fitting the asymptotic form
g1c1(S)/nu1c2(S)/n11u, suggested by Eq.~27!, to the ex-
ponent approximant sequences, Eq.~26!, under the assump
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tions thatg51.2371 andu50.504. A similar procedure can
be repeated in the case ofj2, assumingn50.6299. The es-
timates of the CCS amplitudes and of the universal ra
aj

bcc(S)/ax
bcc(S) thus obtained are shown in Table IX. Th

values of the amplitudesax
bcc(S) obtained by this procedure

are generally consistent within a few percent, and those
aj

bcc(S) within '10% –20% in the worst cases, with thos
evaluated by simplified DA’s of the log derivatives ofx and
j biased withbc andu. Moreover, forS.2, the estimates of
ax

bcc(S) obtained from the modified-ratio approximants forg
are consistent within a few percent with those obtained fr
the corresponding approximants forbc . As expected, for
smaller values ofS, we have consistency only within
20% –40% because the rate of convergence of the serie
slower and/or the subleading confluent corrections are m
important.

The ratiosaj
bcc(S)/ax

bcc(S) appear to be approximatel
independent of the spinS, as they should, and suggest th
final estimateaj /ax50.76(6). The error includes also the
uncertainties of the bias parametersg, n, and u. In the sc
lattice case, the same analysis leads to amplitude ra
which show larger uncertainties, but agree within the err
with the bcc results.

For S51/2, the seriesO(b21) of Ref. 23 yielded the es-
timates ~without indication of error! aj

bcc(1/2)520.11,
which is 10% larger than ours, andax

bcc520.13, which
agrees closely with ours.

Using the same series, Ref. 28 obtained estimates ofax
bcc

andaj
bcc for S51/2,1,2, also quoted in Table IX and in goo

agreement with ours.
Our central estimate of the ratioaj /ax is somewhat

smaller than our previous estimate56 aj /ax50.87(6), based
on shorterS51/2 series, than the old HT estimatesaj /ax

50.83(5) of Ref. 27 andaj /ax50.85 of Refs. 23 and 28
~reported without indication of error!, but it is larger than the
HT estimate 0.71(7) of Ref. 24 and the earlier estimat85

aj /ax50.70(2) based on the fcc seriesO(b12) for general
1-22
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spin tabulated in Refs. 8 and 9. We should also mention
estimateaj /ax50.65(5) obtained by the RG in the pertu
bative fixed-dimension approach at sixth order.129 The
e-expansion scheme~extending to second order! yielded124

the estimateaj /ax50.65.
Finally, let us note that our results confirm the observ

tions of Refs. 23, 25–27 and 52 and the arguments prese
in Ref. 63 that the amplitudes of the leading CCS hav
negative sign, both for the susceptibility and for the corre
tion length, in the case of the spin-1/2 Ising model, on sc a
bcc lattices.

XIV. CONCLUSIONS

For the Ising models of general spinS, on sc and bcc
lattices, we have produced extended HT expansions of
nearest-neighbor correlation function, of the susceptibility,
the second correlation moment, and of the second field
rivative of the susceptibility.
.
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Our procedure of series analysis differs somewhat fro
the most traditional ones, but leads to completely consist
conclusions. At least for the models studied here, we are a
confident that it yields very accurate direct estimates of t
various critical parameters. Our updated resultsg
51.2371(1), n50.6299(2), g454.3647(20), gr

51.404(3), andRj
150.2668(5) are in good agreement wit

the latest calculations by other approximate methods, incl
ing perturbative field-theoretic RG approaches. At the sa
time, our new series data have proved to be sufficiently r
that we can obtain fairly tight checks of the convention
expectations about hyperscaling and universality, with reg
both to the spinS and to the lattice structure.
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