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Critical universality and hyperscaling revisited for Ising models of general spin
using extended high-temperature series
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We have extended througs?® the high-temperature expansion of the second field derivative of the suscep-
tibility for Ising models of general spin, with nearest-neighbor interactions, on the simple cubic and the
body-centered cubic lattices. Moreover, the expansions for the nearest-neighbor correlation function, the sus-
ceptibility, and the second correlation moment have been extended 8%.tdaking advantage of these new
data, we can improve the accuracy of direct estimates of critical exponents and of hyperuniversal combinations
of critical amplitudes such as the renormalized four-point cougdingr the quantity usually denoted lfg/g .

In particular, we obtainy=1.23711), »=0.62992), y,=4.3647(20),9,=1.4043), anng:O.26685).

We have used a variety of series extrapolation procedures and, in some of the analyses, we have assumed that
the leading correction-to-scaling exponehts universal and roughly known. We have also verified, to high
precision, the validity of the hyperscaling relation and of the universality property both with regard to the
lattice structure and to the value of the spin.
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[. INTRODUCTION ment of the correlation functiop,(3;S) on the simplecubic
(so lattice, for spinS>1/2, can be found explicitly in the
The numerical study of the critical properties of the spin-literature only up to orderd*2. The data files by Roskies and
S Ising models with nearest-neighbor interactions had an imSacketf® made an extension of these series thropghfea-
portant historical role in the chain of arguments leading tosible for the sc and bcc lattices, but did not drastically
the modern formulation of the universality hypothésisor change the situation. On the fcc lattice, the HT series initially
the critical phenomena and, in particular, to the concept ofierived through3*?in Ref. 9, were later extended in Ref. 21
universality class. It was in a study of the susceptibilityto order 84 Fortunately, in the case of the body-centered-
x(B;S) for the general-spin Ising models on the face-cubic (bco lattice, decisive progress occurred already two
centered-cubicfcc) lattice by high-temperaturédT) expan-  decades ago, with the computation by Niékelf expansions
sions throughB® that Domb and Sykédirst pointed out that  for y(3;S) and u»(;S) through 8% (To our knowledge,
the exponent, which characterizes the divergenceofvas  only the series foS= 1/2,1,2% were published®)
roughly independent o6 and guessed for it a universal By allowing to some extent for the leading CCS, the first
“Daltonian” value y=5/4. Later on, when longer serfed®  modern analyses of the extended bcc sé&fié& improved
both for the fcc and for other lattices were derived, a weaksignificantly the accuracy in the verification of universality
dependence of the exponentand v on Semerged from the  with respect to the magnitude of the spin. Moreover, in the
HT analyses, but was soon correctly ascribed to the occumentioned studiegas well as in later analys€smainly de-
rence of nonanalytic “confluent corrections to scaling” voted to theS=1/2 casg, the central estimates of the sus-
(CCS9 rather than to a failure of the universality. In those ceptibility and the correlation-length exponents were reduced
years the existence of CCS had been inferred by variousp to ~1% with respect to the valueg=1.250(3) andv
authors both from the numerical analysis of HT séfie§  =0.63§82), initially guessed in Ref. 7 and later
and from phenomenological fits™®to high-precision ex- confirmed>3? by various studies. This development also
perimental data for some systems close to criticality. Evencontributed to settfea long-standing controversy raised by
tually the status of the CCS was more firmly establishéd  the results of Refs. 11 and 32—35, which stimulated the stud-
the context of the renormalization gro(iRG) theory?® It was  ies of Refs. 22—29 and 36-42, on the validity of hyperscal-
therefore recognized very early that accurate determinatioimg and, more generally, on the consistency of the results
of the critical exponents in numerical or experimental studie§rom the HT analyses with the corresponding RG
and, as a consequence, the feasibility of stringent verificaestimates;**~*° either in the e-expansion approaéhor in
tions both of the universality hypothesis and of the scalingthe fixed-dimension perturbative scheffié>
and hyperscaling relations require a close control over the One should also note that for the second field derivative
CCS. For many years, however, in two and in three dimenef the susceptibilityy,(3;S) and for the nearest-neighbor
sions, HT series were available only for few observables and;orrelation functiorG(B;S), the published data are even less
generally, they were barely sufficient to conjecture the presabundant. On the sc lattice, series f(3;S) can be de-
ence of CCS, but definitely too short to make a numericallyrived from the data files of Ref. 50 up to ordét* and up to
accurate discussion of these models poséibie®still B from the data of Ref. 34 for the bcc lattice. On the fcc
presently, the expansions g{3;S) and of the second mo- lattice, series fory,(3;S) are availabl& through 3. For
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TABLE I. Orders of high-temperature expansions, publis@d Ising model or the one-dimensional sgnising models. Of
obtainable from published dat@efore our work, for the nearest- course, our codes also reproduce the old computation of Ref.
neighbor correlation functionG(;S), for the susceptibility 22 for S=1,2% on square and bcc lattices and, as far as
x(B;S), for the second moment of the correlation function there is overlap, also the recent computation of Ref. 58 for
H2(B;S), and for the second field derivative of the susceptibility s—1/2 on the bec lattice.

Xxa($;9), in the case of the Ising models with general s§in Using this vast library of partially new high-order series
data and in particular our significantly extended series for

Observable Lattice, order  Lattice, order  Lattice, order v4(3:S), we can resume from a vantage point the very ac-
x(B:9) sc, 1% bce, 2P fcc, 14 curate studies performed on seri@$8%) for y and u, in
wa(B:S) sc, 18 bec, 2P fce, 14 Refs. 22—26 and present an even more extensive and detailed
Ya(B:9) sc, 14 bee, 16 fce, 13 survey of the critical behavior for the spiitsing models. In
G(B:9) fcc, 14 spite of the remarkable advances achieved by the calcula-
tions of Refs. 22—-27 which removed away from the fore-

aReference 20. YReference 50. ground the universality and the hyperscaling issues, further
bReference 23. ‘Reference 34. extensions of the HT data still remain of great interest. They
‘Reference 21. 'Reference 41. are instrumental in the continuing efforts to gain a higher

accuracy in the estimates of the critical parameters and, more

general spin, only expansiotfs of G(3;S) throughp** on  generally, to perform more stringent tests of hyperscaling
the fcc lattice have been published. A summary of the HTand of universality, with respect both to the value of the spin
expansions available until now for the Ising models of gen-and to the lattice structure. These are certainly welcome re-
eral spin appears in Table . sults, since it is fair to say that the actual verification of such

We have been pursuing a long-term project to improve thdasic properties is still only moderately accurate, although no
algorithms and the codes for HT expansions indoubts persist anymore about their validity. Of course, one
two-dimensional' and in three-dimensior& > lattice spin ~ must be aware that the computational complexity of the cal-
models, keeping up with the steady increase of computegulation of higher-order series coefficients grows much faster
performances and periodically updating the numerical analythan the precision in the evaluation of the critical parameters
ses whenever we could significantly extend the series. B§hat can be obtained from them by the presently available
using an appropriately renormalized linked-clusternumerical tools. Therefore the higher-order computations
method®*°%"we have now added from 4 up to 13 terms to should be accompanied also by an effort to improve the tech-
the HT expansions for various observables of the generdliques of analysis or, at least, by a careful comparison of the
spin-S Ising models on sc and bcc lattices. In this paper we'esults obtained by a variety of methods.
shall examine the expansions pf3;S) and u,(3;S) up to The paper is organized as follows. In the next section, we
orderﬂ25 and of x4(8;S) up to ,323 on both lattices. These Set our notations and definitions. In Sec. Ill we state the
data have been derived by slightly improving the thoroughlyassumptions underlying our analysis and its aims. The nu-
tested code which recently produc&dur series througig?® ~ merical procedures we have used—namely the modified-
for x(B;1/2) andu,(3;1/2) on both lattices. The extension ratio methods introduced in Ref. 24 or the differential ap-
of the series is by far the hardest part of this work, but weProximant methods'°>—as well as the corresponding results
will not enter here into the details of our procedure. To give©f the series analysis are discussed in Secs. IV-VIII. In Sec.
an idea of the required computational effort, it will suffice to X we compare our estimates with those of the most recent
mention that our improved codes take minutes of CPU timditerature. The last few sections present our results for the
on a COMPAQ Alpha XP1000500 MH2) single-processor critical amplitudes of the obse'rvables that .hav'e been ex-
workstation to reproduce the known series throygf, panded an_d for somé¢hypepuniversal combmqﬂor‘?% of
whereas several days are necessary to add the following fotfiese amplitudes. In order to make our analysis completely
orders. From the graph-theoretical point of view, it is thereproducible and to provide a convenient source of data for
expansion ofy, through 82 which involves the most labo- further_work, without overburder_nng this paper, we have col-
rious part of the calculation: in the simplest vertex renormalJected into a separate repS?tavallat_)le on request, the com-
ized expansion schertfst would require the generation and plete expansm_ns'of the nearest-neighbor correlation funct'lon,
the evaluation of over ftopologically inequivalent graphs. Of the susceptibility, of the second moment of the correlation
However, devising a careful strategy of in-depth renormal-fL{f)C“O”' and of the second field derivative of the suscepti-
izations, the expected size of the calculation has been rdility for spin S=1/2,1,3/2,2,5/2,3,7/2,4%, on square, sc,
duced by at least two orders of magnitude. On the othefnd bcc lattices.
hand, from a purely computational standpoint, the calcula-

tion of t_he scC Iat_tice_constants for the sgcond moment_of the Il THE SPIN- S ISING MODELS
correlation function is the most demanding part of the job in
terms of CPU time. The spinS Ising models are defined by the Hamiltonian

The correctness of our codes is ensured by numerous in-
ternal consistency checks, as well as by their ability to repro- J
duce established results already available in simpler particu- Hi{sl=—= > s(x)s(x'), (1)
lar cases, such as the square-lattice two-dimensional spin-1/2 2 (xx")
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IIl. ASSUMPTIONS AND AIMS OF THE SERIES

where J is the exchange coupling, arggx)=s%x)/S with
g Ping mﬂ ) ( ) ANALYSIS

s?(x) a classical spin variable at the lattice sitetaking the
25+1 values—S,—S+1,... S—18S. The sum runs over In the universality class of the spBdsing models, the
all nearest-neighbor pairs of sites. We shall consider expamgsymptotic behavior of the susceptibility ﬁS*ﬂc(S) from
sions in the usual HT variabl@=J/kgT called “inverse  pelow is expected to be
temperature” for brevity.

In the high-temperature phase, the basic observables are  ,# g:5)=C*(S) r#(S)‘“/[lJrai(S) #(S)0+
the connected 2-spin correlation functions. Here we shall
limit our study to quantities related to the two-spin correla- +bi(9) (S +- -], 9
tion functions(s(i)s()?))C and to the four-spin correlation
functions(s(x)s(y)s(z)s(t))c-

In particular, we shall consider the nearest-neighbor cor;
relation function

where 7#(S)=1— B/,BC(S) is the reduced inverse tempera-
ture. We have introduced here the superscript # which stands
for either sc or bcc, as appropriate, and will be used hereafter
only when useful. Equatior9), often called the Wegner
x expansiort, specifies how the dominant scaling behavior,

LY — el (el B\ — r characterized by the universal critical expongrdand by the
C(B:9)=(s(0)s(9))c Z N(SE, @ critical amplitude C*(S), is modified by analytic and
nonanalytic confluent corrections to scalif€@C9 in a close

where § is a nearest-neighbor lattice vector. vicinity of the critical point. The leading nonanalytic CCS is
The internal energy per spin is defined in terms Ofcharacterized by a universal expon@rﬂnd by an amplitude
G(B;9) by a’(s). The critical amplitude€*(S), a%(S), andbi(S), as

WeII as the inverse critical temperatu;ﬁ(S) are nonuni-
versal: namely, they depend on the sfiand on the lattice
structure, as stressed by the notation. The analogous
asymptotic behaviors of the correlation length,

qJd
U(B;S)=—7G(ﬁ;8). 3

whereq is the lattice coordination number.
The specific heat is the temperature derivative of the in- (B9 =F*(S)(S) " "[1+ a‘g(S) #(S)0+ - -
ternal energy at fixed zero external field:
+bi(S) (9 + -], (10)

qB? dG(B;9)

Cu(B;S)/kg= - d,B (4) of the specific heat,

#(n- ~ A# #S) a1 + g #Q)04 ...
In terms of y(3;9), the zero-field reduced susceptibility Chl(B:9)ke=AUST(S) *[1+ac(H7(S)
+bE(S) (S +-- -1, (12)

o0

X(B;S)=2 <s(0>s<i>>c=§0 c(S)B (5 and of x4(:9),

# . — _ C# # - # # 4
and of u,(8;S), the second moment of the correlation func- Xa(Bi9)==Cy(S)T(S) M[1+a,(S)7(S) "+ - -
tion, +bi(S) 7 (S)+-- -1, (12)

- - as well as of the other singular observables, are characterized
ACESEDY X2<S(0)S(X)>c:r21 d(S)B",  (6)  py different critical exponents and by differeftonuniver-
X - sa) critical amplitudesf*(S),a}(S), etc., but all contain the
the “second-moment correlation length#(3;S) is defined same leading confluent exponesit Notice that we have

by freely chosen in Eqs(9)—(12) between the conventions of
Ref. 63 and those of Ref. 61, since the notation for the am-
waB;S > plitudes is not yet completely standardized.
£(B:S)= 6 S 2 t.(S)B". (7) Usually the exponeny, is expressed in terms of and of
('8 ) r=1 A, the “gap” exponent associated with the critical behavior

The second field derivative of the susceptibiligy(3:S) is of the higher field derivatives of the free energy, as follows:

defined by v4=7y+2A. Here A= B+ vy and 8 denotes the magnetiza-
tion exponent only in this formula and in the scaling relation
» to be quoted before E¢20). From RG calculatiofi§~*9:6465
xa(B:S)= 2 (s(0)s(X)s(Y)s(2))e= D &,(S)B". (8) itis expected thap=0.5 for the Ising universality class.
XY,z r=0 For later use, we observe that, if the singularity closest to

the origin in the complex3 plane is the critical singularity,
Notice that these definitions ensure the existence of a northen Eq.(9) implies the following asymptotic behavior for
trivial limit as S— . the expansion coefficientﬁ(S) of x*(B;9):
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- # #0p-Q)— # # 04 ...
PO | Lo I'(y) ay(s 9" (B;9)=g;[1+ay(S)7(S)"+---]; (19
CHD=CUS F 7B ") 1+ 70—~ . - :
7) (y=6) n namely, the “effective coupling’y”(8;S) tends to a univer-
sal nonzero limiting valug, as7*(S)—0".
Using the Essam-Fish@r®! scaling relationa+28+ y
+O(1/n)]. (13 =2, Eq.(18) can be rewritten as a relatitif® betweena
and v:
In the Ising universality class, the expec®@1/n??) contri-
butions in Eq.(13) should be practically degenerate with the a=2—dv. (20)
analytic 1h corrections. For bipartite lattices, the higher-
order corrections in Eq(13) include termsO(1/n**7~®) As a consequence, also the combination of critical ampli-

with alternating signs, which reflect the preséficé® of a  tudesA?(S) and f#(S),

weak “antiferromagnetic” singularity aB= — ﬁﬁ(S) with

exponent + «. Analogous formulas for the asymptotic be- . ( aA#(S)) 1 P
(),

havior with respect to the order can be written for the expan- Re = (21
sion coefficients?(S) of £#(8;S)? ande’(S) of x4(5;9).

In terms ofx, ¢, and 4, @ “hyperuniversal” combination s hyperuniversal, as pointed 8titby Stauffer, Ferer, and
of critical amplitudes denoted by, and usually called the \wortis.

“dimensionless renormalized coupling constant” can be de- The ratiosa,/a, , a,/a,, ac/a

v#

, etc., of the amplitudes

fined ind dimensions by the limiting value of the ratio of the leading CCS are less studfédut not less interesting,
o universaf®~®#' critical observables.
9% (B:9)=— 3v"x4(SB) (14) In the rest of this paper we shall employ our HT series to

16mE4(S: B) I (S: B)2 estimate the critical parameters defined by E@-(12),
4 N ) ~ (19), and(21), to check the validity of Eq418) and(20) and
as7'(S)—0+. Herev” denotes the volume per lattice site of the universality property with respect to the value of the
(in three dimensions =1 andv°°=4/3,/3) and the nor- spin and to the lattice structure.
malization factor 3/16 is chosen in order to match the con-  |n the actual numerical analysis of finite-order HT expan-
ventional field theoretic definition 0§, 46 We shall call sions, the presence of the CCS will generally become
g*(B;9) the “effective renormalized coupling constant” at manifest?>-2*by small apparent violations both of the hy-
the inverse temperature. perscaling relations and of the universality properties:
By Egs.(9)—(12), g#(S;B) behaves as namely, by a weak apparent dependence of the universal
8 u 24 u 4 e p quantities on the lattice structure and on the vafuef the
9" (B;S)=0g,;7(S)” [1+ay(97(9 "+ -] spin. We shall point out this fact by explicitly indicating, in
(15 our numerical estimates of the universal quantities, the value
when 7(S)— 0+, with of the spin and the lattice structure for the series used in the
analysis. For instance;,"°(S) will denote the numerical es-
3v*Ci(9) timate of the universal exponent obtained from the series
T 1621%(S)°CH S (16)  yPe%(B;S). This notation will help to emphasize how small
the mentioned effects of apparent nonuniversality are re-
duced if the HT expansions can be pushed to a sufficiently
high order, provided that the numerical tools of the analysis
y+dv—2A=0, a7 can, at least approximately, allow for the leading CCS.

. 73 o w Part of our analysis will rely upon the main assumption
together with the LebowitZ inequality x3(8;S) <0, ensures 4 the exponent of the leading CCS is universal and

that g*(;9) remains bognd#ed and non-negative 7&(55). roughly known. A recent accurate RG recalculation of uni-
—0+. The vanishing og"(B;—0:9) is a sufficient condi-  yersa critical dat¥5 predicts the valu@=0.504(8) in the
tion for Gaussian behavior at criticality: namely, for the van-fixed-dimension perturbative approach, while within the
ishing of the four-spin and of the higher-order Con”eCtede-expansion scheme, the updated estimat@=i©.512(13).
correlation functions. In lattice field theory language, this| the rest of this paper, we shall adopt as a reference value
corresponds to the “triviality,>’* numerically observed he fixed-dimension RG estimat&®’ = 0.504(8) when com-
whend=4 and proved wheu>4, for the continuum field  yting the central values of critical parameters by procedures
theory defined by the lattice modélvith ferromagnetic  pigsed withg. Even if one has no compelling reason to sup-
coupling€®>’9 in the critical limit. If the inequality(17)  phose that the uncertainty of the RG predictiondd largely
holds as an equality underestimategbut this possibility is advocated in Ref. 88
y+dv—2A=0 (18) the reliability of thee-bi_ased analyses presented h_e_re will be
greater whenever their results are not too sensitive to the
(called the “hyperscaling relation; if there are no logarith- precise value of. In the following sections, it will be clear
mic corrections to the scaling behavidr®and if y4(8;S) is  that, in most cases, we can tolerate an uncertainty of this
nonvanishing, we have exponent even several times larger than above indicated. We

Or=

The Gunton-Buckinghaffi~"?inequality
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will show that most of our estimates biased with®'  the scaling, and of the hyperscaling laws for the correlation
=0.504(8) will be compatible also with higher values, suchfunctions, for the exponents, and for various universal com-
as #=0.523), proposed in Refs. 23,27, ant=0.53(2) in  binations of critical amplitudes. In particular our accurate
Ref. 89, or everd=0.54(3) from Refs. 25,26 and 90-92. verification of the universality property will strengthen the
We can add that both our direct HT evaluationéoénd the justification of a technique advocated long ago by
part of our series analysis which is not biased with the valu&inn-Justif* and independently by Chen, Fisher, and
of the exponentd will be completely consistent with the Nickel® to improve the precision in the computation of the
above assumption. universal critical parameters of the Ising model. These au-
If appropriate, we shall provide detailed information on thors argued that numerical studies should address appropri-
the #-biased numerical results reported in our tables for eate families of spin models parametrized by a continuous
given quantityP by indicating together with the central esti- auxiliary variable and belonging to the same universality
mate also the derivativeP/d6 evaluated at the reference class as the Ising model. For specific values of this variable it
value chosen fop. Similarly, in the cases where the param- is possible to select representative models for which the am-
eter estimates are biased with the value of a critical invers@litudes of the leading confluent corrections to scaling are
temperatuqufEf(S) and/or of a critical exponent—for in- ne_gligible a_n_d, as a consequence, the determination of the
stance, y—we shall report the corresponding derivativesuniversal critical parameters can be more accurate. By rely-
P18, andlor JP/dy computed at the specified reference ing on a similar prescription, we will also obtain very accu-
values. As an example, for the critical amplitude of the susfaté estimates of some universal critical parameters.
ceptibility C*(S), our final estimate can be read as
IV. ESTIMATES OF THE CRITICAL POINTS
C*(S)(erron +[aCH(S)/IB1(Be— BE)
In this section we shall examine the HT expansion of the
+[aCH(S) ay1(y—v"". (22 susceptibility in zero field, for several values of the sBion
sc and bcc lattices. The series coefficients of the susceptibil-
Here both the estimate and its derivatives are evaluated fafy generally show a very smooth dependence on the order of
sharp values o= ;" and of y=9"" and the error at- expansion and a relatively fast approach to their asymptotic
tached to the first term does not allow for the uncertainty offorms. Therefore they are best suited to an accurate determi-
the bias parameters. Since the above expression describgstion of the critical temperatures. The estimates so obtained
how the central estimate o@ﬁ(S) changes under small will also be adopted to bias the calculation of the critical
variations of the bias parameters, comparisons with previousxponents and amplitudes.
results in the literature, often based on slightly different as- As we have already argued in our previous sfiaf the
sumptions, are made straightforward. HT series for theS=1/2 case, the modified-ratio method
As a final general remark, it is worth mentioning that, dueintroduced by Zinn-Justfff (see also Ref. 59can lead to
to the higher coordination number of the lattice, the bcc seestimates of the critical inverse temperatures with an accu-
ries approach their asymptotic structure, Etf), generally racy comparable or sometimes higher than the traditional
faster than the sc series. For this reason, the bcc series atiferential approximantDA) methods. Perhaps, the poten-
usually observed to yield more accurate estimates of théal of this tool has not been properly appreciated, because so
critical parameters than the corresponding sc series with thiar it could not be used with series long enough.
same number of coefficients and are often said to have a The method consists in evaluatingf(S) from the ap-
greater “effective length.” This fact will be confirmed here proximant sequence
and will be one of the reasons to draw our final best esti-
mates from the analysis of the bcc series. Nevertheless, the " Cn_2Cn_3| ¥4 SntSn_2
sc lattice series remain very interesting, in particular because (Be(S)n= CoCn1 25,(Sy—Sn_2)
the nonuniversal information obtained from them is directly m e
comparable to the data from simulation studies, traditionally with
performed on the sc lattice. It is also interesting to notice
that, for both lattices, the asymptotic behaviors set in more c2, i, |\t
slowly in the most widely studie®=1/2 case. This is not S=|Inl s o o . /2- (24)
L . . . nn—4 n—-1%n-5
surprising since the number of degrees of freedom per site is
proportional to the magnitude of the spin. A slower conver-  Since the expected value éfis very nearly 1/2, by using

gence is observed also for the higher moments of the corregq. (13), the asymptotic behavior of the approximant se-
lation function, since in their construction larger weights arequence can be expressed as follows:

given to the correlations between farther sites for which the
expansions are effectively shorter. As a consequence, on both
sc and bcc lattices, the expansionséaghow a slower con- (BE(S)n=BL(S)
vergence than those gf.

Based on the assumptions indicated above, our analysis
will aim to exhibit, within the family of the spirg Ising +0
models, some consequences of the universality property, of

} ., (23

-1
+In

I'(y) 6%(1-0)a’(S)
C2T(y—6) ni*e

1
iik (25

n

1
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TABLE II. Estimates of the critical inverse temperatures for the $plsing models on sc and bcc lattices, obtained in this work by the
modified-ratio method biased with the leading correction-to-scaling expahefhe sensitivity of the estimates to the bias valuedas
characterized by the derivatives Bf . For comparison, we have also reported some results obtained by simulation methods or from the
analysis of shorter series in the recent literature.

S=1/2 S=1 S=3/2 S=2 S=5/2 S=3 S=
B3Y(S) 0.22165%2) 0.3128672)  0.3686572)  0.4063523)  0.4335323)  0.4540603) 0.6012713)
p(S)/ 96 7x10°© 4x10°© 4x10°© 4x10°© 6x10°°© 6x10°°© 6x10°°
BLEY(S) 0.157372610)  0.2246561)  0.2656411)  0.29325%2)  0.31313(2)  0.32811%2) 0.43508%3)
aBRe(S)/ 90 3x10°°© 1078 —3x10°8 —6x10°6 —6x10°6 —6x10°6 —6x10°°
B(9)? 0.221654610)
B3Y(S)P 0.221659%615)
B(S)° 0.22165%1)
BLey(9)d 0.1573747) 0.2246574) 0.2932586) 0.43508911)
BLe(s)® 0.157373 0.224654 0.293255
®Reference 93. dReference 24.
bReference 97. ®Reference 28.

‘Reference 98.

It is interesting to observe also that,df=1/2, the coeffi- Eventually a further minor adjustment of the results might be
cient of the O(1/n?) correction in Eq.(25) is equal to performed by a secongburely visua) extrapolation in order
[afﬁ(S)]2 times a very small positive factor. Moreover, the to allow also for a very small residual curvature of the plots
coefficient of the I term in Eq.(13) enters into Eq(25) due to the higher corrections in E@5). For instance, in the
only at next higher orders. Sincmf‘((S) is expected to be S=1/2 case on the sc lattice, the highest-order estimate from
small (though generally not negligiblethese remarks help the extrapolation of the last pair in the odd-approximant sub-
to understand how this method works and why it is muchsequence is 0.221656 46. In order to allow for the small
more efficient than conventional ratio prescriptions. We carfésidual curvature of the extrapolation sequence, this figure
say that Eq(25) provides an estimate of the leading “finite- should probably be slightly reduced, to yield our fiiahd
order effects”: namely, of the corrections due to using serieyery conservativeestimate;(1/2)=0.221 65%2).
of finite lengthn. These are strictly analogous to the well The set of our estimates quf(S) is reported in Table II.
known “finite-size effects” which have to be carefully con- The errors we have indicated are small multip{@s-4) of
sidered to improve the data from simulations of finite sys-the differences between the extrapolations of the two
tems. At the orders of expansion presently available(Z5).  highest-order pairs of terms in the odd subsequences. In the
has already a reasonably accurate quantitative meaning. same table, we have also reporteg?(S)/d¢ evaluated at

Although devised specifically to deal with the expectedg= g"¢f. As shown by our data, the above-mentioned uncer-
structure of the singularities, the procedure we have sketcheginty in the value of9"' turns out to be unimportant in the
is unbiased namely, no additional accurate information on whole procedure, because it contributes only a small fraction
other critical parameters must be used together with the sef the final uncertainty of the estimates.
ries in order to get the estimate sequence. However, at the |n order to give an idea of the qualitative features of the
present orders of expansion, thelependence of8.(S)),is  method, for each valus of the spin examined in this study,
not saturated and, for sufficiently largethe successive es- we have plotted in Fig. 1 the corresponding “normalized”
timates show an evident residual trend, very nearly linear ogpproximant sequenc(gé}ECC(S))n/N(S) vs 1h*? We have
a 1h**’ plot, as expected from Eq25). Small odd-even taken the average of the extrapolated values of the even and
oscillations are superimposed onto the main monotonic trenggq subsequences as the normalization fablf®), intro-
as a consequence of the above-mentioned antiferromagnetigiced only to make the various plots easily comparable and
singularity [see the comments to E¢L3)]. These observa- conveniently fit all of them into a single figure. We have
tions suggest that one can do something better than takingrzawn as solid lines the extrapolants of the last odd pair of
the highest-order available term of the sequence(Eg), as  terms in the sequences, whereas the dashed lines indicate the
the final estimate of3}(S). The most obvious improvement extrapolants of the last even pair. The difference between the
consists in using the assumed known valuedato fit the  extrapolated values of the odd and even normalized subse-
asymptotic behavior of the sequence and in taking the exquences, which is generally very smélor instance, it is
trapolated value of the sequence as a better estimate ef10 © in the bcc lattice case and at most 4 times as large in
,8?(8). As usual, one should separately extrapolate to large the sc casg provides a first rough indication that the oscil-
the odd and the even subsequence§3{S)),, in order to  lating corrections due to the antiferromagnetic singularity
deal properly also with the oscillations due to the antiferro-give only a small contribution to the uncertainty of the re-
magnetic singularity. Our extrapolation will be based on thesults. The final relative errors reported in Table Il are gener-
successive pairs of terms in the approximant subsequencesly much larger.
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FIG. 1. The “normalized” modified-ratio approximant se- FIG. 2. The same as in Fig. 1, but for the “normalized”

quences(8°°%(S)),/NP°%(S) for the critical inverse temperature of modified-ratio approximant sequencé€sss(S)),/N%(S) formed

the spinS Ising models on the bec lattice, plotted v&11/’, with  from the coefficientsc3%(S) of the susceptiblity series for the sc
6= 6"*"=0.504. They are obtained from E(3) using the coeffi- |attice.

cientsc°Y(S) of the susceptibility series for the bcc lattice. In order
to fit into a single figure the sequences for different values of the

spin, each sequence has been normalized by the avidP4€(e) of . . S
the critical inverse temperatures obtained extrapolating separatefi?ant seque_nces to their asymptotic behavior is distinctly
the even and odd subsequences. We have indicated by solid lin&wer than in the bce case.
the extrapolants of the odd subsequences, based on the last odd pairln order to gain further confidence in the estimates by the
of approximants, while the dashed lines indicate the extrapolants ghodified-ratio method, we must confirm at least their main
the even subsequences, based on the last even pair of approximarfesatures also by numerical tests of a different nature or in-
volving different assumptions, thus reducing the probability
of being misled by only apparent convergence. We have
therefore performed also a more traditionabiasedanalysis
by first- and second-order inhomogeneous DA's yielding val-
ues of the critical inverse temperatures in essential agree-
"Ment, to within their uncertainties, with those obtained from
the modified-ratio method. In the case of the bcc lattice, for
spin S=1/2, the highest-order available DA estimates are
slightly larger than the estimates from the modified-ratio
method. Nevertheless, the estimates from DA's usiagries
coefficients show a slowly decreasing trendraisicreases.
For S>2 the highest-order DA estimates are slightly smaller
mentation with these model series can give us some intuitioﬁhan the correspondmg results from  the modlfled-ratlg
method, but the estimate sequences show an increasing

on the virtues and the limitations of the modified-ratio dIf ke th bl Sidh Iso f
method and help to assess its accuracy. These tests add fgnd- |t we make the reasonable assumptidhat also for

ther confidence in our estimates of the relative errogof DAs the do_minant finite-order corrections are propo_rtional
On the other hand, it may take series significantly IongeFO the amplitudes of the leading nonanalytlc_correcnons_ to
than those presently available to determinés) with a pre- scaling, these feature§ of the resu_lts can be simply explamed
cision better than a few percent, since the slopes of the afy the pattern of signs and sizes of these amplitudes
proximant sequences provide 0n|y “effective” values of preViOUSly observed in the anaIySiS. Taklng account of these
these amplitudes due to the residual influence of the highettends and performing some purely visual extrapolation of
order corrections. Actually, the relative uncertaintyag{S) ~ the DA estimate sequences, we can reconcile the DA and the
can be larger, particularly so if its absolute value is veryanalyses by the modified-ratio method. We shall not report
small. in Table 1l the DA results, but simply quote here the average
The sc lattice series have been studied in the same fashiai the highest-order DA data for a few values &
and the results are illustrated by Fig. 2. The main differenc&’he presence of residual trends in the sequence of DA esti-
with respect to the bcce case is that all approximant sequencesates will be indicated by asymmetric uncertainties roughly
are decreasing, so tha§°(8)<0 for all S It is also clear corresponding to the range of possible extrapolations.
that, for this lattice, the rate of convergence of the approxi+or instance, from second-order unbiased DAsS, we

If we refer to Eq.(25), the plots in Fig. 1 strongly suggest
that a2°(1/2)<0, whereasa>°(S)>0 for S=2. Since
|a2°(1)| and[a®°(3/2)| are very small, we cannot yet be
completely sure about their sign. The smallness of these co
fluent corrections is confirmed observing thag2°%(1)/46)|
and|a82°%(3/2)/96| are much smaller than for the other val-
ues ofS

Simple model series with a structure specified by @§)
(including the antiferromagnetic oscillating correctipiesn
mimic rather accurately the behavior of the sfinsing se-
ries for sufficiently high orders. Therefore numerical experi-
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+

obtain B°°%(1/2)=0.157376"3), B°(1)=0.22465%2), ez e
B°(3/2)=0.2656402), BP°Y2)=0.29325%2), and 0$32 o2
BPCS()=0.435 08@ ‘B . 2552 o 53

For the same reasons as above indicated, in the sc lattice :2:”2 N zi
case, the values g8:(S) obtained from the DA's are gen-
erally slightly larger than those suggested by the modified-
ratio analysis. This upward shift is more pronounced in the
caseS=1/2, in which we obtains*¢(1/2)=0.221665"3),
whereas for higher values & the differences from the re-
sults by modified-ratio method are much smaller: for ex-
ample, 8°9(1)=0.3128703), 8°%3/2)=0.368 66Q3), and
B59()=0.6012713).

In conclusion, our modified-ratio methdbiased witho)
and the unbiased DA estimates of the critical inverse tem-
peratures on the sc and bcc lattices are consistent and com-
pare fairly well with, but sometimes are more accurate than, T S R B
those already available in the literature for a few values of
the spin and also reported in the table. A wider discussion of 1n?

otheérg 38-:‘?5'057215:}}8%8 by different methods in tgﬁz 1/2 FIG. 3. The modified-ratio approximant sequencg¥%(S)), of

case alglbe found in our previous papéend in  the susceptibility critical exponents for various values of the §pin
recent review® 1% of Monte Carlo simulations and other plotted vs 1%, with 6= 6"¢"=0.504. They are obtained using Eq.
studies of spin models. It is interesting to mention at this2e) from the susceptibility series coefficient§°%(S). For each
point that the two most extgnsw% simulations on the sc latvalue of the spin, we have indicated by a solid line the extrapolation
tice, by a statit’ and by a kinetit’ method, yield the esti- to largen of the sequence, linearly ind, based on the last odd
mates 291/2)=0.221 654 6(10) and  B3%(1/2)  pair of terms{(y*°%(S)).3,(y°°%(S)).s- A dashed line indicates the
=0.2216595(15), respectively, which agree only withinextrapolation based on the previous odd pair
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two standard deviations. {(Y*°U9)21, (Y°°A9))23}-
estimatingy,, whereas a directly biased variant, to be de-
V. MODIFIED-RATIO ESTIMATES scribed in the next section, is more successful. On the other
OF THE CRITICAL EXPONENTS hand, for the calculation of the specific-heat exponent

Modified-ratio methods can lead also to fairly good there are difficulties of a different nature: the critical singu-
estimate® of the exponentsy and ». Let us first focus on larity is very weak and the number of nonzero coefficients of
. ; #0n.Q) e ofi
the calculation of the exponentto recall the prescription of the HT expansion o€,(;9) is still too small. Because of
Refs. 24 and 59. An analogous procedure can be used f&pat, we have not been able to improve by modified-ratio

other exponents. For each valueSfwe form the approxi- Methods 1t0r;e103 accuracy of the currendirect HT
mant sequence estimate¥10210%f ¢,

For sufficiently largen, the sequence of approximants de-

fined by Eq.(26) is very nearly linear on a &/ plot. There-
, (26)  fore, arguing like in the previous section, we are led to im-
(Sn—Sn-2)° prove our estimates by extrapolating the ot even
subsequences linearly inr/ The higher-order corrections
for the exponents are expected to be more important than in
the calculation of8; and this is reflected in a larger uncer-
tainty of the extrapolation procedure. Just like in the formula
for B., the limiting value of the approximant sequence is
asymptotically approached from above, if the amplitude

(¥(S),=1+ M

wheres, is still defined by Eq(24) in terms of the expansion
coefficientsc,(S) of x(B;S).

Using Eq.(13), we can compute the asymptotic behavior
of the sequencéy(S)), as follows:

_ p2\o#
(Y(S)n=Y(S) - I(y) 0(1-67a,(9) +O<1). af(*(S) of the leading nonanalytic confluent correction to scal-
¥ L(y—0) n’ n ing is negative, or from below, if it is positive.
(27) In Fig. 3 we have plotted the approximant sequences

(Y°°%(9)),, for several values oS between 1/2 and. The
If 6=1/2, the 1h term in Eq.(27) has a coefficient equal structure of the plots is generally consistent with the pattern
to [a’;‘((S)]2 times a small positive factor. The higher-order of signs of the CCS amplitudes already emerged from the
corrections contain powers of. As a consequence, for the study of B2°%(S). For each sequendgy®°%(S)), plotted in
Ising model, the first important correction@(1/n**% and, the figure, we have drawn as a solid line the extrapolant
in general, the convergence of the sequence(Zg), will be  based on the last odd pair of approximants, whereas a dashed
slower whenever the exponent under study-i$. This the line represents the extrapolant based on the previous odd
case ofy, and, actually, we have observed that, at the prespair. The small residual curvature of the approximant subse-

ently available orders, this procedure is not convenient fotjuences, which is due to the higher-order corrections in Eq.
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[ +'S'=1'/2' ' '*'S='1' TTTTTTTTT T From Figs. 3 and 4, it is clear that not orﬂ;Z“(S), but
| sgm32  Osw ! i also the amplitudes of the main subleading CCS change sign
L 4852 083 . as S varies between 1 and 2. This very favorable circum-
- ::z;’z ::: 1 stance, which can also be confirmed numerically—for ex-
i T ample, by fitting the approximant subsequences to the simple
asymptotic form y+c¢,(S)/n?+c,(S)/n**— makes us
J very confident about the accuracy of the exponent estimates
. presented below. For each value §fa simple monotonic
T behavior appears to have set in, since as shown in Fig. 4, the
subleading asymptotic correction in E&7) generally works
in the expected “right” direction. Namely, it tends to lower
i the extrapolated exponent values obtained from the decreas-
. ing approximant subsequences for sj8r1/2 andS=1,
while it tends to raise the extrapolated values obtained from
i | the increasing subsequences ®#2. Only in the S=3/2
S case, in which both the amplitudes of the leading and of the
0.0 0.002 0.004 0.006 0.008 0.010 0.012 . .
1148 subleading correction have the smallest absolute value, the
approximant sequence is very slowly increasing and the se-
FIG. 4. The sequences of the extrapolations of the SUCCGSSiVGuence of extrapolated exponents is very slowly decreasing.
odd pairs of modified-ratio approximar(s°*(S)), vs 1h**“. The  Thys we can expect that, as the number of available coeffi-
solid lines are only guides to the eye. cients grows large, the range of variation with respe@ 66

(27), is made manifest in Fig. 3 by the splitting of the solid- the extrapolated estimates g°“(S) will continue to shrink,
and the dashed-line extrapolants. It can also be exhibitefirther improving the verification of the universality of the
more directly by plotting(see Fig. 4 the sequence of ex- €xponent with regard to the spin. More precisely, assuming
trapolations of the successive otlit even pairs of approxi-  that the general features of the behavior we have described
mants. persist as the order of the series increases, the successive
In Table 1, for both lattices and for several values of the extrapolations of the sequenceg’*“(1/2)), and (y*°%(1)),
spin, we have reported the numerical values of the extrapcshould provide decreasing sequences of upper bounds, while
lated exponents with an error corresponding to a small multhose of the sequencésg®c%(2)),, (¥°°%(5/2)),, etc., should
tiple of the difference between the solid and dashed extrapagive increasing sequences of lower bounds-for
lations. We have also reported the derivatives of these At the present order of expansion, the exponent estimates
estimates with respect #, computed at the reference value obtained by our extrapolation prescription range orderly
6"¢'=0.504. For comparison, the same table also shows th#som 1.237 42 forS=1/2 to 1.236 84 folS=c. Therefore, if
exponent estimates obtained from DA's, while the results obwe nowassumehat universality is valid, in particular that
tained in other recent numerical studies using Monte Carlds independent of5, the previous remarks suggest to take
methods, by shorter HT series, or in the RG approach, wilsimply the average/=1.2371(4) of these extrema as a first
be further discussed in Secs. VIII and IX and are collected irrough approximation of the exponent with an uncertainty
Table IV. corresponding to the half-width of the range of variation. We

1.238 1.239

1.237

Extrapolated Exponent Appraoximants
T

1.236

e

TABLE lll. Estimates of the critical exponentg and v for the spinS Ising model series on sc and bcc
lattices obtained from extrapolation of the modified-ralR) approximant sequencédefined by Eq(26)].
We have also reported the estimates obtained in this paper by second-order inhomogeneous differential
approximantgDA's) biased withg .

Exponent S=1/2 S=1 S=3/2 S=2 S=5/2 S=3 S=o
v*%(S)(MR) 1.2375%6) 1.23787) 1.23718) 1.236710) 1.2364100 1.2363100 1.235915)
ay34(S)1a0 0.016 0.009 0.007 0.006 0.006 0.006 0.006
ybCC(S)(MR) 1.2374220) 1.2373016) 1.2371@3) 1.2369910) 1.2369410) 1.2369110) 1.2368%15)
&yb“(S)/&ﬁ 0.012 0.003 —0.0005 —0.002 —0.003 —0.004 —0.006

y5%(S)(DA)  1.2392)  1.2392) 1.2403) 1.2392) 1.2392) 1.2392)  1.2382)
yP°(S)(DA)  1.23788) 1.238515) 1.237G4) 1.23634) 1.23664) 1.2364) 1.23674)
*Y(S)(MR)  0.627730) 0.627930) 0.628320) 0.628520) 0.628620) 0.628620) 0.628820)

I Y(S)la6 0.021 0.014 0.010 0.0095 0.009 0.008 0.006
PPCY(S)(MR) 0.628320) 0.62948) 0.62976) 0.62986) 0.62996) 0.62996) 0.63015)
P VL 0.006 0.001 —0.001 —0.0015 —0.002 —0.0022 —0.003

»S%(S)(DA)  0.6322) 06341 0.6311) 06341  0.6311)  0.6311)  0.6311)
PC(S)(DA)  0.630810) 0.6341) 0.62994) 0.62954) 0.62964) 0.629%4)  0.62946)
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TABLE IV. Estimates of the exponentg and v obtained in the recent literature by various kinds of
analyses of shorter high-temperature series, by Monte Carlo methods, or by renormalization-group methods.
The estimates marked with an asterisk are obtained by procedures implying or assuming universality.

Exponent HT Monte Carlo RG exp. RG fixedb exp.
1.2372)*2
1.238525)*"
1.238515)*¢ 1.236711)¢ 1.23786)*°
¥ 1.23954)*f 1.2372)*9 1.238@50)*" 1.239613)*"
1.23786) 1.237217)*)
1.23731)
1.23714)'
0.630Qq15)*2
0.630515)*° 0.62967)° 0.63015)*®
v 0.6321)*f 0.63018)*9 0.630525)*" 0.630413)*"
0.63113)*" 0.63036)*/
0.630G2)% 0.629410)™

0.6300223)*'

"Reference 64.
iReference 27.
IReference 93.
kReference 28.
'Reference 113.
"Reference 114.

®Reference 23.
bReference 24.
‘Reference 25.
dReference 89.
®Reference 45.
fReference 26.
9Reference 92.

can further refine this estimate observing that, for values ofame prescription can be used for extracting the best value of
the spin between 1 and 2, both the leading and the maim from the approximant sequence£¢%(S)), formed by the
subleading CCS are very small, as it appears observing thaeries coefficients of2(3;S) and shown in Fig. 5. Figure 6
the exponent approximant sequences have very small slopashows the sequence of the extrapolations of the successive
clearly positive forS=1 and negative fo6=3/2 andS=2.  odd pairs of approximants. The slower convergence of the
Moreover the extrapolated exponent estimates are fairly inapproximants to the correlation-length exponent should not
sensitive to the bias value of [for instance, we have be surprising, simply becauge,(3;S) enters into the defi-
9y°°(1)/96~0.003,  9y"°(3/2)/3g~—0.0005,  and nition of £2. At the present orders of expansion, the behavior
9vy°°Y(2)/96~—0.002 at 6= 6"®']. Since (y°°%(1)), and
(y°°%(2)), are very close, a better estimate fprshould lie

——T ——
+ $=172 x S=1

in between. The extrapolation of the last odd pair of terms in +
the sequencéy”®(1)), yields 1.237 30, whereas for the se- e % i

bee, ; - e ~
quence(y°°42)), it leads to 1.23699, and therefore the WS72 &S e
rough estimate given above can be improved 40 ® 55 *S=w //ﬁ

=1.23715(15). Consideration also of the sequence
(¥°°%(3/2)),, suggests that we take=1.2371(1) as our final
best estimate.

A closely related procedure was proposed long ago in
Refs. 26. These authors analyzed, but never published, ex-
tensive two-variable series in power @fand of a continuous
Ising spin variablelmade available by B.G. Nickglusing
partial-differential approximant methods which indicated an
“effective fixed point” aroundS= 3/2. Within the precision
of the present calculations, the simple prescription of taking
the average of the extrapolations 6#°°%(1)), and of
(¥°°%(2)),,, or the extrapolation ofy°°%(3/2)), as the best
approximation ofy, should be equallyor perhaps mone
effective since it also takes advantage of the vanishing of the
main subleading correction. FIG. 5. Same as in Fig. 3, but for the modified-ratio approxi-

Since it is not difficult to show that the leading CCS for mant sequence&°Y(S)), of the correlation-length critical expo-
any observable must also vanish for the same valu® tife  nent, as obtained from the expansion£8f%(3;S).

LI I O B I B B B I
\

Exponent Approximants
o0.626 0.628 0.630 0.632 0.634 0.636 0.638

/ i E

o
o
—
o
ot
N
o L

1/n8

144431-10



CRITICAL UNIVERSALITY AND HYPERSCALING . .. PHYSICAL REVIEW B 65 144431

LI L . L L L LA L LA L L AL L B v T U — ———
[ +$=172 S=1

—
* R +5=12 % S=1 A
N A+
L o832 o s=2 N[ o832 oS=2 I N
% [ 852 o $=3 ] T L asse2 o $=3 # |
g [ w2 a s N[ omsT2 as i
ES -1 ¢ S v LN F ess PRI -
2ot =S ’ B 2
aol —e N E o
s h 9T A ]
2 eNF ’
o - B a -
5 Ak & L
% - o
wofl c 3
oA L ] g
3% s<F
mo |l b I~
a w Qr i
1 - / \ ] N = _
+ / ! — F -
X / |
L - L = .
@t \ \ 3 7
N \ | N -
o[ ¥ \ < -
o PN Y I T N I NN NN AR NV NN L AP B A Fe o _
0.0 0.002 0.004 0.008 0.008 0.010 0.012 0.014 T T
1/n 1+ 0.0 0.10 0.20

FIG. 6. Same as in Fig. 4, but for the sequences of the extrapo-

lations of the successive odd pairs of modified-ratio approximants FIG- 7. Same as in Fig. 3, but for the modified-ratio approxi-
(v°°(9)), vs 1hi+?. mant sequence® Y(S)), of the susceptibility critical exponent as

obtained fromy®%(3;S) using Eq.(26).

of the sequence of the extrapolated exponent values is clearly

not yet asymptotic folS=1/2 andS=1, while it is much  nentsy and» obtained from the sc series data are consistent
smoother and shows a slowly increasing trend for<3%2  with those from the bcc data, but they are affected by sig-
=<3 and a slowly decreasing trend f8r-3. Thus arguing as nificantly larger uncertainties: we can roughly estimate
before, we can conclude that=0.62942). =1.2368(10) and=0.6285(20).

If we bias the extrapolation procedure with a larger value  The numerical progress achieved in this study is best ap-
of ¢'*', the range of variation ofy**Y(S) with S will be  preciated by comparing our Figs. 3 and 5 with the analogous
expanded, to an extent that can be easily figured out from theigs. 1 and 2 of Ref. 24. We should first observe that in Ref.
data reported in Table Ill, but the estimated central value ob4 g straightforward extrapolation linear imiwas implied
y°“ will be practically unchanged. For instance, if we adoptfor the sequence$y°(S)), and (+*°%(S)),. Due to this
the significantly larger valug''=0.54, we findy"*(1/2)  choice of the plotting variable and to the smaller extension of
=1.23782 and y°°(»)=1.23661, whereas*°*(1)  the bcc series available two decades ago, the “relative maxi-

=1.23741,y*°%(3/2)=1.23708, andy**(2)=1.236 91 are mal spreads” with respect to the spof the extrapolated
changed to a smaller extent. Averagirig”°%(1)), and exponent values are

(¥°°%(2)), yields y=1.237 16(25) and consideration also of
(¥°°%(3/2)),, leads to essentially the same final estimate as

the one obtained fof"®'=0.504. In the case of the exponent RSP + ;_
v, the estimated central value is slightly lowered to 0.6298, po ° - AT
well within the error bars of our previous estimate. BS72 a4 i

Using the Fisher scaling relatidfi the exponent; de- ®55 *Sw f

scribing the large distance falloff of the two-spin correlation
function at the critical temperature can be estimated as
7PCe=2— yPcY1PC=0.036(8).

In Figs. 7 and 8 we show the results of the analogous
procedure of extrapolation fdr°*%(S)), and (+°%S)),,. The
main features are similar to the bcc case, except, unfortu-
nately, for the sign pattern of the amplitudes of the leading
CCS, all of which now appear to be negative, consistently
with the study of B34(S) by the modified-ratio method. In
complete analogy with the bcc case, for both exponents
and v, the residual curvature of the approximant sequences
tends to correct the extrapolations in the direction expected e e e e
in order that universality be realized. The accuracy of the 0.20
exponent estimates is notably smaller, due to the anticipated
slower convergence of the sc lattice series coefficients to FIG. 8. Same as in Fig. 3, but for the modified-ratio approxi-
their asymptotic form and perhaps to the presence of largahant sequence&°%(S)), of the correlation-length critical expo-
subleading corrections in EqR7). The values of the expo- nent, as obtained fror*%(8;S).

Exponent Approximants
0.628 0.630 0.632 0.634 0.636 0.4638 0.640

o
o
o
-
o

1/n°
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T I
+ 8= 172 ¥ S=1 4

Y(1/2) = y()
+5=372 0682 P
A 8= 52 6 =3 7

Y(112) + y(o)
mS=7/2 4aS=4 /

and n / i
®S=5 ¢ S=® /

~2.5x10°3 i

1.244

v()—v(1/2)
v(1/2) + v()

1.242
T
“
1

~7.6X1073,

respectively. In our study of the same lattice, the correspond-
ing figures are smaller by nearly one order of magnitude;
namely, the relative spread is now2.3x 10”4 in the case of
y and~1.4x 102 for v. The values of these spreads can be L
taken as rough accuracy limits for the verification of the
universality with respect t&, which is thereby convincingly -
corroborated by the new analysis. -
We close this discussion with a few remarks. Our exten-
sion of the series to ordgs® has been crucial in showing 0 0.0002 0.0004 0.0006
that, in the bcc lattice case, the asymptotic structure of the 17029
HT expansion coefficients is already well stabilized, since ) _ - ) )
the last six or seven modified-ratio method approximants of FIG- 9. The directly biased modified-ratio approximant se-
the critical inverse temperature or of the critical exponentgluencesy*°(S)), plotted vs 1h>*’. They are obtained from Eq.
show remarkably regular trends. Also in the sc lattice Caséso), USing as a bias the value 6fin order to reduce the influence
there are indications from the last three or four approxi-Of .the confluent corrections to scaling. The solid lines are only
mants, obtained by the same method, that a similar trend @uides to the eye.

setting in, but clearly the convergence is not as fast as for the o ) ]
bce lattice. If we make the simplifying assumption thatis exactly

Some numerical experimentation with model series sugl/2, also the correction tern@(1/n*’) will be eliminated by
gests, also for the exponent analysis, that our error estimatédis prescription, along with the regular correcti@{1/n),
are reasonable and quite conservative. and therefore

For both lattices, the CCS amplitudes can be estimated
from the slopes of the exponent approximant sequences, as A
will be further discussed in Sec. IX. (7(S)a=7(5)+0

In conclusion, this simple modified-ratio approach con-
firms accurately the universality of and v with respect to
the magnitude ofS and to the lattice structure and, con-
versely,assuminguniversality and using the bcc series data
it yields very accurate estimates for these exponents.

Exponent Approximants
1.240
T

1.238

4236

1
) (31)

By the remarks made at the beginning of the preceding
section, these are not decisive improvements in the calcula-
'tion of y and v, and indeed, for both sc and bcc lattices, the
results obtained by this procedure are consistent with but not
more accurate than those of our previous analysis by

VI. BIASED MODIFIED-RATIO METHOD modified-ratio methods. See, for example, Figs. 9 and 10,
FOR THE EXPONENTS where, for convenience, we have plotteg(S)),, vs 1h%* ¢

In Ref. 24, Zinn-Justin proposed also a more directr@ther than vs e, because the plots of the approximants
modified-ratio procedure for biasing the exponent estimate@PPear to be more nearly linegalthough with somewhat
with the value ofé, in order to eliminate or strongly reduce Iarge correctionswith respect to former than to the latter
the influence of the leading confluent corrections to scalingvariable.

The prescription involves the quantities Qn the other hand, this bias_ed variant of_ the modified-
ratio method is more successful in the analysis of the expan-
S,=(S,+5,_1)/2 (28) sions that we h:':\g/e computed fgx. The sequen;:es of biased
approximants(y,(S)), for the exponent ofy,(B,S) are
and shown in Fig. 11 for the bcc lattice and in Fig. 12 for the sc

lattice. In order to avoid confusing the plots, we have indi-
cated only the extrapolations, linear im/?, based on the
last odd pair of term$(5(S))21,(74(S))»3 in the approxi-

) ) mant sequences. When the sfinaries between 1/2 and,
In terms ofb, the following approximant sequence can be he extrapolated values ofs%(S) range from 4.366 foiS

2/(6—1)
) (29

1. —
bn=((—9(s§/2—s§/32

formed: =1/2 to 4.372 forS=. Similarly, in the case of the bcc
5 lattice the values of/5°(S) vary between 4.369 and 4.375.

(¥(S),=1+ M (30) We have reported in Table V the results obtained by this
2(by+bp-») method for several values & From the sc lattice data we
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‘0_ TR AN [T [N [N T I T I T N T Y T B O |
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0.0 0.0002 %.0004 0.0006 1/n 29
(2+9)
Ten FIG. 12. Same as in Fig. 11, but for thdirectly biased

FIG. 10. Same as Fig. 8, but for tiirectly biased modified- modified-ratio approximant sequendgg®(S)), for the critical ex-
ratio approximant sequencés”®(S)), plotted vs 1A%+ 7. ponent ofx33;S) plotted vs 1h**".

VII. RATIO ESTIMATES FOR THE EXPONENT

can conclude thay;“= y+2A=4.369(8) and from the bcc
OF THE LEADING CONFLUENT SINGULARITY

lattice datay2°°=y+2A=4.3728).
The accuracy in the verification of the validity of hyper-  Assuming thaw is universal, the simplest prescription for

scaling is often characterized quantitatively by quoting theestimating this exponent is based on the series with coeffi-

value of the right-hand side of E18): from our estimates cients

we havey+3v—2A=2y+3v—y,=—0.0099(160) in the

sc lattice case and, analogously,y+3v—2A

=—0.0081(88) for the bcc lattice. 9(S1,S,) = Cn(S1)dn(Sy) (32)
These results give strong support to the validity of the " Cn(S2)dn(S1)

hyperscaling relation and of the universality of with re-

spect both to the lattice structure and to the valu&.of for n>0 and, of courseS,#S,. Herec,(S) are the coeffi-

cients of the susceptibility and,,(S) the coefficients of the
second correlation moment for sgiFrom Eq.(13) we can

LI Y N B N Y ) N EOY N N D BN N B N B
+8=12 % s ] observe that, for larga,
0632 o $=2
QL[ ass2 o s=3
NoFoms72 a4
N e S=5 ® S= B(SluSZ)
2 an(S1,S) =A(S1,S,) 1+T+O(1/n) (33
[is]
£l
&y and therefore
3 an(S1,S,) A’
rn(S.,Sy) = =1+ +0(1/n?) (34
g e R NS M
Nl
L ] so that
I Y Y ) T T T T Y T
0.0  0.0002 0.0006 0.0006 0.0008 0.0010
1/n(2+8)
1 rh($,S)—1
FIG. 11. Thedirectly biased modified-ratio approximant se- (9(51,52)%—5 n Moso(Sy SZ)—l_l -2 (39
~ n 1
quencegy5°%(S)), for the critical exponent of5°%(3;S) plotted vs
1/n2*?_ In order to keep the figure readable we have indicated only
the extrapolations of the odd approximant subsequences. is an approximant sequence fér In the bcc lattice case, if
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TABLE V. Estimates of the critical exponent, from the spinS Ising model high-temperature series on

sc and bcc lattices obtained in this work by the modified-réfdl&®) methoddirectly biased with the leading

correction-to-scaling exponestfollowing Eg. (30) or by second-order differential approximants biased with

B.. For comparison, we have also reported some results obtained by simulation methods or from shorter

series in the recent literature.

Exponent S=1/2 S=1 S=3/2 S=2 S=5/2 S=3 S=

¥5%(S) (DA)  4.3728) 4.3688) 4.3698) 4.3698)  4.3688)  4.3674)  4.3664)
35S) (MR)  4.370312) 4.366216) 4.36719) 4.36839) 4.36919) 4.36979) 4.37192)
955%9)196 0.027 0.023 0.015 0.009 0.004 0.002 —0.007
Y2°YS) (DA)  4.37620) 4.366610) 4.363810) 4.362910) 4.363210) 4.363110) 4.363110)
3ee(S) (MR)  4.36963) 4.369011) 4.370212) 4.371412) 43722  4.37202) 4.374910)
9y2°(S)1 96 0.02 —-0.008 —0.014 —-0.023 -0.028 -0.032 —0.043
ACK 4.3618)

75°49) 2 4.3686)

Y2eY(S) P 4.37014)

%Reference 53.
bReference 42.

we chooses; =1/2, S,>2, and extrapolate only the evéur,
equivalently, the oddsubsequences linearly inni/"?, we

traditional differential-approximant-based procedures of se-
ries analysis after recalling that their main difficulty is the

obtain Fig. 13. The results indicate very suggestively that necessity of some further extrapolation with respect to the

=0.50"2, independently of the value @&,.

VIII. ANALYSIS OF THE EXPONENTS BY DIFFERENTIAL
APPROXIMANTS

order of the series used, which is not straightforward, due
mainly to the lack of simple estimates for the finite-order

corrections and to the spread of the various DA estimates at
a given order of approximation. This fact also hampers the
assessment of the errors, which can be realistic if not only

The modified-ratio methods employed in the last sectionshey reflect the spread of the values of the highest-order ap-

have proved successful and suggestive both for the determproximants, but also allow for the possible residual trends. In
nation of the critical temperatures and for the calculation otthis respect, the modified-ratio methods might be easier to
the exponentsy, v, and y,. Let us now turn to the more use, as we have suggested in the previous sections. We have

———
A 852 4 S8

N §=7/2 $=4
AN . s=5 N $=
RN ¢ *
NN

Confluent Exponent Approximants
0.38 0.40 0.42 0.44 0.46 0.48 0.50 0.52

0.010
1719

o
o

FIG. 13. Approximant sequence$6®°%(S;,S,)), for the
correction-to-scaling exponert as obtained using Eq35) for
fixed S;=1/2 andS,=5/2,3,7/2,4,5¢2. The symbols refer to the
values ofS,. The sequences are plotted va17’, with §=0.504.

already discussed in Sec. IV the DA estimates for the critical
points. For measuring the exponents, we have preferred se-
ries analyses using the inhomogeneous first- and second-
order DA's biasedwith B, (or in some cases with: B..), or
sometimes thaimplifiedinhomogeneous first-order differen-
tial approximants defined in Ref. 52, in which we have fixed
also the correction-to-scaling exponeéhtThe extrapolations

of the results from the biased DA's and from the simplified
DAs may be performed with a smaller uncertainty, because
the spread of the estimates tends to be narrower than for
unbiased approximants. Moreover, in order to understand, at
least qualitatively, how the estimates on a given lattice de-
pend on the spin and to improve them, it will be sufficient to
assume that the leading finite-order corrections are propor-
tional to the amplitudes of the leading nonanalytic correc-
tions to scaling.

A simpler approacl®1% similar to the simplified DA’
consists in forming the conventional Paajgproximants after
subjecting the series to the biased variable chants)
=1—7%(S)? in order to regularize the leading CCS. The
results obtained either by simplified DAs or by Padp-
proximants(PAs) in the variablew”(S) are sometimes nu-
merically comparable, but the latter are generally affected by
a larger uncertainty.

In order to keep the figure readable we have indicated only the We have computed also theffective exponentsntro-

extrapolations of the odd approximant subsequences.

duced long ago in Ref. 107 and more recently reconsidered
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CRITICAL UNIVERSALITY AND HYPERSCALING . .. PHYSICAL REVIEW B 65 144431

and systematically studied in Refs. 14,63,108, and 109, for IV P B B L L I L
the susceptibility o ¢582 o 82 .
N oass2 o s=3 =
T ms=/2 a S e
#(B:S)= din x*(B:;9) O ess e 5w AT ]
Yot din #(S) . .
= y(S)— 6a(S) () "+ O((S)),  (36) eat i
for the correlation length g T ]
# E 8 i 1
din£(B:S) XL B
# Q) — # u
veif(BiS)=—[1-7(S)]———F— - -
et [ Fan s ol )
=u(S)- 6a(S)7(9)"+0((8)), (37 T
and for the second field derivative of the susceptibility 2L o
din(8:S) 0.0 0.2 0.4 0.6 0.8 1.C
X4\ P T
Yjeff(BiS)E TN
dIn7(S) FIG. 14. Highest-order simplified-differential approximants of

the effective exponent$(B;S) of the susceptibility°°(B;S) as
defined by Eq.(36). For each value of the spiB the effective

. . _exponent is plotted vsPeY(S)’=[1— B/ BL°(S)]’. As indicated by
The critical exponenty, », andy, are estimated by ex the symbols attached to them, the curves refer, from the highest

trapolating the effective exponents to the critical singularity. .
Of course, the factof1—(S)] in Eq. (37) is introduced downwards, to the spin valu&=1/2,1,3/2,2,5/2,3,7/2,4:,
only to compensate for the singularity dfn &3;9/dIn «(9S In the sc lattice case, the analogaimit less well con-
at 8=0 and is unimportant at the critical point. verged plots for yg5(8;S) and for v3f(3;S), obtained by
It is interesting to plot the effective exponents over a widesimplified DA's, are shown in Figs. 16 and 17. This analysis
vicinity of B%(S), not only to gain information on the leading also confirms that, on the sc lattice, the amplitudes of the
correction amplitudeaf((S), aif(S), andaﬁ(S) through Egs. leading CCS do not have a dependenceSmsimilar to the
(36)—(38), by examining whether and how fast they ap-bcc case, but remain negative for all values of the spin. The
proach the critical limit from above or from below, but also estimates ofy*%(S) and of v°%(S) obtained by second-order
simply in order to display the varieflf of preasymptotic biased DAs are also reported in Table III.
critical behaviors which can occur within the same univer- -
sality class. The parametrizations of the approach to the criti- B B B
cal behavior, proposed within various field-theoretical C
approachés''*?to the RG, must confront also with this phe- 3 E
nomenology. ©
In Figs. 14 and 15 we have shown the highest-order sim-

plified DA's of the effective exponents2$(S) and, respec-

tively, v255(S) for spinS=1/2,1, . . . =, over wide ranges of
inverse temperatures. In order to make the curves conve-
niently comparable for all values of the spin, we have plotted
the effective exponents against the variabt°%(S)]1%. The

sign of the leading CCS is revealed by the slope of the plots
near°¢%(S)=0.

While the simplified DAs are quite sufficient to give a
general view of the behavior of the effective exponents, more
accurate results for the exponenare obtained extrapolating
the effective exponent expansions by second-order inhomo-
geneous DAs biased witlB.. The estimates thus obtained
for y(S) range from y°°9(1/2)=1.2385(6) to y°(«) T
:1,'23615)' They are rgported' In Tat_)le lIl. Our best I_DA FIG. 15. Highest-order simplified-differential approximants of
eﬁtlmate Y= 162373(4) is obtained simply by averaging the effective exponents®S(3;S) of the correlation length
¥’°Y(1) andy°°9(2) and taking into account also the value gbeo g:5) as defined by Eq36). For each value of the spifithe
of y°°%(3/2). It agrees well with the estimate by modified- effective exponent is plotted v&°%(S)=[1— B/ 82°%(S)1". As in-
ratio methods. The corresponding results for the correlationgicated by the symbols attached to them, the curves refer, from
length exponent range fromy°°%(1/2)=0.6314(20) to the highest downwards, to the spin value§=1/2,1,
pPe%(0)=0.6294(5) and our best estimateris-0.63014).  3/2,2,5/2,3,7/2,4,5..

= y4(S)— 0a3(S)7(S)?+ O(*(9)). (39)

0.61 0.62

Effect ive Exponent
0.40

$=1/2 *
$=3/2 o
¢
A
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$=5/2
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FIG. 16. Highest-order simplified-differential approximants of ~ FIG. 18. Highest-order simplified-differential approximants of
the effective exponenys¢(3;S) of the susceptibiltyy®%(3;S) as  the effective exponen¢¢(B;S) computed fromy3°(B;S). For
defined by Eq.(36). For each value of the spiB the effective  €ach value of the spils the effective exponent is plotted vs the
exponent is plotted vsS%(S)?=[1— B/B5%(S)]’. As indicated by ~ corresponding reduced inverse temperature®°(S)’=[1
the symbols attached to them, the curves refer, from the highest 8/8c°(S)1%.
downwards, to the spin valu&s=1/2,1,3/2,2,5/2,3,7/12,4%,

S _ _ of the analysis by modified-ratio methods. The accuracy in
bThe S|mplk|)f|ed-DA analysis of the effbecnve exponent the verification of hyperscaling is now slightly improved
Yaeii(S) of x2°%(B;S) yields estimates ofy,°(S) ranging  with respect to the biased modified-ratio methods of sec. VI,

between 4.3647 and 4.3653. It also indicates #§4f(1/2)  since we havey+3v—2A = —0.0021(28).

andaj°‘(1) are negative, whereas°(S) is positive forS As shown in Figs. 18 and 19, the pattern of signs for the
>3/2. On the sc lattice, the corresponding estimates o€onfluent amplitudes oﬁ(,B;S) is consistent with the cor-
v5%(S) vary between 4.363 and 4.373 aaif(S)>0 for all  responding results fox”(3;S), as it must, since the ratios
S We can conclude thag,=4.3662), independently of the ~ aj;(S)/a’(S) are expected to be universal.

spin and the lattice, and in good agreement with the results The exponenty’(S) can also be evaluated extrapolating

the effective exponents by inhomogeneous second-order

EEERERERRER AR RN DAs biased with,Bﬁ‘(S). On the bcc lattice, our results,
9 ] which appear in Table V, range between 4.376(8) $or
oL ]
- u N 1 T [ T | T [ T [ 1T [ T T 1T
9L b N i +5=172 $
2o | g L
g f - [ ]
e [ y N ]
Sor £ T 7
0 - S L 4
Bgr gvol i
S+ + L: s 7
- > 2 . -
BL = S r i
o+ ° \ Ha [ B
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'Es <« — -
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FIG. 17. Highest-order simplified-differential approximants of u ]
the effective exponentS$(3;S) of the correlation lengtl%(3;S) 0.0 — '0'2 — '0'4 ! '0'6 — '0'8 — e

as defined by Eq(36). For each value of the spi8 the effective ) ’ 9
exponent is plotted vs%(S)’=[1— 8/B:%S)]’. As indicated by

the symbols attached to them, the curves refer, from the highest FIG. 19. Same as Fig. 18, but for the effective exponent
downwards, to the spin valu&=1/2,1,3/2,2,5/2,3,7/2,4%, Yasii(B;S) computed fromy3%(53;9).
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=1/2 and 4.3631(4) forS=. In particular we find IX. COMPARISON WITH OTHER EXPONENT
Y2°%(1)=4.3666(10), y2°%(3/2)=4.3638(10) andy2°%(2) ESTIMATES

:4'3629(10)' By th_e same arguments usgd in the modified- The agreement of our HT estimates with the valyes
ratio method analysis of the bcc lattice series, the best valug 1.2396(13) and=0.6304(13), obtained in the context of

ff)rlthe %Xgofgntyj}hs_mll"d clile between ;he lestlm.ates Br the RG by Borel summation of coupling-constant seventh-
=1 and S5=2. This leads to our final estimatey, g qer fixed-dimension perturbative expansfBiié®or with

=4.3647(20), which is even more accurately consistent with valuesy=1.2380(50) andv=0.6305(25) obtained by
hyperscaling, since for the bcc lattice data we have 2 ggro symmation of the fifth-ordes expansiorf*®° s still

+3v—y,=-00008(28). _ _ reasonable. The valueg=1.2378(6)+0.18(g, — 1.40) and
Finally, it is worth mentioning bnefly.that the ratio/ y _ »=0.6301(5)+0.12(g, — 1.40) proposed in Ref. 45 on the
can be determlngd, o a . good precision, aiso S'[Udy'n%asis of a slightly different resummation of the fixed-
the log-derivative  ratios DIn(xs)/DIn(x)  and  gimension perturbative RG expansion are perhaps even
D In(w2/B)/D In(x), either by DA’ biased inB; or by sim- ¢oser. At the presently available orders of HT expansion, our
plified DA biased inB. and 6. The values thus obtained series estimates prefer central values foand v which are
from the bcc lattice expansion@xcept for S=1/2) fall  only slightly lower. It is appropriate to mention that very
within the error bars of our best resulty=0.5092(2) from  similar central estimates, though with larger uncertainties,
modified-ratio methods. The accuracy of the estimates can bgere already obtained quite some time Zg6-2®from bcc
further improved by focusing on the bcc lattice case andattice series of ordeg?! by the methot?° of Chen, Fisher,
arguing as usual that the best value wfy is simply an  Nickel, and Zinn-Justin. For instance, the analysis of Ref. 23
average of the estimates f8=1 andS=2. We thus arrive yielded y=1.237(2) and»=0.6300(15). A more recent
to the valuev/y=0.509%1). Theestimates of this ratio ob- study"** of HT series througl® (5% for the sc lattice, along
tained from the sc series lie within twice the expected errothe same lines as in Refs. 23, 25 and 26, indicates
bars forS>2, but are slightly worse for smaller values®f =1.2371(4) andv=0.63002(23). All these results are also
In the bec lattice case, also the DA estimateyobbtained — guoted for comparison in our Table IV.
from the analysis of the ratio of the log derivativesydfand ~~ The techmqu%e“‘zs of focusing the analysis on some par-
v, whose value at the critical point is+1/y, agrees very ticular model in the Ising universality class with negligible

closely with our best results by modified-ratio methods. ~ @mPplitudes of the leading confluent corrections to scaling
was advantageously adapted also to Monte Carlo simulations

We have also examined the term-by-term divided serle:sin Refs. 92 and 93, which repory=1.2372(17) andv

=0.63036). This procedure was further improved in Ref.
e.(S) 89, in which it led to the estimates=0.6296(7) andn
ahuavy (39 =0.03589), implying y=1.2367(20). Even lower central
Pi(S) estimates of the exponents—namejys 1.2353(25) andv

=0.6294(10)—have been measured in a more conventional
, . Monte Carlo simulation of the spin-1/2 Ising model supple-
wheree(S) are 2the expansion coefficients g(5;S) and  mented by a finite-size scaling analysfavhich allows also
pr(S) those ofx“(B:S). Using Eq.(13), it is easily shown o1 the corrections to scaling. It is tempting to conjecture
that the auxiliary functiorQ(x;S) has a critical point ak  that, for S=1/2 on the sc lattice, our results from the ex-
=1 with exponent 3+1, if hyperscaling holds. A second- trapolations of the modified-ratio approximants and the best
order biased DA analysis of the effective exponent yields théinite-size scaling analyses of the Monte Carlo simulations
estimater=0.6300(4) independently db and in complete on the largest accessible lattices are subject to errors of the
agreement with hyperscaling. same nature. This would explain the rather small central val-

In conclusion, we have observed that if the sequences afes of the quoted Monte Carlo estimatesjoaind indicate

modified-ratio method approximants are carefully extrapothe need of simulations of a significantly larger scale in order
lated using as bias the value @flerived by RG methods, the to obtain from spin-1/2 systems on the sc lattice exponent
estimates of the exponents obtained by the modified-rativalues in closer agreement with our bcc series estimates.
method, for allS and on both lattices under consideration, Let us now comment briefly on the existing results qQr
show good agreement with the results from DA's biased onlyVe recall that the validity of the hyperscaling relation, Eq.
with 3. or simplified DA's biased with botig, and 6. The  (18), for the spin-1/2 Ising model was questiorigd®on the
close consistency between the critical parameter estimatdzsis of an analysis of 10—12 term series on sc, bcc, and fcc
obtained by a number of different procedures adds furthelattices, yielding the estimate+3v—2A=0.038(12). This
confidence that the HT series have now reached a fairly safeesult was at the time interpreted as an indication of a small,
extension and that we are not being misled by accidentabut clear, failure of hyperscaling. As already mentioned in
apparent convergence, so that the uncertainties of the Hithe Introduction, the problem was convincingly settled only
estimates can be significantly reduced. The small residuavhen the HT series fory and ¢ on the bcc lattice,
dependence of the exponent estimates on the Spind on  extende® up to order 21, were analyzed with careful
the lattice structure can be confidently used to characterizallowancé? *’for the CCS and indicated the insufficient ac-
how accurately universality is respected. curacy of the “classical” HT estimatesy=1.25Q3),»

Q(x;5)=g0
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=0.6342), anda= 1/8 generally acceptd®*2*6until then.  tudes for the correlation length and fgj in order to evalu-
For general spin, a single stuthof y,, performed with ate the corresponding critical amplitude§f#(S)]?
seriesO(B*) on the fec lattice, can be found in the litera- =lim__  2"&%(g;S)? and Cj(§)=—lim 772

. . . . —0+
ture. The log derivative of the seri€¥x;S), defined by Eqg. Xxﬁ(B;S). The results are reported in the same table.

(39), was examined by PA's. The analysis produced estimates ! e .
. - The above-mentioned difficulties in the analysis of the
of the exponent 2~y ranging from 1.887(1) fob=1/2 to critical behavior of the specific heat also result in larger er-

1.893(1) for S=9/2. Of course, if hyperscaling is valid, rors of the critical amplitudé*(S). Therefore it seems more

24— y=3v. Thus the final estimate2- y=1.890(3) indi- .\ onient to compute this quantity from the second deriva-
cated the absence of hyperscaling violations of the size Pré;

# . . . B
dicted from Refs. 33—35, provided that the central value of G*(B;S), which presents a sharper singularity.

- - - Other estimates for some of the mentioned critical ampli-
_0.'630 suggested by the RG, rather than the “classical HTtudes, obtained from shorter HT series and under slightly
estimater=0.6382), wasadopted.

; . different biasing assumptions or by other numerical methods,
The expansion of, on the sc lattice, fo6=1/2, was at can also be found in earlier studi®2120-122-5 instance
the time already qvallabllb‘s up to or_der 17, but it Was ana- fom Ref. 120 we have cited in Table VI the estimates' of
lyzed only later in Ref. 42. It yielded the estimatg, ASY(1/2),CS%(1/2), and %(1/2), obtained from series
=4.37(Q5), still confirming the validity of hyperscaling, pro- oY (’)(Blg) a’nd 051 reépectively under the as-
vided that the revised values obtained from the RG in thos%umptié)ns a=’0 104y=1 2é71/=0 6325 ' and B5(1/2)
.104; ) . , .

years were assumed forand v. The series on the b lat- =(0.221 620. From the same reference, we have also reported

tice, for S=1/2, was extended to the same order only much[he estimates o4\b°°(1/2) obtained from a serig®( 8" and
later® and its analysis also confirmed the above conclusion.f Ccbee(1/2) andfPee(1/2) obtained from serie® (52 b
Further support of these results came also from various mord . bec B y

recent Monte Carlo tesfd6-119 assuming 8. (1/2)=0.157 362 and the same values as

It should be stressed that the finite-order effects are stror20Ve fora, 4 andv. , .
ger in the calculation of, (and of related quantities likg;) SéJnder various assumptions on the valuexostimates of
than in the calculation of quantities defined in terms of two-~ (1/2) were derived in Ref. 123 from a simulation in
spin correlations, as we have already remarked in Ref. 53VNich the energy and the specific heat were measured. By
and therefore that the accuracy of the results is correspongiraightforward interpolation, we can conclude that, ior
ingly smaller. Our comparison with previous studies shows=9-11, these data would imply the estimafe(1/2)
however, that we have achieved some improvement not only 1-3687), in reasonable agreement with ours.

in the precision of the estimates gfand v, but mainly of Frbom Ref. 121, we have quoted estimate€gi(1/2) and

v4, by taking advantage of our significantly extended expanof C3°(1/2) obtained from the serie®(B8') and O(8"),

sions of . respectively, assuming y,=4.375 and B9(1/2)
=0.221630(16)3°°%(1/2)=0.157 3687).

X. ESTIMATES OF CRITICAL AMPLITUDES In the same table, we have also reported estiriatesm

seriesO(B%Y) for CP°Y(1/2), CP°(1), andCPc%(2) assuming

For proper reference and for comparison with the earlier,=1.237 and the estimates of°°%(1/2),f*°%(1), and
studies, we have reported in Table VI a set of updated estif>°¢(2), obtained assuming'=0.6297y=0.6298, andv
mates for the Cfitig;':" amplitudes of (8;S), of £%(B:S), of  =0.6300, respectively, together with the valuesgif<(S)
Ci(B:9), and of x4(B;S) as defined by Eqg9)—(12). quoted in the same reference and reported in Table II.

We have evaluated the critical amplitudg”(S) of In Ref. 122 the values o€5%(1/2) and offs¢(1/2) have
x"(B:S) as follows. We have adopted as a bias the value peen computed by a Monte Carlo method assuming
=1.2371 and our estimates qﬁﬁ(S) to compute the HT =1.237p=0.628, andB:3(1/2)=0.22165.

series of the “effective amplitude”: This brief review of some existing results shows how sen-
. ) ) ) i ep sitively the estimates of the critical amplitudes depend on the
CHB:S=1"X"(B;9=C(S[1+al(S)T(S "+ -- bias values chosen for the critical exponents and tempera-
tures and, of course, on the length of the series. If we also
# # ) )
+o (S T(S)+---]. (40 allow properly for these sources of uncertainty, which gen-

. . . . erally are not included in the error bars quoted in the litera-
#
The amplitudeC™(S) is then estimated by extrapolating y,re " many of the cited estimates can be considered essen-

B . # . g -
the effect|_ve amplitudeC™(5;9) to th.e crmcal_ point. Th.e tially compatible among themselves and with ours.
extrapolation has been performed either by first-order inho-

mogeneous simplified DA's biased wiﬂﬁ(S) and with € in
order to allow for the confluent corrections to scaling
or, more traditionally, by using second-order inhomogeneous The value of the hyperuniversal renormalized coupling
DA's biased with=+ Bﬁ(S). Since these two procedures yield constang, can be obtained from our estimates of the critical
fully consistent estimates, we have reported in Table Viamplitudes. Alternatively, without biasing the computation
only the results obtained by the usual differential approxi-also with the critical exponentg, can be computed, with a
mants, which do not need to be biased also witlBy the  smaller uncertainty by extrapolating to critical point the ex-
same procedure, we have also studied the effective amplpansion of the auxiliary function

XI. ESTIMATES OF THE RENORMALIZED COUPLING
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TABLE VI. Estimates of the critical amplituded”(S) of the specific heaC},(8,S), C*(S) of the

susceptibilityx*(3;S), f#(S) of the correlation lengtl*(3;S) and C%(S) of xi(B;S) for the spinS Ising

models on sc and bcc lattices. They are obtained by differential approximants biased with the critical inverse

temperatures reported in Table Il and with the critical exponents estimated in this work. For comparison, we

have also reported a few estimates obtained by simulation methods or from shorter series in the recent

literature. For some of them, no indication of error is available.

S=1/2 S=1 S=3/2 S=2 S=5/2 S=3 S=x
ASY(S) 1.341) 1.803) 2.002) 2.091) 2152 2182  2.281)
IS OVEERE) 640 980 170 550 300 750 440
IAS(S)/ da -20 -26 -28 -32 -32 -32 -33
INEES) 1.3026) 1.7326) 1.9116) 2.0006) 2.0516) 2.0836) 2.1716)
AAPCY(S)/ 9 BR°Y(S) 800 1000 950 900 1200 870 830
AAP(S)/ da -19 —-26 -29 -30 -31 -32 -33
ASY(S) @ 1.4647)
ASY(S) P 1.3687)
Abce(s) @ 1.4319)
C3Y9) 1.1273) 0.6821) 0.5451) 0.4841) 0.4431) 0.41846) 0.30732)
aCSY(9)19B%(S) 1900 1800 1900 1000 600 220 150
aCSY(S)ay -9 -8 -7 -7 -55 -5 -3
CPe(s) 1.0421) 0.6221) 0.49673) 0.43793) 0.404%4) 0.38264) 0.28174)
ACPY(S)19B2°Y(S) 3900 —1300 170 750 500 480 310
aCPe(S)/ gy -9 -5 —45 -36 -3.1 -3 -2.2
csy9) @ 1.102510)
c(9) ¢ 1.09313)
chee(g) @ 1.026 0.620 0.4346
chee(s) @ 1.031210)
fS4(S) 0.5061)  0.4581) 0.4431) 0.4361) 0.4321) 0.43q1) 0.4231)
ats(9)19BEY(S) 290 280 200 180 400 120 120
af5q(S)/ gv -4 -4 -35 -4 -4 -3 -35
fbes(s) 0.46864) 0.42628) 0.41124) 0.40474) 0.40134) 0.39924) 0.39374)
atPe(S)/aBReY(S) 500 450 500 230 200 170 1700
JfPeY(S)/ g —4 -5 -3 -3 -3 -3 -3
f55(S) 2 0.496(4)
fs(s) © 0.501(2)
fs¢(s) @ 0.5192
fbe(s) @ 0.45941)
fbegs) d 0.46821  0.42605 0.4038
C54S) 3.871) 1.051) 0.6061) 0.4562) 0.3781) 0.3271) 0.1691)
aC54(9)1 B9 5000 3200 2900 2700 800  —1300 350
aCSY(S)/ 34 -20 -9 -7 -6 -5 -15 -15
chee(s) 3.4108) 0.9123) 0.5231) 0.38846) 0.32305) 0.28475) 0.14785)
aCEY(9)198°(S) 15000 8000 460 630 470 450 190
dCYS) 94 —24 -9.5 -3 -25 -2 -2 -1
Cc34S) © 3.7013)
csyo) 3.634"3)
chess) f 3.2362)

aReference 120.
bReference 123.
‘Reference 122.

dReference 28.
®Reference 42.
fReference 121.

v¥(B;9)=[g%(B;S)]%° (41)  Unlike the effective couplingg/(B;S), both y#(3;S) and
. Z%(B;S) are regular analytic a8=0, so that they can be
or of the function expanded in powers oB and extrapolated to the critical
z#(B;S)=[B/B§(S)]3lzgf(ﬁ;8). (42) point by Padeapproximants, DAs, or simplified DAS. Due
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FIG. 20. Highest-order simplified differential approximants of  FIG. 21. Highest-order simplified differential approximants of
the effective dimensionless renormalized coupling constanthe effective dimensionless renormalized coupling congidig; S)
0:(8:S), as obtained from the bcc lattice series. The effective couas obtained from the sc lattice series. The effective coupling is
pling is computed from the auxiliary functia?®%(3;S) defined in  computed from the auxiliary functior®®(8;S) defined by Eq(42)

Eq. (42) and is plotted vs°°%(S)=1— B/ BE°Y(S). and is plotted vs°(S)=1—8/8:49).

to the finite extension of the series, the numerical estimateﬁ1 bec, bcc bcc
X ' e average 1) and 2) or to the valu 3/2).
of g, derived from Eq.(41) or from Eqg.(42) are of course ge of; (1) andg; “(2) @ (372)

. ) Thus we conclude thag, =1.4043). Thecentral value of
(very) slightly different. ”? order to aI_Iow _for the expect_ed our updated estimate is slightly lower than our previous
leading confluent corrections to scaling, in our calculation

Yesulf® g,=1.4 ig3(B) for th
we have used first- and second-order DA's biase;d%joS) esult® g, 046), based on a seriéS(5 ) for the bee

L L 4 , lattice in theS=1/2 case, in which the convergence is slow-
or simplified DA's biased withB.(S) and with the confluent  gg However, our revised result is slightly closer to the value

exponenty. In Fibgc-c 20 we have plotted ve°Y(S) the effec- g =1.400 advocated by Murray and Nick®In the context

tive coupling g, "(B;S) as obtained from the function of the RG fixed-dimension approach and is compatible with
2°°Y8;S) for various values of the spii The curves, com-  the more recent HT reséif g, =1.402(2) obtained by the
puted in the simplest way by simplified DAs, show the method of Refs. 24 and 25 from sc lattice series extending to
strong influence of the CCS nearby the critical point a”dorderﬁlg. Our numerical estimates gf(S), for several val-
indicate thatg;°%(S) is independent o8 within a very good yes of S and on both lattices, are reported in Table VII.
approximation. Comparison with Fig. 21, which shows theNgtice that in the bcc case the DA estimates are larger or
effective couplingg;“(B;S) plotted vs°%(S), similarly in-  smaller (in the sc case generally largethan the expected
dicates that the renormalized coupligif~gP°°~1.41 isin-  best value, consistently with the signs of the CCS ampli-
dependent not only of but also of the lattice structure. tudes. In the same table we have quoted for comparison also
Using Eq.(19), we can infer from Fig. 20 that the amplitudes some recent Monte Carlo estimafés*®of g,, as well as

of the CCS are generally large and, more precisely, thadther results from the HT and RG methods.

ap°(S)>0 for S=1/2 and 1, whereag?°(S)<0 for S
>2. Analogously, from Fig. 21 we can conclude that

+
aSC(S)>O for all S These qualitative conclusions are con- XIl. ESTIMATES OF R,

sistent with RG estimat€s*** in the fixed-dimension ap-  The combination of critical amplitudeR; , defined by
proach indicating thagy/a, lies in a range from~—3 to  Eq. (21), can be computed either from the estimates of the
~—2. critical amplitudesA”, # and of the exponent=2—3v or,

In order to reach higher precision in the calculatioypf  more directly, by extrapolating to the critical point the ex-
we have preferred to use first- and second-order DA’ biasefansion of the auxiliary function

with B.. In the bcc lattice case, we notice that, B+ 1/2

and 1, approximants which use an increasing number of co-
efficients show a residual slowly decreasing trend, while, for F(B:S)
S=2, they show an increasing trend. We shall indicate by
asymmetric uncertainties these features of the approximant 3 2 . 32 . -
sequences. Again arguing as for the critical exponenis _ Pe(S) d°G(5:S) ( B d@/£(5:9)
and vy,, we can expect that the most reliable estimatey,of 2vp dg? B¥(s) dg
obtained from the bcc lattice series will be nearly equal to (43

3
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TABLE VII. Estimates of the universal renormalized couplijgusing the auxiliary functioz?(3;S) of
Eq. (42) for the spinS Ising model series on sc and bcc lattices. They are obtained by differential approxi-
mants biased with the modified-ratio estimates of the critical inverse temperatures reported in Table II. For
comparison, we have also reported other estimates obtained by simulation methods or from shorter series in
the recent literature(For some of them, no indication of error is availabl€he values marked with an
asterisk have been obtained either by renormalization-group methods or by high-temperature methods which
assume universality and therefore they refer to the Ising universality class although, for simplicity, they are
reported in the column of th8=1/2 results.

S=1/2 S=1 S=3/2 S=2 S=5/2 S=3 S=o
gfc(S) (DA) 1.401) 1.4106) 1.4046) 1.41410) 1.41510) 1.41410) 1.41210)
gECC(S) (DA) 14047} 1.4094) 1.4043) 1.40%"Y 1.404°3) 140473  1.394")
g/ece 1.4018)
gicab 1.4037)
9, 1.4599)
g, ° 1.4022)*
g, ¢ 1.40%
g ° 1.4114)*
%Reference 116. dReference 45.
bRreference 121. ®Reference 64.
‘Reference 113.
since the validity of the hyperscaling relation, E§0) im- In Table VIII we have also shown values BQ obtained

plies F(B,(S)—0;9)=(R{)*+0(1/n%. We have assumed via the RG, either by the fixed-dimension perturbative
v=0.6299 and evaluateH(3;S) by first-order differential expansion to fifth ordéf®> or by e-expansion to second
approximants biased with 85(S). The estimates dR; ob-  order'?® We have also quoted the estimaRg =0.270(4)
tained by this prescription are shown in Table VIII. Within a that would be obtained from the Monte Carlo measures of
fair approximation, they are independent 8fand of the Ref. 123 assumingr=0.11 and the recent HT resuRg
lattice structure and compatible with the estimates obtained-0.2659(4) taken from Ref. 113 as a representative of vari-
combining the amplitudes reported in Table VI. ous nearly equal central estimates from stutfi&s*?°per-
Our final estimate isR; =0.266§5). This result is formed at different times, with different techniques, under
slightly smaller than that the vaI®;=0.272(4) reported in  different assumptions on the values ofand @ and using
our previous studi? of the singleS=1/2 case employing series of different extensions. The discrepancy from our es-
shorter series. timate should probably be taken as an indication of the re-

TABLE VIII. Estimates of the universal quantiﬂyg using the auxiliary functior- of Eq. (43) for the
spin-S Ising model series on sc and bcc lattices. They are obtained by differential approximants biased with
the critical inverse temperatures reported in Table Il and with the valueotitained in this study. We have
also reported some estimates obtained by other methods or from shorter series in the recent literature. The
estimates marked with an asterisk are obtained by renormalization-group methods or by high-temperature
methods that assume universality and therefore they refer to the Ising universality class although, for sim-
plicity, they are reported in the column of tise= 1/2 results.

S=1/2 S=1 S=3/2 S=2 S=5/2 S=3 S=o

Rgsc(S) 0.266410) 0.266912) 0.267111) 0.267312) 0.267915 0.2674100 0.267310)
RgbCC(S) 0.26644) 0.26643) 0.26683) 0.26694) 0.26694) 0.26694) 0.267Q4)

R/? 0.26594)

R;® 0.2704)

R/° 0.2701)*

R/ ® 0.27*

R/ ® 0.28418)

Rgf 0.2656)

3References 84, 120, and 113. dReference 126.
bReference 123. ®Reference 127.
‘Reference 125. fReference 128.
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TABLE IX. Estimates of the universal ratia, /a, for the spinS Ising model series on the bcc lattice. For
comparison, we have also reported some estimates obtained by renormalization-group rffethedsne of
them, no indication of error is availabJéAlthough they refer to the Ising universality class, for simplicity,
they are reported in the column of ti$e=1/2 results.

S=1/2 S=1 S=3/2 S=2 S=5/2 S=3 S=o
agcc(S) —0.129(3) —0.0363(10) 0.007®) 0.030710) 0.043610) 0.051510) 0.074220)
agcc(S) —0.100(4) —0.0279(15) 0.006B) 0.023310) 0.033120) 0.039G20) 0.056@20)
ag“(S) a -0.119 —0.034 0.023
a§°°(S) a —0.1085 —0.033 0.0225
abes(s) P -0.13
a§°°(5) b -0.11
al*(s)/a’(s)  0.785) 0.776)  0.7716) 0.766)  0.766)  0.765  0.765)
a./a,’® 0.85
a‘f/axz 0.655)*
ag/a, 0.65*
8Reference 28. ‘Reference 129.
bReference 23. dReference 124

maining difficulty of accurately evaluating the specific-heattions thaty=1.2371 andd=0.504. A similar procedure can
amplitude. be repeated in the case &, assumingr=0.6299. The es-
Finally, it is worth while to quote two recent very accurate timates of the CCS amplitudes and of the universal ratios
measurements on binary mixtureR; =0.284(18), per- a2°%(s)/a’°(s) thus obtained are shown in Table IX. The
formed in a microgravity experiment andR; =0.2656),  values of the amplitudes°%(S) obtained by this procedure

obtained in a conventional environmefit. are generally consistent within a few percent, and those of
a?CC(S) within ~10%—-20% in the worst cases, with those
XIIl. ESTIMATING THE RATIOS OF CONFLUENT- evaluated by simplified DA's of the log derivatives pfand
SINGULARITY AMPLITUDES ¢ biased withg; and 6. Moreover, forS>2, the estimates of

aP°(S) obtained from the modified-ratio approximants for

From the extended series presented here, we have alSa'lerfe consistent within a few percent with those obtained from
tried to evaluate the universal rat&(S)/a,(S). We recall P

that, for the bcc lattice, our analysis pfand ¢ by modified- the corresponding approximants f@;. As expected, for

st methos ha shown tat,a he spiaris beween 1. D1 JAUES 15 e have consteney s v
and 2, the leading correction amplitudag(S) and a(S) 0 0 9

: o slower and/or the subleading confluent corrections are more
vary from small negative values to small positive values,

. . . important.
h h [ h f th f th . .
whereas in the sc lattice case no change of the sign of the The rat|osa2°°(8)/a2°°(8) appear to be approximately

confluent amplitudes is observed. As we have emphaSIZGd'_dependent of the spi, as they should, and suggest the

some knowledge of these amplitudes is necessary to undd ) X
stand how the various numerical estimates obtained for eadi'@ €stimatea;/a,=0.7§6). The error includes also the

value of S approach the true values of the universal criticalUncertainties Or]: the bias parielm_ett?rs ’é and 6. Inllthg sC
parameters. A simple prescription to compute accurately thitticé case, the same analysis leads to amplitude ratios

universal quantities consists in using series on the bec latticdNich show larger uncertainties, but agree within the errors

ith spins between 1 and 2, for which the amplitudes of the'ith the bec results.
WIth Spins between - an or Wiieh fhe ampittides o1 ine For S=1/2, the serie®(B%Y) of Ref. 23 yielded the es-

leading confluent corrections to scaling are very small. Con-, X o bec
versely, the numerical methods to evaluate the amplitudeémates (without indication of error a;~(1/2)=-0.11,
and the exponent of the leading CCS can be expected {§hich is 10% larger than ours, arab*‘=—0.13, which
work with fair accuracy only when the confluent corrections@grees closely with ours.
arenot too small. ForS=1/2 the size of the leading CCS is  Using the same series, Ref. 28 obtained estimates f
largest, but unfortunately also the higher-order correctiongmd«’:l?CC for S=1/2,1,2, also quoted in Table IX and in good
seem to be still important, as shown by the steep behavior aigreement with ours.
the extrapolated sequences in Fig. 4. Therefore, the Our central estimate of the ratia./a, is somewhat
most reliable results are likely to come from the bcc seriesmaller than our previous estim%ﬁeaglax=0.87(6), based
for S>2. on shorterS=1/2 series, than the old HT estimatag/a,
We have obtained reasonably accurate estimates of the0.83(5) of Ref. 27 and,/a,=0.85 of Refs. 23 and 28
CCS amplitudes fo simply by fitting the asymptotic form (reported without indication of errprbut it is larger than the
y+c1(S)/n?+c,(S)/n**?, suggested by Eq27), to the ex-  HT estimate 0.71(7) of Ref. 24 and the earlier estifftate
ponent approximant sequences, E2f), under the assump- a,/a,=0.70(2) based on the fcc serieg 8*?) for general
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spin tabulated in Refs. 8 and 9. We should also mention the Our procedure of series analysis differs somewhat from
estimatea,/a,=0.65(5) obtained by the RG in the pertur- the most traditional ones, but leads to completely consistent
bative fixed-dimension approach at sixth ortfér.The  conclusions. At least for the models studied here, we are also
e-expansion scheméxtending to second ordeyielded?*  confident that it yields very accurate direct estimates of the
the estimatea,/a, = 0.65. various critical parameters. Our updated resulis
Finally, let us note that our results confirm the observa-=1.23711), v=0.62992), v,=4.3647(20), @,
tions of Refs. 23, 25-27 and 52 and the arguments presented1.4043), anng =0.2668(5) are in good agreement with
in Ref. 63 that the amplitudes of the leading CCS have ahe latest calculations by other approximate methods, includ-
negative sign, both for the susceptibility and for the correlaing perturbative field-theoretic RG approaches. At the same
tion length, in the case of the spin-1/2 Ising model, on sc andime, our new series data have proved to be sufficiently rich
bcc lattices. that we can obtain fairly tight checks of the conventional
expectations about hyperscaling and universality, with regard

XIV. CONCLUSIONS both to the spirs and to the lattice structure.

For the Ising models of general spf on sc and bcc
lattices, we have produced extended HT expansions of the
nearest-neighbor correlation function, of the susceptibility, of
the second correlation moment, and of the second field de- This work has been partially supported by the Ministry of
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