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Magnetic anisotropy of monoatomic iron chains embedded in copper
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~Received 16 October 2001; published 29 March 2002!

We have calculated the anisotropic magnetic properties of monoatomic chains of iron atoms embedded in fcc
copper. The calculations are based on a relativistic extension of the locally self-consistent multiple scattering
method that is able to treat the large supercells required to model inhomogeneous systems. We have investi-
gated two chain geometries: Fe chains along the 110 and 100 directions. We found that the magnetocrystalline
anisotropy energy favored orientations of the magnetic moments perpendicular to the chains, while the mag-
netostatic energy was lowest when the moments are aligned parallel to the chain. Interestingly, our parameter
free qualitative results implies that these competing effects are finely balanced.
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I. INTRODUCTION

The study of iron inclusions in copper has a long histo
Originally systems of iron clusters embedded in a cop
matrix were used to study the magnetic properties ofg iron.1

Recently, interest in such structures has revived due to
observation of giant magneto resistance in these syste2

and investigation of their magnetic properties has beco
interesting again.3 Moreover, progress has been made in fa
ricating not only randomly distributed clusters but also str
tures of designed geometries. For example, high-quality
films can be deposited on or embedded in copper b
samples.4 Also individual iron atoms have been positione
on copper substrates to produce well-defined structures
as quantum corrals.5 Nearer to our interest here, Hauschi
et al. and Shenet al. have been able to deposit chains
individual iron atoms on vicinal surfaces.6,7 As we have ar-
gued previously8 the balance between magneto crystalli
anisotropy and dipolar interaction in one-dimensional s
tems can give rise to interesting orientational transitio
Clearly, such effects are the one-dimensional analogs
those observed by Allenspach and Bischof4 in Fe films. In
the present work we study iron chains embedded in b
copper on the basis of first-principles relativistic dens
functional calculations. Our long term aim is to investiga
with device applications in mind, magnetic structures clo
to sudden dramatic changes in orientational configura
due to small perturbations, such as a current.9–11In this paper
we report our discovery and preliminary survey of a ri
variety of potentially useful magnetic states of such chai

In Sec. II we outline a computational framework for trea
ing the relativistic electronic structure problem for a period
array of atoms with very large unit cells by a real spa
approach. A previous code in the same spirit as the one
sented here was developed by Beidenet al.12 However, their
implementation was restricted with respect to the system
that could be treated. As a validation of the method, in
following section, results relevant for bulk bcc iron are pr
sented and compared with those of other calculations. In
IV we present our main results for chains of iron atoms e
0163-1829/2002/65~14!/144424~7!/$20.00 65 1444
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bedded in fcc copper along two different directions. In S
V, we discuss the general significance of our findings.

II. RELATIVISTIC LOCALLY SELF-CONSISTENT
MULTIPLE SCATTERING METHOD

To perform the calculations for the embedded chains
are employing the first-principles framework of density fun
tional theory in the local spin density approximatio
~LSDA!. We solve the Kohn-Sham equation arising from th
formulation of the many body problem by the multiple sca
tering formalism of Korringa, Kohn, and Rostoke
~KKR!.13,14Since our interest here lies in calculating prope
ties related to magnetocrystalline anisotropy, we have to t
into account the coupling between the spin of the electr
and their orbital motion. To do this we utilize relativistic sp
density functional theory~Ramana and Rajagopal,15 Mac-
Donald and Vosko,16 and Eschriget al.17!. This leads to solv-
ing a Kohn-Sham-Dirac equation of the form

@2 i\caW •¹W 1bmc21V~rW !1bsW •BW ~rW !2E#c50, ~1!

whereV(rW) is the Hartree and exchange correlation elect
static potential andBW (rW) is a spin-only exchange field. Thes
relativistic Kohn-Sham-Dirac equations are solved by re
tivistic spin-polarized version of the KKR method~see
Strange18!.

As usual we render the problem tractable by replacing
infinite sample by a supercell structure—for an ordered s
tem the conventional unit cell; for nonperiod systems so
appropriate collection of atoms periodically reproduced.
realistically model inhomogeneous situations of the kind
visioned here, we need to solve the Kohn-Sham-Dirac eq
tion for supercells containing hundreds or even thousand
atomic sites. With present computer technology this is
yond the capability of traditionalk space methods. A very
effective alternative to this traditional approach has been p
sented by Wanget al.,19 using an entirely real space formu
lation of the problem. This latter forms the basis for o
relativistic treatment. In short, the locally self-consiste
©2002 The American Physical Society24-1
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multiple scattering~LSMS! method of Wanget al.19 is based
on the observation that good convergence can be obtaine
self-consistently solving the Kohn-Sham equation on a gi
site by considering not the whole system but only a su
ciently large neighborhood, the local interaction zone~LIZ !,
about each site. This approach leads to an algorithm
scales linearly in time with the numberN of sites in the
supercell and, additionally is well suited for implementati
on highly parallel computers.19

The main quantity we have to calculate in our multip
scattering approach is the scattering path matrixt, which lets
us calculate the Green function on all inequivalent sites
the supercell and therefore many interesting observables.
scattering path matrixtLL8

i j (e) describes the elastic scatte
ing at energye via all possible paths of a partial wave wit
angular momentum indicesL from site i to a partial wave
with angular momentum indicesL8 at site j, where we ab-
breviate the relativistic angular momentum indicesk andm
with a single labelL.18

To compute the scattering path matrix we need the r
tivistic structure constantsG0,LL8

i j , which are related to the
well known nonrelativistic structure constants by

G0,LL8
i j

~e!5 (
s561/2

CS l
1

2
j ;m2ssD

3G0,lm2sl8m82s
i j CS l 8

1

2
j 8;m82ssD , ~2!

where C( l 1
2 j ;m2ss) are the Clebsch-Gordan coefficien

and the angular momentum indicesl and j are related tok
andm by

l 5
k if k.0,

2k21 if k,0,
~3!

and j 5 l 2 1
2 (k/uku). The second ingredient of MST is th

single sitet matrix for each atomic sphere of radiusRi as-
signed to each lattice pointrW i . We calculate thet matrix by
numerically integrating the Dirac equation for spherically a
eraged potentials inside an atomic sphere following
method and approximation described by Federet al.20 and
Strangeet al.21 and matching this to the expression for t
scattered partial wave in the potential free space. This p
cess, which is described in detail by Strange,18 yields the
single site scatteringtLL8(e) for partial waves with angula
momentum indicesL to partial waves with angular momen
tum indicesL8 at energye. Note that in the spin polarized
relativistic case, as opposed to the spherically symmetric
relativistic case, the single sitet matrix is generally no longe
diagonal in the angular momentum indices.

The knowledge oft and the free space structure consta
G0 allows us to write the scattering path matrix in real spa
as a matrix equation

t5~ t212G0!21, ~4!

where, following the LSMS approach,t215$t i
21d i j % i j is a

block diagonal matrix containing the single site scatterint
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matrices, restricted to sitesi and j inside a given local inter-
action zone.~Note that this approximation makes our meth
an orderN method, withN the number of atoms inside
supercell, for a fixed sizeM of the LIZ. On the other hand
sincet21 is dense the computational effort grows asM3 as
the LIZ size is increased.!

The above formalism then allows us to write the Gre
function at sitei for complex energye as follows:

Gii ~rW,rW8;e!5(
L1

(
L2

ZL1
~rW !tL1L2

i i ~e!ZL2

† ~rW8!

2(
L

ZL~rW !JL
† ~rW !, ~5!

whereZ andJ represent the solutions of the single site Dir
equation.18 Once the Green function is know the expectati
values of ‘‘site diagonal’’ operatorsAii can be calculated by
a trace and an integral along a complex contour ending at
Fermi energyEf :

^A&52
1

p
Im EEf

Tr@Aii ~rW,rW8!Gii ~rW,rW8;e!#de. ~6!

The charge and magnetization densities thus obtained
provide us with a starting point for the next iteration step
a selfconsistent calculation, using the local density appro
mation ~LDA ! for the exchange-correlation functional.

Frequently, in such calculations the direction of the ma
netic moments calculated in an iteration step on a sitei will
not be parallel to the exchange field, namely, the cho
angular momentum quantization directionêi . To deal with
possible noncollinear orientations of the magnetic mome
and the local exchange fields, we could assign a local ang
momentum and spin quantization axis to each atomic sph
and update this direction in each iteration step to reflect
orientation of the magnetic moment calculated by setting
new directionêi

new to be a mixture of the original directionêi

and the newly calculated directionêi8 of the magnetic mo-
ments, averaged over the atomic sphereV i of radiusRi :

êi85

E
V i

mW i~rW !d3r

U E
V i

mW i~rW !d3rU . ~7!

Although one hopes that this procedure will converge to
state whereêi8 is along the direction of the exchange fiel
there is no guarantee that this will happen. Alternatively,
could constrain the magnetic moment inside an atom
sphere to a prescribed direction by requiring that

E
V i

mW ~rW !3êid
3r 50. ~8!

This constraint can be enforced by an auxiliary field as
plained by Stockset al.22 This later approach is the one w
adopt for treating the iron moments, whereas we let the
4-2
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MAGNETIC ANISOTROPY OF MONOATOMIC IRON . . . PHYSICAL REVIEW B65 144424
rection of the magnetic moments of the copper sites evo
according to the first of the two procedures.

III. BULK bcc IRON

In order to validate the above relativistic generalization
the LSMS method of Wanget al.19 we implemented it
~RLSMS! for the case of one Fe atom per bcc unit cell a
compared the results for the magnetization and magnetic
isotropy energy with those obtained by Beidenet al.12 and by
conventionalk-space calculations as well as experimental
sults on bulk iron. To illustrate the effect of replacing th
Schrödinger equation by a Dirac equation it is useful
record the scattering phase shifts for the iron potential, b
for the nonrelativistic and the relativistic case. In the nonr
ativistic case the phase shifts are exchange split into two
channels. This is most obvious for thed channel where we
find a splitting between the spin up and spin downd reso-
nance energies of approximately 0.152 Ry. As expected
the relativistic case thed resonance energies are further sp
by approximately 0.01 Ry due to spin orbit coupling.

We have calculated, fully self-consistently, the energy a
magnetization at a lattice constant ofa55.27a0, correspond-
ing to that of bulk iron. First, the influence of the size of t
local interaction zone was tested by calculating the magn
moments and Fermi energy for different sizes of the L
These results are presented in Table I. The exact resul
any system will be reached in the limitr LIZ →`. Since the
computation time grows asM3, the numberM of sites inside
the LIZ is proportional tor LIZ

3 for large enough radii, a com
promise between accuracy and computation time has to
found. Therefore we have chosen for most of the calculati
presented here a LIZ size of 89 sites, or the nearest se

TABLE I. The Fermi energy and total energy for bulk bcc iro
as function of the local interaction zone~LIZ ! size.

LIZ size @sites# Efermi @Ry# Etot @Ry#

15 ~2 shells! 0.79236 -2522.94226825
27 ~3 shells! 0.79465 -2522.94163228
59 ~5 shells! 0.78789 -2522.94043070
89 ~7 shells! 0.78649 -2522.94072597
113 ~8 shells! 0.78778 -2522.94024676
137 ~9 shells! 0.78932 -2522.93990050
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shells of surrounding sites, even though higher accur
could be achieved at the expense of significantly longer co
putation time. Furthermore, we have chosen a cutoff in
partial wave expansion ofl max53 for the central site and the
two nearest surrounding shells in the LIZ and for the rema
ing shells we setl max52. The angular momentum conve
gence of the KKR method employed by us is discussed
detail by Moghadamet al.23

With these choices we calculated the magnetic anisotr
for iron as shown in Table II. As can be seen, the spin m
netic moment is in good agreement with previous calcu
tions, both relativistic and nonrelativistic, as well with e
perimental results. The orbital moment on the other han
significantly lower in our calculation then it is in the exper
ment. This deficiency is shared with previous, fully infini
bulk, relativistic calculations. Nevertheless our method p
duces results for the anisotropy energy of iron that are
reasonable agreement with both experimental and previo
calculated results. Thus, we conclude that the magnetic
isotropy energies, calculated in the next section for emb
ded iron chains, can be taken as realistic quantitative e
mates.

IV. IRON CHAINS IN fcc COPPER

We now turn to the central point of our interest, name
the magnetic anisotropy for chains of single iron atoms e
bedded in bulk fcc copper. We considered two different g
ometries. They are depicted in Figs. 1~a! and 1~b!, respec-
tively. In all cases we assumed that the lattice constanta of
copper, which we take to be 6.83a0, not to have changed by
the iron substitution. The chains in our calculations we
chosen to be oriented along the 100 and 110 directions. N
that for the face diagonal case—the 110 direction—two
the nearest neighbors of each iron atom are iron sites ag
whereas in the other case all site nearest neighbors to
sites are occupied by copper and the closest iron atom i
a next nearest neighbor position.

In each fully self-consistent calculation we have det
mined the total energy, the charge densities on all sites in
unit cell, the size of the magnetization on each Fe atom fo
prescribed moment direction, the orientation of the magn
polarization on the Cu sites and the size of their moments
determine if the physically preferred orientation of magne
moments is parallel or perpendicular to the chain directi
we constrained the moment direction on the iron sites
the
revious
rystal-
TABLE II. Magnetic anisotropy energy for bulk bcc iron. The spin and orbital contribution to
magnetic moment associated with an iron site, as well as the the total moment are shown for p
nonrelativistic and relativistic calculations and experiments. The experimental value for the magnetoc
line anisotropy is listed together with the results from the relativistic calculations.

mspin morbital m total DE100,111

Non relativistic~Ref. 26! 2.15 2.15
Relativistick space~Refs. 27,28! 2.08 0.056 2.14 0.07mRy
Relativistic Beidenet al. ~Ref. 12! 2.08 0.041 2.13 0.06mRy
Experiment~Ref. 29! 2.13 0.080 2.21 0.09mRy
This work 2.13 0.046 2.17 0.06mRy
4-3
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EISENBACH, GYÖRFFY, STOCKS, AND ÚJFALUSSY PHYSICAL REVIEW B65 144424
point in a fixed direction and let the moment directions
the copper sites freely fluctuate and converge to their p
ferred orientation, given the prescribed iron moments. T
total number of atoms in the periodically repeated super
was 16 for the chain oriented along the 100 direction and
atoms for the 110 chain. In both cases the cell transvers
the chain axis consisted of one iron site and the remain
sites were occupied by copper, with the supercell oriente
such a way as to align the chain direction with one of the c
edges. A more detailed description of the various unit cell
given in the Appendix.

Since we employ periodic boundary conditions in our c
culations, the results we obtain are not for individual cha

FIG. 1. The orientations of the iron chains in the copper mat
~a! Chain along the copper 110 direction. Here the iron atoms n
est neighbors.~b! Chain along 100 direction. The pairs of neare
iron atoms have common nearest neighbor copper sites and are
nearest neighbors.
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but for a two-dimensional array of parallel chains. It is the
fore necessary to investigate the effect the finite dista
between chains has on our results. The results for varying
supercell size for the 110 chain are shown in Table III. T
supercells sizes correspond to minimal distances between
iron chains of 2a, 4a, and 6a, respectively. An important
benchmark is the size of the induced copper moment on
copper site with the largest distance from the chain. In
ideal case of infinitely separated wires this should vanish
order to correspond to the nonmagnetic bulk copper. O
results suggest that this limit is approached reasonably
yet the increase of the supercell size with the chain dista
squared introduces a practical limit on the computationa
accessible distances.

In Fig. 2, we show the calculated energy differences
tween ferromagnetic and antiferromagnetic orderings for
case where the iron moments are oriented along the ch
We note that in both geometries investigated the excha
energy strongly favors the ferromagnetic ordering of the ir
spins. This is not at all obvious, even though the iron ch
systems are quite different from fccg iron, the difference in
the local iron environments in the two configurations cou
have lead to different magnetic ordering.

To investigate the magnetocrystalline anisotropy of
iron chains the total energies have been calculated for fe
magnetic arrangements of the iron moments parallel and
pendicular to the chain directions. The resulting contribut
to the anisotropy, given by the difference of these energie
shown as the left hatched bar in Fig. 3 for each of the cha

.
r-

t
ext

TABLE III. Effect of the supercell size onmFe andmCu for the
copper furthest from the iron site for the case of the 110 chain.

Supercell size mFe@mB# mCu@mB#

12 2.5053 0.0089
48 2.4997 0.0011
108 2.4954 0.0009

FIG. 2. Stability of the ferromagnetic relative to the an
ferromagnetic state. The magnetization is along the wire direct
~Left! Chain along the copper 100 direction.~Right! Chain along
the 110 direction.
4-4
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A positive number in this figure corresponds to a preferen
magnetization direction perpendicular to the chain, wher
a negative energy denotes a parallel orientation. Note tha
decide which of these orientational configurations is
ground state, we must add to these energies a contribu
due to the dipolar interaction between the local mome
This we shall do this presently.

As can be seen from the calculated values for the ene
differences in both geometries investigated, the lowest
ergy state corresponds to the orientation of the magnetic
ments on the iron sites perpendicular to the direction of
chains. This is in aggreement with previous model calcu
tions that indicate that the easy direction tends to be perp
dicular to the bonds between iron sites.24,25 In the cases
where we studied different orientations transverse to
cluster axis, we found also significant anisotropy associa
with the orientation of the iron moments with respect to t
copper lattice.

As might have been expected, due to the fact that th
systems do not exhibit cubic symmetry, the anisotropy en
gies per iron atom are significantly higher than that in
cubic bulk sample studied in the previous section. This c
firms the widely held belief that the magnetic anisotro
energies of cubic metals are low because in these hig
symmetric cases the spin-orbit coupling only makes a c
tribution to the total energy in fourth order perturbatio
theory. Presumably, in the present low symmetry arran
ment there would be a spin-orbit contribution already to s
ond order. Of course, in our calculations the above statem
cannot be made more precise, since the Kohn-Sham-D
equation always treats the spin-orbit coupling to all orde

As mentioned above, the full magnetic contribution to t
total energy must include the magnetostatic energy due to
dipolar interaction between the local moments. Even in re
tivistic LDA calculations this is not part of the theory so fa
We shall now add a correction corresponding to this effe
The contribution from the dipolar interaction can be es
mated by evaluating the sum for the energy of classical m
netic dipoles

FIG. 3. Total and component anisotropy energies for iron cha
in a copper matrix.~Left! Chain along the copper 100 direction
~Right! Chain along the 110 direction.
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Edip 5
m0

a3 (
iÞ j

S mW i•mW j

u i 2 j u3
23

mi
zmj

z

u i 2 j u3D , ~9!

where we have taken the chain to point along thez direction
anda to be the distance between two neighboring dipoles
the cases we are interested in this sum can easily evalu
and yields the following expressions:8

~1! for moments pointing ‘‘head to tail’’~i.e., ferromag-
netically! along thez axis

Edip
FM 524

m2m0

a3
z~3!, ~10!

~2! for the moments pointing in alternating~i.e., antiferro-
magnetic! directions along thez axis

Edip
AF 5

3

2

m2m0

a3
z~3!, ~11!

~3! and finally for the magnetic moments perpendicular
the z axis and parallel

Edip
' 52

m2m0

a3
z~3!, ~12!

where z(x) is the Riemann zeta function, withz(3)
5( i 51

` (1/i 3)51.202057. The numerical values for the m
ments obtained in ourab initio calculations are shown in
Table IV. Clearly, the importance of the magnetic dipo
interaction diminishes rapidly as the distance between
iron sites grows, due to its 1/r 3 dependence.

The contribution of the magnetostatic dipolar interacti
to the magnetic anisotropy of the iron chains can now
obtained by taking the difference of the energies for the f
romagnetic ordering parallel and perpendicular to the cha
in Table IV. These values are shown as right hatched bar
Fig. 3. The total magnetic anisotropy is given by the sum
the magnetocrystalline and the magnetostatic contributio
which is represented by the cross hatched bars in Fig. 3.
readily seen, that, while lowering the energy difference
the 100 chain, the dipolar energy has the potential to cha
the preferred orientation, so that, in the case of the 110 ch
the lowest energy configuration is that parallel to the cha

s

TABLE IV. Magnetic dipolar energy per iron atom for mono
atomic chains.

Chain oriented along 100
Orientation of magnetization Dipolar energy

FM i chain 22.4mRy
AF i chain 0.9mRy
FM ' chain 1.2mRy

Chain oriented along 110
Orientation of magnetization Dipolar energy

FM i chain 26.8mRy
AF i chain 2.4mRy
FM ' chain 3.4mRy
4-5
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EISENBACH, GYÖRFFY, STOCKS, AND ÚJFALUSSY PHYSICAL REVIEW B65 144424
As may be recalled this latter magnetic configuration is w
would be expected for a thin magnetized cylinder on
basis of conventional magnetostatics. Evidently, a relativ
small perturbation of the 110 chain with a ferromagnetic
der along the chain can change the orientation of the ma
tization to be perpendicular to the chain axis.

Of course, it has to be noted, that since the iron cha
under consideration are one dimensional, one would not
pect any long range order at finite temperature in the t
thermodynamical sense. Nevertheless experiments on
stripes at vicinal copper surfaces7 have observed a hysteres
loop appearing at finite temperatures, thus indicating lo
timescale magnetic ordering fluctuation in the iron stripe

V. CONCLUSIONS

We have outlined a method for relativistic first principl
DFT calculations in real space, suitable for large superce
For bulk iron the method gives reasonable agreement w
experiments and other calculations based on conventi
k-space methods for solving the Kohn-Sham-Dirac equat

FIG. 4. The fcc unit cell with the 100 direction along thez axis.
This is the well known four atomic basis for a fcc lattice. Th
atomic sites belonging to the basis are shown with thick bord
whereas sites already belonging to neighboring cells are ma
with a gray background. In addition thez coordinate is encoded b
the shading of the sites. All coordinates in this and the follow
figures are given in units of the fcc lattice constanta, so that thex,
y andz components of the 100 unit cell are unity.
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The main strength of our method lies in its ability to de
with large inhomogeneous systems, as we have shown in
application to monoatomic iron chains embedded in copp
We have shown that the magnitude of the magnetic ani
ropy can be controlled by choosing the orientation of the ir
chain with respect to the copper lattice. We have yet to
vestigate further other possible orientations of the iron m
ments in the chain systems and other arrangements of
atoms. Evidently one interesting case would be the iron a
corral studied by Crommieet al.5
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APPENDIX: STRUCTURE OF THE UNIT CELLS

Our calculations are aimed at fcc Cu lattices in which t
copper atoms along a chosen direction are replaced by i
To model this with periodically repeated supercells we co
structed them in such a way that one edge of the comp
tional cell is aligned with the chain direction. This arrang
ment of lattice sites is achieved by periodically repeating
generally tetragonal unit cell with a multisite basis with t
required fcc lattice direction along thez direction of the unit
cell. These unit cells, which in the 100 case~Fig. 4! is the
well known representation of a face centered cubic lattice
a simple cubic cell with a four atomic basis, are depicted
Figs. 4 and 5. From these unit cells we construct the su
cells for the iron chains by repeating the unit cell in thex and
y directions, i.e., the directions perpendicular to the cha
Since our calculations are performed using periodic bou
ary conditions on the supercell, we effectively calculate
rays of chains and not individual chains. To minimize t
effect from thisx-y plane periodicity we need to increase th

s,
ed
-

s.
e
he
FIG. 5. The 110 unit cell. This is a represen
tation of a fcc unit cell with thez axis aligned
with the fcc 110~face diagonal! direction. The
basis in this case contains only two atomic site
The conventions for depicting this cell are th
same as chosen for the 100 unit cell in Fig. 4. T
x dimension isa, whereas both they andz dimen-
sions of this unit cell are 1/2A2a.
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supercell size in the manner shown in Table III for the 1
chain. To reduce the anisotropy that might be artificially
troduced in the system by different distances to the n
chain in thex andy direction, we balance thex andy dimen-
sion of our supercells as well as possible for a given s
While this is always exactly possible in the case of the 1
unit cell, this balance can be achieved only approximately
the cases of the 110 cell since the unit cellx and y dimen-
-

rf.

ra

tt.

C.

y

G
H.

14442
-
xt

e.
0
n

sions are not commensurate and it has ax-y unit cell aspect
ratio of 1:2A2. Finally the supercell for our calculation i
obtained by stacking thisx-y repeat according to the numbe
of nonequivalent iron sites in the chain~i.e., one for ferro-
magnetic and two for antiferromagnetic ordering! and as-
signing copper atoms to all lattice sites thus constructed,
cept for the sites withx5y50 which are occupied by iron
atoms.
.
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