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Histogram Monte Carlo simulation is used to investigate effects of biquadratic excldange phase
transitions of a three-dimensional classigal’ antiferromagnet with frustration induced by the antiferromag-
netic exchangd, and the stacked triangular lattice geometry. The biquadratic exchange is considered negative
(antiferroquadrupolarwithin the triangular planes and positivéerroquadrupolarbetween the planes. The
phase diagram obtained features a variety of interesting phenomena arising from the presence of both the
biquadratic exchange and frustration. In a strong biquadratic exchange |liljit|J,| <0.25), the antiferro-
quadrupolar phase transition which is of second order is followed by the antiferromagnetic one which can be
either first or second order. The separate antiferroquadrupolar and antiferromagnetic second-order transitions
are found to belong to the chirxlY and Ising universality classes, respectively. If the biquadratic exchange is
reduced, both transitions are found to be first order and occur simultaneously in a wide redigi|d5).
However, if|J,|—0, the transition changes to the second-order one with the chiral universality class critical
behavior.
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[. INTRODUCTION the role of the biquadratic exchange in phase transitions of

the geometrically frustratedY antiferromagnet on stacked

The problem of biquadratic or generally higher-order ex-triangular lattice(STL). This model has been argued to pos-
change interactions in systems with Heisenberg symmetrg€ss some unique properties such as novel chiral universality

has been addressed in several mean-field approximatigiass critical behaviof}'* but many more remarkable fea-
(MFA) studied—3 by high_temperature series expansiontures have been observed when the effects of external mag-

(HTSB calculationg’ as well as within a framework of some netic field® and next-nearest neighbdtsvere considered. In
other approximative schem&& |t has been shown that such the present work, the effect of the biquadratic exchange is

interactions can induce various interesting properties such 450 found to bring about variety of interesting phenomena,

tricritical and triple points, quadrupole ordering, separate di_such as regions of first-order transitions, separate magnetic

pole and quadrupole phase transitions, etc. Much less atteﬁ-nd guadrupolar ordering, transitions of different universality
tion, however, has been paid to this problem on systems Witﬁlasses' ete.
XY spin symmetry. Cheret al.”® calculated transition tem-
peratures and the susceptibility critical indices for N
ferromagnet with biquadratic exchange on cubic lattices by e consider theXY model, described by the Hamiltonian
the HTSE method for limited region df; /J,. However, rig-
orous proof of the existence of dipole long-range order
(DLRO), corresponding to the ferromagnetic directional ar- H= _Jl<iEJ.> Si'sj_‘]§<%> (3'302_‘]%2') (S-8)%
rangement of spins, and quadrupole long-range order ' ' ' (1)
(QLRO), representing an axially ordered state in which spins . ) ) ) .
can point in either direction along the axis of ordering, atwvhereS=(S/,S/) is a two-dimensional unit vector at i
finite temperature on the classical bilinear-biquadratic exlattice site and the sumg,j), (i k), and(i,I) run over all
change model has only recently been provided independentijearest neighbor®\N), NN in thexy plane, and NN in the
by Tanaka and Idogakiand Campbell and Chayé$Very  stackingz-axis direction, respectively. We consider the bilin-
recently we considered thXY model with the bilinear- €ar exchange interactiod, <0, the biquadratic intraplane
biquadratic exchange Hamiltonian on simple cébiand and interplane exchange interactiohis<0 andJ}>0, re-
hexagondf (stacked triangularlattices, and performed a spectively, with| 33| =]J% =]J,).
finite-size scalindFS9 analysis in order to investigate criti- Assuming periodic boundary condition, spin systems of
cal properties of the considered systems via standard Montie linear lattice sizek =12, 18, 24, and 30 are first used in
Carlo (SMC) and histogram Monte Carl0HMC) simula- SMC simulations. For a fixed value of the exchange ratio
tions. [J1]/|32|, we start the simulation process at Ighigh) tem-

So far, however, to our best knowledge there has been ngeratures from an antiferromagnetic and rand@endon)
investigation of the effect of the biquadratic exchange on arinitial configuration and gradually raigéower) temperature.
XY model with frustrated and competing exchange interacThese heating-cooling loops serve to check possible hyster-
tions. In this paper we present systematic investigations oésis, accompanying first-order transitions. As we move in

II. MODEL AND COMPUTATION DETAILS
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(13117132, kgT/|J5|) space, we use the last spin configuration (0% —(0)?)
as input for the calculation at the next point. We sweep XoT T NKkaT ! 9
through the spins in sequence and updating follows a Me- B

tropolis dynamics. In the updating process, the new directiothe logarithmic derivatives ofO) and(O?) with respect to
of spin in the spin flip is selected completely at random,8=1/kgT,

without any limitations by a maximum angle of spin rotation

or allowed discrete set of resulting angle values. Thermal J In(0)=(E)— (OE)

averages at this stage are calculated using at msst0l D10 aB (0) ’ (10
Monte Carlo steps per spitMCS/9 after thermalizing over

another 0.5 10° MCS/s. We calculate the system internal D — J (02 = (E (O%E) 11
energyE and some other physical quantities defined as fol- 20_% n{0%)=(E)~ (02 ' 1D

lows: the specific heat per sitg
the fourth-order long-range order cumulddt (Binder pa-

((E®)—(E)?) rametey,
C=——— 75—, 2
NkgT? (0%
U=1l-———, (12
the DLRO parametem, 3(0?)?
3 and the fourth-order energy cumulawt
m= M _1 \/6> M? 3
N N = e (E%)
V=1- g (13
where M, is the ath sublattice-magnetization vecténote 3(E%)
that the present model has six equivalent magnetic sublaghe above quantities are useful for localization of a transi-
tices, given by tion as well as for determination of its nature. For example,
first-order transitions usually manifest themselves by discon-
_ X y tinuities in the order parameter and energy, and hysteresis
Mo=| 2 84,2 S, (4  tinuities in the order p ind € d hysteresi
i i when cooling and heating. If transition is second order, it can

be localized approximately by the, peak position or more

the QLRO parameteq, precisely by the intersection of the fourth-order LR@® en-

5 ergy) cumulants curves for differerit.
_ @: 1 6 @ 5) In order to increase precision and reliability of the ob-
q N N Py tained information, as well as to retrieve some additional
information which could not be extracted from the SMC cal-
where culations, we further perform HMC calculations, developed
by Ferrenberg and SwendsEneat the estimated transition
_ 2 (921, 289 | 6 temperatures for each lattice size. Hereg]Z)6 MCS/s are
Qu (Z [(Sai)™= (Sai)”] Z o “') © used for calculating averages after discarding another 1
) x10° MCS/s for thermalization. We calculate the energy
and the chiral LRQ(ChLRO) parametet, histogramP(E) and the order parameters histogra®(®)
5 . (0=M,Q,K), as well as the physical quantiti€®)—(13).
o= V(K >: i / 2 « 7) Using data from the histograms, one can calculate physical
N N 5 P quantities at neighboring temperatures and thus determine

the values of extrema of various quantities and their loca-
where the summation runs over all upward triangles on theions with high precision for each lattice size. In such a way
triangular layer andc, represents a local chirality at each e can obtain quality data for FSS analysis which deter-
elementary triangular plaquette, defined by mines the order of the transition and, in the case of a second-
order transition, it also allows us to extract critical indices.
2 2 2 ) For example, the energy cumula¥texhibits a minimum
Kp:ﬁ OED [3XSi]zzﬁ[s'n(‘ﬁ_‘1"1)+S'n(993_‘*’2) near critical temperatur&,, which achieves the value*

=2 in the limit L—o for a second-order transition, while

+sin(¢;— ¢3)], (8) V*<£% is expected for a first-order transitidh® Tempera-
. i ture dependences of a variety of thermodynamic quantities
where the summation runs over the three directed bonds SUfiisplay extrema at the-dependent transition temperatures,

rounding each plaquettg, and ¢; represents théth spin  \yhich at a second-order transition are known to scale with a
angle. «p is an Ising-like quantity representing the sign of |atiice size as, for example

rotation of the spins along the three sides of each plaquette.

Further, the following quantities which are functions of the XomadL)xL70/"0, (14)
parameteiO (=M,Q,K) are defined: the susceptibility per
site xo., Do mad L)L, (15
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action, i.e., the case af;=0. If J;<0 (the sign ole is
irrelevant in the present consideratipthe quadrupolar sys-
tem is frustrated due to the triangular lattice geometry, result-
ing in a noncollinear ground state. The noncollinear ground-
state arrangement resembles the 120° structure of the
antiferromagnetic system; however, here, the spins can point

3 2 in either direction within the given axidor illustration see
the snapshots in Fig. 12As far as the chirality« is con-

1 cerned, such a system has fourfold degeneracy in the ground
+

state of each plaquetta (= +1,* 1), resulting in a structure
with four possible turn angles between two neighboring
spins,+120°, =60°. However, there is no energetically fa-
vorable arrangement among the four kinds of plaquettes and,
hence, the plaguettes do not order even at low temperatures.
Nevertheless, even for such a system we can define the quan-
tity analogous to the chirality of the antiferromagnetic sys-
tem (let us call it the quadrupolar chiralityif we consider
instead of spins their axes and turn angles between the axes,
which are againt120°. If we define the local quadrupolar
chirality as

2 : .
Kg:ﬁ[sm 22— @1) TSN 2A @3~ ¢2) +SIN2( @1~ @3) ],

3
1 2
(a)
3
%
(b)

17

FIG. 1. Two degenerate ground states20° and—120° struc-  and the quadrupolar chirality LRO paramet@ChLRO «¢
tures on(a) spin and(b) quadrupole plaquettes. Signs and — as
denote the sign ofa) chirality and(b) quadrupole chirality of the
elementary triangles. Spins and quadrupoles are numbered counter- \/<(Kq)2> 1 2
clockwise, corresponding to the definitio(® and(17). quT = N\/< ( E Kg) > , (19

p
D20,mad L) L0, (16 concerning such defined quadrupolar chirality, the system

where vo and yo represent the correlation length and sus-Will have twofold degeneracy of the ground stzﬁkﬁﬁ -1
ceptibility critical indices, respectively. In the case of a first- and Kj: +1, corresponding to turn angles 120° and
order transition(except for the order parametgrshey dis- —120°, respectivelYFig. 1(b)]), and the situation will much
performed on the vector supercomputer FUJITSU VPP700ghirality «. Furthermore, in analogy with the chirality

56. which is believed to order along with spins, here, the qua-
drupolar chirality k% is expected to show LRO simulta-
Ill. CHIRALITY ON FRUSTRATED QUADRUPOLES neously with quadrupoles.

It has been known for some time that the frustrated spin
system on triangular lattice possesses the chiraligs de-
fined in Egs.(7) and (8).1° Due to the chirality, the system  We first consider the case df,=0. To determine the
has the twofold degeneracy of the ground state @1 and  order of the transition we analyze the scaling behavior of the
k=—1), resulting in a structure with the spins arranged onminimal value of the energy cumulait at the transition
plaquettes with turn angles 120° and— 120°, respectively temperature. As shown in Fig. ¥,tends to the value of 2/3,
[Fig. 1(@)]. A minimum energy condition is realized by an as expected for a second-order transition, and the slope 2.39
arrangement in which the and — plaquettes alternate, pro- means thav is not volume dependent. Also, observing the
ducing long-range chiral order at low temperatures. Such &nergy and LRO parameters distribution histografnet
system has been argued to belong to a nonstandard univeshown, no bimodal distribution, which would signal a first-
sality class linked to the twofold chiral degeneracy inherenorder transition, is found. Hence, both spin and chirality or-
to the 120° ordered spin structuret® the critical behavior ~dering transitions seem to be clearly of second order. The
of which is characterized by critical indices, different from transition temperature, calculated from the intersection of the
those for nonfrustrated systems with the same spin symmd3inder parameter curves for differert, is estimated to
try. Since the present Hamiltonian includes both bilinear andkgT./|J;|=1.4580+0.0005, in agreement with the values
biquadratic terms, let us take a closer look at the oppositguoted in Refs. 13 and 16. The chirality transition tempera-
side of the exchange ratio spectrum and investigate criticaire kgT¢/|J;|=1.4590+0.0013, similarly as in Ref. 13,
behavior of the system with only biquadratic exchange interseems to be slightly higher than the spin ordering tempera-

IV. FSS ANALYSIS AND PHASE DIAGRAM
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lFIG' 2- Scalllngdotfbthe energy cEmhuIantln;:Elr_ng\]@tzOd The FIG. 4. The same dependence as in Fig. 3, with the pararketer
values extrapolated to—c approach the valug* =3 and do not . <icrod instead dfl.

scale with volume, as it should be in the case of a second-order
transition.
troduced. Although it is very hard to observe the typical first-

ture but the two values cannot be distinguished beyond th rder behz_av_ior for small valugs fl, if the I.attice .sizes are
error bar and, hence, we assume they are the same. The s en sufficiently large, the signs of the discontinuous tran-
and chirality critical indices calculated from the scaling reIa-S'tIon show up. This IS Seen In Fig. 5 in which the blmodal
tions (14)—(16) take the following valuesyy,=0.52+0.03, (doub_le-pea}(energy distribution becomelzs clearty recogniz-
Yy =1.08+0.08 andv,=0.55+0.01, yx=0.81+ 0.03 (the able if L=30, for the case ofJ,|l| 34| =%. As _|J2| is in-
erh?ors .forv .andy a};e célculatéd 'fro};n sténdard errors of creased, the first-order features of the transition are becom-
the respec?ive sIoSels in the linear regressiog=a-+ bx) ing more _anc_j more apparent. Figure 6 shows cI(_aarIy bimodal
respectively(Figs. 3 and 4 Also the values of the critical ehnergy dlstr|but|orr]1 hlstolgrams fdr]1|/|J|2|:|1.3, n Wh'Ch”
indices are in fair agreement with the two previoust Pfd'p b(_atvveent € peaksis obse_rva}be aready at snhaller
studies*®® however, as far as the universality class is con-qUIte rapidly approaching zero 4sis increased, indicating

A : ; - discontinuous behavior of the energy at a rather strong first-
cerned the situation here is not so straightforward and will be o . 2
discussed later. order transition. Although we do not show it here, similar

The order of the transitions changes, however, when eve ouble peaks can also be observed in the histograms of each

. - . . ... "LRO parameter.
a comparatively weak biquadratic exchange interaction is in The transition remains first order and simultaneous for

dipole, quadrupole, and chiralities ordering until fairly small

"% | .10y, slope = 1.95
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FIG. 3. Scaling behavior of the maxima of the susceptibility EN
XM.max corresponding to the parameter and logarithmic deriva- FIG. 5. Energy distribution at the size-dependent transition tem-
tives of its first and second momem$y maxandDay max, fespec-  peraturesT (L) for various lattice sizes anid,|/|J;|= é The bi-
tively, in a In-In plot, forJ,=0. The slopes yield values ofiy; for modal distribution signaling a first-order transition can only be seen
Dim maxs Dam,maxs @ndym /vy for xm max- atL=30.
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FIG. 6. Energy distribution af.(L) for |J;|/|J,|=1.3. Double-
peaked structure with deepening barrier between the two energy FIG. 8. Scaling behavior of the maxima of the susceptibility
states with increasing lattice size indicates a first-order transition. xg max @nd logarithmic derivatives of the parame@rand its sec-
ond momenD ;g max @ANAD 50 max, respectively, in a In-In plot, for
values of|J,|/|J,|. Below|J,|/|J,|=0.25, however, quadru- [J1|/{32/|=0.15. The slopes yield values of 1}y for Dig max
poles order separately at temperatures higher than those fBrqmax: @andyq/vq for xq max-
dipole ordering. Thus the phase boundary branches and a
new middle phase of axial QLRO without magnetic dipolesecond order down thJ,|/|J,|=0 and the critical indices
ordering opens between the paramagnetic and DLRO phasdske the values vo=0.50+0.03, y,=1.09+0.08 at
This phase broadens &% |/|J,| decreases, since the QLRO [J,|/|J,|=0.15 (Fig. 8 and »o=0.520=0.003 and yq
branch is little sensitive to thgl,|/|J,| ratio variation and =1.072+0.009 atJ;=0. In the case ofl;=0, the QLRO
levels off, while the DLRO branch turns down approachingtransition temperature is located alggT,/|J,|=0.729
the point (J4]/|J5],kgT/|J5|)=(0,0). This means that the +0.002. On the other hand, in the case of the DLRO transi-
ground state is always magnetic as long as there is a finitgon, the first order seems to persist even after the QLRO and
dipole exchange interaction. In Fig. 7 we present the temDLRO boundaries separate for a small range of the exchange
perature variation of the DLRO, QLRO, ChLRO, and ratio values just below the splitting point. This is clearly seen
QChLRO parametersn, q, «, and 9, respectively, at in Fig. 9 from the distribution diagrams of the DLRO and
[J4//]35]=0.15. We can see that quadrupoles order befor€LRO parameters. Although at first glance it seems that both
dipoles, forming a fairly broad region of QLRO without transitions occur at the same temperature and are of first
DLRO. On the other hand, the chirality and quadrupoleorder, a closer look reveals that while the bimodal distribu-
chirality seem to order simultaneously with dipoles and qua-

drupoles, respectively. The QLRO transition is apparently 0.025
1
Z 002
<
. 0.8 [
5 = 0.015
o . . =
g - v N 2 =
s 06 . % 9 <
= . % o A~ 0.01
o . % o
iod
S 04f  m..e - % 9
= q ..o * > o 0.005
K ...e & o Oo
02} K¥.olo . o OOQ
° < 0 o
<
0 , s ‘ M/N, Q/N
0 0.2 0.4 0.6 0.8
ky T/, FIG. 9. Distribution histogramf(M) andP(Q) of DLRO and

QLRO parameters, respectively, Bt(L) for |J;]/|J,|=0.25. The
FIG. 7. Temperature variation of the DLRO, QLRO, ChLRO, bimodal distributions of the DLRO and QLRO parameters signal a
and QChLRO parametersn, g, «, and «9, respectively, for first-order disorder-DLRO transition and a jump between two finite
[34]/|35/=0.15 andL=12. values of QLRO parameter, respectivébee text
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FIG. 10. Scal_ing pehayior _of the maxima of the susceptibili_ty FIG. 11. Phase diagram inJy|/|J,|,ksTc/|J5]) space. The
Xwm max @nd logarithmic derivatives of the DLRO parameter and its paramagnetiqP), antiferroquadrupolaftAFQ), and antiferromag-
second momerd 1y max @NAdD v max, respectively, in aIn-In plot,  netic (AFM) regions correspond to the phases in which both dipoles
for [J1/|3,/=0.15. The slopes yield values ofi}/ for Diymax,  and quadrupoles are disordered, only quadrupoles are ordered, and
Dam maxs andym /vy for xm max- both dipoles and quadrupoles are ordered, respectively. The solid

and dashed lines correspond to second- and first-order transitions,

tion of the DLRO parameter is between the disordered angespectively, and the dash-dotted straight line represents the bound-
ordered states, the bimodal distribution of the QLRO paramary between paramagnetic and ordered regionslif,ksT.) space
eter is between two ordered states of different finite QLROwhen the biquadratic exchange is absent.
parameter values. Therefore, here, the QLRO parameter only
shows a discontinuity within the QLRO region, rather thanalso the sets of the critical indices obtained in different re-
paramagnetic-QLRO transition. The first-order DLRO tran-gions of the second-order transition are different for seem-
sition changes to the second-order one upon further loweringngly the same kind of transition while almost identical for
of |J1|/]J5|. This is seen from the finite-size scaling analysisdifferent kinds of transition. Let us first discuss the problem
of the HMC data for|J,|/|J,|=0.15 (Fig. 10. The slopes of the order of the transition. The second-order transition at
apparently indicate the second-order character of the transi»=0 is in agreement with the previous MC studfe but
tion with the critical indicesry,=0.63+0.02, yy=1.25 in contradiction with the renormalization group stifdy,
+0.04. The resulting phase diagram is drawn in Fig. 11 andvhich predicts a clear first-order transition. At finilg, the

some relevant numerical results listed in Table I. first-order transition observed in the region of the
paramagnetic-DLRO transition has also been observed in the
V. SUMMARY AND DISCUSSION case of a ferromagnet WIT.ﬂ'I1>0, JJ2'>0, anng>0, how-

_ _ _ ever only in a quite narrow region df; /J, e (0.33,0.55)%2
We studied effects of the biquadratic exchange on theye believe that the mechanism responsible for this transition
phase diagram of the frustrated classial antiferromagnet  in the present case is similar to that in the case of the ferro-

on STL. This study, which to our best knowledge is first for magnet; i.e., it could result from a kind of tension between
the studied system, covered most of the significant phenom-

ena induced by the presence of the biquadratic exchange and TABLE |. Critical indices and transition temperatures for quad-
present a fairly compact picture of the role of this higher-rupole, dipole, and chiral ordering, respectively.

order exchange interaction on the critical behavior of the
system considered. We obtained the phase diagram with twd,|/|J,| Vo Y9 keTq
ordered phases: in the region where the bilinear exchange s
dominant there is a single phase transition to the DLR

0.520:0.003 1.0720.009  0.72%0.002|J,|

phase, which is second order &=0, but changes to a 0.15 0.5G-0.03 1.09-0.08 0.731-0.001|J,)
first-order one upon adding of a rather small amount of bi-
quadratic exchange. In the region of small|/|J,| the phase 4 ™ keTc
boundary splits into the QLRO t.rqnsiti.on line at higher tem-g 1 0.63-0.02 1.25-0.04 0.522:0.002|J,|
peratures and the DLRO transition line at lower tempera-
tures, which are second order, and partly first and partly sec® 0.52+0.03 1.08-0.08  1.458G:0.0005|J,|
ond order, respectively.

From our qualitative and quantitative evaluations we i Ve ke T
found out that not only the order of the transitions in differ- « 0.55+0.01 0.81:0.03  1.4596-0.0013|J,|

ent regions of thdJ,|/|J,| parameter is not the same, but
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the bilinear and biquadratic exchange interactions, which in
the present case seems to be enhanced by the presence of the FANVA
frustration and consequently causing broadening of the first- ARV 4 \/
order transition region. Namely, while the decreasing bilinear
exchange drives the transition temperature down to the lower
values, the biquadratic exchange does not follow this ten-
dency and rather prevents the ordering temperature from
rapid decrease. This tendency is clearly seen from the phase
diagram both in the region of separate transitions, whgre
does not vary much with decreasihty|/|J,|, as well as in
the region of simultaneous ordering, where the transition
temperature is apparently enhanced by the presence of the (a)
biquadratic exchang¢the case of absent biquadratic ex-
change is represented by the dash-dotted straight line in
(]94]-kgT,) parameter spagePut differently, quadrupoles
would prefer ordering at higher temperatures but as long as
there is a single transition they are prevented from doing so
by too low bilinear exchange, and order occurs only if the
temperature is lowered still further. This “frustration” results
in a first-order transition when the strength of the quadrupole
ordering prevails and frustrated quadrupoles order abruptly
along with dipoles. However, whed,| reaches high values
the frustration becomes too high for the two kinds of order-
ing to occur simultaneously and they separate. In order to
understand the first-order DLRO transition and QLRO pa-
rameter discontinuity in the region just below the point of the
separation, we analyzed snapsh@tst shown for |J;|/|J5| FIG. 12. Spin configuration snapshots of the system for
=0.25 just before the DLRO sets in. In the snapshots weJ,|/|J,|=0.05 in the(a) QLRO phase KzT/|J,|=0.3) and(b)
could observe fairly large clusters of antiferromagneticallyDLRO phase kgT/|J,|=0.001).
ordered spins along the stacking direction, which is nonfrus-
trated and in which spins seem to order more easily thaand, considering the error estimates, could be interpreted for
within frustrated planepnote that in the case of the nonfrus- support of either of the theories. Although we can make no
trated parallel(ferromagnetit ordering the transition tem- definite conclusion based on the values of the indices them-
perature is roughly twice as high as in the present’éase selves, we believe that the former interpretation is more fa-
These clusters reorient at the transition as a whole, and suclrable. Indeed, looking at the critical indices of the separate
a way may produce discontinuities in the order parameteQLRO transitions we can see that they are strikingly similar
and internal energy: i.e., a first-order transition. Besideso those for the case df=0 (and seem to be such along the
those clusters, we could also observe smaller intraplane clugvhole paramagnetic-QLRO boundaryThese indices can
ters of spins the axes of which show local parallel orderinghardly be interpreted as the mean-field tricritical ones and the
At the DLRO transition, the spins in these clustéaad also  theory of the same universality class critical behavior of qua-
their axe$ reorient into the 120° spin structure, which may drupoles ¢,=0) and dipoles {,=0), based on mapping
result in the small discontinuity of the QLRO parameter,and quantitative analysfs, would rather strongly suggest
seen in Fig. 9. The separate QLRO is apparently second othat both cases show the chiral universality class behavior.
der, in agreement with the mapping arguments ofAs far as the separate DLRO transition is concerned, in the
Carmesirf! second-order transition region we obtained the critical indi-
Now, let us address the problem of the critical indices inces v\, =0.63+0.02, yy,=1.25+ 0.04, which are quite dif-
the case of a second-order transition. For the caske0, ferent from those for the DLRO transition d,=0. The
there has been an argument about the universality class of théason is that in this case the transition has an Ising-like
critical behavior of such a system. Kawamura claimed that icharacter and, hence, the indices take on the Ising universal-
should display a nonstandatdhiral) universality class be- ity class value§»'s"9=0.629, y'S""9=1.239(Ref. 24]. The
havior due to a twofold discrete degeneraty associated situation is illustrated in Figs. 18 and 12b). In the QLRO
with the two chiral states, with the novel indicesy{ (and no DLRQ region, there is an axial quadrupole ordering
=0.34+0.06, By=0.253+-0.01, yy=1.13+0.05, andwy, on each of the three sublatticESig. 12a)] and only upon
=0.54+0.02)® while Plumer and Mailhéf maintained that  further lowering of the temperature the system reaches the
there is no new universality class and that the indices tak@ LRO+DLRO phase in which the Ising-like directional di-
the mean-field tricritical valuesa(y=3%, Bu=3, Yu=1, pole ordering within the given axis in each sublattice takes
and vy =3). As we can see, the DLRO critical indices ob- place[Fig. 12b)]. Therefore, here, the only difference from
tained from our calculationsy,=0.52+0.03, y,=1.08 the Ising case is that dipoles can order along any of the three
+0.08 are somewhere between those from Refs. 13 and 2ixes, not only the axis.
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Our further intention is to perform similar simulations on additional frustration arising from the bilinear and biqua-
the STL antiferromagnet for some other interesting casegjratic exchanges competing in the stacking direction, intra-
like J5<0, Jl<0; 3;>0, Jb>0; J5>0, J,<0. Besides plane direction, and both stacking and intraplane directions,
the geometrical frustration, such spin systems will possestespectively.
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