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Histogram Monte Carlo simulation of the geometrically frustrated XY antiferromagnet
with biquadratic exchange
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Histogram Monte Carlo simulation is used to investigate effects of biquadratic exchangeJ2 on phase
transitions of a three-dimensional classicalXY antiferromagnet with frustration induced by the antiferromag-
netic exchangeJ1 and the stacked triangular lattice geometry. The biquadratic exchange is considered negative
~antiferroquadrupolar! within the triangular planes and positive~ferroquadrupolar! between the planes. The
phase diagram obtained features a variety of interesting phenomena arising from the presence of both the
biquadratic exchange and frustration. In a strong biquadratic exchange limit (uJ1u/uJ2u<0.25), the antiferro-
quadrupolar phase transition which is of second order is followed by the antiferromagnetic one which can be
either first or second order. The separate antiferroquadrupolar and antiferromagnetic second-order transitions
are found to belong to the chiralXY and Ising universality classes, respectively. If the biquadratic exchange is
reduced, both transitions are found to be first order and occur simultaneously in a wide region ofuJ1u/uJ2u.
However, if uJ2u→0, the transition changes to the second-order one with the chiral universality class critical
behavior.

DOI: 10.1103/PhysRevB.65.144410 PACS number~s!: 75.10.Hk, 75.30.Kz, 75.40.Cx, 75.40.Mg
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I. INTRODUCTION

The problem of biquadratic or generally higher-order e
change interactions in systems with Heisenberg symm
has been addressed in several mean-field approxima
~MFA! studies1–3 by high-temperature series expansi
~HTSE! calculations,4 as well as within a framework of som
other approximative schemes.5,6 It has been shown that suc
interactions can induce various interesting properties suc
tricritical and triple points, quadrupole ordering, separate
pole and quadrupole phase transitions, etc. Much less a
tion, however, has been paid to this problem on systems
XY spin symmetry. Chenet al.7,8 calculated transition tem
peratures and the susceptibility critical indices for anXY
ferromagnet with biquadratic exchange on cubic lattices
the HTSE method for limited region ofJ1 /J2. However, rig-
orous proof of the existence of dipole long-range ord
~DLRO!, corresponding to the ferromagnetic directional
rangement of spins, and quadrupole long-range or
~QLRO!, representing an axially ordered state in which sp
can point in either direction along the axis of ordering,
finite temperature on the classical bilinear-biquadratic
change model has only recently been provided independe
by Tanaka and Idogaki9 and Campbell and Chayes.10 Very
recently we considered theXY model with the bilinear-
biquadratic exchange Hamiltonian on simple cubic11 and
hexagonal12 ~stacked triangular! lattices, and performed a
finite-size scaling~FSS! analysis in order to investigate crit
cal properties of the considered systems via standard M
Carlo ~SMC! and histogram Monte Carlo~HMC! simula-
tions.

So far, however, to our best knowledge there has been
investigation of the effect of the biquadratic exchange on
XY model with frustrated and competing exchange inter
tions. In this paper we present systematic investigations
0163-1829/2002/65~14!/144410~8!/$20.00 65 1444
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the role of the biquadratic exchange in phase transitions
the geometrically frustratedXY antiferromagnet on stacke
triangular lattice~STL!. This model has been argued to po
sess some unique properties such as novel chiral univers
class critical behavior,13,14 but many more remarkable fea
tures have been observed when the effects of external m
netic field15 and next-nearest neighbors16 were considered. In
the present work, the effect of the biquadratic exchange
also found to bring about variety of interesting phenome
such as regions of first-order transitions, separate magn
and quadrupolar ordering, transitions of different universa
classes, etc.

II. MODEL AND COMPUTATION DETAILS

We consider theXY model, described by the Hamiltonia

H52J1(
^ i , j &

Si•Sj2J2
' (

^ i ,k&
~Si•Sk!

22J2
i (̂

i ,l &
~Si•Sl !

2,

~1!

whereSi5(Si
x ,Si

y) is a two-dimensional unit vector at thei th
lattice site and the sumŝi , j &, ^ i ,k&, and ^ i ,l & run over all
nearest neighbors~NN!, NN in thexy plane, and NN in the
stackingz-axis direction, respectively. We consider the bili
ear exchange interactionJ1,0, the biquadratic intraplane
and interplane exchange interactionsJ2

',0 andJ2
i .0, re-

spectively, withuJ2
'u5uJ2

i u5uJ2u.
Assuming periodic boundary condition, spin systems

the linear lattice sizesL512, 18, 24, and 30 are first used
SMC simulations. For a fixed value of the exchange ra
uJ1u/uJ2u, we start the simulation process at low~high! tem-
peratures from an antiferromagnetic and random~random!
initial configuration and gradually raise~lower! temperature.
These heating-cooling loops serve to check possible hys
esis, accompanying first-order transitions. As we move
©2002 The American Physical Society10-1
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(uJ1u/uJ2u,kBT/uJ2u) space, we use the last spin configurati
as input for the calculation at the next point. We swe
through the spins in sequence and updating follows a M
tropolis dynamics. In the updating process, the new direc
of spin in the spin flip is selected completely at rando
without any limitations by a maximum angle of spin rotatio
or allowed discrete set of resulting angle values. Therm
averages at this stage are calculated using at most 13105

Monte Carlo steps per spin~MCS/s! after thermalizing over
another 0.53105 MCS/s. We calculate the system intern
energyE and some other physical quantities defined as
lows: the specific heat per sitec,

c5
~^E2&2^E&2!

NkBT2
, ~2!

the DLRO parameterm,

m5
^M &
N

5
1

N KA6 (
a51

6

Ma
2 L , ~3!

where Ma is the ath sublattice-magnetization vector~note
that the present model has six equivalent magnetic sub
tices!, given by

Ma5S (
i

Sa i
x ,(

i
Sa i

y D , ~4!

the QLRO parameterq,

q5
^Q&
N

5
1

N KA6 (
a51

6

Qa
2 L , ~5!

where

Qa5S (
i

@~Sa i
x !22~Sa i

y !2#,(
i

2Sa i
x Sa i

y D , ~6!

and the chiral LRO~ChLRO! parameterk,

k5
A^K2&

N
5

1

NAK S (
p

kpD 2L , ~7!

where the summation runs over all upward triangles on
triangular layer andkp represents a local chirality at eac
elementary triangular plaquette, defined by

kp5
2

3A3
(
^ i , j &

p

@Si3Sj #z5
2

3A3
@sin~w22w1!1sin~w32w2!

1sin~w12w3!#, ~8!

where the summation runs over the three directed bonds
rounding each plaquette,p, and w i represents thei th spin
angle.kp is an Ising-like quantity representing the sign
rotation of the spins along the three sides of each plaqu
Further, the following quantities which are functions of t
parameterO (5M ,Q,K) are defined: the susceptibility pe
site xO ,
14441
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xO5
~^O2&2^O&2!

NkBT
, ~9!

the logarithmic derivatives of̂O& and ^O2& with respect to
b51/kBT,

D1O5
]

]b
ln^O&5^E&2

^OE&

^O&
, ~10!

D2O5
]

]b
ln^O2&5^E&2

^O2E&

^O2&
, ~11!

the fourth-order long-range order cumulantU ~Binder pa-
rameter!,

U512
^O4&

3^O2&2
, ~12!

and the fourth-order energy cumulantV,

V512
^E4&

3^E2&2
. ~13!

The above quantities are useful for localization of a tran
tion as well as for determination of its nature. For examp
first-order transitions usually manifest themselves by disc
tinuities in the order parameter and energy, and hyster
when cooling and heating. If transition is second order, it c
be localized approximately by thexO peak position or more
precisely by the intersection of the fourth-order LRO~or en-
ergy! cumulants curves for differentL.

In order to increase precision and reliability of the o
tained information, as well as to retrieve some additio
information which could not be extracted from the SMC c
culations, we further perform HMC calculations, develop
by Ferrenberg and Swendsen,17,18 at the estimated transition
temperatures for each lattice size. Here, 23106 MCS/s are
used for calculating averages after discarding anothe
3106 MCS/s for thermalization. We calculate the ener
histogramP(E) and the order parameters histogramsP(O)
(O5M ,Q,K), as well as the physical quantities~2!–~13!.
Using data from the histograms, one can calculate phys
quantities at neighboring temperatures and thus determ
the values of extrema of various quantities and their lo
tions with high precision for each lattice size. In such a w
we can obtain quality data for FSS analysis which det
mines the order of the transition and, in the case of a seco
order transition, it also allows us to extract critical indice
For example, the energy cumulantV exhibits a minimum
near critical temperatureTc , which achieves the valueV*
5 2

3 in the limit L→` for a second-order transition, whil
V* , 2

3 is expected for a first-order transition.17,18 Tempera-
ture dependences of a variety of thermodynamic quanti
display extrema at theL-dependent transition temperature
which at a second-order transition are known to scale wit
lattice size as, for example,

xO,max~L !}LgO /nO, ~14!

D1O,max~L !}L1/nO, ~15!
0-2
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HISTOGRAM MONTE CARLO SIMULATION OF THE . . . PHYSICAL REVIEW B 65 144410
D2O,max~L !}L1/nO, ~16!

wherenO and gO represent the correlation length and su
ceptibility critical indices, respectively. In the case of a fir
order transition~except for the order parameters!, they dis-
play a volume-dependent scaling}L3. The simulations were
performed on the vector supercomputer FUJITSU VPP7
56.

III. CHIRALITY ON FRUSTRATED QUADRUPOLES

It has been known for some time that the frustrated s
system on triangular lattice possesses the chiralityk as de-
fined in Eqs.~7! and ~8!.19 Due to the chirality, the system
has the twofold degeneracy of the ground state (k511 and
k521), resulting in a structure with the spins arranged
plaquettes with turn angles1120° and2120°, respectively
@Fig. 1~a!#. A minimum energy condition is realized by a
arrangement in which the1 and2 plaquettes alternate, pro
ducing long-range chiral order at low temperatures. Suc
system has been argued to belong to a nonstandard un
sality class linked to the twofold chiral degeneracy inher
to the 120° ordered spin structure,13,14 the critical behavior
of which is characterized by critical indices, different fro
those for nonfrustrated systems with the same spin sym
try. Since the present Hamiltonian includes both bilinear a
biquadratic terms, let us take a closer look at the oppo
side of the exchange ratio spectrum and investigate crit
behavior of the system with only biquadratic exchange in

FIG. 1. Two degenerate ground states,1120° and2120° struc-
tures on~a! spin and~b! quadrupole plaquettes. Signs1 and 2
denote the sign of~a! chirality and~b! quadrupole chirality of the
elementary triangles. Spins and quadrupoles are numbered cou
clockwise, corresponding to the definitions~8! and ~17!.
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action, i.e., the case ofJ150. If J2
',0 ~the sign ofJ2

i is
irrelevant in the present consideration!, the quadrupolar sys
tem is frustrated due to the triangular lattice geometry, res
ing in a noncollinear ground state. The noncollinear grou
state arrangement resembles the 120° structure of
antiferromagnetic system; however, here, the spins can p
in either direction within the given axis~for illustration see
the snapshots in Fig. 12!. As far as the chiralityk is con-
cerned, such a system has fourfold degeneracy in the gro
state of each plaquette (kp561,6 1

3 ), resulting in a structure
with four possible turn angles between two neighbori
spins,6120°, 660°. However, there is no energetically fa
vorable arrangement among the four kinds of plaquettes a
hence, the plaquettes do not order even at low temperatu
Nevertheless, even for such a system we can define the q
tity analogous to the chirality of the antiferromagnetic sy
tem ~let us call it the quadrupolar chirality! if we consider
instead of spins their axes and turn angles between the a
which are again6120°. If we define the local quadrupola
chirality as

kp
q5

2

3A3
@sin 2~w22w1!1sin 2~w32w2!1sin 2~w12w3!#,

~17!

and the quadrupolar chirality LRO parameter~QChLRO! kq

as

kq5
A^~Kq!2&

N
5

1

NAK S (
p

kp
qD 2L , ~18!

concerning such defined quadrupolar chirality, the syst
will have twofold degeneracy of the ground state„kq521
and kq511, corresponding to turn angles1120° and
2120°, respectively@Fig. 1~b!#…, and the situation will much
resemble the one for the antiferromagnetic system with
chirality k. Furthermore, in analogy with the chiralityk
which is believed to order along with spins, here, the q
drupolar chirality kq is expected to show LRO simulta
neously with quadrupoles.

IV. FSS ANALYSIS AND PHASE DIAGRAM

We first consider the case ofJ250. To determine the
order of the transition we analyze the scaling behavior of
minimal value of the energy cumulantV at the transition
temperature. As shown in Fig. 2,V tends to the value of 2/3
as expected for a second-order transition, and the slope
means thatV is not volume dependent. Also, observing t
energy and LRO parameters distribution histograms~not
shown!, no bimodal distribution, which would signal a firs
order transition, is found. Hence, both spin and chirality
dering transitions seem to be clearly of second order. T
transition temperature, calculated from the intersection of
Binder parameter curves for differentL, is estimated to
kBTc /uJ1u51.458060.0005, in agreement with the value
quoted in Refs. 13 and 16. The chirality transition tempe
ture kBTc

k/uJ1u51.459060.0013, similarly as in Ref. 13
seems to be slightly higher than the spin ordering tempe

ter-
0-3
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ture but the two values cannot be distinguished beyond
error bar and, hence, we assume they are the same. The
and chirality critical indices calculated from the scaling re
tions ~14!–~16! take the following values:nM50.5260.03,
gM51.0860.08 andnK50.5560.01, gK50.8160.03 ~the
errors fornO andgO are calculated from standard errors
the respective slopesb in the linear regressiony5a1bx),
respectively~Figs. 3 and 4!. Also the values of the critica
indices are in fair agreement with the two previo
studies;13,16 however, as far as the universality class is co
cerned the situation here is not so straightforward and wil
discussed later.

The order of the transitions changes, however, when e
a comparatively weak biquadratic exchange interaction is

FIG. 2. Scaling of the energy cumulant minima atJ250. The
values extrapolated toL→` approach the valueV* 5

2
3 and do not

scale with volume, as it should be in the case of a second-o
transition.

FIG. 3. Scaling behavior of the maxima of the susceptibil
xM ,max corresponding to the parameterM and logarithmic deriva-
tives of its first and second momentsD1M ,max andD2M ,max, respec-
tively, in a ln-ln plot, forJ250. The slopes yield values of 1/nM for
D1M ,max, D2M ,max, andgM /nM for xM ,max.
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troduced. Although it is very hard to observe the typical fir
order behavior for small values ofuJ2u, if the lattice sizes are
taken sufficiently large, the signs of the discontinuous tr
sition show up. This is seen in Fig. 5 in which the bimod
~double-peak! energy distribution becomes clearly recogn
able if L>30, for the case ofuJ2u/uJ1u5 1

5 . As uJ2u is in-
creased, the first-order features of the transition are bec
ing more and more apparent. Figure 6 shows clearly bimo
energy distribution histograms foruJ1u/uJ2u51.3, in which
the dip between the peaks is observable already at smallL,
quite rapidly approaching zero asL is increased, indicating
discontinuous behavior of the energy at a rather strong fi
order transition. Although we do not show it here, simil
double peaks can also be observed in the histograms of
LRO parameter.

The transition remains first order and simultaneous
dipole, quadrupole, and chiralities ordering until fairly sm

er

FIG. 4. The same dependence as in Fig. 3, with the parametK
considered instead ofM.

FIG. 5. Energy distribution at the size-dependent transition te
peraturesTc(L) for various lattice sizes anduJ2u/uJ1u5 1

5 . The bi-
modal distribution signaling a first-order transition can only be se
at L>30.
0-4
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HISTOGRAM MONTE CARLO SIMULATION OF THE . . . PHYSICAL REVIEW B 65 144410
values ofuJ1u/uJ2u. Below uJ1u/uJ2u.0.25, however, quadru
poles order separately at temperatures higher than thos
dipole ordering. Thus the phase boundary branches an
new middle phase of axial QLRO without magnetic dipo
ordering opens between the paramagnetic and DLRO pha
This phase broadens asuJ1u/uJ2u decreases, since the QLR
branch is little sensitive to theuJ1u/uJ2u ratio variation and
levels off, while the DLRO branch turns down approachi
the point (uJ1u/uJ2u,kBT/uJ2u)5(0,0). This means that th
ground state is always magnetic as long as there is a fi
dipole exchange interaction. In Fig. 7 we present the te
perature variation of the DLRO, QLRO, ChLRO, an
QChLRO parametersm, q, k, and kq, respectively, at
uJ1u/uJ2u50.15. We can see that quadrupoles order bef
dipoles, forming a fairly broad region of QLRO withou
DLRO. On the other hand, the chirality and quadrup
chirality seem to order simultaneously with dipoles and q
drupoles, respectively. The QLRO transition is apparen

FIG. 6. Energy distribution atTc(L) for uJ1u/uJ2u51.3. Double-
peaked structure with deepening barrier between the two en
states with increasing lattice size indicates a first-order transitio

FIG. 7. Temperature variation of the DLRO, QLRO, ChLRO
and QChLRO parametersm, q, k, and kq, respectively, for
uJ1u/uJ2u50.15 andL512.
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second order down touJ1u/uJ2u50 and the critical indices
take the values nQ50.5060.03, gQ51.0960.08 at
uJ1u/uJ2u50.15 ~Fig. 8! and nQ50.52060.003 and gQ
51.07260.009 atJ150. In the case ofJ150, the QLRO
transition temperature is located askBTq /uJ2u50.729
60.002. On the other hand, in the case of the DLRO tran
tion, the first order seems to persist even after the QLRO
DLRO boundaries separate for a small range of the excha
ratio values just below the splitting point. This is clearly se
in Fig. 9 from the distribution diagrams of the DLRO an
QLRO parameters. Although at first glance it seems that b
transitions occur at the same temperature and are of
order, a closer look reveals that while the bimodal distrib

gy
.

FIG. 8. Scaling behavior of the maxima of the susceptibil
xQ,max and logarithmic derivatives of the parameterQ and its sec-
ond momentD1Q,max andD2Q,max, respectively, in a ln-ln plot, for
uJ1u/uJ2u50.15. The slopes yield values of 1/nQ for D1Q,max,
D2Q,max, andgQ /nQ for xQ,max.

FIG. 9. Distribution histogramsP(M ) andP(Q) of DLRO and
QLRO parameters, respectively, atTc(L) for uJ1u/uJ2u50.25. The
bimodal distributions of the DLRO and QLRO parameters signa
first-order disorder-DLRO transition and a jump between two fin
values of QLRO parameter, respectively~see text!.
0-5
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M. ŽUKOVIČ, T. IDOGAKI, AND K. TAKEDA PHYSICAL REVIEW B 65 144410
tion of the DLRO parameter is between the disordered
ordered states, the bimodal distribution of the QLRO para
eter is between two ordered states of different finite QLR
parameter values. Therefore, here, the QLRO parameter
shows a discontinuity within the QLRO region, rather th
paramagnetic-QLRO transition. The first-order DLRO tra
sition changes to the second-order one upon further lowe
of uJ1u/uJ2u. This is seen from the finite-size scaling analy
of the HMC data foruJ1u/uJ2u50.15 ~Fig. 10!. The slopes
apparently indicate the second-order character of the tra
tion with the critical indicesnM50.6360.02, gM51.25
60.04. The resulting phase diagram is drawn in Fig. 11 a
some relevant numerical results listed in Table I.

V. SUMMARY AND DISCUSSION

We studied effects of the biquadratic exchange on
phase diagram of the frustrated classicalXY antiferromagnet
on STL. This study, which to our best knowledge is first f
the studied system, covered most of the significant phen
ena induced by the presence of the biquadratic exchange
present a fairly compact picture of the role of this high
order exchange interaction on the critical behavior of
system considered. We obtained the phase diagram with
ordered phases: in the region where the bilinear exchang
dominant there is a single phase transition to the DL
phase, which is second order atJ250, but changes to a
first-order one upon adding of a rather small amount of
quadratic exchange. In the region of smalluJ1u/uJ2u the phase
boundary splits into the QLRO transition line at higher te
peratures and the DLRO transition line at lower tempe
tures, which are second order, and partly first and partly s
ond order, respectively.

From our qualitative and quantitative evaluations
found out that not only the order of the transitions in diffe
ent regions of theuJ1u/uJ2u parameter is not the same, b

FIG. 10. Scaling behavior of the maxima of the susceptibi
xM ,max and logarithmic derivatives of the DLRO parameter and
second momentD1M ,max andD2M ,max, respectively, in a ln-ln plot,
for uJ1u/uJ2u50.15. The slopes yield values of 1/nM for D1M ,max,
D2M ,max, andgM /nM for xM ,max.
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also the sets of the critical indices obtained in different
gions of the second-order transition are different for see
ingly the same kind of transition while almost identical f
different kinds of transition. Let us first discuss the proble
of the order of the transition. The second-order transition
J250 is in agreement with the previous MC studies13,16 but
in contradiction with the renormalization group study20

which predicts a clear first-order transition. At finiteJ2, the
first-order transition observed in the region of th
paramagnetic-DLRO transition has also been observed in
case of a ferromagnet withJ1.0, J2

'.0, andJ2
i .0, how-

ever only in a quite narrow region ofJ1 /J2P(0.33,0.55).12

We believe that the mechanism responsible for this transi
in the present case is similar to that in the case of the fe
magnet; i.e., it could result from a kind of tension betwe

FIG. 11. Phase diagram in (uJ1u/uJ2u,kBTc /uJ2u) space. The
paramagnetic~P!, antiferroquadrupolar~AFQ!, and antiferromag-
netic~AFM! regions correspond to the phases in which both dipo
and quadrupoles are disordered, only quadrupoles are ordered
both dipoles and quadrupoles are ordered, respectively. The
and dashed lines correspond to second- and first-order transit
respectively, and the dash-dotted straight line represents the bo
ary between paramagnetic and ordered regions in (uJ1u,kBTc) space
when the biquadratic exchange is absent.

TABLE I. Critical indices and transition temperatures for qua
rupole, dipole, and chiral ordering, respectively.

uJ1u/uJ2u nQ gQ kBTq

0 0.52060.003 1.07260.009 0.72960.002uJ2u

0.15 0.5060.03 1.0960.08 0.73160.001uJ2u

nM gM kBTc

0.15 0.6360.02 1.2560.04 0.52360.002uJ2u

` 0.5260.03 1.0860.08 1.458060.0005uJ1u

nk gk kBTk

` 0.5560.01 0.8160.03 1.459060.0013uJ1u
0-6
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HISTOGRAM MONTE CARLO SIMULATION OF THE . . . PHYSICAL REVIEW B 65 144410
the bilinear and biquadratic exchange interactions, which
the present case seems to be enhanced by the presence
frustration and consequently causing broadening of the fi
order transition region. Namely, while the decreasing bilin
exchange drives the transition temperature down to the lo
values, the biquadratic exchange does not follow this t
dency and rather prevents the ordering temperature f
rapid decrease. This tendency is clearly seen from the p
diagram both in the region of separate transitions, whereTq
does not vary much with decreasinguJ1u/uJ2u, as well as in
the region of simultaneous ordering, where the transit
temperature is apparently enhanced by the presence o
biquadratic exchange@the case of absent biquadratic e
change is represented by the dash-dotted straight lin
(uJ1u-kBTc) parameter space#. Put differently, quadrupoles
would prefer ordering at higher temperatures but as long
there is a single transition they are prevented from doing
by too low bilinear exchange, and order occurs only if t
temperature is lowered still further. This ‘‘frustration’’ resul
in a first-order transition when the strength of the quadrup
ordering prevails and frustrated quadrupoles order abru
along with dipoles. However, whenuJ2u reaches high value
the frustration becomes too high for the two kinds of ord
ing to occur simultaneously and they separate. In orde
understand the first-order DLRO transition and QLRO p
rameter discontinuity in the region just below the point of t
separation, we analyzed snapshots~not shown! for uJ1u/uJ2u
50.25 just before the DLRO sets in. In the snapshots
could observe fairly large clusters of antiferromagnetica
ordered spins along the stacking direction, which is nonfr
trated and in which spins seem to order more easily t
within frustrated planes@note that in the case of the nonfru
trated parallel~ferromagnetic! ordering the transition tem
perature is roughly twice as high as in the present cas12#.
These clusters reorient at the transition as a whole, and
a way may produce discontinuities in the order parame
and internal energy: i.e., a first-order transition. Besid
those clusters, we could also observe smaller intraplane c
ters of spins the axes of which show local parallel orderi
At the DLRO transition, the spins in these clusters~and also
their axes! reorient into the 120° spin structure, which ma
result in the small discontinuity of the QLRO paramet
seen in Fig. 9. The separate QLRO is apparently second
der, in agreement with the mapping arguments
Carmesin.21

Now, let us address the problem of the critical indices
the case of a second-order transition. For the case ofJ250,
there has been an argument about the universality class o
critical behavior of such a system. Kawamura claimed tha
should display a nonstandard~chiral! universality class be-
havior due to a twofold discrete degeneracyZ2 associated
with the two chiral states, with the novel indices (aM
50.3460.06, bM50.25360.01, gM51.1360.05, andnM
50.5460.02),13 while Plumer and Mailhot22 maintained that
there is no new universality class and that the indices t
the mean-field tricritical values (aM5 1

2 , bM5 1
4 , gM51,

and nM5 1
2 ). As we can see, the DLRO critical indices o

tained from our calculationsnM50.5260.03, gM51.08
60.08 are somewhere between those from Refs. 13 an
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and, considering the error estimates, could be interpreted
support of either of the theories. Although we can make
definite conclusion based on the values of the indices th
selves, we believe that the former interpretation is more
vorable. Indeed, looking at the critical indices of the separ
QLRO transitions we can see that they are strikingly sim
to those for the case ofJ250 ~and seem to be such along th
whole paramagnetic-QLRO boundary!. These indices can
hardly be interpreted as the mean-field tricritical ones and
theory of the same universality class critical behavior of q
drupoles (J150) and dipoles (J250), based on mapping
and quantitative analysis,23 would rather strongly sugges
that both cases show the chiral universality class behav
As far as the separate DLRO transition is concerned, in
second-order transition region we obtained the critical in
cesnM50.6360.02, gM51.2560.04, which are quite dif-
ferent from those for the DLRO transition atJ250. The
reason is that in this case the transition has an Ising-
character and, hence, the indices take on the Ising unive
ity class values@n Ising50.629,g Ising51.239~Ref. 24!#. The
situation is illustrated in Figs. 12~a! and 12~b!. In the QLRO
~and no DLRO! region, there is an axial quadrupole orderin
on each of the three sublattices@Fig. 12~a!# and only upon
further lowering of the temperature the system reaches
QLRO1DLRO phase in which the Ising-like directional d
pole ordering within the given axis in each sublattice tak
place@Fig. 12~b!#. Therefore, here, the only difference from
the Ising case is that dipoles can order along any of the th
axes, not only thez axis.

FIG. 12. Spin configuration snapshots of the system
uJ1u/uJ2u50.05 in the ~a! QLRO phase (kBT/uJ2u50.3) and ~b!
DLRO phase (kBT/uJ2u50.001).
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Our further intention is to perform similar simulations o
the STL antiferromagnet for some other interesting cas
like J2

',0, J2
i ,0; J2

'.0, J2
i .0; J2

'.0, J2
i ,0. Besides

the geometrical frustration, such spin systems will poss
li
ty

.

14441
s,

ss

additional frustration arising from the bilinear and biqu
dratic exchanges competing in the stacking direction, in
plane direction, and both stacking and intraplane directio
respectively.
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11H. Nagata, M. Zˇukovič, and T. Idogaki, J. Magn. Magn. Mater

234, 320 ~2001!.
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