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Comparison of atomic-level simulation methods for computing thermal conductivity
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We compare the results of equilibrium and nonequilibrium methods to compute thermal conductivity. Using
Sillinger-Weber silicon as a model system, we address issues related to nonlinear response, thermal equilibra-
tion, and statistical averaging. In addition, we present an analysis of finite-size effects and demonstrate how
reliable results can be obtained when using nonequilibrium methods by extrapolation to an infinite system size.
For the equilibrium Green-Kubo method, we show that results for the thermal conductivity are insensitive to
the choice of the definition of local energy from the many-body part of the potential. Finally, we show that the
results obtained by the equilibrium and nonequilibrium methods are consistent with each other and for the case
of Si are in reasonable agreement with experimental results.
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I. INTRODUCTION Green-Kubo metho#!?~'8The direct method is an NEMD

) . . . . .__method that relies on imposing a temperature gradient across
With the dimensions of electronic and mechanical device$,o simulation celr’ andpis thgereforepanalogogs to the ex-

approaching the nanometer scale, efficient heat removal is erimental situation. By contrast, the Green-Kubo approach
crucial importance to both performance and function. Whilejs 530 EMD method that uses current fluctuations to compute

a basic understanding of heat transport in dielectrics has ajhe thermal conductivity via the fluctuation-dissipation theo-
ready been achieved, many important issues remain unrggm,

solved. Interpretation of experimental results remains diffi- |n this paper we systematically explore both the direct and
cult because typically the contributions of individual defectsGreen-Kubo methods. In each case, we first address issues
cannot be deconvoluted. Molecular-dynamidD) simula-  related to the simulation time necessary to achieve equilib-
tions are ideal for addressing such issues since they can bim or steady state and also accurate statistical averaging.
used to study individual microstructural elements, therebyWe then demonstrate the importance of finite-size effects that
identifying the most important issues for thermal conductiv-arise when the mean free path for a bulk system is compa-
ity in polycrystalline materials. For example, by elucidating rable to the size of the simulation cell. In the direct method
the correlation between grain-boundary structure andve find that unless the simulation cell is many times longer
thermal-transport properties, one may hope to eventually déhan the mean-free path, scattering from the heat source and
sign materials with tailored thermal properties. However,heat sink contributes more to the thermal resistivity than
prior to a systematic study of interfacial effects, it is necesd0€s the intrinsic anharmonic phonon-phonon scattering.
sary to firmly establish suitable computational methodsHowever, we show in Sec. Il that a value for the thermal

While there are a number of studies of thermal transport irfonductivity of an infinite system can be reliably obtained by
the direct method from simulations of different size systems

bulk or interfacial systems, methodological issues still re- . A
main unresolved. The aim of this paper is to resolve theét"d ﬁn extrapolation ﬁf the r;asul;s;o 3.” mfmm(aj—gze systetr)‘n.
L : : . . . Finally, we compare the results of the direct and Green-Kubo
frglrjl:%lgltinogn ;r(;?t?f?edoslﬁﬁ:jg!{iolﬁsgfesﬁeg:i:zggfelfylPogb|2mi0|ilnmeth0ds' For thermal transport in liquids, a comparison has
P previously been made showing good agreement between the

solids. - Green-Kubo and an NEMD methdl.However, thermal
The thermal conductivity relates the heat current to thegansport in liquids is very different from solids, and also the
temperature gradient via Fourier's law as NEMD method used in Ref. 18 is different from the direct
method considered here. Only one comparison of the direct
J,=— > KT, (1) ~ method and the Green-Kubo method for determining thermal
v transport in solids has previously been publish@this work

whereJ , is a component of the thermal curremt, , is an demonstrates good agreement between the d_irect and Green-
m o v Kubo methods for the special case of a disordered two-
element of the thermal conductivity tensor, andox, isthe  gimensjonal lattice model; however, the system was finite
gradient of the temperatuf® Experimentally,« is typically 50 not periodically repeated, thereby introducing boundary
obtained by measuring the temperature gradient that resu'é’%attering. In this paper, we simulate the more general case
from the application of a heat current. In MD simulations thef three-dimensional systems with periodic-boundary condi-
thermal conductivity can be computed either using nonequitions. By contrast with Ref. 7, the elimination of surface
librium MD (NEMD)*™ or equilibrium MD (EMD)."***®  gcattering by the application of periodic-boundary conditions
The two most commonly applied methods for computingresults in very weak finite-size effects for the Green-Kubo
thermal conductivity are the “direct method”’ and the method. We thus find that the finite-size effects associated
with using the Green-Kubo method are actually very differ-
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ent from those associated with the direct method. Neverthe-Z=-L..2 Z=-L/4 z=0 Z=L /4 Z=L,/2
less, when finite-size effects are treated correctly and suffi- | | | | |

ciently long simulations are performed, the Green-Kubo
method and the direct method are indeed consistent with 5, 3, I
each other. — | +Ae _ Ae —
We use crystalline silicon as a model system for our simu-
lations. Because Si is a semiconductor, it is expected that the - PE—
contribution to heat conduction by the electrons will be 3 / 8 \
1 2

small, and thus an atomistic model that ignores electron

transport can be used. In addition, a very well understood g 1. Schematic representation of three-dimensional periodic
potential for Si due to Stillinger and Web€&8W) already  simylation cell for direct summation of thermal conductivity. The
exists:® The SW potential utilizes two- and three-body inter- simylation cell has length,. There is a slab of thickness at z
action terms(see below in order to stabilize the diamond = —| /4 into which energyA« is added at each MD step. Likewise,
lattice. This potential accurately describes elastic propertiesn the slab atz=L,/4, energyAe is removed at each MD step. The
phonon dispersion curves, yield strengths, and thermalresulting thermal current id,. Points labeled 1 and 2 show ap-
expansion coefficient®?3 Using the elastic constants ob- proximate positions of slabs used to examine evolution of the time-
tained in Ref. 22 for the SW model, we compute the longi-averaged temperatufsee Fig. 2

tudinal and transverse acoustic sound velocities to be 8040

and 5720 m/s, which are very close to the experimental valeg) vibrational period <1 pg, equilibration between kinetic
ues of 8480 and 5860 m?8.Since the thermal-transport and potential energy will occur. Thus, when the system
properties of a perfect crystal are governed by the acoustig:hieves steady state, the heat current is givenJpy
sound velocities and anharmonic effects that are also impor= A ./2aAt. The resulting temperature gradient is then cal-
tant for thermal expansion, the SW potential should be We”:ulated, and Fourier’s la§Eq. (1)] is used to obtainc. A
suited to describe the thermal conductivity of Si near orcompiication arises from the need to eliminate the tendency
above the Debye temperature, which is about 658 Rur-  of the center of mass of the entire system to drift, an effect
thermore, much work has been done to characterize graifhat results in an inaccurate measurement of the actual local
boundaries in Si, making it an ideal system to study graintemperature that must be defined using velocities obtained in

5,26 . .
boundary effects: _ _ ~asystem with zero center-of-mass velocity. We therefore use
The rest of the paper is organized as follows. Section lihe™ velocity-rescaling algorithm of Jund and Julfiethat

describes the direct method, including results for Si. SectioR|iminates “this drift. Since equal amounts of energy are
IIl details results of the application of the Green-Kubo EMD aq4ded and removed at each time step, energy is conserved to
method. In the final section, we discuss the strengths angetier than 1 part in fofor an MD step of 0.55 fs. In addi-
weaknesses of the two methods, and directly compare thgyy 1 these considerations, we shall see below that this
results obtained for the Si system under consideration. method creates energy currents that can propagate ballisti-
cally across the system. However, by performing several
Il. DIRECT METHOD simulations for different systems sizes, the behavior of an

In this section we present a brief discussion of detail§nflnlte system can be extrapolated.

related to the direct method and results for the SW Si pOte”éngrr?gthlgﬁklang tsheee;halt.ggfoﬁrgfeg%gi_tgg 2%"; S(élérnc_e
tial. In particular, we present an analysis of thermal equili- ! pplicatl periodi 4 y

bration, the effects of nonlinear response, and finite-size eig't'ons produces a current in two opposite .d|rect|_ons.. Be.'
fects. We analyze the finite-size effects in detail, including cause t'he heat. current ﬂOW.S along a well-defined d'TeC"O” n
comparison to finite-size effects observed in simulations o r;e lattice, a sTgIIeI: ftllmulgjuont_can _?e “;’fq tol obtamr;l¥
diamond, and demonstrate how results for an infinite bul°N9 ON€ crystal fatlice direction. 1o obtanalong a dir-

system can be extrapolated in spite of the importance of th erent c_rystal Iaf[tice o!irection, an entirely new sim_ulgtio_n
scattering that occurs at the heat source and heat sink with a different simulation cell must be performed. This limi-

tation does not exist for the Kubo method, where the entire
thermal conductivity tensor is computed in just one simula-
tion.

The direct method of computing the thermal conductivity The direct method involves large~(10° K/m) tempera-
is analogous to the experimental measurement. In Fig. 1 weire gradients. Because these temperature gradients are well
show a schematic representation of the simulation cell usedutside of the experimental range, it is not clagsriori that
to computex. By rescaling particle velocities at each MD results obtained using the direct method will be consistent
time step, heatAe is added in a thin slab of thicknes$  with experiment. Specifically, very large temperature gradi-
centered az= —L,/4 and removed from a slab of the same ents may introduce significant nonlinear response effects
thickness centered at= + L ,/4. Each particle velocity in the such that Fourier’s law may not apply; therefore, it is impor-
source/sink region is scaled by the same factor such that thant to test the effect of changing the magnitude of the ther-
resulting net kinetic energy is increased/decreased by amal current on the resulting computed valuexoBelow we
amountAe. Although only kinetic energy, and not potential shall establish that there exists a range of valuesXer
energy, is added to the system, we expect that within a typiwhere the degree of nonlinearity is acceptable.

A. Background
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A critical feature of the simulation cell shown in Fig. 1 is 510
the existence of boundaries at the edges of the heat source :
and heat sink. Because the atomic dynamics in the hot and
cold slabs is altered by the simulation algorithm, the mean-
free path is limited by the size of the system; this regime is
known as the Casimir limit. The mean-free path can be esti-
mated from data for the thermal conductivity, specific heat,
and velocity of sound. As we estimate below for SW Si at
500 K, the mean-free path is about 100 nm. However, as we z=98nm
will demonstrate, by carrying out a finite-size analysis of
significantly smaller systems, it is possible to obtain a good 4807 . 1000 1500 2000
estimate ofx for an infinite system. M [MD steps x1000]

4x4x288 Si
T=500K

z=136nm

o))
[=]
o

Temperature (K)

N
©
?

FIG. 2. Time-averaged temperature for sliceg-atL36 nm(dot-
ted ling andz=98 nm(solid line) for a 4x 4288 simulation cell

For the direct method, it is important to establish that aof Si using the direct method withe=5x10"* eV and an aver-
steady-state current flow has been achieved. This amounts &ge system temperature of 500 K. These slices are both 19 nm from
obtaining a stationary temperature profile as a function ofhe heat sink, which is located a&117 nm. The approximate po-
time, thus insuring that only steady-state currents are flowingitions of the slabs are shown if Fig. 1, with point 1 corresponding
and, hence, that the thermal conductivity can be obtain fronto z=98 nm and point 2 corresponding fe=136 nm. Time aver-
Fourier's law[Eq. (1)]. It was found by Maiti, Mahan, and 2ges[see Eq/(2)] begin at the end of the simulatioM(=0), and
Pantelide that very long(~1 ng simulations were neces- are done up to the _total length of the simulatidh£ N—1). In this
sary to achieve a smooth temperature profile for a Si grainfigure, data were first averaged over 1000 MD step segments. The
boundary system. We therefore chose a total simulation tim&tire simulation was 210° MD steps, which corresponds to 1.1
of 1.1 ns(2x 10° MD steps for an MD time step of 0.55)fs ns.
We compute the average temperature in a thin $icé4 nm
in width) of the system centered at positiaras profiles. We note that the two time-averaged temperatures
shown in Fig. 2 should be the same since they are taken at
equal distances from the heat sink. We find a difference of
<T(Z)>M:M 2 Tn-m(2), (20 abou 2 K after 1.1 ns of averaging, which we take as a
m=0 measure of the statistical precision of the calculation. Typi-

where(T(z))y is the average temperaturezaveraged over cally, we find.the statistical precision to be \_Nithin gbqﬂB

the finalM time steps of the simulation, aft_ () is the K for any pqmt along Fhe tempe_ratgre profile. This is very
instantaneous temperaturezafor the time stegN—m. The ~ 90od precision especially considering that each 0.14 nm
total number of steps in the simulation I and one can thick slice at a given position contains only 32 atoms for a
therefore see thd#l must be smaller thaN— 1. By averag- Simulation cell 4<4 in the direction perpendicular to the
ing in this way, we can be certain that for smadl, the thermal current.

fluctuations are entirely statistical and not due to transient In Fig. 3 we show a typical time-averaged temperature
effects related to the current sources. Msincreases, we profile used to compute the thermal conductivity. In this
may see fluctuations due to transient effects related tgase, the system dimensions arg 4ix 288 cells, and the
achieving a steady-state thermal current. In Fig. 2 we showverage temperature is 500 K. Within 6 nm of the source or
the time-averaged temperatures of slices 19 nm to either sidgnk region, a very strong nonlinear temperature profile is
of the heat sink for a %4 <288 system at 500 Ksee Fig. 1  observed, which has been attributed by other authors to the
for the approximate positions of the two slize$o obtain  strong scattering caused by the heat source or heatiimk.
Fig. 2, data were first averaged over 1000 MD step segmentthe intermediate regiofat least 6 nm away from the heat
which tends to eliminate some of the large temperature flucsource and sink the temperature profile is fit with a linear
tuations that occur for very short timég1 p9. We see very function as shown in Fig. 4; the resulting temperature gradi-
little evidence of fluctuations in the averages as the averagent is used in Eq(l) to obtaink. We note that the gradients
ing time is extended back net+0. Apparently the system measured for the two different linear regions, 0.31 and 0.32
achieves steady state rather quickly so that the amount &€/nm, are very similar. Typically, the gradients fit to the two
time for which the system is not in steady state is smallinear regions differ by less than 15%. The observed differ-
compared to the entire 1.1 ns simulation time. Also, thisences in the computed gradients for the two different regions
indicates that 1.1 ns is a long enough simulation time taare used to obtain an error estimate for the value of the
obtain time-averaged temperature profiles, in agreement witthermal conductivity(see Fig. 6. As we shall see below in
the results of Maiti, Mahan, and PantelideEven though Sec. Il D, the temperature profile observed in Figs. 3 and 4
transient effects appear to be small, in the following weresults from a partly diffusive and partly ballistic transport of
throw out, the initial 110 ps of simulation data to be certainenergy, the latter due to the fact that the systems sizes used
that the system has reached steady state, thereby leaving 98 comparable to the mean-free path of phonons in the sys-
ps of data over which to compute time-averaged temperaturiem.

B. Equilibration

M-1
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550 550
4x4x288 Si i
T=500K IxixD88 Si
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FIG. 3. Typical temperature profile for ax44 X 288 system at
an average temperature of 500 K. The heat source is located at 550 ]
=39 nm, and the heat sink is locatedzat 117 nm. Within 6 nm of #{‘;’6%‘?(8 Si
the source and sink, a strong nonlinear temperature profile is always 530 -
observed. For obtaining temperature gradients to computem —_
Fourier's law[Eg. (1)], we therefore make linear fits using only <
parts of the system, which are at least 6 nm away from the heat §510‘M
source and sinksee Fig. 4. ‘g 12_8KW
2 490
C. Effect of deviations from Fourier’s law E: 40nm
To establish that Fourier’s lajEq. (_l)] is obeyt_ed_ and that 470
nonlinear response effects are not important, it is necessary
to establish that the computed value #ofdoes not depend 450
strongly on the value oAe for some range of values dfe. 0 10 20 30 40 50 60
To do this, we have computeefor several different values (b) z (nm)
of Ae for a 4X4X 96 system af =500 K. The thermal cur-
rent is proportional ta\e/A, whereA is the cross-sectional FIG. 4. Linear fits to temperature profiles for &4x 288 sys-

area of the systerfA=4.73 nnt for the 4Xx4x 96 system  tem at an average temperature of 50Qs€e Fig. 3 Temperature
The results are shown in Fig. 5. We see that while there dogofiles were fit for the regions at least 6 nm away from the heat
appear to be some variation efvith Ae, for values ofAs/A source. In this case, linear fits are made over 66 nm of the system.
near 1.0610°% eV/nn? (corresponding to Ae=5 The_ fits in the case hav_e slopes(g)‘o.31 K/nm andb) 032 K/nm.
X104 eV for a system withA=4.73 nn?), the variations Taking the average, this results in a thermal conductivity from Eq.
appear to be rather sm&t.10%), and an accurate value gf (1) of 47.9 W/mK.

can be calculated. Choosidge/A significantly smaller than  simple approach to determine the effective mean-free path
1x10~* eV/nn? tends to result in large error bars becausel , when L,~I.., wherel,, is the mean-free path for an
the magnitude of the temperature difference between the hatfinite system, is to add the inverse mean-free paths. Then
and cold ends of the simulation cell becomes comparable th is given by,

the typical statistical noise. Although no significant devia-
tions from Fourier’s law are apparent from Fig. 5, we will
avoid unnecessarily large valuesd&/A. Thus, choosing a 30+
value of Ae/A~1x10"% eV/nn? (i.e., 1.6x 10> J/n?) ap-

35

pears to be suitable, and in the remainder of this paper we
will use a value of 510" 4 eV for Ae for systems of dimen- ¥ 201 } """" .
sion 4x 4 (i.e., 4.73 nM) in the direction perpendicular to 215{ 1
the current. M
10
D. Finite-size effects 51 xdx36 S

T=500K

Finite-size effects arise when the length of the simulation
cell L, is not significantly longer than the phonon mean-free
path®’ This is understood to be a result of scattering that
occurs at the interfaces with the heat source and sink. For a FiG. 5. Effect of changingAe for a 4x4x96 system at an
sample with length smaller than the mean-free path in aRverage temperature of 500 K. This shows a broad range of values

infinite system, the thermal conductivity will be limited by for Ae/A where nonlinear behavior is not present and Fourier’s law
the system size. This regime is known as the Casimir limit. Ais obeyed.

0 00001 00002 00003 00004 0.0005
Ae/A (eV/nm?)

144306-4



COMPARISON OF ATOMIC-LEVEL SIMULATION . .. PHYSICAL REVIEW B65 144306

1 1 . 4 @ 01

=t 0.09

lett 1 L 0.08-

_ oo7{ SiT=1000K

Here, the factor of 4 accounts for the fact that as phonons g 0.06- X
travel along the length of the simulation cell from the source S 0.05
to the sink, itsaveragedistance since the last scattering event * 0.044 Si T=500K
should bel,/4. In other words, if we randomly select several "~ 0.034
phonons, on average they will be at a distahg&t from 0.02 Diamond T=1000K
either the source or the sink where the last anharmonic scat- 0.01_/71///\4,,1/——1”“
tering event occurred. This assumes it has not undergone any o
anharmonic phonon-phonon scattering in the region between 0 0.01 0.02 0.03 0.04
the source and the sir(ke., it moves ballistically across the 0, (mY

system. Equation(3) suggests that a plot of &/vs 1L,

should be linear, and that the thermal conductivity of an in- FIG. 6. System size dependence of dh 1L ,. Data are shown
finite system can be obtained by extrapolating tb,30. for Si at T=500K and T=1000K and for diamond afl
Indeed, this procedure has been carried out by Oligschleger 1000 K. We note that the rate of change ok With 1/, for Si

and Schon to obtairnk from simulations of trigonal Se appears to be only slightly dependent on temperature. Also, the rate
crystals‘.‘ of change for diamond appears to be different than the Si system.

In addition to ballistic phonon transport, Cenian andThis is the result of differences in the lattice constant and sound

Gabrief” have found that solitonlike modes may propagatevelocities of diamond and Si.

ballistically across a system, resulting in deviations from ) -~ )

Fourier's law and a system-size-dependent thermal condudherec is the specific heat of the phonons,is the group
tivity. However, these effects depend strongly on the energy®€locity of an acoustic branch, aine the mean-free path for
of the input pulse and are only important for input energiesScattering. For a purely classical simulation of the type de-
on the order of a few eV. This can be compared to the rathefcribed here, each normal mode will haugT of energy on
small input energies used here {04 eV). In the last sec- average. However, the specific heat in E4).is intended to
tion, we showed that the current simulation results depen@e only for those that carry a significant thermal current. In

only weakly on the excitation energye, which is an indi- the case of Si, which has three optical and three acoustic
cation that ballistic soliton propagation is not important in Pranches, we expect that the majority of heat is carried by the

the current work. Even if solitons were a significant mode ofacoustic modes that have a significantly larger group veloc-
energy transport in the current work, E8) should still be a  'tY- With thls assumption, the appropriate specific heat to use
useful way of determining the mean-free path for an infiniteln Ed. (4) is given by
systeml,. as long as the system sizes used are at least com- 3
parable tol, . In Ref. 27, the soliton mean-free path was c=2kgn, ®)
found to be about 70 lattice parameters at temperatures b@eren is the number density of atoms in the system. Now
low 50 K and can be expected to decrease strongly withf we use our simple approach for determiningen. (3)] we
increasing temperature. Since we use rather long simulatiogptain
cells (between 96 and 768 lattice parameteasd high tem-
peratureg500 and 1000 KK we believe that we are always in 1 a 1 4
a regime wherel, is significantly larger than the soliton P 4kgv EJFL_Z)' (6)
mean-free path. Therefore, E) should apply to the cur-
rent work regardless of whether the ballistic component isThis gives us a crude estimate of the slope of ¢ 11,
phononlike or solitonlike. plots shown in Fig. 6. If we assume thain Eq. (6) is given
For the Si system, we have performed simulations as &y the average of the transverse and longitudinal branches as
function of bothL, and simulation temperature We used v=21/3(v_+2vt), we obtainv~6500 m/s from the elastic
systems ranging from 96 to 768 unit cells long, correspondeonstants calculated in Ref. 21 for the SW potential. This
ing to L, from 52 to 417 nm. For a nonprimitive unit cell results in a prediction of the slope of«lys 1L, for the SW
containing eight atoms the largest systenx 4i< 768, con-  Si model of 1.8<10° m?K/W, which can be compared to
tained 98 304 Si atoms. The results for the thermal conducthe result of the linear fit in Fig. 6 at 500 K of (2t®.4)
tivity are shown in Fig. 6. For comparison, we also showx10 ° and (2.9-.5)x10 ® m®>K/W at 1000 K. For dia-
data that we obtained for diamond using the Tersoff potentiatnond, which has a smaller lattice constant and larger sound
for carbon?® We first note from Fig. 6 that the slopes of the velocity, we see the Eq6) predicts a smaller slope when
T=500 K andT=1000 K data for Si seem to be very simi- compared to Si, which is indeed observed in Fig. 6. Using
lar. To understand this effect, recall that the thermal conducthe experimental sound velociti&we obtain a prediction
tivity in kinetic theory is given by for the slope of 2. 101 m?K/W, which can be compared
to the result in Fig. 7 of (3.3.01)x 10 1° m?K/W. While
the predictions and actual observed results appear to differ
K=% cvl, (4) somewhat, and there appears to be some temperature depen-

3

144306-5



SCHELLING, PHILLPOT, AND KEBLINSKI PHYSICAL REVIEW B65 144306

1 TABLE |. Comparison ofx as for different cell sizes perpen-
dicular to the direction of the current. Each system was 144 unit
cells long parallel to the current. Values & were scaled with the
system size so that the resulting thermal curdgnvas the same in
each case. The estimated error«tin each case is£3 W/mK.

0.8 Bx6x6 Si
T=1000K

Transverse dimensions Ae (eV) x (W/mk)

2X2 1.25< 104 34
3%x3 2.81x 104 29
4% 4 5.00< 104 31
6X6 11.25<10°4 30

<J(x)J(0)>
<J(0)J(0)>

0 0.2 0.4 0.6 0.8 1

@ ©{ps) For diamond at 1000 Kg(1/L,=0) is 573=60 W/mK,

compared to about 400 W/mK from experiment for isotopi-

6x6x6 Si cally enriched diamond!: We note that small errors in the

T=1000K linear fits can result in rather large errors in the extrapolated

value of the thermal conductivity, especially when the ex-

R trapolated value ok is very large.

sle We note that Eq(6) provides a means of predicting the

5; 2 system size necessary to achieve a given level of precision in

55005 computing « via the direct method. For example, E@)

implies that we require a system size ten-times longer than

e the mean-free path in an infinite systém, in other words

L,~40l.,, to obtain a value ok within 10% of the correct

A 2o %0 %o 200 bulk value. Using the slopes calculated above _for the depen-
*(ps) dence of 1k on 1L, (1.8x10 ° m?K/W for Si and 2.2

(b) X 10719 m?K/W for diamond, we can estimate the mean-

free paths for a bulk syster, based on the extrapolated

. . value of k. For Si, estimatind., in this way results in values

(J(7)-J(0))/{J(0)-3(0)) vs 7for a 6X6X 6 Si system containing a of 100 nm atT =500 K and 60 nm af = 1000 K. For dia-

total of 1728 atoms. Irfa), we see that for very short timés0.1 . - ;
ps there is a very abrupt decay in the current-current correlationsr.’nond we obtain 65 nm a=1000 K. These estimates sug-

For longer times inb), we see that correlations in the current per- geSt_that we reql{"?—‘ a system aF least 7300 unit qells long to
sist out to 100 ps. obtain a result within 10% for Si at 500 K, which is almost

ten-times longer than the largest system studied here. Fortu-
dence of the slope, the general trend of increasing slope withately, we have shown here that even for small systems,
increasing lattice constant and decreasing sound velocity agxtrapolation to the infinite-system limit is possible, and also

-0.05

FIG. 7. Normalized current-current correlation function

pears to be consistent with the predictions of Hj. that useful informatiorifor example temperature dependence
The linear fits in Fig. 6 can also be used to estimate thef k) can be obtained even from system with<l., .
thermal conductivity in the limit 1/,=0. For Si, x(1/L, We have also studied the dependence ain the dimen-

=0) is 119-40 W/mK at 500 K and 6% 16 W/mK at 1000 sions perpendicular to the current flow. It is expected that
K. For natural Si, defect scattering significantly reduees will not depend as sensitively on the dimensions perpendicu-
and the experimental values at 500 and 1000 K are about 8@r to the current as on the lendth. Due to periodic bound-
and 30 W/mK, respectivef# While the experimental data ary conditions on the simulation cell, phonons are free to
for isotopically enriched Sii.e., containing fewer defedts travel across the simulation cell perpendicular to the current
only extends to 375 K, the data in Ref. 30 were extrapolatedlirection without scattering from any boundaries. Hence
to yield a value of about 120 W/mK at 500 K. At 1000 K, the changing the dimension perpendicular to the current does not
observed temperature dependencd of with a~1.25 can  change the scattering in any obvious way. In Table | we show
be used to obtain the much more uncertain estimate foff ~ a comparison ok obtained for systems of different sizes in
50 W/mK2° These numbers are in reasonable agreemerihe direction perpendicular to the current. For each different
with the simulation results obtained using the direct methodsystem size we have scaled the valuedefso that the re-
This is not altogether surprising given the high quality of thesulting current density, is the same in each case. The dif-
SW potential and the fact that we are comparing results aerent values ofAs used are also shown in Table I. While
temperatures near or above the Debye temperftué®0 K still equivalent within statistical uncertainties, thex2 sys-

for Si (Ref. 30], which is the point where a classical simu- tem studied appears to have a value Aaslightly larger that
lation should become valid. However, to fully compare thethe results for larger systems. Cells withmuch larger than
temperature dependencegfmore simulations are required. the transverse dimension will have tend to sample a larger
We also remark that the values farof 1.5 and 1.6 have fraction of modes with wave vector along the current direc-
been observed in simulation and experiment, respectifely. tion. To estimate this effect, we note that for a finite-size
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system the thermal conductivity can be written in terms of an ensemble average, or, in the case of an MD simulation, an
the cell volume), group velocityv, and mean-free pathas  average over time. In practice, at each MD step we compute
the heat current that is then saved to disk. Since the simula-
_ tion is performed for discrete MD steps of lengtkh, Eq.(8)
=1/Qkgol k2/Kk?, 7 . . . =
o BY E z @ is in fact a summation. Including the time averaging, what
we actually compute is

xKyKz

where the summation is over all componégt k,, andk,

appropriate for the system consideration. For a very large M

system, the value of the summation in Ef). approaches 1/3 Ku(Tv) = kT2 E (N-m)~? E J,(m+n)J,(n),

and hence we obtain the standard result&ayiven by Eq. B! m=1 n=1

(4). However, the summation in E¢7) can be different for ©)

small or irregularly shaped systems. Using EQ. we esti-  wherer, is given byMAt and J,(m+n) is the uth com-

mate that this effect can produce an increase in value of thgonent of the heat current at MD timestapt n. Note that

thermal conductivity for a X 2X 144 system of at most 20% the number of steps for integratidn must be less than the

compared to a %4Xx144 system. For system sizes of 3 total number of simulation steps. Typically, as we will see

X3 unit cells or larger, the values afin Table | are equiva- below, the total number of integration stelkis consider-

lent within the error inherent in the calculations, and thereably smaller than the total number of MD steps to assure

appears to be no systematic change ias the transverse good statistical averaging. For example, the simulations pre-

dimensions are changed. These results indicate that the sented here havd of at least 6< 10° MD steps(3.3 ns for a

X 4 systems used for Fig. 7 is adequate and that the values 0f55 fs MD step, while the summation limiM in Eqg. (9) is

1/k obtained by extrapolation to [1l/=0 are representative usually done for only about 410° MD steps (ry

of the true infinite-system limit. =220 ps). The bulk thermal conductivity, which is formally
We have shown in this section that the direct method is dound from the limitr,,— =, should be recovered by E()

practical method for obtaining the thermal conductivity of as long asry, is longer than the time required for current-

bulk materials. Deviations from Fourier's law appear to becurrent correlations to decay to zero.

small over a large range of values fde. Also, we have An important issue associated with the Green-Kubo

found that 1 ns of simulation time is adequate to obtainmethod is the precise definition of the local energy needed to

smooth temperature profiles. Most importantly, we haveevaluate the heat current. The heat current is written as

shown how to estimate finite-size effects related to the length

L, and also how to extrapolate results to the infinite limit

(1/L,=0). Finally, finite-size effects related to the dimen-

sions perpendicular to the applied current appear to be small. ) i ) .
wherer,(t) is the time-dependent coordinate of atorand

g;(t) is the site energy. For a pair potential, where the total
potential E,; energy is written in terms of the pairwise in-
geractionsuz(r) as

N—m

d
J= G2 rie(), (10

Ill. GREEN-KUBO METHOD

The Green-Kubo method represents an EMD technique t
computex. Because simulations are done in equilibrium, and 1
the transport coefficients ascertained using the Green-Kubo Ep0t=52 Us(rij), (11
formula as a result of the fluctuation-dissipation theorem, g
there is no imposed driving force, and hence the system ig sensible choice is to evenly divide the potential energy
always in the linear-response regime. However, it has beeBetween each pair of atoms. Then the site eneydy take to
established that finite-size effects do play a role in applyinghe
the Green-Kubo methot¥:** In addition, very long simula-
tion times appear to be needed to sufficiently converge the ,, 1
current-current autocorrelation functi¢see below.*2*6In £ =5 MV~ + §§j: Ua(Tij)-
this section we use the Kubo method to compufer Si. We
address the finite-size effects as well as convergence difficufFor this definition the thermal current can easily be shown to
ties due to the finite simulation time. be given by

(12

1
A. Background =2 vie+ > > ri(Fyvy), (13
A ey
EMD simulations rely on relating the equilibrium current- I R

current autocorrelation function to the thermal conductivitywhereF;; is the force on atorndue to its neighboy from the
via the Green-Kubo expression pair potential. However, the SW potential is made up of not

only pairwise terms but also three-body interaction terms.
1 m While no choice is unique even for a pair potential, the
K Tm) = QkgT? fo (Ju(1)3,(0))d, (®  choice above seems the most reasonable. For the three-body
interactions, however, more than one reasonable choice is
where(} is the system volumexg is the Boltzmann constant, possible. The potential energy for the SW potential is written
T is the system temperature, and the angular brackets denads

144306-7



SCHELLING, PHILLPOT, AND KEBLINSKI PHYSICAL REVIEW B65 144306

1 1 poses a thermal current. The Green-Kubo method can com-
Epot=52 Up(rij) + gz us(ri,rj,r). (14 pute the entire thermal conductivity tensor with only one
. ik simulation, and by a simple rotation obtain the thermal con-
The first term is just the pair potential, which we treat asductivity along any crystal direction. However, for a cubic
discussed above. The three-body term in the SW model isystem like the one considered hekeis known to be iso-

written as tropic.
In order to preserve the underlying cubic symmetry due to
us(ri,ry,r)=efa(rilorilordo), (15  the cubic diamond lattice, we use cubic supercells in our
and the terf5(r; /o1, /o1, /o) is taken to be simulations. We chose a simulation cell with they, apdz
axes placed along tHe.00], [010], and[001] crystal direc-
fa(rilo,rylo,rd o) =h(ri,ric, Oi) +h(r i, Okji) tions, respectively. With this orientation, the diagonal ele-
ments (w=v) of the thermal conductivity tensor defined by
TRk i) (16) Eqg. (8) should be identical. Likewise, the off-diagonal ele-

where 6, is the angle between; andr; . One obvious Ments w#v) in Eq.(8) should all be zero.
choice is to define the site energy of atoras

B. Equilibration and statistical averaging

1 1
8i:§mivi2+ 52 Uz(fij)+gz Us(ri,rj,rg. (17) The Green-Kubo expression is found to converge very
J Ik slowly, and direct integration apparently can lead to ambigu-
It can easily be seen that by summing this expression ioverous result$?~1%To obtain reliable results by direct integra-
one obtains the kinetic energy plus the potential-energy extion a very large number of MD step$ must be used for
pression for the SW potential in Eql14). This definition — accurate statistical averagiigee Eq.(9)]. In addition, the
leads to a thermal current defined by number of integration stepdd [see Eq.(9)] must be chosen
so that the integration timey, is larger than the characteris-

I(t)= E 1 2 F 1 2 tic time required for the current-current autocorrelation func-
(H= = Vieit 2%, rij(Fijvi) + 5 4 (rij+Tik) tion to decay to zero. We shall see in this section that these
requirements result in a total simulation time greater than 1
X (Fijievi), (18 ns and an integration time,, of at least 200 ps.

whereF;; is the force due to the pair potential and the three-, To help reduce the total length of a MD simulation needed
4 S pairp to obtaink, often the results for the current-current autocor-
body force termf;, is given by

relation function are fit to an exponential function of
Fije=— Via(F .15 1. (199  Whichis then integratgbe.'m*lﬁThe idea is to fit the exponen-
tial to data for small times%£<<10 ps) where good statistical
However, another reasonable definition is to assign termaveraging is relatively easy to obtain. A second techﬁiﬁue
with atomi at the vertex of the trigk entirely to atom. This  to reduce the necessary computational load is to apply Fou-
would then result in a definition for the local site energy of rier transformations to the current, and then take the limit
w—0 of the expression

1 1 1
8i:§mivi2+ 52 up(rij) + 58% h(rij . Fik, Gjik), )
(20) KMV((,U,T)Z WBTZJM((U)J:(CO). (23)

which leads to the expression for the heat current
1 However, because the simulation time is finite, the averaging
_ - - CTE( Y used to obtaird(w) may not be reliable for low frequencies,
J(t)_Ei vieit 2”%; Fis (Fi V')+i,-2k flFy k)i, and hence the— 0 limit is not trivial to perform*>*°Both
(21)  techniques rely on assuming an exponential decay of the
current-current autocorrelation function. By performing very
long simulationg>3 ng, we show below that the decay of
Fi(ijk)=—eViha(rij ., B (22) the current-current autocorrelatilon _fu.nction is not exponen-
tial, and hence neither exponential fitting nor extrapolation of
It has been assumed that the exact definition of the local siteq. (23) to w— 0 represents a reliable way to obtain
energye; is not crucial to the results for the heat current. In Fig. 7 we show a typical current-current autocorrela-
However, to the best of our knowledge this assumption hagon function vsr [see Eq(8)] for a 6xX6X6 diamond sys-
never been tested. To investigate this point, we have comem consisting of 1728 atoms averaged ovel it@)], [010],
pared the thermal conductivity obtained from EGs)—(19)  and[001] directions and normalized to the valuerat 0. In

with the three-body ternfr;(ijk) given by

to Egs.(20)—(22). These results are presented below. other words, we show in Fig. 7 the time dependence of
One advantage of using the Green-Kubo method is that it

easily permits the study of anisotropic effects in the thermal . s3 (3 J (0

conductivity. This is not easily accomplished with the direct {3(n)-J(0)) = §:1< w(13,(0)) (24)

method described above since one picks a direction and im- (3(0)-3(0))  =,_1(3,(0)3,(0))
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FIG. 8. Thermal conductivity al=1000 K for a 6x6x6 Si FIG. 10. Modulus of the frequency-dependent thermal conduc-
system found by integrating the current-current correlation functiorfivity vs frequency for the &6 6 Si system aff =1000 K (solid
shown in Fig. 8 using Eq9) as a function of the upper integration I|_ne)_. Included_ls the mo_dulus of the Founer_—transformed exponen-
limit 7, . We see that the integral changes only very little beyondtial fit (dotted ling from Fig. 10. For frequencies about 0.1 THz, the

200 ps, consistent with the observation that the current-current cofit agrees well with the data. However, below 0.1 THz significant
relations shown in Fig. 8 are negligible beyond 200 ps. differences are apparent, consistent with the observation in Fig. 10

that the decay is not well fit by an exponential.
obtained from 6 ns of total simulation time, and using the

definitions of current and local energy given in E¢57)—  gration. The statistical error was estimated from the calcu-
(19). We see in Fig. @) that for short times £<0.1 ps) the  |ated values ok averaged over six different 1.0 ns of data.
autocorrelation function shows an abrupt decrease. This hage note that 100 to 200 ps of integration time appears to be
also been found by Chet al* for simulations of diamond, adequate to obtain a converged valuexpfconsistent with
and is believed to be related to high-frequency optical modege observations above that the correlation function in Fig. 7
that contribute little to the thermal conductivity. Indeed, it is very nearly zero by 100 ps. Direct integration to 200 ps in
was established by Ladd, Moran, and HodVethat the this case results in a value of 66 W/mK. For comparison,
short-time decays and oscillations found in the currentintegration out to a time of 500 ps results in a value of 74
current correlations when the current is given by Eff))  wW/mK, but with significantly larger statistical error. Other
disappear when using an alternate form of Ed)), which  simulations for different system sizésee next sectiorshow
instead uses phonon occupation numbers and group velogip systematic variation in the values efobtained for inte-
ties. For longer times, Fig.(B) shows that the decay appears gration timesr, longer than about 200 ps. Since the fluc-
to be much slower. As was found by Ceal.,*” we find that  tyations inx obtained forr, greater than 200 ps appear to be
this slow decay is most important for establishing the therng |arger than the estimated statistical error, we conclude that
mal ConductiVity. We note that some COI’I’e|atiOHS appeal’ t@oo pS represents an adequate integration Hmand that

persist out to 100 ps or longer. any observed fluctuations ir for longer integration times
We obtain the thermal conductivity from E@9). The 7 “result from statistical error.
value of the summation defined by E®) as a function of This analysis shows that for a sufficiently long, and

the integration timery, is shown in Fig. 8 for the same data tota| simulation time, direct integration can be used to obtain
shown in Fig. 7. At a few typical points in Fig. 9 error bars , However, it is desirable to find a technique that reduces
are included to show uncertainty in the results of direct intepe requirements for the total simulation time and also de-
creases the statistical error associated with direct integration
] to long timesry, . As we noted above, one possible technique
e is to fit exponential decays to the simulation data that can
then be integrated in E¢8).1>*31®An example of an expo-

0.3

Ay 02T nential fit to the simulation data is shown in Fig. 9 for the

% % 6X6X6 simulation. The fit exponential decay constant was

% = 5 ps. This can be compared to about a value of about 16 ps
\

obtained by Che and co-workers for diamond at 308 e
see in Fig. 9 that while the fit is reasonable to a time of 10 ps,
for times beyond 10 ps the fit systematically underestimates
0 e Y , the current-current correlation function. As a result, integra-
0 10 20 30 tion of the fit function results in a value for of 38 W/mK,
w(ps) significantly smaller than the direct integration result of 66
FIG. 9. Normalized current-current autocorrelation function W/mK for 7, =200 ps.
(solid line) for the same system as in Fig. 8. Included is an expo- In Fig. 10 we show the modulus of the frequency-
nential fit with a decay constant of 5 fotted ling. Beyond 10 ps, dependent thermal conductivitk(w)| along with the fre-
the exponential fit is very poor. quency dependence of the exponential fit shown from Fig. 9.

(=]
-
L
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For exponential decays, the modulus of the frequency depen- TABLE Il. Dependence ofk on system size using the Green-

dent thermal conductivity takes the form Kubo method with definitions provided by Eq4.7)—(19) and Eqgs.
(200—(22). The system temperature was 1000 K. System lehgth
was obtained using the lattice constant of 0.543 nm for Si.

x(0)
| k(w)|= \/ﬁ’ (29 Number « (W/mK) from « (W/mK) from
Dimensions L (nm) of atoms Egs.(17)-(19) Egs.(20)—(22)
where k(0) is the static thermal conductivity andis the 4x4x4 2.17 512 22 22
decay constant that is 5 ps from the fit in Fig. 9. Above 0.15xX5x5 2.72 1000 82 90
THz the fit agrees well with the data. However, significant6x6x6 3.26 1728 66 66
differences arise below 0.1 THz. This is consistent with thegx8x 8 4.34 4096 62 61

results of the exponential fitting in Fig. 9, which shows that

only for very short timeg<10 p9 does the exponential fit o o
agree with the data. We have computed the thermal conductivity of Si using

We note that other authors have found a similar nonexpocubic cells containing 512, 1000, 1728, and 4096 atoms, all

nential character to the decay of the current-current autocoft @ temperature of 1000 K. These systems correspond to

relation function. For example, Volz and CHériound de-  lengthsL of 2.17, 2.72, 3.26, and 4.34 nm respectively. For
viations in fits to the frequency-dependent thermal@ll but the 1728 atom simulation, we obtained between 3.3

Conductivity very similar to those shown in F|g 10. In addi- and 4.1 ns of data. The 1728 atom simulation was described

tion, Li and co-worker¥’ used exponential fits that appear to @bove and had a total of 6 ns of data. In Table Il we show the
systematically underestimate the current-current autocorrel&omputed thermal conductivity obtained by direct integration
tion function except in the regime where the function was fit.Over 200 ps of the current-current autocorrelation function
We thus conclude that the method of exponential f|tt|ng isfor different choices of simulation cell. We see that the 512
not an accurate way to Compufe Likewise, f|tt|ng to atom (L:217 nm) SyStem results in the draStica”y lower

frequency-dependent data in Fig. 10 with a functional formvalue of 22 W/mK compared to the simulations at larger
given by Eq.(25) is equally undesirable. system size. However, it is apparent from Table Il that the

In conclusion, we have found that 6 ns of data are ad!esults forx are well converged by 1728 atoms. This can be
equate to obtainc by direct integration to statistical errors compared to Chet al*? for diamond, where 4096 atom sys-
within 20%. In the next section, we will use somewhattem was considered adequate to obtain a converged value of
shorter simulation time€3 to 4 ng, with only slightly larger ~ «. We note that the difference between the minimum system
errors. Exponential fitting to current-current correlation func-size required for convergence in diamond at 300 K and Si at
tions, or fitting to the frequency-dependent thermal conduc1000 K is likely to be due to the fact that the estimated
tivity assuming an exponential decay in the current-currenfneéan-free path for diamor{d74 nm at 300 K(Ref. 11] is

autocorrelation function, appears to be unjustified. much larger than the mean-free path of & nm at 1000 K
from estimates aboye

C. Finite-size effects D. Dependence on definition of local energy

Finite-size effects have been seen by other authors for The above results for the Kubo method were obtained
perfect—&r&tal systems when using the Green-Kubq,ging the definitions for the thermal current given by Egs.
method.“**However, because a heat source and sink are n 37)_(19)_ As we pointed out, an alternate and no less rea-

used in the Green-Kubo method, the effect is apparently,apie definition can be given by EGR0)—(22). While no

i ) *definition is unique, the two presented above are extremes in
ample, Che and co-workefshave found in applying the | easonable definitions, and agreement between the two dif-
Kubo formula to diamond that well converged results couldis ant definitions would seem to suggest that resultscare

bg obtqined for a system of only about 4000 atoms 'With Gnsensitive to the particular definition used.

dimension of only 2.8 nm, much smaller than the estimated - 5 comparison of the results using the two definitions for

mean-free path of 174 nm. By contrast, we found above thghe heat current is shown in Table II. The results are encour-
even when.the mean-free path.was comparable to .th_e Systeéﬁingly similar. The biggest difference occurred in the 5
size, the direct method was different from the infinite sizey 55 cell simulation. but was still less than 10% of the

limit by about a factor of two. Other authors have att”b“tedmagnitude ofic. It seems thus that results ferare relatively

finite-size f(?ffecétzs Ifourr:_d usmlg the Grgen-Kubﬁ methog_ Ynsensitive to the particular definition of the thermal current,
memory effects™ In this explanation, due to the perodic ;g the fact that there is no rigorous and unique definition for

boundary cond!t|ons, a phonon may pass the same point fhe thermal current is not a serious impediment to using the
space several times without scattering. Since the system M@Yreen-Kubo method

retain some dynamical information during the passage of the
phonon, artificial correlations may exist in the autocorrela-
tion function. In this case, the correlation function may not
be reliable for times longer than the time required for pas- Having computed the thermal conductivity of Si using the
sage of the phonon across the simulation tell. direct method and the Green-Kubo method, we are now in a

IV. DISCUSSION AND CONCLUSIONS
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position to directly compare the results. For the direct In consideration of these facts, it appears that the Green-
method at 1000 K, extrapolation tolL1/~ 0 yields a value of Kubo method is desirable for perfect crystal systems like Si
« of 6516 W/mK. The Green-Kubo method gives a resultthat have a very long mean-free path. To achieve comparable
of 62+ 16 W/mK for an 8< 8 X 8 system at 1000 K. We thus levels of precision, at least ten times as much simulation was
see that the two different methods yield essentially the sameequired for the direct method compared to the Green-Kubo
result within the errors inherent in the two different calcula-method, mainly due to the requirement that very large cells
tions. Furthermore, both methods are in reasonable agreere needed to accurately extrapolate to the infinite limit.
ment with the extrapolated experimental value of about 5However, we expect that very much depends on the mean-
W/mK at 1000 K2 This is good evidence that either method free path of the system under consideration. For example,
can be applied to compute bulk thermal conductivity in per-simulations on bulk yttria-stabilized zirconia systems indi-
fect crystalline solids. cate only a very small finite-size effect due to the very small
We also found nonexponential decays of the autocorrelamean-free path inherent to highly defective crystdis.this
tion function. Fitting to the autocorrelation function or the case, only rather small systems sizés~20 nm) are re-
frequency-dependent thermal conductivity assuming expogquired by the direct method. We expect that in this case the
nential decays resulted in various estimatek,ofvhich dif-  direct method will be computationally more efficient al-
fered by as much as a factor of 2 from direct integration ofthough we have not directly tested this point.
the autocorrelation function and from results of the direct For an inhomogeneous system containing, for example, a
method. Thus, although the error bars obtained in the calcugrain boundary, the direct method is preferable because it is
lations reported here are rather large, we believe that thpossible to directly compute the Kaptiza resistahteBy
results obtained by direct integration of the autocorrelatiorcontrast, the Kubo method simply computes an average ther-
function represents the most reliable way to computghen  mal conductivity over the entire system, thus rendering it
using the Green-Kubo method. unsuitable to study interfacial effects. In fact, the Green-
Each method apparently has its own strengths and wealkubo formalism assumes that the spatial variation of an ap-
nesses. For the direct method, the use of large temperatupdied current must be equivalent to the spatial variation of
gradients required~10° K/m) could introduce significant the temperature gradient, a condition certainly not met by an
nonlinear effects; however, the results of Sec. Il indicate thathhomogeneous system. This suggests that further work
nonlinear effects are small in this regime of temperature graneeds to be done to establish whether or not Green-Kubo
dients. For the Green-Kubo method, by contrast, one is almethod can be applied at all to inhomogeneous systems. In
ways assured of being in the linear-response regime. Thaddition, preliminary work on grain-boundary systems sug-
issue of simulation time appears to be a more significangests that grain-boundary effects are typically not strongly
consideration for the Green-Kubo method, where very slowsystem size dependent. This indicates that only one simula-
convergence of the current-current correlation function is obtion is required to study the effect of boundary scattering
served. For example, while 1 ns of time appears adequate when using the direct method, thereby greatly reducing the
to obtain a smooth temperature profile and a value for computational cost
converged to within=10% using the direct method, the same  Although not a subject of the current paper, the method of
amount of simulation time using the Kubo method results inEvang® has been found by many authors to be a fast and
statistical errors as large as50%. reliable way of obtaining thermal conductivity values. By
Both methods exhibit finite-size effects. These are mucttombining elements of equilibrium and nonequilibrium
more severe in the direct method due to the presence of reaimulations, this method reduces the necessary computation
interfaces at the heat source and sink. For a system with tme for obtainingx. In addition, it may be more well suited
long mean-free path, such as the diamond or Si systems stuthan the Green-Kubo method for obtainirgn the limit of
ied here, the necessary system size to achieve a fully cons=0. As with Green-Kubo method, this method is only well
verged value ok may be beyond reach of an atomistic simu- suited to the describe the properties of homogeneous sys-
lation. For example, a cell of about18toms was needed for tems.
Si at 1000 K to achieve a result within 30% of the bulk
thermal conductivity. In spite of this restriction, we demon-
strated how finite-size effects may be estimated before a
simulation, and also how to extrapolate results to the bulk We are grateful to Dieter Wolf for suggesting this project
limit. However, this method requires several simulations atand for useful comments. This work was supported by U.S.
different system sizes in order to obtain the necessary lineddepartment of Energy, Office of Science under Contract
fit to extrapolate to 1/,=0. W-31-109-Eng-38.
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