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Comparison of atomic-level simulation methods for computing thermal conductivity

Patrick K. Schelling,1,2 Simon R. Phillpot,2 and Pawel Keblinski3

1Forschungszentrum, 76021 Karlsruhe, Germany
2Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439

3Department of Materials Science and Engineering, Rennselaer Polytechnic Institute,
110 8th Street, MRC 115, Troy, New York 12180-3590

~Received 9 July 2001; revised manuscript received 26 October 2001; published 4 April 2002!

We compare the results of equilibrium and nonequilibrium methods to compute thermal conductivity. Using
Sillinger-Weber silicon as a model system, we address issues related to nonlinear response, thermal equilibra-
tion, and statistical averaging. In addition, we present an analysis of finite-size effects and demonstrate how
reliable results can be obtained when using nonequilibrium methods by extrapolation to an infinite system size.
For the equilibrium Green-Kubo method, we show that results for the thermal conductivity are insensitive to
the choice of the definition of local energy from the many-body part of the potential. Finally, we show that the
results obtained by the equilibrium and nonequilibrium methods are consistent with each other and for the case
of Si are in reasonable agreement with experimental results.
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I. INTRODUCTION

With the dimensions of electronic and mechanical devi
approaching the nanometer scale, efficient heat removal
crucial importance to both performance and function. Wh
a basic understanding of heat transport in dielectrics has
ready been achieved, many important issues remain u
solved. Interpretation of experimental results remains d
cult because typically the contributions of individual defe
cannot be deconvoluted. Molecular-dynamics~MD! simula-
tions are ideal for addressing such issues since they ca
used to study individual microstructural elements, there
identifying the most important issues for thermal conduct
ity in polycrystalline materials. For example, by elucidati
the correlation between grain-boundary structure a
thermal-transport properties, one may hope to eventually
sign materials with tailored thermal properties. Howev
prior to a systematic study of interfacial effects, it is nec
sary to firmly establish suitable computational metho
While there are a number of studies of thermal transpor
bulk or interfacial systems, methodological issues still
main unresolved. The aim of this paper is to resolve
remaining methodological issues, thereby laying a so
foundation for the simulation of heat-transfer problems
solids.

The thermal conductivity relates the heat current to
temperature gradient via Fourier’s law as

Jm52(
n

kmn]T/]xn , ~1!

whereJm is a component of the thermal current,kmn is an
element of the thermal conductivity tensor, and]T/]xn is the
gradient of the temperatureT. Experimentally,k is typically
obtained by measuring the temperature gradient that re
from the application of a heat current. In MD simulations t
thermal conductivity can be computed either using noneq
librium MD ~NEMD!1–11 or equilibrium MD ~EMD!.1,12–18

The two most commonly applied methods for computi
thermal conductivity are the ‘‘direct method’’1–7 and the
0163-1829/2002/65~14!/144306~12!/$20.00 65 1443
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Green-Kubo method.1,12–18The direct method is an NEMD
method that relies on imposing a temperature gradient ac
the simulation cell1–7 and is therefore analogous to the e
perimental situation. By contrast, the Green-Kubo appro
is an EMD method that uses current fluctuations to comp
the thermal conductivity via the fluctuation-dissipation the
rem.

In this paper we systematically explore both the direct a
Green-Kubo methods. In each case, we first address is
related to the simulation time necessary to achieve equ
rium or steady state and also accurate statistical averag
We then demonstrate the importance of finite-size effects
arise when the mean free path for a bulk system is com
rable to the size of the simulation cell. In the direct meth
we find that unless the simulation cell is many times long
than the mean-free path, scattering from the heat source
heat sink contributes more to the thermal resistivity th
does the intrinsic anharmonic phonon-phonon scatter
However, we show in Sec. II that a value for the therm
conductivity of an infinite system can be reliably obtained
the direct method from simulations of different size syste
and an extrapolation of the results to an infinite-size syst
Finally, we compare the results of the direct and Green-Ku
methods. For thermal transport in liquids, a comparison
previously been made showing good agreement between
Green-Kubo and an NEMD method.18 However, thermal
transport in liquids is very different from solids, and also t
NEMD method used in Ref. 18 is different from the dire
method considered here. Only one comparison of the di
method and the Green-Kubo method for determining ther
transport in solids has previously been published.7 This work
demonstrates good agreement between the direct and G
Kubo methods for the special case of a disordered tw
dimensional lattice model; however, the system was fin
and not periodically repeated, thereby introducing bound
scattering. In this paper, we simulate the more general c
of three-dimensional systems with periodic-boundary con
tions. By contrast with Ref. 7, the elimination of surfac
scattering by the application of periodic-boundary conditio
results in very weak finite-size effects for the Green-Ku
method. We thus find that the finite-size effects associa

with using the Green-Kubo method are actually very differ-
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SCHELLING, PHILLPOT, AND KEBLINSKI PHYSICAL REVIEW B65 144306
ent from those associated with the direct method. Never
less, when finite-size effects are treated correctly and s
ciently long simulations are performed, the Green-Ku
method and the direct method are indeed consistent
each other.

We use crystalline silicon as a model system for our sim
lations. Because Si is a semiconductor, it is expected tha
contribution to heat conduction by the electrons will
small, and thus an atomistic model that ignores elect
transport can be used. In addition, a very well underst
potential for Si due to Stillinger and Weber~SW! already
exists.19 The SW potential utilizes two- and three-body inte
action terms~see below! in order to stabilize the diamon
lattice. This potential accurately describes elastic proper
phonon dispersion curves, yield strengths, and therm
expansion coefficients.20–23 Using the elastic constants ob
tained in Ref. 22 for the SW model, we compute the lon
tudinal and transverse acoustic sound velocities to be 8
and 5720 m/s, which are very close to the experimental
ues of 8480 and 5860 m/s.24 Since the thermal-transpo
properties of a perfect crystal are governed by the acou
sound velocities and anharmonic effects that are also im
tant for thermal expansion, the SW potential should be w
suited to describe the thermal conductivity of Si near
above the Debye temperature, which is about 650 K.24 Fur-
thermore, much work has been done to characterize g
boundaries in Si, making it an ideal system to study gra
boundary effects.25,26

The rest of the paper is organized as follows. Section
describes the direct method, including results for Si. Sec
III details results of the application of the Green-Kubo EM
method. In the final section, we discuss the strengths
weaknesses of the two methods, and directly compare
results obtained for the Si system under consideration.

II. DIRECT METHOD

In this section we present a brief discussion of deta
related to the direct method and results for the SW Si po
tial. In particular, we present an analysis of thermal equ
bration, the effects of nonlinear response, and finite-size
fects. We analyze the finite-size effects in detail, includin
comparison to finite-size effects observed in simulations
diamond, and demonstrate how results for an infinite b
system can be extrapolated in spite of the importance of
scattering that occurs at the heat source and heat sink.

A. Background

The direct method of computing the thermal conductiv
is analogous to the experimental measurement. In Fig. 1
show a schematic representation of the simulation cell u
to computek. By rescaling particle velocities at each M
time step, heatD« is added in a thin slab of thicknessd
centered atz52Lz/4 and removed from a slab of the sam
thickness centered atz51Lz/4. Each particle velocity in the
source/sink region is scaled by the same factor such tha
resulting net kinetic energy is increased/decreased by
amountD«. Although only kinetic energy, and not potenti
energy, is added to the system, we expect that within a t
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cal vibrational period~,1 ps!, equilibration between kinetic
and potential energy will occur. Thus, when the syst
achieves steady state, the heat current is given byJz
5D«/2ADt. The resulting temperature gradient is then c
culated, and Fourier’s law@Eq. ~1!# is used to obtaink. A
complication arises from the need to eliminate the tende
of the center of mass of the entire system to drift, an eff
that results in an inaccurate measurement of the actual l
temperature that must be defined using velocities obtaine
a system with zero center-of-mass velocity. We therefore
the velocity-rescaling algorithm of Jund and Jullien5 that
eliminates this drift. Since equal amounts of energy
added and removed at each time step, energy is conserv
better than 1 part in 106 for an MD step of 0.55 fs. In addi-
tion to these considerations, we shall see below that
method creates energy currents that can propagate ba
cally across the system. However, by performing seve
simulations for different systems sizes, the behavior of
infinite system can be extrapolated.

From Fig. 1 we see that the presence of the heat so
and heat sink and the application of periodic-boundary c
ditions produces a current in two opposite directions. B
cause the heat current flows along a well-defined directio
the lattice, a single simulation can be used to obtaink only
along one crystal lattice direction. To obtaink along a dif-
ferent crystal lattice direction, an entirely new simulatio
with a different simulation cell must be performed. This lim
tation does not exist for the Kubo method, where the en
thermal conductivity tensor is computed in just one simu
tion.

The direct method involves large (;109 K/m) tempera-
ture gradients. Because these temperature gradients are
outside of the experimental range, it is not cleara priori that
results obtained using the direct method will be consist
with experiment. Specifically, very large temperature gra
ents may introduce significant nonlinear response effe
such that Fourier’s law may not apply; therefore, it is impo
tant to test the effect of changing the magnitude of the th
mal current on the resulting computed value ofk. Below we
shall establish that there exists a range of values forD«
where the degree of nonlinearity is acceptable.

FIG. 1. Schematic representation of three-dimensional perio
simulation cell for direct summation of thermal conductivity. Th
simulation cell has lengthLz . There is a slab of thicknessd at z
52Lz/4 into which energyD« is added at each MD step. Likewise
in the slab atz5Lz/4, energyD« is removed at each MD step. Th
resulting thermal current isJz . Points labeled 1 and 2 show ap
proximate positions of slabs used to examine evolution of the tim
averaged temperature~see Fig. 2!.
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A critical feature of the simulation cell shown in Fig. 1
the existence of boundaries at the edges of the heat so
and heat sink. Because the atomic dynamics in the hot
cold slabs is altered by the simulation algorithm, the me
free path is limited by the size of the system; this regime
known as the Casimir limit. The mean-free path can be e
mated from data for the thermal conductivity, specific he
and velocity of sound. As we estimate below for SW Si
500 K, the mean-free path is about 100 nm. However, as
will demonstrate, by carrying out a finite-size analysis
significantly smaller systems, it is possible to obtain a go
estimate ofk for an infinite system.

B. Equilibration

For the direct method, it is important to establish tha
steady-state current flow has been achieved. This amoun
obtaining a stationary temperature profile as a function
time, thus insuring that only steady-state currents are flow
and, hence, that the thermal conductivity can be obtain fr
Fourier’s law@Eq. ~1!#. It was found by Maiti, Mahan, and
Pantelides2 that very long~;1 ns! simulations were neces
sary to achieve a smooth temperature profile for a Si gr
boundary system. We therefore chose a total simulation t
of 1.1 ns~23106 MD steps for an MD time step of 0.55 fs!.
We compute the average temperature in a thin slice~0.14 nm
in width! of the system centered at positionz as

^T~z!&M5
1

M (
m50

M21

TN2m~z!, ~2!

where^T(z)&M is the average temperature atz averaged over
the finalM time steps of the simulation, andTN2m(z) is the
instantaneous temperature atz for the time stepN2m. The
total number of steps in the simulation isN, and one can
therefore see thatM must be smaller thanN21. By averag-
ing in this way, we can be certain that for smallM, the
fluctuations are entirely statistical and not due to trans
effects related to the current sources. AsM increases, we
may see fluctuations due to transient effects related
achieving a steady-state thermal current. In Fig. 2 we sh
the time-averaged temperatures of slices 19 nm to either
of the heat sink for a 4343288 system at 500 K~see Fig. 1
for the approximate positions of the two slices!. To obtain
Fig. 2, data were first averaged over 1000 MD step segme
which tends to eliminate some of the large temperature fl
tuations that occur for very short times~!1 ps!. We see very
little evidence of fluctuations in the averages as the ave
ing time is extended back neart50. Apparently the system
achieves steady state rather quickly so that the amoun
time for which the system is not in steady state is sm
compared to the entire 1.1 ns simulation time. Also, t
indicates that 1.1 ns is a long enough simulation time
obtain time-averaged temperature profiles, in agreement
the results of Maiti, Mahan, and Pantelides.2 Even though
transient effects appear to be small, in the following
throw out, the initial 110 ps of simulation data to be certa
that the system has reached steady state, thereby leaving
ps of data over which to compute time-averaged tempera
14430
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profiles. We note that the two time-averaged temperatu
shown in Fig. 2 should be the same since they are take
equal distances from the heat sink. We find a difference
about 2 K after 1.1 ns of averaging, which we take as
measure of the statistical precision of the calculation. Ty
cally, we find the statistical precision to be within about63
K for any point along the temperature profile. This is ve
good precision especially considering that each 0.14
thick slice at a given positionz contains only 32 atoms for a
simulation cell 434 in the direction perpendicular to th
thermal current.

In Fig. 3 we show a typical time-averaged temperatu
profile used to compute the thermal conductivity. In th
case, the system dimensions are 4343288 cells, and the
average temperature is 500 K. Within 6 nm of the source
sink region, a very strong nonlinear temperature profile
observed, which has been attributed by other authors to
strong scattering caused by the heat source or heat sink.2,4 In
the intermediate region~at least 6 nm away from the hea
source and sink!, the temperature profile is fit with a linea
function as shown in Fig. 4; the resulting temperature gra
ent is used in Eq.~1! to obtaink. We note that the gradient
measured for the two different linear regions, 0.31 and 0
K/nm, are very similar. Typically, the gradients fit to the tw
linear regions differ by less than 15%. The observed diff
ences in the computed gradients for the two different regi
are used to obtain an error estimate for the value of
thermal conductivity~see Fig. 6!. As we shall see below in
Sec. II D, the temperature profile observed in Figs. 3 an
results from a partly diffusive and partly ballistic transport
energy, the latter due to the fact that the systems sizes
are comparable to the mean-free path of phonons in the
tem.

FIG. 2. Time-averaged temperature for slices atz5136 nm~dot-
ted line! andz598 nm~solid line! for a 4343288 simulation cell
of Si using the direct method withD«5531024 eV and an aver-
age system temperature of 500 K. These slices are both 19 nm
the heat sink, which is located atz5117 nm. The approximate po
sitions of the slabs are shown if Fig. 1, with point 1 correspond
to z598 nm and point 2 corresponding toz5136 nm. Time aver-
ages@see Eq.~2!# begin at the end of the simulation (M50), and
are done up to the total length of the simulation (M5N21). In this
figure, data were first averaged over 1000 MD step segments.
entire simulation was 23106 MD steps, which corresponds to 1.
ns.
6-3
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C. Effect of deviations from Fourier’s law

To establish that Fourier’s law@Eq. ~1!# is obeyed and tha
nonlinear response effects are not important, it is neces
to establish that the computed value ofk does not depend
strongly on the value ofD« for some range of values ofD«.
To do this, we have computedk for several different values
of D« for a 434396 system atT5500 K. The thermal cur-
rent is proportional toD«/A, whereA is the cross-sectiona
area of the system~A54.73 nm2 for the 434396 system!.
The results are shown in Fig. 5. We see that while there d
appear to be some variation ofk with D«, for values ofD«/A
near 1.0631024 eV/nm2 ~corresponding to D«55
31024 eV for a system withA54.73 nm2!, the variations
appear to be rather small~,10%!, and an accurate value ofk
can be calculated. ChoosingD«/A significantly smaller than
131024 eV/nm2 tends to result in large error bars becau
the magnitude of the temperature difference between the
and cold ends of the simulation cell becomes comparabl
the typical statistical noise. Although no significant dev
tions from Fourier’s law are apparent from Fig. 5, we w
avoid unnecessarily large values ofD«/A. Thus, choosing a
value ofD«/A;131024 eV/nm2 ~i.e., 1.631025 J/m2! ap-
pears to be suitable, and in the remainder of this paper
will use a value of 531024 eV for D« for systems of dimen-
sion 434 ~i.e., 4.73 nm2! in the direction perpendicular to
the current.

D. Finite-size effects

Finite-size effects arise when the length of the simulat
cell Lz is not significantly longer than the phonon mean-fr
path.4,7 This is understood to be a result of scattering t
occurs at the interfaces with the heat source and sink. F
sample with length smaller than the mean-free path in
infinite system, the thermal conductivity will be limited b
the system size. This regime is known as the Casimir limi

FIG. 3. Typical temperature profile for a 4343288 system at
an average temperature of 500 K. The heat source is locatedz
539 nm, and the heat sink is located atz5117 nm. Within 6 nm of
the source and sink, a strong nonlinear temperature profile is alw
observed. For obtaining temperature gradients to computek from
Fourier’s law @Eq. ~1!#, we therefore make linear fits using on
parts of the system, which are at least 6 nm away from the h
source and sink~see Fig. 4!.
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simple approach to determine the effective mean-free p
l eff when Lz; l ` , where l ` is the mean-free path for a
infinite system, is to add the inverse mean-free paths. T
l eff is given by,
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FIG. 4. Linear fits to temperature profiles for a 4343288 sys-
tem at an average temperature of 500 K~see Fig. 3!. Temperature
profiles were fit for the regions at least 6 nm away from the h
source. In this case, linear fits are made over 66 nm of the sys
The fits in the case have slopes of~a! 0.31 K/nm and~b! 0.32 K/nm.
Taking the average, this results in a thermal conductivity from
~1! of 47.9 W/mK.

FIG. 5. Effect of changingD« for a 434396 system at an
average temperature of 500 K. This shows a broad range of va
for D«/A where nonlinear behavior is not present and Fourier’s l
is obeyed.
6-4
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1

l eff
5

1

l `
1

4

Lz
. ~3!

Here, the factor of 4 accounts for the fact that as phon
travel along the length of the simulation cell from the sou
to the sink, itsaveragedistance since the last scattering eve
should beLz/4. In other words, if we randomly select sever
phonons, on average they will be at a distanceLz/4 from
either the source or the sink where the last anharmonic s
tering event occurred. This assumes it has not undergone
anharmonic phonon-phonon scattering in the region betw
the source and the sink~i.e., it moves ballistically across th
system!. Equation ~3! suggests that a plot of 1/k vs 1/Lz
should be linear, and that the thermal conductivity of an
finite system can be obtained by extrapolating to 1/Lz50.
Indeed, this procedure has been carried out by Oligschle
and Schon to obtaink from simulations of trigonal Se
crystals.4

In addition to ballistic phonon transport, Cenian a
Gabriel27 have found that solitonlike modes may propag
ballistically across a system, resulting in deviations fro
Fourier’s law and a system-size-dependent thermal con
tivity. However, these effects depend strongly on the ene
of the input pulse and are only important for input energ
on the order of a few eV. This can be compared to the ra
small input energies used here (;1024 eV). In the last sec-
tion, we showed that the current simulation results dep
only weakly on the excitation energyD«, which is an indi-
cation that ballistic soliton propagation is not important
the current work. Even if solitons were a significant mode
energy transport in the current work, Eq.~3! should still be a
useful way of determining the mean-free path for an infin
systeml ` as long as the system sizes used are at least c
parable tol ` . In Ref. 27, the soliton mean-free path w
found to be about 70 lattice parameters at temperatures
low 50 K and can be expected to decrease strongly w
increasing temperature. Since we use rather long simula
cells ~between 96 and 768 lattice parameters! and high tem-
peratures~500 and 1000 K!, we believe that we are always i
a regime whereLz is significantly larger than the solito
mean-free path. Therefore, Eq.~3! should apply to the cur-
rent work regardless of whether the ballistic componen
phononlike or solitonlike.

For the Si system, we have performed simulations a
function of bothLz and simulation temperatureT. We used
systems ranging from 96 to 768 unit cells long, correspo
ing to Lz from 52 to 417 nm. For a nonprimitive unit ce
containing eight atoms the largest system, 4343768, con-
tained 98 304 Si atoms. The results for the thermal cond
tivity are shown in Fig. 6. For comparison, we also sho
data that we obtained for diamond using the Tersoff poten
for carbon.29 We first note from Fig. 6 that the slopes of th
T5500 K andT51000 K data for Si seem to be very sim
lar. To understand this effect, recall that the thermal cond
tivity in kinetic theory is given by

k5 1
3 cvl, ~4!
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wherec is the specific heat of the phonons,v is the group
velocity of an acoustic branch, andl is the mean-free path fo
scattering. For a purely classical simulation of the type
scribed here, each normal mode will havekBT of energy on
average. However, the specific heat in Eq.~4! is intended to
be only for those that carry a significant thermal current.
the case of Si, which has three optical and three acou
branches, we expect that the majority of heat is carried by
acoustic modes that have a significantly larger group ve
ity. With this assumption, the appropriate specific heat to
in Eq. ~4! is given by

c5 3
2 kBn, ~5!

wheren is the number density of atoms in the system. No
if we use our simple approach for determining 1@Eq. ~3!# we
obtain

1

k
5

a3

4kBv S 1

l `
1

4

Lz
D . ~6!

This gives us a crude estimate of the slope of 1/k vs 1/Lz
plots shown in Fig. 6. If we assume thatv in Eq. ~6! is given
by the average of the transverse and longitudinal branche
v51/3(vL12vT), we obtainv'6500 m/s from the elastic
constants calculated in Ref. 21 for the SW potential. T
results in a prediction of the slope of 1/k vs 1/Lz for the SW
Si model of 1.831029 m2K/W, which can be compared to
the result of the linear fit in Fig. 6 at 500 K of (2.060.4)
31029 and (2.96.5)31029 m2K/W at 1000 K. For dia-
mond, which has a smaller lattice constant and larger so
velocity, we see the Eq.~6! predicts a smaller slope whe
compared to Si, which is indeed observed in Fig. 6. Us
the experimental sound velocities,28 we obtain a prediction
for the slope of 2.2310210 m2K/W, which can be compared
to the result in Fig. 7 of (3.36.01)310210 m2K/W. While
the predictions and actual observed results appear to d
somewhat, and there appears to be some temperature d

FIG. 6. System size dependence of 1/k on 1/Lz . Data are shown
for Si at T5500 K and T51000 K and for diamond atT
51000 K. We note that the rate of change of 1/k with 1/Lz for Si
appears to be only slightly dependent on temperature. Also, the
of change for diamond appears to be different than the Si sys
This is the result of differences in the lattice constant and so
velocities of diamond and Si.
6-5
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SCHELLING, PHILLPOT, AND KEBLINSKI PHYSICAL REVIEW B65 144306
dence of the slope, the general trend of increasing slope
increasing lattice constant and decreasing sound velocity
pears to be consistent with the predictions of Eq.~6!.

The linear fits in Fig. 6 can also be used to estimate
thermal conductivity in the limit 1/Lz50. For Si, k(1/Lz
50) is 119640 W/mK at 500 K and 65616 W/mK at 1000
K. For natural Si, defect scattering significantly reducesk,
and the experimental values at 500 and 1000 K are abou
and 30 W/mK, respectively.24 While the experimental data
for isotopically enriched Si~i.e., containing fewer defects!
only extends to 375 K, the data in Ref. 30 were extrapola
to yield a value of about 120 W/mK at 500 K. At 1000 K, th
observed temperature dependence ofT2a with a'1.25 can
be used to obtain the much more uncertain estimate fork of
50 W/mK.30 These numbers are in reasonable agreem
with the simulation results obtained using the direct meth
This is not altogether surprising given the high quality of t
SW potential and the fact that we are comparing result
temperatures near or above the Debye temperature@;650 K
for Si ~Ref. 30!#, which is the point where a classical sim
lation should become valid. However, to fully compare t
temperature dependence ofk, more simulations are required
We also remark that the values fora of 1.5 and 1.6 have
been observed in simulation and experiment, respectivel14

FIG. 7. Normalized current-current correlation functio
^J(t)"J(0)&/^J(0)"J(0)& vs t for a 63636 Si system containing a
total of 1728 atoms. In~a!, we see that for very short times~,0.1
ps! there is a very abrupt decay in the current-current correlatio
For longer times in~b!, we see that correlations in the current pe
sist out to 100 ps.
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For diamond at 1000 K,k(1/Lz50) is 573660 W/mK,
compared to about 400 W/mK from experiment for isoto
cally enriched diamond.31 We note that small errors in th
linear fits can result in rather large errors in the extrapola
value of the thermal conductivity, especially when the e
trapolated value ofk is very large.

We note that Eq.~6! provides a means of predicting th
system size necessary to achieve a given level of precisio
computingk via the direct method. For example, Eq.~6!
implies that we require a system size ten-times longer t
the mean-free path in an infinite systeml ` , in other words
Lz'40 l ` , to obtain a value ofk within 10% of the correct
bulk value. Using the slopes calculated above for the dep
dence of 1/k on 1/Lz ~1.831029 m2K/W for Si and 2.2
310210 m2K/W for diamond!, we can estimate the mean
free paths for a bulk systeml ` based on the extrapolate
value ofk. For Si, estimatingl ` in this way results in values
of 100 nm atT5500 K and 60 nm atT51000 K. For dia-
mond we obtain 65 nm atT51000 K. These estimates sug
gest that we require a system at least 7300 unit cells lon
obtain a result within 10% for Si at 500 K, which is almo
ten-times longer than the largest system studied here. Fo
nately, we have shown here that even for small syste
extrapolation to the infinite-system limit is possible, and a
that useful information~for example temperature dependen
of k! can be obtained even from system withLz! l ` .

We have also studied the dependence ofk on the dimen-
sions perpendicular to the current flow. It is expected thak
will not depend as sensitively on the dimensions perpend
lar to the current as on the lengthLz . Due to periodic bound-
ary conditions on the simulation cell, phonons are free
travel across the simulation cell perpendicular to the curr
direction without scattering from any boundaries. Hen
changing the dimension perpendicular to the current does
change the scattering in any obvious way. In Table I we sh
a comparison ofk obtained for systems of different sizes
the direction perpendicular to the current. For each differ
system size we have scaled the value ofD« so that the re-
sulting current densityJz is the same in each case. The d
ferent values ofD« used are also shown in Table I. Whil
still equivalent within statistical uncertainties, the 232 sys-
tem studied appears to have a value fork slightly larger that
the results for larger systems. Cells withLz much larger than
the transverse dimension will have tend to sample a lar
fraction of modes with wave vector along the current dire
tion. To estimate this effect, we note that for a finite-si

s.

TABLE I. Comparison ofk as for different cell sizes perpen
dicular to the direction of the current. Each system was 144 u
cells long parallel to the current. Values ofD« were scaled with the
system size so that the resulting thermal currentJg was the same in
each case. The estimated error ink in each case is63 W/mK.

Transverse dimensions D« ~eV! k ~W/mk!

232 1.2531024 34
333 2.8131024 29
434 5.0031024 31
636 11.2531024 30
6-6
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system the thermal conductivityk can be written in terms o
the cell volumeV, group velocityv, and mean-free pathl as

k51/VkBv l (
kxkykz

kz
2/k2, ~7!

where the summation is over all componentkx , ky , andkz
appropriate for the system consideration. For a very la
system, the value of the summation in Eq.~7! approaches 1/3
and hence we obtain the standard result fork given by Eq.
~4!. However, the summation in Eq.~7! can be different for
small or irregularly shaped systems. Using Eq.~7! we esti-
mate that this effect can produce an increase in value of
thermal conductivity for a 2323144 system of at most 20%
compared to a 4343144 system. For system sizes of
33 unit cells or larger, the values ofk in Table I are equiva-
lent within the error inherent in the calculations, and the
appears to be no systematic changes ink as the transverse
dimensions are changed. These results indicate that th
34 systems used for Fig. 7 is adequate and that the value
1/k obtained by extrapolation to 1/Lz50 are representative
of the true infinite-system limit.

We have shown in this section that the direct method
practical method for obtaining the thermal conductivity
bulk materials. Deviations from Fourier’s law appear to
small over a large range of values forD«. Also, we have
found that 1 ns of simulation time is adequate to obt
smooth temperature profiles. Most importantly, we ha
shown how to estimate finite-size effects related to the len
Lz and also how to extrapolate results to the infinite lim
(1/Lz50). Finally, finite-size effects related to the dime
sions perpendicular to the applied current appear to be sm

III. GREEN-KUBO METHOD

The Green-Kubo method represents an EMD techniqu
computek. Because simulations are done in equilibrium, a
the transport coefficients ascertained using the Green-K
formula as a result of the fluctuation-dissipation theore
there is no imposed driving force, and hence the system
always in the linear-response regime. However, it has b
established that finite-size effects do play a role in apply
the Green-Kubo method.12,14 In addition, very long simula-
tion times appear to be needed to sufficiently converge
current-current autocorrelation function~see below!.12,13,16In
this section we use the Kubo method to computek for Si. We
address the finite-size effects as well as convergence diffi
ties due to the finite simulation time.

A. Background

EMD simulations rely on relating the equilibrium curren
current autocorrelation function to the thermal conductiv
via the Green-Kubo expression

kmn~tm!5
1

VkBT2 E
0

tm

^Jm~t!Jn~0!&dt, ~8!

whereV is the system volume,kB is the Boltzmann constant
T is the system temperature, and the angular brackets de
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an ensemble average, or, in the case of an MD simulation
average over time. In practice, at each MD step we comp
the heat current that is then saved to disk. Since the sim
tion is performed for discrete MD steps of lengthDt, Eq. ~8!
is in fact a summation. Including the time averaging, wh
we actually compute is

kmn~tM !5
Dt

VkBT2 (
m51

M

~N2m!21 (
n51

N2m

Jm~m1n!Jn~n!,

~9!

wheretM is given byMDt and Jm(m1n) is the mth com-
ponent of the heat current at MD timestepm1n. Note that
the number of steps for integrationM must be less than the
total number of simulation stepsN. Typically, as we will see
below, the total number of integration stepsM is consider-
ably smaller than the total number of MD steps to ass
good statistical averaging. For example, the simulations p
sented here haveN of at least 63106 MD steps~3.3 ns for a
0.55 fs MD step!, while the summation limitM in Eq. ~9! is
usually done for only about 43105 MD steps (tM
5220 ps). The bulk thermal conductivity, which is formal
found from the limittM→`, should be recovered by Eq.~9!
as long astM is longer than the time required for curren
current correlations to decay to zero.

An important issue associated with the Green-Ku
method is the precise definition of the local energy neede
evaluate the heat current. The heat current is written as

J5
d

dt (i
r i~ t !« i~ t !, ~10!

wherer i(t) is the time-dependent coordinate of atomi and
« i(t) is the site energy. For a pair potential, where the to
potentialEpot energy is written in terms of the pairwise in
teractionsu2(r ) as

Epot5
1

2 (
i j

u2~r i j !, ~11!

a sensible choice is to evenly divide the potential ene
between each pair of atoms. Then the site energy« i is take to
be

« i5
1

2
mivi

21
1

2 (
j

u2~r i j !. ~12!

For this definition the thermal current can easily be shown
be given by

J~ t !5(
i

vj« i1
1

2 (
i j i Þ j

r i j ~Fi j "vi !, ~13!

whereFi j is the force on atomi due to its neighborj from the
pair potential. However, the SW potential is made up of n
only pairwise terms but also three-body interaction term
While no choice is unique even for a pair potential, t
choice above seems the most reasonable. For the three-
interactions, however, more than one reasonable choic
possible. The potential energy for the SW potential is writt
as
6-7
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Epot5
1

2 (
i j

u2~r i j !1
1

6 (
i jk

u3~r i ,r j ,r k!. ~14!

The first term is just the pair potential, which we treat
discussed above. The three-body term in the SW mode
written as

u3~r i ,r j ,r k!5« f 3~r i /s,r j /s,r k /s!, ~15!

and the termf 3(r i /s,r j /s,r k /sk) is taken to be

f 3~r i /s,r j /s,r k /sk!5h~r i j ,r ik ,u j ik !1h~r jk ,r j i ,uk j i !

1h~r ki ,k j ,u ik j !, ~16!

where u j ik is the angle betweenr i j and r ik . One obvious
choice is to define the site energy of atomi as

« i5
1

2
miv i

21
1

2 (
j

u2~r i j !1
1

6 (
jk

u3~r i ,r j ,r k!. ~17!

It can easily be seen that by summing this expression ovi
one obtains the kinetic energy plus the potential-energy
pression for the SW potential in Eq.~14!. This definition
leads to a thermal current defined by

J~ t !5(
i

vi« i1
1

2 (
i j i Þ j

r i j ~Fi j "vi !1
1

6 (
i jk

~r i j 1r ik!

3~Fi jk "vi !, ~18!

whereFi j is the force due to the pair potential and the thre
body force termFi jk is given by

Fi jk52¹iu3~r i ,r j ,r k!. ~19!

However, another reasonable definition is to assign te
with atomi at the vertex of the trioijk entirely to atomi. This
would then result in a definition for the local site energy

« i5
1

2
miv i

21
1

2 (
j

u2~r i j !1
1

2
«(

jk
h~r i j ,r ik ,u j ik !,

~20!

which leads to the expression for the heat current

J~ t !5(
i

vi« i1
1

2 (
i j i Þ j

r i j ~Fi j "vi !1(
i jk

r i j @Fj~ i jk !"vj #,

~21!

with the three-body termFj ( i jk ) given by

Fj~ i jk !52«¹jh3~r i j ,r jk ,u j ik !. ~22!

It has been assumed that the exact definition of the local
energy« i is not crucial to the results for the heat curre
However, to the best of our knowledge this assumption
never been tested. To investigate this point, we have c
pared the thermal conductivity obtained from Eqs.~17!–~19!
to Eqs.~20!–~22!. These results are presented below.

One advantage of using the Green-Kubo method is th
easily permits the study of anisotropic effects in the therm
conductivity. This is not easily accomplished with the dire
method described above since one picks a direction and
14430
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poses a thermal current. The Green-Kubo method can c
pute the entire thermal conductivity tensor with only o
simulation, and by a simple rotation obtain the thermal co
ductivity along any crystal direction. However, for a cub
system like the one considered here,k is known to be iso-
tropic.

In order to preserve the underlying cubic symmetry due
the cubic diamond lattice, we use cubic supercells in
simulations. We chose a simulation cell with thex, y, andz
axes placed along the@100#, @010#, and @001# crystal direc-
tions, respectively. With this orientation, the diagonal e
ments (m5n) of the thermal conductivity tensor defined b
Eq. ~8! should be identical. Likewise, the off-diagonal el
ments (mÞn) in Eq. ~8! should all be zero.

B. Equilibration and statistical averaging

The Green-Kubo expression is found to converge v
slowly, and direct integration apparently can lead to ambi
ous results.12–16 To obtain reliable results by direct integra
tion a very large number of MD stepsN must be used for
accurate statistical averaging@see Eq.~9!#. In addition, the
number of integration stepsM @see Eq.~9!# must be chosen
so that the integration timetM is larger than the characteris
tic time required for the current-current autocorrelation fun
tion to decay to zero. We shall see in this section that th
requirements result in a total simulation time greater tha
ns and an integration timetM of at least 200 ps.

To help reduce the total length of a MD simulation need
to obtaink, often the results for the current-current autoc
relation function are fit to an exponential function oft,
which is then integrated.12,13,16The idea is to fit the exponen
tial to data for small times (t,10 ps) where good statistica
averaging is relatively easy to obtain. A second techniqu13

to reduce the necessary computational load is to apply F
rier transformations to the current, and then take the li
v→0 of the expression

kmn~v,T!5
1

VkBT2 Jm~v!Jv* ~v!. ~23!

However, because the simulation time is finite, the averag
used to obtainJ(v) may not be reliable for low frequencies
and hence thev→0 limit is not trivial to perform.13,15 Both
techniques rely on assuming an exponential decay of
current-current autocorrelation function. By performing ve
long simulations~.3 ns!, we show below that the decay o
the current-current autocorrelation function is not expon
tial, and hence neither exponential fitting nor extrapolation
Eq. ~23! to v→0 represents a reliable way to obtaink.

In Fig. 7 we show a typical current-current autocorre
tion function vst @see Eq.~8!# for a 63636 diamond sys-
tem consisting of 1728 atoms averaged over the@100#, @010#,
and@001# directions and normalized to the value att50. In
other words, we show in Fig. 7 the time dependence of

^J~t!"J~0!&

^J~0!"J~0!&
5

(m51
3 ^Jm~t!Jm~0!&

(m51
3 ^Jm~0!Jm~0!&

~24!
6-8
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obtained from 6 ns of total simulation time, and using t
definitions of current and local energy given in Eqs.~17!–
~19!. We see in Fig. 7~a! that for short times (t,0.1 ps) the
autocorrelation function shows an abrupt decrease. This
also been found by Cheet al.12 for simulations of diamond,
and is believed to be related to high-frequency optical mo
that contribute little to the thermal conductivity. Indeed,
was established by Ladd, Moran, and Hoover17 that the
short-time decays and oscillations found in the curre
current correlations when the current is given by Eq.~10!
disappear when using an alternate form of Eq.~10!, which
instead uses phonon occupation numbers and group ve
ties. For longer times, Fig. 7~b! shows that the decay appea
to be much slower. As was found by Cheet al.,12 we find that
this slow decay is most important for establishing the th
mal conductivity. We note that some correlations appea
persist out to 100 ps or longer.

We obtain the thermal conductivity from Eq.~9!. The
value of the summation defined by Eq.~9! as a function of
the integration timetM is shown in Fig. 8 for the same dat
shown in Fig. 7. At a few typical points in Fig. 9 error ba
are included to show uncertainty in the results of direct in

FIG. 8. Thermal conductivity atT51000 K for a 63636 Si
system found by integrating the current-current correlation func
shown in Fig. 8 using Eq.~9! as a function of the upper integratio
limit tM . We see that the integral changes only very little beyo
200 ps, consistent with the observation that the current-current
relations shown in Fig. 8 are negligible beyond 200 ps.

FIG. 9. Normalized current-current autocorrelation functi
~solid line! for the same system as in Fig. 8. Included is an ex
nential fit with a decay constant of 5 ps~dotted line!. Beyond 10 ps,
the exponential fit is very poor.
14430
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gration. The statistical error was estimated from the cal
lated values ofk averaged over six different 1.0 ns of dat
We note that 100 to 200 ps of integration time appears to
adequate to obtain a converged value ofk, consistent with
the observations above that the correlation function in Fig
is very nearly zero by 100 ps. Direct integration to 200 ps
this case results in a value of 66 W/mK. For comparis
integration out to a time of 500 ps results in a value of
W/mK, but with significantly larger statistical error. Othe
simulations for different system sizes~see next section! show
no systematic variation in the values ofk obtained for inte-
gration timestM longer than about 200 ps. Since the flu
tuations ink obtained fortM greater than 200 ps appear to b
no larger than the estimated statistical error, we conclude
200 ps represents an adequate integration timetM and that
any observed fluctuations ink for longer integration times
tM result from statistical error.

This analysis shows that for a sufficiently longtM and
total simulation time, direct integration can be used to obt
k. However, it is desirable to find a technique that redu
the requirements for the total simulation time and also
creases the statistical error associated with direct integra
to long timestM . As we noted above, one possible techniq
is to fit exponential decays to the simulation data that c
then be integrated in Eq.~8!.12,13,16An example of an expo-
nential fit to the simulation data is shown in Fig. 9 for th
63636 simulation. The fit exponential decay constant w
5 ps. This can be compared to about a value of about 16
obtained by Che and co-workers for diamond at 300 K.12 We
see in Fig. 9 that while the fit is reasonable to a time of 10
for times beyond 10 ps the fit systematically underestima
the current-current correlation function. As a result, integ
tion of the fit function results in a value fork of 38 W/mK,
significantly smaller than the direct integration result of
W/mK for tM5200 ps.

In Fig. 10 we show the modulus of the frequenc
dependent thermal conductivityuk(v)u along with the fre-
quency dependence of the exponential fit shown from Fig

n

d
r-

-

FIG. 10. Modulus of the frequency-dependent thermal cond
tivity vs frequency for the 63636 Si system atT51000 K ~solid
line!. Included is the modulus of the Fourier-transformed expon
tial fit ~dotted line! from Fig. 10. For frequencies about 0.1 THz, th
fit agrees well with the data. However, below 0.1 THz significa
differences are apparent, consistent with the observation in Fig
that the decay is not well fit by an exponential.
6-9
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For exponential decays, the modulus of the frequency dep
dent thermal conductivity takes the form

uk~v!u5
k~0!

Av2t211
, ~25!

where k~0! is the static thermal conductivity andt is the
decay constant that is 5 ps from the fit in Fig. 9. Above 0
THz the fit agrees well with the data. However, significa
differences arise below 0.1 THz. This is consistent with
results of the exponential fitting in Fig. 9, which shows th
only for very short times~,10 ps! does the exponential fi
agree with the data.

We note that other authors have found a similar nonex
nential character to the decay of the current-current auto
relation function. For example, Volz and Chen14 found de-
viations in fits to the frequency-dependent therm
conductivity very similar to those shown in Fig. 10. In add
tion, Li and co-workers13 used exponential fits that appear
systematically underestimate the current-current autocorr
tion function except in the regime where the function was
We thus conclude that the method of exponential fitting
not an accurate way to computek. Likewise, fitting to
frequency-dependent data in Fig. 10 with a functional fo
given by Eq.~25! is equally undesirable.

In conclusion, we have found that 6 ns of data are
equate to obtaink by direct integration to statistical error
within 20%. In the next section, we will use somewh
shorter simulation times~3 to 4 ns!, with only slightly larger
errors. Exponential fitting to current-current correlation fun
tions, or fitting to the frequency-dependent thermal cond
tivity assuming an exponential decay in the current-curr
autocorrelation function, appears to be unjustified.

C. Finite-size effects

Finite-size effects have been seen by other authors
perfect-crystal systems when using the Green-Ku
method.12,14However, because a heat source and sink are
used in the Green-Kubo method, the effect is appare
much less severe than that for the direct method. For
ample, Che and co-workers12 have found in applying the
Kubo formula to diamond that well converged results co
be obtained for a system of only about 4000 atoms wit
dimension of only 2.8 nm, much smaller than the estima
mean-free path of 174 nm. By contrast, we found above
even when the mean-free path was comparable to the sy
size, the direct method was different from the infinite s
limit by about a factor of two. Other authors have attribut
finite-size effects found using the Green-Kubo method
memory effects.12 In this explanation, due to the period
boundary conditions, a phonon may pass the same poin
space several times without scattering. Since the system
retain some dynamical information during the passage of
phonon, artificial correlations may exist in the autocorre
tion function. In this case, the correlation function may n
be reliable for times longer than the time required for p
sage of the phonon across the simulation cell.12
14430
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We have computed the thermal conductivity of Si usi
cubic cells containing 512, 1000, 1728, and 4096 atoms
at a temperature of 1000 K. These systems correspon
lengthsL of 2.17, 2.72, 3.26, and 4.34 nm respectively. F
all but the 1728 atom simulation, we obtained between
and 4.1 ns of data. The 1728 atom simulation was descr
above and had a total of 6 ns of data. In Table II we show
computed thermal conductivity obtained by direct integrat
over 200 ps of the current-current autocorrelation funct
for different choices of simulation cell. We see that the 5
atom (L52.17 nm) system results in the drastically low
value of 22 W/mK compared to the simulations at larg
system size. However, it is apparent from Table II that
results fork are well converged by 1728 atoms. This can
compared to Cheet al.12 for diamond, where 4096 atom sys
tem was considered adequate to obtain a converged valu
k. We note that the difference between the minimum syst
size required for convergence in diamond at 300 K and S
1000 K is likely to be due to the fact that the estimat
mean-free path for diamond@174 nm at 300 K~Ref. 11!# is
much larger than the mean-free path of Si~60 nm at 1000 K
from estimates above!.

D. Dependence on definition of local energy

The above results for the Kubo method were obtain
using the definitions for the thermal current given by Eq
~17!–~19!. As we pointed out, an alternate and no less r
sonable definition can be given by Eqs.~20!–~22!. While no
definition is unique, the two presented above are extreme
reasonable definitions, and agreement between the two
ferent definitions would seem to suggest that results fork are
insensitive to the particular definition used.

A comparison of the results using the two definitions f
the heat current is shown in Table II. The results are enco
agingly similar. The biggest difference occurred in the
3535 cell simulation, but was still less than 10% of th
magnitude ofk. It seems thus that results fork are relatively
insensitive to the particular definition of the thermal curre
and the fact that there is no rigorous and unique definition
the thermal current is not a serious impediment to using
Green-Kubo method.

IV. DISCUSSION AND CONCLUSIONS

Having computed the thermal conductivity of Si using t
direct method and the Green-Kubo method, we are now

TABLE II. Dependence ofk on system size using the Green
Kubo method with definitions provided by Eqs.~17!–~19! and Eqs.
~20!–~22!. The system temperature was 1000 K. System lengtL
was obtained using the lattice constant of 0.543 nm for Si.

Dimensions L ~nm!
Number
of atoms

k ~W/mK! from
Eqs.~17!–~19!

k ~W/mK! from
Eqs.~20!–~22!

43434 2.17 512 22 22
53535 2.72 1000 82 90
63636 3.26 1728 66 66
83838 4.34 4096 62 61
6-10
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position to directly compare the results. For the dire
method at 1000 K, extrapolation to 1/Lz50 yields a value of
k of 65616 W/mK. The Green-Kubo method gives a res
of 62616 W/mK for an 83838 system at 1000 K. We thu
see that the two different methods yield essentially the sa
result within the errors inherent in the two different calcu
tions. Furthermore, both methods are in reasonable ag
ment with the extrapolated experimental value of about
W/mK at 1000 K.30 This is good evidence that either metho
can be applied to compute bulk thermal conductivity in p
fect crystalline solids.

We also found nonexponential decays of the autocorr
tion function. Fitting to the autocorrelation function or th
frequency-dependent thermal conductivity assuming ex
nential decays resulted in various estimates ofk, which dif-
fered by as much as a factor of 2 from direct integration
the autocorrelation function and from results of the dir
method. Thus, although the error bars obtained in the ca
lations reported here are rather large, we believe that
results obtained by direct integration of the autocorrelat
function represents the most reliable way to computek when
using the Green-Kubo method.

Each method apparently has its own strengths and w
nesses. For the direct method, the use of large tempera
gradients required (;109 K/m) could introduce significan
nonlinear effects; however, the results of Sec. II indicate t
nonlinear effects are small in this regime of temperature g
dients. For the Green-Kubo method, by contrast, one is
ways assured of being in the linear-response regime.
issue of simulation time appears to be a more signific
consideration for the Green-Kubo method, where very s
convergence of the current-current correlation function is
served. For example, while;1 ns of time appears adequa
to obtain a smooth temperature profile and a value fok
converged to within610% using the direct method, the sam
amount of simulation time using the Kubo method results
statistical errors as large as650%.

Both methods exhibit finite-size effects. These are mu
more severe in the direct method due to the presence of
interfaces at the heat source and sink. For a system wi
long mean-free path, such as the diamond or Si systems s
ied here, the necessary system size to achieve a fully
verged value ofk may be beyond reach of an atomistic sim
lation. For example, a cell of about 105 atoms was needed fo
Si at 1000 K to achieve a result within 30% of the bu
thermal conductivity. In spite of this restriction, we demo
strated how finite-size effects may be estimated befor
simulation, and also how to extrapolate results to the b
limit. However, this method requires several simulations
different system sizes in order to obtain the necessary lin
fit to extrapolate to 1/Lz50.
m
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In consideration of these facts, it appears that the Gre
Kubo method is desirable for perfect crystal systems like
that have a very long mean-free path. To achieve compar
levels of precision, at least ten times as much simulation w
required for the direct method compared to the Green-Ku
method, mainly due to the requirement that very large c
are needed to accurately extrapolate to the infinite lim
However, we expect that very much depends on the me
free path of the system under consideration. For exam
simulations on bulk yttria-stabilized zirconia systems in
cate only a very small finite-size effect due to the very sm
mean-free path inherent to highly defective crystals.8 In this
case, only rather small systems sizes (Lz;20 nm) are re-
quired by the direct method. We expect that in this case
direct method will be computationally more efficient a
though we have not directly tested this point.

For an inhomogeneous system containing, for exampl
grain boundary, the direct method is preferable because
possible to directly compute the Kaptiza resistance.2,28 By
contrast, the Kubo method simply computes an average t
mal conductivity over the entire system, thus rendering
unsuitable to study interfacial effects. In fact, the Gree
Kubo formalism assumes that the spatial variation of an
plied current must be equivalent to the spatial variation
the temperature gradient, a condition certainly not met by
inhomogeneous system. This suggests that further w
needs to be done to establish whether or not Green-K
method can be applied at all to inhomogeneous systems
addition, preliminary work on grain-boundary systems su
gests that grain-boundary effects are typically not stron
system size dependent. This indicates that only one sim
tion is required to study the effect of boundary scatter
when using the direct method, thereby greatly reducing
computational cost.32

Although not a subject of the current paper, the method
Evans8,9 has been found by many authors to be a fast a
reliable way of obtaining thermal conductivity values. B
combining elements of equilibrium and nonequilibriu
simulations, this method reduces the necessary computa
time for obtainingk. In addition, it may be more well suited
than the Green-Kubo method for obtainingk in the limit of
v50. As with Green-Kubo method, this method is only we
suited to the describe the properties of homogeneous
tems.
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