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Variational study of the Holstein polaron
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The paper deals with the ground and the first excited state of the polaron in the one-dimensional Holstein
model. Various variational methods are used to investigate both the weak-coupling and strong-coupling case, as
well as the crossover regime between them. Two of the methods, presented here, introduce interesting elements
to the understanding of the nature of the polaron. Reliable numerical evidence is found that, in the strong-
coupling regime, the ground and the first excited state of the self-trapped polaron are well described within the
adiabatic limit. The lattice vibration modes associated with the self-trapped polarons are analyzed in detail, and
the frequency softening of the vibration mode at the central site of the small polaron is estimated. It is shown
that the first excited state of the system in the strong-coupling regime corresponds to the excitation of the soft
phonon mode within the polaron. In the crossover regime, the ground and the first excited state of the system
can be approximated by the anticrossing of the self-trapped and the delocalized polaron state. In this way, the
connection between the behavior of the ground and the first excited state is qualitatively explained.

DOI: 10.1103/PhysRevB.65.144301 PACS number~s!: 71.38.2k, 63.20.Kr
be
on
in
th
e
in

tio
om
v

ic
de
ei
-
r
e

,
-

n
in

em
oo

th
e
ro
re
e
o
r
o

m

,
g

y-
ated
de-
tron
ly

he
rate
ong
s,
ed
es,

ods,
in
re-

ns-
tron
en-

oint
this

tur-
us-
hat

of

the
of

ak-
e

ss-
e-
the
the

fine
this
ide
I. INTRODUCTION

Ever since Landau1 suggested that the electron can
trapped by the deformable lattice, strongly coupled electr
phonon systems have been the subject of intensive exam
tion. Besides the investigations of those systems in which
lattice is coupled to the whole electronic band, there has b
significant interest in the physics of a single polaron,
which the electron and the associated lattice deforma
form a quasiparticle, spatially and spectrally decoupled fr
the rest of the system. Lattice degrees of freedom make e
a single polaron problem a many-body one. The analyt
and numerical examinations of most electron-phonon mo
are thus difficult. For this reason, even the simple Holst
model2 ~suggested in 1959! is still being investigated in re
cent works. Various methods have been proposed in orde
calculate the polaron ground state of the Holstein mod
Almost exact results~except for the adiabatic limit! have
been obtained with the quantum Monte Carlo calculations3,4

the global-local method,5 the density-matrix renormalization
group method,6 and some exact diagonalization methods.22,23

The main goal of this paper is to determine the eleme
important for the qualitative description of the polarons
the whole range of electron-phonon coupling. Some of th
although already known, are found to be better underst
when supplemented with additional details.

The ground state of the Holstein system changes from
delocalized polaron state, in which the electron is nearly fr
to the small and self-trapped polaron state, as the elect
phonon couplingg increases. These two opposite limits a
usually identified as the weak- and strong-coupling regim
respectively. In the weak-coupling regime the influence
the small lattice deformation on polaron dynamics is ve
small, which makes the energies of polaron and electron h
ping to neighboring sites similar,tpol&t.

The exact ground state is an eigenstate of the system
mentum, regardless of the coupling.7 Therefore the polaron
ground state is delocalized for all parameters. However
the strong-coupling regimetpol becomes negligible, leadin
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to self-trappedpolaron states. According to Ref. 8, the d
namics of the small self-trapped polaron can be separ
into two time scales. On the short time scale, the lattice
formation is centered at some lattice site, and the elec
can virtually hop among the neighboring lattice sites. On
after a certain number of such events~of the ordertpol /t),
the polaron as a whole tunnels to a new central site. T
localized polaron states thus may lead to a very accu
estimation of the polaron ground-state energy in the str
coupling regime. Accordingly, for the self-trapped polaron
an exact diagonalization method of calculating the localiz
polaron states, rather than the translationally invariant on
can be used. By comparison to the results of other meth
it is shown that this approach introduces only minor errors
the ground-state energy of the self-trapped polaron. Mo
over, the localized polaron functions permit, unlike the tra
lationally invariant ones, a separate analysis of the elec
and phonon properties of the polaron. The local electron d
sity, the mean lattice deformation, and the on-site zero p
motions of the self-trapped polarons can be calculated in
way.

In the crossover~intermediate! regime, which is between
the weak- and the strong-coupling regime, no known per
bation calculation converges, which complicates the disc
sion of the polaron nature. Although it has been proved t
the change of the polaron ground state withg is smooth,9 the
physics of the rapid crossover between two opposite limits
the electron-phonon coupling, in the small interval ofg’s, is
not completely clear. In Ref. 23 it has been claimed that
phonon excitation associated with the first excited state
the system is uncorrelated to the electron in the we
coupling regime, while it is confined to the electron in th
strong-coupling regime. The transition occurs in the cro
over regime in which, in addition, the energy difference b
tween the ground and excited states becomes small. In
present paper, the excited polaron states are treated by
method which uses variational approach in order to de
and solve the generalized eigenvalue problem. Even if
method does not converge systematically, it does prov
©2002 The American Physical Society01-1
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interesting results concerning the nature of the pola
ground and first excited state.

II. GENERAL

The Holstein Hamiltonian reads

Ĥ52t(
n,s

cn,s
† ~cn11,s1cn21,s!1\v(

n
bn

†bn

2g(
n,s

cn,s
† cn,s~bn

†1bn!. ~1!

It describes the tight-binding electrons in the neare
neighbor approximation, coupled to one branch of disp
sionless optical phonons.cn,s

† is the creation operator for th
electron of spins at lattice siten, and bn

† is the creation
operator for the phonon.t is the transfer~hopping! integral of
the electron.\v and g are the phonon and the electro
phonon coupling energies, respectively. The Holstein Ham
tonian depends only on two ratios of relevant energy par
eters:g/\v and t/\v, i.e., the results will use\v as the
energy unit. It is often convenient to express the lattice
brations in terms of the nuclei space and momentum coo
nates,

x̂n5x0~bn
†1bn!, p̂n5 ip0~bn

†2bn!, ~2!

wherex05A\/2Mv and p05AM\v/2 are space and mo
mentum uncertainties of the harmonic oscillator grou
state.M is the mass of a nucleus andk denotes the spring
constant,v25k/M . By noting that the electron-lattice dis
placement coupling constanta, in g5ax0, is independent of
M, an alternative set of Holstein Hamiltonian parameters
be introduced,

t5\2/2mela
2, M5

k

v2
, «p5

a2

2k
5

g2

\v
,

which is convenient for the discussion of the adiabatic
gimeM@mel . Here,mel is the electron effective mass anda
is the lattice constant. It is worth noting thatt and «p ~the
binding energy of the polaron fort50) are independent ofM
and thus they are the only parameters relevant in the a
batic limit.

By using standard conventions forck,s
† andbq

† ,

ck,s
† 51/AN(

n
e2 iknacn,s

† , bq
†51/AN(

n
e2 iqnabn

† ,

Eq. ~1! can be rewritten in momentum space and separate
two mutually commuting parts,Ĥ5Ĥk,qÞ01Ĥq50,

Ĥk,qÞ0522t(
k,s

cos~ka!n̂k,s1\v (
qÞ0

n̂q

2g/AN (
k,s,qÞ0

ck1q,s
† ck,s~bq1b2q

† !,
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Ĥq505\vn̂q502gNel /AN~bq501bq50
† !,

wheren̂k,s5ck,s
† ck,s , n̂q5bq

†bq , andNel[(k,sn̂k,s .
The part which involves only theq50 phonon mode,

Ĥq50, can easily be transformed into the diagonal form,
using the unitary operatorŜq(j),

Ŝq~j!5exp~jbq
†2j* bq!,

Ŝq50
21 ~j!Ĥq50Ŝq50~j!5\vn̂q502~Nelg!2/N\v,

where j5Nelg/AN\v. Any eigenstate of Ĥq50 ,
Ŝq50(j)unq50&, has the same mean total lattice deformatio
x̄tot5(nx̄n ,

x̄tot5x0AN^nq50uŜq50
21 ~j!~bq50

† 1bq50!Ŝq50~j!unq50&

5x0AN~j* 1j!52x0Nelg/\v, ~3!

which is independent oft. Since theq50 part of the Hamil-
tonian commutes withĤk,qÞ0, it can be concluded that Eq
~3! is also valid for all eigenstates of the total Holste
Hamiltonian. The phonon part of these eigenstates can
represented in the form of a direct product of two groups
states, the first one includesqÞ0 phonon modes, while the
second includes only theq50 phonon mode. This is usefu
because one can always check approximate computation
calculatingx̄tot , or include this property in the computatio
itself. This specific property of theq50 mode is not re-
stricted to the particular dimension of the system, nor to
number of electrons. Moreover, it can also be found in so
other models in which the electron-phonon coupling cons
of the lattice deformation linearly coupled to the local ele
tron density. A hint in this direction was reported in Ref. 1

The total momentum of the system,K̂, is the sum of the
electron and phonon momenta,

K̂5(
k

kn̂k1(
q

qn̂q ,

and it commutes with the Hamiltonian. In the present tre
ment, only the low-energy polaron states~the low-lying
states of the system for which the electron and lattice par
the wave function are spatially bound!, are explicitly calcu-
lated. In this case, the total momentumK of the system is
also the polaron momentum.

III. METHODS

The eigenstate computations reported here are base
the variational approach. Still, from the physical and ma
ematical point of view, there are significant differenc
among them. Each method is therefore described separ
in the present section. It is important to notice that two qua
tatively different kinds of polaron functions are employe
the localizedones and thetranslationally invariantones. The
primary objective of the methods with localized functio
are self-trapped polaron states, i.e., the strong-coupling
gime. On the other hand, translationally invariant states
1-2
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VARIATIONAL STUDY OF THE HOLSTEIN POLARON PHYSICAL REVIEW B65 144301
devised in the first place with the weak coupling and cro
over regime in mind. The methods with a small number
variational parameters are meant to help in understanding
basic properties of the polarons in different regimes of
Holstein model. Again, the methods with a very large nu
ber of variational parameters are necessary to obtain acc
results for the polaron states.

A. L method: A simple localized polaron function

Let us start with a simple localized polaron wave functi
formed as a product of the electron and the lattice part, c
tered at the lattice sitej,

uw j&5S (
n

hncj 1n
† D S)

m
Sj 1m~jm! D u0&. ~4!

Here, hn is the normalized electron function at sitej 1n,
(nhn* hn51, while Sj 1m(jm) denotes the coherent state o
erator acting on sitej 1m, with a complex amplitude,jm
5Re(jm)1 i Im(jm),

Sj 1m~jm!5exp~jmbj 1m
† 2jm* bj 1m!.

It is easy to see that operatorSj 1m(jm) shifts the space and
momentum coordinates of lattice vibration at a sitej 1m by
2 Re(jm)x0 and 2 Im(jm)p0, respectively,

Sj 1m~jm!5e[ i2 Im(jm)p0x̂ j 1m /\]e[ 2 i2 Re(jm)x0p̂ j 1m /\]

3e[ i Re(jm)Im(jm)] .

The variational energy of the state~4!, Ēw , is independent of
j, and is given by

Ēw52t(
n

hn* ~hn211hn11!1\v(
n

ujnu2

2g(
n

uhnu2~jn1jn* !. ~5!

The minimization of the energy with respect tojn establishes
a simple relationship between the lattice mean deforma
and electron density%n5uhnu2,

jn5~g/\v!%n⇒ x̄n5~a/k!%n , ~6!

so that only the equation forhn has to be solved. The well
known approximate solution to this problem is the large H
stein polaron2 valid in the long-wave limit,

hn5
1

A2dpol

cosh21~n/dpol!, dpol5
2t\v

g2
5

2t

«p
. ~7!

The numerical scheme suggested in Ref. 11, and den
here byL (L for localized!, is not restricted to long waves
and is used here in order to obtain the exact minimum of
~5!. The energy, henceforth referred to asEL , depends only
on two relevant Hamiltonian parameters,t andg2/\v5«p ,
and thereforeEL andx̄m

L are both independent ofM. For this
reason Eq.~6! is sometimes referred to as the adiabatic lo
ing of electron and lattice coordinates.
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It is noteworthy that the lattice part of the functionuw& j
L is

a simple product of coherent states with real amplitud
Consequently, the state of the lattice at some site is defi
by the ground state of the displaced harmonic oscillator. T
mean lattice deformationx̄m

L corresponds to the equilibrium
position of that oscillator, while the lattice zero-point motio
is approximated in Eq.~4! by that of the free lattice.

B. T and CT methods: Translational polaron functions
and the first excited state

Next, we shall study a translationally invariant solutio
composed of a linear superposition of the localized states~4!,

uCK&5
1

ANC
(

j
eiK ja uw j&. ~8!

uCK& describes the polaron state with the momentumK. A
similar type of function was proposed by Toyozawa.12 In the
present work,(mjm5g/\v is used so that the mean tot
deformation of function~8! satisfies Eq.~3!,

x̄tot5x0(
m

^CKu~bm
† 1bm!uCK&52x0g/\v.

The expectation value of the polaron energy,ĒC , may be
written in terms ofuw j&,

ĒC5

(
D

eiKDa^w j uĤuw j 1D&

(
D

eiKDa^w j uw j 1D&

5

(
D

eiKDaED

(
D

eiKDaSD

. ~9!

ED andSD are given in the Appendix. A simple method fo
calculating the minimum of the energyĒC has not yet been
proposed, but accurate results have been obtained in Re
by using the Toyozawa method, which includes a very la
number of variational parameters. Some additional appro
mations may be found in Refs. 10 and 14–18. The appro
mation used here simplifies the general expression in Eq~8!
by introducing the exponential form for functionshn and
jm ,16

hn5CGunu, jm5ABumueiKma, 0,G,B,1. ~10!

Equation~10! defines a polaron functionuCK(G,B)& which
is completely determined by two parameters,G andB.

In what follows, two different approaches are present
The first, denoted by the indexT (T for translational!, treats
G andB as the variational parameters for which the ene
minimum ET has to be found, and its corresponding polar
function is uCK

T&. The T method gives good results in th
weak- and the strong-coupling regime. Namely, in both
these limits, the functionuCK

T& becomes similar to the po
laron function obtained by the appropriate perturbat
calculations.

In the second approach, the variational method is use
define a generalized eigenvalue problem as follows. The
laron wave function, denoted by the indexCT (CT for com-
1-3
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bination of translational functions!, is rewritten as a linear
combination of functionsuCK(Gn ,Bn)&,

uFK
CT&5 (

n51

p

anuCK~Gn ,Bn!&. ~11!

It is understood here that the functionsuC(Gn ,Bn)& form a
set ofp generally nonorthogonal functions, defined byp dif-
ferent pairs of parameters (Gn ,Bn). Again, the coefficients
an should be determined from the requirement that the
pectation value of the energy,

ĒCT5
^FK

CTuĤuFK
CT&

^FK
CTuFK

CT&
,

is minimal,

]ĒCT /]an* 50, 1<n<p,

or,

(
n8

^CK~Gn ,Bn!uĤuCK~Gn8,Bn8!&an8

5ECT(
n8

^CK~Gn ,Bn!uCK~Gn8 ,Bn8!&an8 .

The solution of this generalized eigenvalue problem is a
of p orthogonal polaron functions,uFK,m

CT &, with correspond-
ing energiesECT

(m) . The ground-state energy isECT
(0) . One may

always include the functionuCK
T& in the sum~11! in order to

ensure that the energyECT
(0) is the same or better thanET , the

energy computed by theT method. Moreover, by paying fur
ther attention to the starting set of functionsuCK(Gn ,Bn)& in
Eq. ~11! at the outset, one is able to investigate the fi
excited stateuFK,m51

CT & of the system, when this state corr
sponds to an excited polaron. The best results for theCT
method are obtained when the numberp of uCK(Gn ,Bn)&
functions in Eq.~8! changes with the Hamiltonian param
eters. The special case where theCT method is used with
constantp52 is denoted by the indexCT2.

C. eT and eL methods:
Exact translational and exact localized polaron functions

Finally, this paper presents the results of two numeri
exact diagonalization methods.19–23 In order to compute the
low-energy polaron states, one approximates the infinite
mensional Hamiltonian matrix with a finite one, and pr
ceeds with the exact diagonalization of this matrix. The lo
est eigenvalue and eigenvector in such a reduced Hil
space correspond to the polaron energy and wave func
respectively. For a large sparse matrix, the energy and
wave function can be calculated very accurately, by using
appropriate numerical scheme, in the present case the L
zos algorithm.

The two exact diagonalization methods used here diffe
the choice of the basis of the Hilbert space. In the fi
14430
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method,23 denoted byeT (e stands for exact diagonalizatio
and T for translational!, the general orthonormal state
given by

un0 ,n21 ,n1 , . . . ,nm ,•••&K
eT

5
1

AN
(

j
eiK jacj

†un0 ,n21 ,n1 , . . . ,nm , . . . & j ,

~12!

which describes an eigenstate of the system with momen
K. nm is the number of phonons at themth lattice site away
from the electron. For example, at the sitej, and at the
nearest-neighbor lattice sites left and right from it, there
n0 , n21, andn1 phonons, respectively. The Hamiltonian~1!
does not mix states~12! with different momenta. Therefore
the polaron function obtained by theeT method has the sam
K momentum as the basis states. The current implementa
of the eT method is highly accurate, and from a practic
point of view may be treated as exact.23 For this reason, the
eT results can be used to determine the numerical er
present in the other methods.

The minimal number of states of the reduced basis ne
sary to obtain accurate results depends on the Hamilto
parameters. This number for theeT method increases ver
rapidly for \v!g, t, which prevents its use for both largeg
and t.

In the second exact diagonalization method, denoted
eL (e stands for exact diagonalization andL for localized!,
the general orthonormal state of the chosen basis is m
complicated than for theeT method,

u i ,n0 ,n21 ,n1 , . . . ,nm , . . . ;jm& j
eL

5cj 1 i
† S)

m
Sj 1m~jm! D un0 ,n21 ,n1 , . . . ,nm , . . . & j .

~13!

Here thei andm indices are given with respect to the cent
of polaron, which is placed at the sitej. Thuscj 1 i

† creates an
electron at thei th site from the polaron center atj, nm is the
number of extra phonons at themth site away from the po-
laron center, when the lattice is already distorted by the
herent state operatorsSj 1m(jm), i.e., x̄ j 1m52x0jm . TheeL
method calculates localized polaron wave functions. Nam
Eq. ~13! describes a localized state, with the polaron cente
site j kept constant. TheeL method is therefore accurate on
in the strong-coupling regime, in which the effects of polar
delocalization are negligible~self-trapped polarons!.

For a given set of Hamiltonian parameters,jm in Eq. ~13!
are determined by the use of theL method, i.e., by minimiz-
ing the energy~5!, jm5jm

L . If only those states~13! with all
nm50 are used in calculations, theeL method gives the
same polaron wave function as theL method. The additiona
states~13!, with nm phonon excitations, are necessary to o
tain the actual equilibrium positions of the lattice in the exa
localized polaron state and the zero-point motion of
renormalized lattice vibrations. It is worth noting that th
1-4
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VARIATIONAL STUDY OF THE HOLSTEIN POLARON PHYSICAL REVIEW B65 144301
electron and phonon parts of theeL polaron wave function
cannot be completely separated, as in the case of theL func-
tion.

In the case ofeL method, the mean lattice deformation
the localized polaron is approximately taken care of by
product of the coherent states operators,)mSj 1m(jm), which
keeps the necessary number of states~13!, in theeL method,
relatively small. In order to reduce the basis of the Hilb
space, the maximal allowed distance of the electron
phonons from the polaron center has been limited here by
choice u i u,umu<Dmax. The distanceDmax has been deter
mined from the condition thatjm /j0,1024 if m.Dmax.
The maximal total number of phonons has been kept limit
retaining the states with(mnm<4. As the sum(mnm does
not include the phonons associated with the coherent s
operatorsSj 1m(jm), the small value of(mnm is not a restric-
tion on the overall amplitude of the lattice deformation. T
accuracy of the results obtained by theeL method, supple-
mented by the two above-mentioned criteria, depends
course on the values of parameters.

For the purpose of clarity, it seems appropriate at t
point to review briefly the notationL, T, CT, eT, andeL of
all five presented methods. All methods based on the lo
ized polaron function are denoted by the letterL (L andeL
methods!, whereas all methods based on the translatio
function are denoted by the letterT (T, CT, andeT meth-
ods!. The lettere denotes an exact diagonalization meth
(eT andeL methods!, while a single letter notation (L and
T) suggests the simplest form of the method.

IV. RESULTS

As the variational methods of the preceding section the
selves, the results of the corresponding calculations ma
best understood in terms of the weak- and strong-coup
limits and the crossover between them. It has been sh
previously,24 on the basis of the global-local method f
0.1\v,t,10\v, that the empirical relation

gST5\v1At\v ~14!

describes well the values of parameters for which the va
tion of the effective polaron mass withg is the fastest. It will
be also argued here thatgST of Eq. ~14! describes accuratel
the crossover from the weak- to the strong-coupling lim
with respect to the nature of theK50 ground state. The
latter changes continuously from the light delocalized st
in the weak-coupling limit to the heavy self-trapped state
the strong-coupling limit, with the anticrossing of the tw
states atg'gST. The physical content of Eq.~14! is best
understood by considering the limits of small and larget with
respect to \v, when, respectively,gST'\v and «p

ST

5gST
2 /\v't. Both these conditions were qualitatively e

plained in Ref. 25. In the present section we first discuss
strong- and the weak-coupling limit, and then devote mos
our attention to the crossover between the two.

A. Strong-coupling limit

The nature of the self-trapped polaron may be discus
by analyzing the properties of the two polaron wave fun
14430
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tions given by Eqs.~4! and ~8!. When the localized polaron
functionsuw j& at different lattice sites are not orthogonal,

SD5^w j uw j 1D&Þd0,D ,

the local properties and delocalization effects ofuCK& in Eq.
~8! are a complex mixture. However, in both the weak- a
strong-coupling regimes, the translational polaron funct
can be approximately written in terms of orthogonal loc
ized polaron functions. In the weak coupling regime, t
orthogonality follows from the electron part of the wav
function,

SD;(
n

hn* hn1D'd0,D ,

while in the strong-coupling regime, it follows from the la
tice part,

SD;YD5expS 2
1

2 (
m

~jm* 2jm1D!2D'd0,D . ~15!

In Eq. ~15!, YD is the Debye-Waller factor. The conditio
~15! corresponds to the regime of self-trapped polarons. T
negligible contribution of the lattice part to the overlap
any two localized polaron functions at different lattice sit
results then in a negligible polaron hopping energytpol .

One may notice that in the limitYDÞ0→0 the transla-
tional form of the polaron function~8! has no consequence
on polaron energy, and the minimal values of the variatio
energies~5! and ~9! coincide, i.e.,ED , SD;d0,D in Eq. ~9!.
The hopping of the self-trapped polaron occurs only at
time scale which is much larger than the scale relevant
the local interplay between the electron and the lattice de
mation. Therefore an accurate description of the local
laron properties may be obtained even if the hopping of
polaron is completely omitted by using only localized p
laron functions. The translational invariance of the polar
may be, however, always restored in the same way as
function ~4! is used to obtain Eq.~8!.

The eL method provides very accurate results for t
ground-state energy of the self-trapped polaron. Except
it neglects the polaron hopping, the local polaron function
calculated exactly. The error of theeL method may be esti-
mated by using theeT method, that is, by subtracting th
exact energy of zero-momentum polaron stateEeT from EeL .
For the electron-phonon coupling which is greater than
critical electron-phonon coupling in Eq.~14! just by\v, i.e.,
g5gST1\v, the maximal error of theeL method isEeL
2EeT,331024\v. This is shown in Fig. 1, in which two
qualitative estimates oftpol in the strong-coupling regime ar
plotted as well. The first estimate givestpol as one-fourth of
the polaron bandwidth computed exactly by theeT method,

tpol;
1

4
WeT5

1

4
@EeT~K5p/a!2EeT~K50!#, ~16!

while the second estimate, based on theL method, multiplies
the electron hopping energy with the small Debye-Wal
factor,
1-5



o

e
f

re

a
e

per-
art

for
ttice
f
al

r-

rre-
ped
the

em
ith
r
r-

ro-
2
two

n is

lat-

har-

th
th

b
e
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tpol;tY1
L5t expS 2

1

2 (
m

~jm
L 2jm11

L !2D . ~17!

The estimation of the Debye-Waller factor in Eq.~17! is
based on the evaluation of the lattice part of the overlap
the two neighboringuw j

L& functions~theL method gives good
results for the mean lattice deformation of the self-trapp
polarons!. All three curves in Fig. 1 are similar functions o
g, which is not surprising since all plotted quantities are
lated to the polaron hopping energytpol in the strong-
coupling regime. Moreover, it may be seen from Fig. 1 th
the error of theeL method is almost equal to one-half of th
polaron bandwidth,

FIG. 1. The solid curve is one-fourth of the polaron bandwid
Eq. ~16!. The long-dashed curve corresponds to the error of
polaron energy calculated by theeL method,EeL2EeT . The short-
dashed curve is the electron hopping energy reduced by the De
Waller factor, Eq.~17!. All three curves are given as functions of th
electron-phonon couplingg5gST1\v5At\v12\v. The ener-
gies are given in units of\v ~i.e., \v51).
14430
f

d

-

t

EeL2EeT'WeT/2.
One of the advantages of theeL method is that it permits

separate calculations of the electron and the lattice pro
ties, in spite of the fact that the electron and the phonon p
of the eL wave function are not separable. For instance,
the polaron centered at the origin, the associated mean la
deformationx̄n is given simply by the expectation value o
x̂n of Eq. ~2!. Besidesx̄n , in the present paper the mean re
space uncertainty of the on-site lattice vibrationD x̄n and the
productD x̄nD p̄n , whereD p̄n is the mean momentum unce
tainty of the on-site lattice vibration, are calculated.

Figure 2 shows the data for two sets of parameter, co
sponding to a small self-trapped polaron and a self-trap
polaron extended over few lattice sites, respectively. For
second set of parameter~largeg andt), theeT method is not
accurate enough, and the question arises of whether theeL
polaron state is really a good approximation of the syst
ground state. It is difficult to prove that a polaron state, w
non-negligible hopping energytpol and an energy close o
lower thaneL energy, does not exist. This question is cu
rently under investigation.

Differences between the results of theL and theeL meth-
ods are also analyzed. It is found that they are more p
nounced for smallg. We may see from the results in Fig.
that the mean lattice deformation differs between these
methods. In the case of theeL method, the mean lattice
deformation is more extended and the width of the polaro
slightly larger. Additionally, the electron density of theeL
method remains approximately proportional to the mean
tice deformation@as in Eq.~6!, valid for theL method#, since

S xn
eL2

2g

\v
%n

eLx0D Y xn
eL,1%.

As has already been mentioned, the lattice part of theL func-
tion describes a set of displaced, but unrenormalized,
monic oscillators, soDxn

L5x0 , Dpn
L5p0, wherex0 and p0

,
e

ye-
roduct of
FIG. 2. Difference between the mean lattice deformation, mean uncertainty of the on-site lattice vibration and corresponding p
uncertainties for theL and eL methods. The inset shows the mean lattice deformation of theeL method. Hamiltonian parameters aret
510\v, g54.5\v, andt5250\v, g516.5\v, for the first and second plot, respectively.
1-6
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are defined in Eq.~2!. One may notice from Fig. 2 that rea
space uncertainties of the lattice vibrations on the sites o
pied by the polaron are larger in theeL case than in theL
case,Dxn

eL.x0, but uncertainties of on-site momentum la
tice vibrations are smaller,Dpn

eL,p0.
It may be concluded, from the first plot in Fig. 2 that th

electron affects mostly the central site of the small polar
The product of uncertainties for this site stays close to
free lattice value,Dxn50

eL Dpn50
eL 'x0p0. Therefore the pho-

non mode at the central site of the small polaron may
treated, in a good approximation, as harmonic. In particu
the renormalized frequency of this mode,ṽn50

eL , can be
roughly estimated from the relation

Dxn50
eL 'A\/2M ṽn50

eL .

SinceDxn50
eL .x0, it follows that ṽn50

eL ,v. Therefore in the
strong-coupling regime the first excited state should co
spond to the excitation of the renormalized phonon mo
rather than to the excitation of the phonon of energy\v,
which is uncorrelated to the polaron. One may also no
that the energy of the mean lattice deformation is larger
the eL method than theL method ~for the L method this
energy is minimal!. This is compensated for, however, wi
the lower energy associated with the zero-point motion of
ṽn50

eL phonon mode, which makes the total polaron energy
the eL method lower.

For the more extended self-trapped polarons, the re
malized normal phonon modes are expected to be sp
over a number of lattice sites. Consequently, a numbe
different phonon modes contribute to the lattice displacem
at the lattice sites occupied by the polaron. Thus the anal
of the on-site vibrations cannot give direct information
the renormalized lattice modes. Nevertheless, from the
ond plot in Fig. 2 one may notice that the product of unc
taintiesDxn

eLDpn
eL shows a minor deviation from that of th

harmonic vibration. This suggests that the renormalized
tice modes of the extended self-trapped polaron are harm
as well in a good approximation.

B. Weak-coupling regime

In the weak-coupling regime, theT method gives results
close to theeT results. Since the form of the functionT is
quite simple, it will be used in this section as a basis
further discussion. In the weak-coupling regime, the mi
mum of the variational energyET corresponds to small val
ues of the variational parametersG andA. The standard per
turbative ground state of the system with momentumK in
terms of theT method polaron function may be written a
follows:

uCK
T&5

1

ANC
(

j
eiK jacj

†

3S 11A(
m

BumueiKmabj 1m
† D u0&, K,Kc ,

~18!
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† uCK50

T &5bK
† 1

ANC
(

j
cj

†S 11A(
m

Bumubj 1m
† D u0&,

K.Kc . ~19!

For K,Kc the wave function~18! has two parts. The main
part corresponds to the free electron of momentumK, and
the smaller part, proportional toA, corresponds to the elec
tron dressed by one spatially correlated virtual phonon.
the thresholdKc , the energy of such a polaron state inte
sects with the energy of the system consisting of the ze
momentum polaron and one extra phonon with moment
Kc , Eq. ~19!. So, for K.Kc the ground state is achieve
with one real phonon in the system which carries the sys
momentum and which is spatially uncorrelated with t
polaron.13,26 For K,Kc this state becomes the first excite
state of the system. The difference between the energie
the ground state and the first excited state is the larges
K50, and is equal to\v.

The validity of the perturbative treatment requires that
weight of the second term in Eqs.~18! and~19! is small, i.e.,
the mean number of phonons associated with the lattice
formation has to satisfy

N̄ph
pol5A2~11B2!/~12B2!5

g2

~\v!2

~12B!~11B2!

~11B!3
!1.

~20!

Here,A has been eliminated by using Eq.~3!. There are two
ways to satisfy condition~20!. Either the electron-phonon
coupling is small,g!\v, or the lattice deformation is
spread to a large number of lattice sites, 12B!1. In the
latter case, the total mean polaron deformation does not h
to be small,x̄tot /x052g/\v, sinceg can be larger than\v.

The translationally invariant form of the wave functio
for the T method, given by Eq.~8!, provides an energy gain
due to the polaron delocalization. At the same time, the s
tial correlation between the electron and the lattice deform
tion has a finite length. For instance, in Eq.~8!, this length is
of the same order foruCK& and uw j&. The perturbative cal-
culation forB in Eq. ~18! gives

B5cos~Ka!1\v/2t2A@cos~Ka!1\v/2t#221.

B measures the electron-lattice correlation length.B is inde-
pendent ofg, which makes the correlation length finite, eve
in the limit g→0 for which the lattice deformation vanishe
A;g/\v.

On the other hand, the electron-lattice deformation cor
lation length and the polaron delocalization range are of
same order for the localized functions. This may be ea
seen from Eq.~4!. In the limit g→0 they both become infi-
nite. Thus in the weak-coupling regime one obtains a loc
ized polaron stateuw j

L& of very large width, but associate
with a tiny lattice deformation. This is specific for one
dimensional systems in which an attractive symmetric pot
tial has always a bound electron state. Therefore the co
sponding polaron energy is less than the free electron en
22t. In higher dimensions, an arbitrary attractive symmet
1-7
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potential does not have a bound electron state for sufficie
small g ~or the electron binding energy is too small to ba
ance the lattice deformation energy!, and the total polaron
energy is larger than22dt, whered is the dimension of the
system. This explains why, in the weak-coupling regime,
adiabatic~localized! polaron functions11,27,28fail to have an
energy lower than the free-electron energy, for the dimens
of the system greater than 1. A detailed parallel perturba
analysis of polarons in one, two, and three dimensions
given in Ref. 29.

C. Crossover regime

In the crossover regime the polaron hopping energytpol is
not negligible, and the translationally invariant polaron fun
tions should be used in order to obtain the full physical p
ture of the polaron. In order to calculate the numerical err
of different methods accurately, the present discussion of
crossover regime is restricted to the values oft smaller than
25\v, for which results from theeT method are available.

In order to examine the crossover regime it is instruct
to calculate the energy difference between the ground
first excited state,ECT

(1)2ECT
(0) . Let gc denote the value ofg

for which this difference is minimal,

]~ECT
(1)2ECT

(0)!/]gug5gc
50.

Our results indicate thatgc is very close to the value ofgST
given by Eq.~14!. For example, fort520\v, gc55.55\v,
while gST55.47\v. For smallert, gc andgST coincide even
better. The analysis of the effective mass,24 variational en-
ergy of the polaron ground state,30 polaron size,31 as well as
the behavior of the first excitation energy, suggest tha
dramatic change in the nature of the polaron ground state
the first excited state are intimately related in the crosso
regime.

This can be well understood by considering the proper
of the wave function in theT method. Neargc , this polaron
wave function has two separate energy minima in theG-B
parameter space defined by Eq.~10!, which become degen
erate forg5gc . Let the symbol, denote the lower mini-
mum atg,gc , and the symbol. the lower minimum atg
.gc . uC,& and uC.& are the corresponding polaron wav
functions. Even if they are not mutually orthogonal, they a
still physically quite different. The numerical data show th
the translational invariance ofuC,& contributes strongly to
the polaron energy. On the other hand, the translationa
variance ofuC.& has almost negligible energy contribution
i.e., uC.& describes an almost self-trapped polaron. It
worth noting that the degenerate nature of the variatio
energy which has been reported for the Toyozawa meth13

is of the same kind as the one of theT method discussed
here. Namely, bothT and Toyozawa method are based on
same polaron function~8!.

uC,& and uC.& can be combined to form new polaro
functions,

uFCT2
&5a,uC,&1a.uC.&. ~21!
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It should be mentioned that a similar combination of tw
states has been already used in Ref. 32 in order to calcu
the polaron ground state.uFCT2

& corresponds to Eq.~11!
with p52, which means that theCT2 method is implied.

From this treatment the improved ground stateuF0
CT2

& and

the approximate first excited polaron stateuF1
CT2

& are ob-
tained. It may be seen from Fig. 3 thatCT2 method describes
an anticrossing ofuC.& and uC,& states, which yields two

orthogonal states,uF0
CT2

& and uF1
CT2

&. In order to have a
better illustration of that anticrossing in Fig. 3, the exa
ground-state energyEeT is subtracted from all plotted energ
curves. Forg,gc the light stateuC,& is lower in energy,
and participates in the ground state more than theheavystate
uC.&. However, asg increases this balance changes contin
ously in favor of uC.&. The opposite trend is observed fo
the first excited state, which is heavier than the ground s
for smallerg and lighter for largerg.

The CT method gives better results for the ground a
first excited state when a large number of functions~largep)
in Eq. ~11! is used. From Fig. 3, one may estimate th
ECT

(1)2ECT
(0)'\v/2 atg5gc . Moreover, the energyECT

(1) , un-
like ECT2

(1) , satisfiesECT
(1),E(0)1\v for all g.gc , which is

an important improvement over thep52 result.

V. SUMMARY OF RESULTS

Figure 4 shows the results for the ground-state energy
the energy of the first excited state with total system mom
tum K50, as functions ofg, obtained by several differen
methods. Two plots correspond tot55\v and t510\v,
respectively. The ground-state energy obtained by theeT
method is subtracted from all the other results.g1 andg2 are
used to mark three different polaron regimes with respec

FIG. 3. The anticrossing ofuC,& and uC.& energies together

with the ground stateuF0
CT2

& and first excited stateuF1
CT2

& energies
are shown. The results of theCT method are also plotted for com
parison. The ground-state energy obtained by theeT method is
subtracted from all energy curves.t55\v, K50, and \v51,
while gST53.24\v.
1-8
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FIG. 4. The ground-state energy of the polaron for various methods and the first excited-state energy of theCT method are plotted for
t55\v and t510\v, respectively.K50 and\v51 for both plots. TheeT ground-state energy is subtracted from all results. Only
lowest\v energy interval of the spectrum, relevant for the ground and first excited energy, is shown. TheEeT1\v line denotes the first
excited-state energy, when it consists of the polaron ground state and one extra phonon; see Eq.~19!.
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the strength of the electron-phonon coupling. Forg,g1 the
mean number of phonons of the lattice deformation is l
than 1. Thus forg&g1 we recognize the weak-coupling re
gime. For g.g25gST1\v the eL polaron energy has a
negligible error~see Fig. 1!, which means that forg*g2
polarons are self-trapped, and we recognize the stro
coupling regime. The crossover regime is found in the in
val g1&g&g2, with g1,gST'gc,g2.

It may be noted from Fig. 4 that in the weak-couplin
regime, the energy obtained by theL method (EL) is close to
the free-electron energy22t ~for t>20\v, the absolute er-
ror of theL method becomes greater than\v in some inter-
vals of g). In the strong-coupling regime, for largeg, EL
approaches the exact polaron energy.

The error of theT method, as may be seen from Fig. 4,
the largest in the crossover regime in which the results
be improved by a better choice ofhn andjm in Eq. ~10!. In
the strong-coupling regime, the translationally invariant fo
of the functionT has no effect on the polaron energy, i.
both theT andL methods give very similar results.

The energy of the first excited polaron state,ECT
(1) , inter-

sects the energy of the ground state plus one phonon,EeT

1\v, for g.g1. After the minimum of ECT
(1)2ECT

(0) is
reached in the crossover regime atg5gc'gST, ECT

(1) ap-
proachesEeT1\v asymptotically forg.g2. As has already
been pointed out in Sec. IV, the excitation of the renorm
ized phonon mode explains the nature of the first exc
state in the strong-coupling limit. In Ref. 28 perturbati
theory was used to calculate the frequency of this local p
non mode,ṽ8, to the lowest order int\v/g2,

ṽ85vA12~ t\v/g2!2. ~22!

The obtained perturbative correction to the phonon f
quency is adiabatic, i.e., the square root in Eq.~22! is inde-
pendent of massM. It is worth noting that for largeg, ECT

(1)
14430
s

g-
r-

n

,

l-
d

-

-

calculated here shows approximately the same behavio
the energy of the ground state with one additional phonon
frequency~22!,

ECT
(1)'EeT1\ṽ8.

The lattice part of theCT function is spatially symmetric
with respect to the electron. Therefore in the strong-coupl
regime the first excited state, which has been identified h
as a local renormalized phonon mode of the self-trapped
laron, should be basically a symmetric oscillation of the l
tice deformation around the central polaron site. In the vic
ity of gST, on the other hand, the nature of the first excit
state is currently explained by the anticrossing of the s
trapped and the delocalized polaron state. The questio
how the excited self-trapped polaron state in the stro
coupling regime and the first excited state neargST may be
linked together is a matter of further considerations. O
may speculate that the anticrossing of the excited s
trapped polaron state and the delocalized state will give
answer.

VI. CONCLUSIONS

The present paper discusses the ground and first exc
states of the polaron for three different regimes of t
electron-phonon coupling parameterg. The results can be
briefly summarized as follows. In the strong-coupling regim
the polaron hopping energy to neighboring sites is negligib
and the self-trapped polaron states are obtained. The re
of the eL method suggest that the adiabatic picture of
localized polaron state is valid, in which some of the loc
lattice vibrations are renormalized by the presence of
electron. The numerical data show no significant deviat
from the adiabatic locking relation~6! of the electron site
density and the mean lattice deformation. In the small
laron case, the predominant effect of the electron is the lo
1-9
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ering of the frequency of the vibration at the central polar
site. The excitation of the renormalized phonon mode co
sponds to the first excited state of the small self-trapped
laron.

The nature of the polaron ground state in the crosso
regime has been discussed in a number of papers, an
rapid change withg has been well established numerical
The difference between the energies of the first excited s
and the ground state, as a function ofg, has a minimum for
g5gc . It is shown, by using theCT2 method, that the anti-
crossing of the self-trapped and the delocalized polaron s
can link the behavior of the ground and first excited polar
state. According to theCT method, forg.gc the effective
mass of the ground state is larger than the effective mas
the first excited state, while forg,gc the opposite is true. In
addition, it is found thatgc , which characterizes the firs
excited state, andgST, obtained from ground state analys
@Eq. ~14!# almost coincide fort,25\v.

Upon further reduction ofg the total mean number o
phonons bound by the polaron becomes smaller than 1,
the weak-coupling regime is reached. The nearly free e
tron is dressed by a cloud of virtual phonons, and its mas
slightly renormalized. The first excited state of the syste
with momentumK'0, can be viewed as the ground state
the polaron plus one additional uncorrelated phonon, ra
than as an excited polaron.

Finally, it is worth noting that there is a simple sum ru
B

144301
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te

te
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r

for the mean total lattice deformation, Eq.~3!, which is valid
for any number of electrons and is independent of the sys
dimension. This important sum rule may be extended
some other models in which the lattice deformation is l
early coupled to the local electron density.
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APPENDIX

In order to calculateSD andED of Eq. ~9!, the following
expressions may be used:

YD5expS 2
1

2 (
m

~jm* 2jm1D!2D ,

SD5YD(
n

hn* hn1D ,

ED52tYD(
n

hn* ~hn1D111hn1D21!1\vSD(
m

jm* jm1D

2gYD(
n

hn* hn1D~jn* 1jn1D!.
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