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Variational study of the Holstein polaron
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The paper deals with the ground and the first excited state of the polaron in the one-dimensional Holstein
model. Various variational methods are used to investigate both the weak-coupling and strong-coupling case, as
well as the crossover regime between them. Two of the methods, presented here, introduce interesting elements
to the understanding of the nature of the polaron. Reliable numerical evidence is found that, in the strong-
coupling regime, the ground and the first excited state of the self-trapped polaron are well described within the
adiabatic limit. The lattice vibration modes associated with the self-trapped polarons are analyzed in detail, and
the frequency softening of the vibration mode at the central site of the small polaron is estimated. It is shown
that the first excited state of the system in the strong-coupling regime corresponds to the excitation of the soft
phonon mode within the polaron. In the crossover regime, the ground and the first excited state of the system
can be approximated by the anticrossing of the self-trapped and the delocalized polaron state. In this way, the
connection between the behavior of the ground and the first excited state is qualitatively explained.
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[. INTRODUCTION to self-trappedpolaron states. According to Ref. 8, the dy-
namics of the small self-trapped polaron can be separated

Ever since Landdusuggested that the electron can beinto two time scales. On the short time scale, the lattice de-
trapped by the deformable lattice, strongly coupled electronformation is centered at some lattice site, and the electron
phonon systems have been the subject of intensive examinaan virtually hop among the neighboring lattice sites. Only
tion. Besides the investigations of those systems in which thefter a certain number of such everits the ordert,,/t),
lattice is coupled to the whole electronic band, there has beetime polaron as a whole tunnels to a new central site. The
significant interest in the physics of a single polaron, inlocalized polaron states thus may lead to a very accurate
which the electron and the associated lattice deformatioestimation of the polaron ground-state energy in the strong
form a quasiparticle, spatially and spectrally decoupled frontoupling regime. Accordingly, for the self-trapped polarons,
the rest of the system. Lattice degrees of freedom make evean exact diagonalization method of calculating the localized
a single polaron problem a many-body one. The analyticapolaron states, rather than the translationally invariant ones,
and numerical examinations of most electron-phonon modelsan be used. By comparison to the results of other methods,
are thus difficult. For this reason, even the simple Holsteirit is shown that this approach introduces only minor errors in
modef (suggested in 1999s still being investigated in re- the ground-state energy of the self-trapped polaron. More-
cent works. Various methods have been proposed in order tover, the localized polaron functions permit, unlike the trans-
calculate the polaron ground state of the Holstein modellationally invariant ones, a separate analysis of the electron
Almost exact resultgexcept for the adiabatic limithave and phonon properties of the polaron. The local electron den-
been obtained with the quantum Monte Carlo calculatitths, sity, the mean lattice deformation, and the on-site zero point
the global-local methodthe density-matrix renormalization- motions of the self-trapped polarons can be calculated in this
group method,and some exact diagonalization methéds  way.

The main goal of this paper is to determine the elements In the crossovefintermediate regime, which is between
important for the qualitative description of the polarons inthe weak- and the strong-coupling regime, no known pertur-
the whole range of electron-phonon coupling. Some of thembation calculation converges, which complicates the discus-
although already known, are found to be better understoodion of the polaron nature. Although it has been proved that
when supplemented with additional details. the change of the polaron ground state vgjtis smooth® the

The ground state of the Holstein system changes from thphysics of the rapid crossover between two opposite limits of
delocalized polaron state, in which the electron is nearly freethe electron-phonon coupling, in the small intervalges, is
to the small and self-trapped polaron state, as the electromot completely clear. In Ref. 23 it has been claimed that the
phonon coupling increases. These two opposite limits arephonon excitation associated with the first excited state of
usually identified as the weak- and strong-coupling regimethe system is uncorrelated to the electron in the weak-
respectively. In the weak-coupling regime the influence ofcoupling regime, while it is confined to the electron in the
the small lattice deformation on polaron dynamics is verystrong-coupling regime. The transition occurs in the cross-
small, which makes the energies of polaron and electron homver regime in which, in addition, the energy difference be-
ping to neighboring sites similaty,=<t. tween the ground and excited states becomes small. In the

The exact ground state is an eigenstate of the system m@resent paper, the excited polaron states are treated by the
mentum, regardless of the couplihd@herefore the polaron method which uses variational approach in order to define
ground state is delocalized for all parameters. However, irand solve the generalized eigenvalue problem. Even if this
the strong-coupling regimg,,; becomes negligible, leading method does not converge systematically, it does provide
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interesting results concerning the nature of the polaron B =Zwh a—aNa/VN(b._~+bl
ground and first excited state. a=0 q=0" Gl VNG a=0*Pg-0),
Wherenkys=cl‘sck,5, nq=bgbq, andNg =2 Ny s-
Il. GENERAL The part which involves only thegg=0 phonon mode,
quo, can easily be transformed into the diagonal form, by

using the unitary operatcﬁq(g),

A= —tn§; Gl (Cns 15 Cno 1)+ ﬁw}n: bib, Sa(&) =exp(ébl—£*by),

The Holstein Hamiltonian reads

S, 20(E)Fq-0Sy-0(é) =hwng_o— (Ngi@) N o,
—92 Cg,scn,s(bl+bn)- n q o(§)Hg=0S4=0(§) q c.) (Nei9) '
n.s where ¢=Ngg/Niw. Any eigenstate of Hgyo,

It describes the tight-binding electrons in the nearestSq-o(£)[Ng-o). has the same mean total lattice deformation,

neighbor approximation, coupled to one branch of disperXiot==2=nXy,
sionless optical phononsﬁjS is the creation operator for the  _ - .
electron of spins at lattice siten, and b/ is the creation Xtot=X0N(Ng =0l S5 2o(€) (04— o+ bg=0) Sg=o(£) INg=0)
operator for the phononis the transfefthopping integral of
thpe electron.ﬁwpand g are the phononpsndgthe gélectron— =x0\/ﬁ(§*+§)=2x0Ne|g/ﬁw, ®)
phonon coupling energies, respectively. The Holstein Hamilwhich is independent df Since theq=0 part of the Hamil-
tonian depends only on two ratios of rele_vant energy paraMpnian commutes withd, q+0, it can be concluded that Eq.
eters:g/iw andt/fiw, i.e., the results will uséw as the  (3) js also valid for all eigenstates of the total Holstein
energy unit. It is often convenient to express the lattice Vi-4amiltonian. The phonon part of these eigenstates can be
brations in terms of the nuclei space and momentum coordirepresented in the form of a direct product of two groups of
nates, states, the first one includes#0 phonon modes, while the
. . second includes only thg=0 phonon mode. This is useful
Xn:Xo(blJr bn), pn=ipo(bl— bn), 2 because one can always check approximate computations by

wherexo= Vh/2Mw and po=MAiw/2 are space and mo- calculatingx;,;, or include this property in the computation

mentum uncertainties of the harmonic oscillator ground'ts'.alf' This specm(_: property of_thq=0 mode is not re-
. . stricted to the particular dimension of the system, nor to the
state.M is the mass of a nucleus amddenotes the spring

constant w2= /M. By notina that the electron-lattice dis- number of electrons. Moreover, it can also be found in some
’ V. By 9 S other models in which the electron-phonon coupling consists
placement coupling constaat in g= aX,, is independent of

: . 00 = of the lattice deformation linearly coupled to the local elec-
M, an alternative set of Holstein Hamiltonian parameters can o density. A hint in this direction was reported in Ref. 10
be introduced, ' T

The total momentum of the systerlﬁ, is the sum of the

5 2 electron and phonon momenta,

K o
t:ﬁ2/2m9|a2, MZ—, gp:_:g_'
2 2k hw N - -
K=2 kne+> ang,
which is convenient for the discussion of the adiabatic re- X a
gimeM>m,,. Here,m,, is the electron effective mass aad and it commutes with the Hamiltonian. In the present treat-
is the lattice constant. It is worth noting thaand e, (the  ment, only the low-energy polaron statéthe low-lying
binding energy of the polaron for=0) are independent &l states of the system for which the electron and lattice part of

and thus they are the only parameters relevant in the adidhe wave function are spatially boundre explicitly calcu-

batic limit. lated. In this case, the total momentunof the system is
By using standard conventions foi,S andb/ also the polaron momentum.
; : IIl. METHODS
che=1NND e *macl - bl=1/ N> e ],
n n

The eigenstate computations reported here are based on
iWe variational approach. Still, from the physical and math-
ematical point of view, there are significant differences
among them. Each method is therefore described separately
in the present section. It is important to notice that two quali-
A =—2t> cogkalh, +hw A tatively _different kinds of polar(_)n funqtiong are employed,

k.a#0 kEs gka)ns qZ'o g thelocalizedones and théranslationally invariantones. The
primary objective of the methods with localized functions
—a/JN ch o cra(bgtbl ), are self-trapped polaron states, i.e., the strong-coupling re-
g \/—k,s,zq:&o cra.sCs(Pg o gime. On the other hand, translationally invariant states are

Eg. (1) can be rewritten in momentum space and separated
two mutually commuting part§§| = I:|k,q¢0+ I:|q:0,
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devised in the first place with the weak coupling and cross- It is noteworthy that the lattice part of the functitm)jL is

over regime in mind. The methods with a small number ofa simple product of coherent states with real amplitudes.
variational parameters are meant to help in understanding th@onsequently, the state of the lattice at some site is defined
basic properties of the polarons in different regimes of thepy the ground state of the displaced harmonic oscillator. The
Holstein model. Again, the methods with a very large nUM-mean |attice deformatiort, corresponds to the equilibrium
ber of variational parameters are necessary to obtain accurgi@sition of that oscillator, while the lattice zero-point motion
results for the polaron states. is approximated in Eq(4) by that of the free lattice.

A. L method: A simple localized polaron function B. T and CT methods: Translational polaron functions

Let us start with a simple localized polaron wave function and the first excited state
formded a?] alprqduct_ of the electron and the lattice part, cen- eyt e shall study a translationally invariant solution
tered at the latfice st composed of a linear superposition of the localized st@lgs

- T
|¢’j>_(; 7]ncj+n)(1;[ Sj+m(§m)>|o>' 4 |\I’K>: 1 2 eina|(Pj>- )
Ny
Here, 7, is the normalized electron function at site-n, v

Samk ma=1, while S, (&y) denotes the coherent state op- |W) describes the polaron state with the momentgimA

=Re(&) +ilm(&), present work X .é=0/fw is used so that the mean total

deformation of function(8) satisfies Eq(3),
Sj+ m(ém) = EXR b = Embj ).

It is easy to see that operatsy. (&) shifts the space and Xtot=X02 (Wil (b +bm) [ W) =2xe0/ .
momentum coordinates of lattice vibration at a §item by m

2 Re(m)Xo and 2 Im§;,) po, respectively, The expectation value of the polaron enerfy,, may be

Sy m(ém) = €112 IM (&) PoX; 4 /4] ol — 12 Rem)Xo; + m /4] written in terms of| ¢;),

[ Re(¢m)Im(£m)] ’ A :
Xe m m! B ; elKAa<€Dj|H|(Pj+A> ; elKAaEA
The variational energy of the staié), qu, is independent of Egy= = . 9
j, and is given by 2 eiKAa<(Pj|(Pj+A> E elkdag,
A A
E,=—t> 75 (pno1+ M) Hho, [&? Ea andS, are given in the Appendix. A simple method for
n n N

calculating the minimum of the enerdsy, has not yet been
proposed, but accurate results have been obtained in Ref. 13
=92 [7nl*(&at &) (5 by using the Toyozawa method, which includes a very large
" number of variational parameters. Some additional approxi-
The minimization of the energy with respectgpestablishes mations may be found in Refs. 10 and 14-18. The approxi-
a simple relationship between the lattice mean deformatiomation used here simplifies the general expression if&q.
and electron densitg ,=|7,|?, by ilrgtroducing the exponential form for functiong, and
Em,

0= (91 0) 0y =X,=(al k), (6) |
7,=CGIN ¢ =ABMekMma  0<G B<1. (10

so that only the equation fay, has to be solved. The well-
known approximate solution to this problem is the large Hol-Equation(10) defines a polaron functiop¥’(G,B)) which

stein polarof valid in the long-wave limit, is completely determined by two parametegsand B.
In what follows, two different approaches are presented.
1 . 2the 2t The first, denoted by the indéix (T for translationad), treats
= WCOSh (Mdpo),  dpoi=—=-=—"- () G andB as the variational parameters for which the energy
pol g p

_ _ minimum E+ has to be found, and its corresponding polaron
The numerical scheme suggested in Ref. 11, and denotgdnction is|¥g). The T method gives good results in the
here byL (L for localized, is not restricted to long waves, weak- and the strong-coupling regime. Namely, in both of
and is used here in order to obtain the exact minimum of Eqihese limits, the functiof¥ ;) becomes similar to the po-
(5). The energy, henceforth referred tofs, depends only |5ron function obtained by the appropriate perturbative

on two relevant Hamiltonian parametetandg?/fw=¢e,,  calculations.

and thereforde| and;ﬁ1 are both independent &. For this In the second approach, the variational method is used to
reason Eq(6) is sometimes referred to as the adiabatic lock-define a generalized eigenvalue problem as follows. The po-
ing of electron and lattice coordinates. laron wave function, denoted by the indéX (CT for com-
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bination of translational functionsis rewritten as a linear
combination of functionsW¥ (G, ,B,)),
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method?® denoted bye T (e stands for exact diagonalization
and T for translational, the general orthonormal state is

given by
P

[OKT)= 2, an|¥k(Gn,Bn)). eT

(12) Ny R

[ng,n_1,nq, ...

It is understood here that the functiohg(G,,B,)) form a

set of p generally nonorthogonal functions, defined olif-
ferent pairs of parameterss( ,B,). Again, the coefficients

a, should be determined from the requirement that the ex-
pectation value of the energy, which describes an eigenstate of the system with momentum
K. n,, is the number of phonons at timeth lattice site away
from the electron. For example, at the sjteand at the
nearest-neighbor lattice sites left and right from it, there are
ng, N_4, andn; phonons, respectively. The Hamiltoni&h

does not mix state€12) with different momenta. Therefore
the polaron function obtained by tled method has the same

K momentum as the basis states. The current implementation
of the eT method is highly accurate, and from a practical
point of view may be treated as ex&ttor this reason, the

eT results can be used to determine the numerical errors
present in the other methods.

The minimal number of states of the reduced basis neces-
sary to obtain accurate results depends on the Hamiltonian
parameters. This number for tleel method increases very
rapidly forZw<<g, t, which prevents its use for both large
andt.

In the second exact diagonalization method, denoted by
eL (e stands for exact diagonalization ahdor localized,
the general orthonormal state of the chosen basis is more
complicated than for theT method,

. ;fm>j9L

1 L
=— > efiacf|ng,n gy, g, -

YN T -

(12

CT—

(PT|AIDLT)
(DLTOET)
is minimal,
5ECT/(9a::O, 1$n$p,

or,

Z <\I,K(Gn:Bn)“ql\PK(Gn’,Bn’»an’

=Ect>, (¥k(Gy,Bp)|¥k(Gpyr ,By))ay: .
n/

The solution of this generalized elgenvalue problem is a set
of p orthogonal polaron functlon$t;b ’m>, with correspond-
ing energie€{y . The ground-state energyh‘é?%. One may
always include the functiof#"}) in the sum(11) in order to
ensure that the enerdst’} is the same or better thdfy, the
energy computed by theE method. Moreover, by paying fur-
ther attention to the starting set of functigns, (G, ,B,)) in
Eqg. (11) at the outset, one is able to investigate the first
excited statéCDK m—1) Of the system, when this state corre-
sponds to an excited polaron. The best results forGfe
method are obtained when the numigeof |V (G, ,B,))
functions in Eqg.(8) changes with the Hamiltonian param-
eters. The special case where & method is used with
constantp=2 is denoted by the inde® T2.

li,ng,n_1,n4, ... Ny,

:C]jr-%—i(l;[ Sj+m(§m))|n0!n—lvnli coNmy e )J .

(13

Here thei andm indices are given with respect to the center
of polaron, which is placed at the siteThust-T+i creates an
electron at theth site from the polaron center ptn,, is the
number of extra phonons at tmeth site away from the po-
laron center, when the lattice is already distorted by the co-

herent state operato&, n(&n), i-€.,Xj+ m=2Xoém. Theel
method calculates localized polaron wave functions. Namely,
Finally, this paper presents the results of two numericaEQg- (13) describes a localized state, with the polaron center at
exact diagonalization method%:2%In order to compute the Sitej kept constant. TheL method is therefore accurate only
low-energy polaron states, one approximates the infinite diln the strong-coupling regime, in which the effects of polaron
mensional Hamiltonian matrix with a finite one, and pro- delocalization are negligibléself-trapped polarons
ceeds with the exact diagonalization of this matrix. The low- For a given set of Hamiltonian parametefs,in Eq. (13)
est eigenvalue and eigenvector in such a reduced Hilbeare determined by the use of themethod, i.e., by minimiz-
space correspond to the polaron energy and wave functioig the energy5), &,= &, If only those state¢13) with all
respectively. For a large sparse matrix, the energy and the,=0 are used in calculations, trel method gives the
wave function can be calculated very accurately, by using asame polaron wave function as thenethod. The additional
appropriate numerical scheme, in the present case the Lanstates(13), with n,, phonon excitations, are necessary to ob-
zos algorithm. tain the actual equilibrium positions of the lattice in the exact
The two exact diagonalization methods used here differ idocalized polaron state and the zero-point motion of the
the choice of the basis of the Hilbert space. In the firstrenormalized lattice vibrations. It is worth noting that the

C. eT and eL methods:
Exact translational and exact localized polaron functions
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electron and phonon parts of tled. polaron wave function tions given by Eqs(4) and(8). When the localized polaron
cannot be completely separated, as in the case df fhac-  functions|¢;) at different lattice sites are not orthogonal,
tion.

In the case oL method, the mean lattice deformation of Sa=(®jl®j1a)# Soa
the localized polaron is approximately taken care of by th . o .
product of the coherent states operatdrS; . m(£r,), hich e[he local properties and delocalization effectg W) in Eq.

i (8) are a complex mixture. However, in both the weak- and
keeps the necessary number of stt, in theeL method, strong-coupling regimes, the translational polaron function
relatively small. In order to reduce the basis of the Hilbert 9 ping reg ’ P

space, the maximal allowed distance of the electron ang?" be approximately written in terms of orthogonal local-

phonons from the polaron center has been limited here by th'éed polaron functions. In the weak coupling regime, the

choice |i|,|m|<D™* The distanceD™* has been deter- ?J;tl?i%?‘nahty follows from the electron part of the wave

mined from the condition tha&.,/&,<10™* if m>D™maX ’

The maximal total number of phonons has been kept limited,

retaining the states witk ,n,,<4. As the sum>,,n,, does SA~E T Tt 4=~ 604 »

not include the phonons associated with the coherent state n

operatorsS; ; m(ém), the small value oE nny, is not arestric-  yhjle in the strong-coupling regime, it follows from the lat-

tion on the overall amplitude of the lattice deformation. Theyjce part,

accuracy of the results obtained by thk method, supple-

mented by the two above-mentioned criteria, depends of 1

course on the values of parameters. SANYA=EXF{ 3 D (& Emia)?|=oa. (15
For the purpose of clarity, it seems appropriate at this m

point to review briefly the notatioh, T, CT, eT, andeL of |y Eq. (15), Y, is the Debye-Waller factor. The condition

all five presented methods. All methods based on the local5) corresponds to the regime of self-trapped polarons. The

ized polaron function are denoted by the lette(L andeL  negligible contribution of the lattice part to the overlap of

method$, whereas all methods based on the translationainy two localized polaron functions at different lattice sites

function are denoted by the lettér (T, CT, andeT meth- results then in a neg||g|b|e p0|aron hoppmg ener&y_

ods. The lettere denotes an exact diagonalization method One may notice that in the limi¥,.,—0 the transla-

(eT andeL methods, while a single letter notationL(and  tional form of the polaron functiofi8) has no consequences

T) suggests the simplest form of the method. on polaron energy, and the minimal values of the variational
energies(5) and(9) coincide, i.e.E;y, Sy~ dga in Eq. (9).
IV. RESULTS The hopping of the self-trapped polaron occurs only at the

As the variational methods of the preceding section them{time scale which is much larger than the scale relevant for
selves, the results of the corresponding calculations may b&€ local interplay between the electron and the lattice defor-
best understood in terms of the weak- and strong-couplic\?;at'on- Therefore an accurate description of the local po-
limits and the crossover between them. It has been showlq"on properties may be obtained even if the hopping of the
previously?* on the basis of the global-local method for Polaron is completely omitted by using only localized po-

0.1 w<t<10kw, that the empirical relation laron functions. The translational invariance of the polaron
’ may be, however, always restored in the same way as the
gsT=how+Jtho (14  function (4) is used to obtain Eq8).

describes well the values of parameters for which the varia- The eL method provides very accurate results for the
tion of the effective polaron mass withis the fastest. It will ground-state energy of the self-trapped polaron. Except that

. it neglects the polaron hopping, the local polaron function is
be also argued here thggt of Eq. (14) describes accurately I )
the crossover from the weak- to the strong-coupling Iimitfna!l(t:g(ljatgd l?;(iialilﬁ;t}en?;ﬁggf :hat getgloilm?r);g?nesttﬁe
with respect to the nature of thi€=0 ground state. The y 9 ’ » Y 9

latter changes continuously from the light delocalized Stat(?e:xacthenelrgy of zeLo-momentulm poIa;}r_oE gﬁgefrom EEL' h
in the weak-coupling limit to the heavy self-trapped state in or the electron-phonon coupiing which 1S greater t an the
the strong-coupling limit, with the anticrossing of the two cr|_t|ca| electron—phono.n coupling in EQL4) just byf“‘f’ €.,
states aty~gg7. The physical content of Eq14) is best g=0srtfe, the maximal error of theel method iSEe,

_ —4 . 0 Ei ; ;
understood by considering the limits of small and largéth quiTiIz:ti?/(j ;gtimﬁa?e.sT:éS IiSn fr?:vs\ltrr]c;gglzé%u;ii% \:\g;m;";?e
. _ ST ol -
respect tofiw, when, respectively,gsy~fiw and s plotted as well. The first estimate gives, as one-fourth of

=gs7/fhw~t. Both these conditions were qualitatively ex- .
plained in Ref. 25. In the present section we first discuss th(E:he polaron bandwidth computed exactly by #ie method,

strong- and the weak-coupling limit, and then devote most of 1 1
our attention to the crossover between the two. tpol™ ZV\/eT=Z[EeT(K= mla)—E.1(K=0)], (16)
A. Strong-coupling limit while the second estimate, based onlthmethod, multiplies
The nature of the self-trapped polaron may be discussethe electron hopping energy with the small Debye-Waller
by analyzing the properties of the two polaron wave func-factor,
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EeL— Eer~WeT/2.

One of the advantages of tied. method is that it permits
separate calculations of the electron and the lattice proper-
ties, in spite of the fact that the electron and the phonon part
of the eL wave function are not separable. For instance, for
the polaron centered at the origin, the associated mean lattice

deformation;n is given simply by the expectation value of

X, of Eq. (2). Besidesx,, in the present paper the mean real
space uncertainty of the on-site lattice vibratibr,, and the
productAx,Ap, , whereAp, is the mean momentum uncer-
tainty of the on-site lattice vibration, are calculated.

Figure 2 shows the data for two sets of parameter, corre-
sponding to a small self-trapped polaron and a self-trapped
polaron extended over few lattice sites, respectively. For the
second set of parametéargeg andt), thee T method is not
accurate enough, and the question arises of whetheelthe

FIG. 1. The solid curve is one-fourth of the polaron bandwidth, Polaron state is really a good approximation of the system
Eg. (16). The long-dashed curve corresponds to the error of th@l’ound state. It is difficult to prove that a polaron state, with
polaron energy calculated by te¢ method,E. —E.r. The short-  non-negligible hopping energt,, and an energy close or
dashed curve is the electron hopping energy reduced by the Debywer thanel energy, does not exist. This question is cur-
Waller factor, Eq(17). All three curves are given as functions of the rently under investigation.
electron-phonon coupling=gst+#w=tho+2hw. The ener- Differences between the results of thend theeL meth-
gies are given in units dfw (i.e., in=1). ods are also analyzed. It is found that they are more pro-
nounced for smalfj. We may see from the results in Fig. 2
that the mean lattice deformation differs between these two
methods. In the case of theL method, the mean lattice
deformation is more extended and the width of the polaron is
The estimation of the Debye-Waller factor in EQL7) is  slightly larger. Additionally, the electron density of the
based on the evaluation of the lattice part of the overlap ofethod remains approximately proportional to the mean lat-
the two neighboringe;) functions(theL method gives good  tice deformatiorfas in Eq.(6), valid for theL method, since
results for the mean lattice deformation of the self-trapped
polarons. All three curves in Fig. 1 are similar functions of ol 29 oo el_ 1o
g, which is not surprising since all plotted quantities are re- Xn = 775, @n Xo Xn <1%.
lated to the polaron hopping energy, in the strong-
coupling regime. Moreover, it may be seen from Fig. 1 thatAs has already been mentioned, the lattice part of thenc-
the error of theeL method is almost equal to one-half of the tion describes a set of displaced, but unrenormalized, har-
polaron bandwidth, monic oscillators, s x;=xq, ApL=p,, wherexq and p,

g=ggr+ho 6

1
o~ tYi=texg =5 2 (= &ned)®). (A7)

0.3 T T T T T
oo AX /x,~1

oo AX/x,~1

el , eL
Aanpn/xOPO_I = Af:Apef/xopo—I

el L
0.05 ¢ ¢ (x,—x,)/x, 0.1 ~——o (Jf:—xL )ix,

|
-0.05 J
-0.1
-0.15 b
7
-0.25 -0.3 L L L
0 1 2 3 n 4 0 1 2 6 n 7

FIG. 2. Difference between the mean lattice deformation, mean uncertainty of the on-site lattice vibration and corresponding product of
uncertainties for th&. and eL methods. The inset shows the mean lattice deformation otthenethod. Hamiltonian parameters are
=10hw, g=4.5 0w, andt=250h w, g=16.51 w, for the first and second plot, respectively.
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are defined in Eq(2). One may notice from Fig. 2 that real- 1
space uncertainties of the lattice vibrations on the sites occu- bf|W§_o)=bk—— > ¢/ 1+A> BIMb!, |]0),
pied by the polaron are larger in tled case than in thé \/pr ] m
case,Ax2">x,, but uncertainties of on-site momentum lat-
tice vibrations are smallel pﬁL< Po- K>Ke. (19

It may be concluded, from the first plot in Fig. 2 that the For K <K, the wave function18) has two parts. The main
electron affects mostly the central site of the small polaronpart Corresponds to the free electron of momentinand
The product of uncertainties for this site stays close to tthe smaller part, proportiona] 1A, Corresponds to the elec-
free lattice value AxSE ,ApEt j~xopo. Therefore the pho- tron dressed by one spatially correlated virtual phonon. At
non mode at the central site of the small polaron may behe thresholdK., the energy of such a polaron state inter-
treated, in a good approximation, as harmonic. In particularsects with the energy of the system consisting of the zero-
the renormalized frequency of this modéﬁ';o, can be momentum polaron and one extra phonon with momentum

roughly estimated from the relation K¢, Eqg. (19). So, forK>K_ the ground state is achieved
with one real phonon in the system which carries the system
Axgiom\/ﬁ/ZMz)ﬁio_ momentum and which is spatially uncorrelated with the

B polaron’®26 For K<K, this state becomes the first excited
SinceAXEL o>X, it follows thatwS: ;<. Therefore in the state of the system. The difference between the energies of
strong-coupling regime the first excited state should correthe ground state and the first excited state is the largest for
spond to the excitation of the renormalized phonon modeK=0, and is equal td w.
rather than to the excitation of the phonon of enefgy, The validity of the perturbative treatment requires that the
which is uncorrelated to the polaron. One may also noticaveight of the second term in Eqg4.8) and(19) is small, i.e.,
that the energy of the mean lattice deformation is larger fothe mean number of phonons associated with the lattice de-
the eL method than thd. method (for the L method this  formation has to satisfy
energy is minimal This is compensated for, however, with
the lower energy associated with the zero-point motion of the _ g?> (1-B)(1+B?
~el . NPO'=A%(1+B?)/(1-B?) = <1
w,—o phonon mode, which makes the total polaron energy of '"p (hw)? (1+B)3
the eL method lower. (20)

For the more extended self-trapped polarons, the renor- o )
malized normal phonon modes are expected to be spreddere,A has been eliminated by using E&). There are two

over a number of lattice sites. Consequently, a number of@ys to satisfy conditior(20). Either the electron-phonon
different phonon modes contribute to the lattice displacemeroupling is small,g<#w, or the lattice deformation is

at the lattice sites occupied by the polaron. Thus the analysigPread to a large number of lattice sites; B<1. In the

of the on-site vibrations cannot give direct information onlatter case, the total mean polaron deformation does not have
the renormalized lattice modes. Nevertheless, from the sete be smallx;,/Xo=29/% w, sinceg can be larger thafi w.

ond plot in Fig. 2 one may notice that the product of uncer- The translationally invariant form of the wave function
taintiesAx2"Ape" shows a minor deviation from that of the for the T method, given by Eq(8), provides an energy gain
harmonic vibration. This suggests that the renormalized latdue to the polaron delocalization. At the same time, the spa-
tice modes of the extended self-trapped polaron are harmontfial correlation between the electron and the lattice deforma-

as well in a good approximation. tion has a finite length. For instance, in E8), this length is
of the same order fof¥) and|¢;). The perturbative cal-
B. Weak-coupling regime culation forB in Eq. (18) gives
In the weak-coupling regime, thE method gives results B=cogKa)+%w/2t—\[cogKa) +Ahw/2t]2—1.

close to theeT results. Since the form of the functiohis

quite simple, it will be used in this section as a basis forB measures the electron-lattice correlation lengtls inde-
further discussion. In the weak-coupling regime, the mini-pendent ofy, which makes the correlation length finite, even
mum of the variational energli corresponds to small val- in the limitg—0 for which the lattice deformation vanishes,
ues of the variational parameteBsandA. The standard per- A~g/fio.

turbative ground state of the system with momentiinmn On the other hand, the electron-lattice deformation corre-
terms of theT method polaron function may be written as lation length and the polaron delocalization range are of the
follows: same order for the localized functions. This may be easily

seen from Eq(4). In the limit g— 0 they both become infi-
1 o nite. Thus in the weak-coupling regime one obtains a local-
W)= Ne 2 e'KJaCjT ized polaron staté;gojL) of very large width, but associated
v ! with a tiny lattice deformation. This is specific for one-
) dimensional systems in which an attractive symmetric poten-
X[ 1+A2 BIMemap’, 1]0), K<K, tial has always a bound electron state. Therefore the corre-
m sponding polaron energy is less than the free electron energy
(18 —2t. In higher dimensions, an arbitrary attractive symmetric
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potential does not have a bound electron state for sufficiently 1
small g (or the electron binding energy is too small to bal-
ance the lattice deformation enejgwnd the total polaron
energy is larger than-2dt, whered is the dimension of the 0.8
system. This explains why, in the weak-coupling regime, the
adiabatic(localized polaron function¥+?"-?8fail to have an
energy lower than the free-electron energy, for the dimensior s,
of the system greater than 1. A detailed parallel perturbative 2
analysis of polarons in one, two, and three dimensions isg
given in Ref. 29. w

C. Crossover regime
. . , 0.2
In the crossover regime the polaron hopping enefgyis

not negligible, and the translationally invariant polaron func-
tions should be used in order to obtain the full physical pic-

ture of the polaron. In order to calculate the numerical errors  2.75 2.95 3.15 3.35 355 ¢ 375
of different methods accurately, the present discussion of the
crossover regime is restricted to the values sfaller than FIG. 3. The anticrossing df¥’~) and|¥~) energies together

25% w, for which results from the T method are available.  with the ground statgb$™) and first excited statsbS™) energies

In order to examine the crossover regime it is instructiveare shown. The results of ti&T method are also plotted for com-
to calculate the energy difference between the ground anparison. The ground-state energy obtained by éffemethod is
first excited stateE)—E{%). Let g, denote the value of ~ subtracted from all energy curves=5iw, K=0, andfiw=1,
for which this difference is minimal, while gsr=3.241 .

It should be mentioned that a similar combination of two
states has been already used in Ref. 32 in order to calculate
. , the polaron ground statésDCTE) corresponds to Eq(1l)
Our rel')sultEs |r(1f£|1():a::e tha is Yer{c CIOSSO;LO the Vag”ggﬂ with p=2, which means that th€ T2 method is implied.
given by Eq.(14). For example, fot=20h w, g.=5.5% 0, . . 2
while ger=5.47 . For smallett, g, andgsy coincide even From this treatment the improved ground stbffg -) and
better. The analysis of the effective m&sariational en-  the approximate first excited polaron statef™) are ob-
ergy of the polaron ground statépolaron sizé! as well as  tained. It may be seen from Fig. 3 tfa’2 method describes
the behavior of the first excitation energy, suggest that @n anticrossing of¥~) and|¥ =) states, which yields two
dramatic change in the nature of the polaron ground state anstthogonal states,®S™) and |®$™). In order to have a
the.first excited state are intimately related in the crossovepetter illustration of that anticrossing in Fig. 3, the exact
regime. ground-state energi,t is subtracted from all plotted energy
This can be well understood by considering the propertiegyryves. Forg<g, the light state|¥ <) is lower in energy,
of the wave function in thd method. Neag,, this polaron  and participates in the ground state more tharhtbevystate
wave function has two separate energy minima in@&  |y>) However, ag increases this balance changes continu-
parameter space defined by E#0), which become degen- oysly in favor of|¥>). The opposite trend is observed for
erate forg=g;. Let the symbol< denote the lower mini-  the first excited state, which is heavier than the ground state
mum atg<<d., and the Symb0]> the lower minimum ag for Sma”erg and ||ghter for |argeg_
>g.. |[¥~) and|¥~) are the corresponding polaron wave  The CT method gives better results for the ground and
functions. Even if they are not mutually orthogonal, they arefirst excited state when a large number of functidasgep)
still phySICaIIy quite different. The numerical data show that|n Eq (11) is used. From F|g 3, one may estimate that
the translational invariance ¢f =) contributes strongly to EX-EQ~%w/2 atg=g.. Moreover, the energg{), un-
the_ polaron egergy. On the othe_r_hand, the translauo_nal Nk EE:l'I)'Z' satisfiesE(ClT)< E@ -+ for all g>g., which is
variance of ¥ ~) has almost negligible energy contributions, an important improvement over the=2 result
i.e., |¥~) describes an almost self-trapped polaron. It is P P '
worth noting that the degenerate nature of the variational
energy which has been reported for the Toyozawa méthod V. SUMMARY OF RESULTS
is of the same kind as the one of themethod discussed
here. Namely, boti and Toyozawa method are based on thet
same polaron functiofB).
|¥=) and|¥~) can be combined to form new polaron
functions,

a EE:lT)_ E§:01)')/a9|g=gcz 0.

Figure 4 shows the results for the ground-state energy and
he energy of the first excited state with total system momen-
tum K=0, as functions of, obtained by several different
methods. Two plots correspond te=5%w and t=10k w,
respectively. The ground-state energy obtained by dfie
method is subtracted from all the other resultsandg, are
|<I>CT3>=a<|\If<>+a>|\If>>. (2))  used to mark three different polaron regimes with respect to
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1]
1]

1 9,=2.37 g, g,=4.24 6g 7 8 1 9,285 gy g=516 @ 7 8

FIG. 4. The ground-state energy of the polaron for various methods and the first excited-state energyTofrtethod are plotted for
t=5Aw andt=10k w, respectivelyK=0 andzw=1 for both plots. TheeT ground-state energy is subtracted from all results. Only the
lowest# w energy interval of the spectrum, relevant for the ground and first excited energy, is showB,Fh&w line denotes the first
excited-state energy, when it consists of the polaron ground state and one extra phonon;($8g Eq.

the strength of the electron-phonon coupling. Eetrg, the  calculated here shows approximately the same behavior as

mean number of phonons of the lattice deformation is lesshe energy of the ground state with one additional phonon of

than 1. Thus foig=g,; we recognize the weak-coupling re- frequency(22),

gime. Forg>g,=0s7t%w the eL polaron energy has a

negligible error(see Fig. 1, which means that fog=g, EN~E tho'.

polarons are self-trapped, and we recognize the strong-

coupling regime. The crossover regime is found in the inter- The lattice part of the&CT function is spatially symmetric

val g1=<g=g,, with g;<gs7=0.<0>. with respect to the electron. Therefore in the strong-coupling
It may be noted from Fig. 4 that in the weak-coupling regime the first excited state, which has been identified here

regime, the energy obtained by thenethod €,) is close to  as a local renormalized phonon mode of the self-trapped po-

the free-electron energy 2t (for t=20% w, the absolute er- laron, should be basically a symmetric oscillation of the lat-

ror of theL method becomes greater tham in some inter-  tice deformation around the central polaron site. In the vicin-

vals of g). In the strong-coupling regime, for largg E, ity of gs7, on the other hand, the nature of the first excited

approaches the exact polaron energy. state is currently explained by the anticrossing of the self-
The error of thel method, as may be seen from Fig. 4, is trapped and the delocalized polaron state. The question of

the largest in the crossover regime in which the results cahow the excited self-trapped polaron state in the strong-

be improved by a better choice af, andé&,,, in Eq. (10). In  coupling regime and the first excited state ngar may be

the strong-coupling regime, the translationally invariant formlinked together is a matter of further considerations. One

of the functionT has no effect on the polaron energy, i.e.,may speculate that the anticrossing of the excited self-

both theT andL methods give very similar results. trapped polaron state and the delocalized state will give the
The energy of the first excited polaron steE%l), inter- ~ answer.

sects the energy of the ground state plus one phoBgn,

+hw, for g>g;. After the minimum of E&—EQ) is VI. CONCLUSIONS

. . ~ (1) _
reach(hadglzn TZ crossov?rt.reg“mfe mt;gc ESTH ECTI apd The present paper discusses the ground and first excited
broaches-errnw asymptotically 1org =gp. AS has already  giqi05 of the polaron for three different regimes of the

been pointed out in Sec. 1V, the excitation of the renormal- lectron-phonon coupling parametgr The results can be
ized phonon mode explains the nature of the first eXCIte‘iriefly summarized as follows. In the strong-coupling regime

state in the strong-coupling limit. In Ref. 28 perturbation : ; . S .
. the polaron hopping energy to neighboring sites is negligible,
theory was used to calculate the frequency of this ocal phoémd the self-trapped polaron states are obtained. The results

non modew’, to the lowest order i w/g?, of the eL method suggest that the adiabatic picture of the
5 localized polaron state is valid, in which some of the local
o'=wVJ1-(tho/g?)?. (22 lattice vibrations are renormalized by the presence of the

electron. The numerical data show no significant deviation
The obtained perturbative correction to the phonon frefrom the adiabatic locking relatiof6) of the electron site
quency is adiabatic, i.e., the square root in E&9) is inde-  density and the mean lattice deformation. In the small po-
pendent of masM. It is worth noting that for largey, EST) laron case, the predominant effect of the electron is the low-
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ering of the frequency of the vibration at the central polaronfor the mean total lattice deformation, E&), which is valid

site. The excitation of the renormalized phonon mode correfor any number of electrons and is independent of the system

sponds to the first excited state of the small self-trapped padimension. This important sum rule may be extended to

laron. some other models in which the lattice deformation is lin-
The nature of the polaron ground state in the crossoveearly coupled to the local electron density.

regime has been discussed in a number of papers, and its

rapid change witlg has been well established numerically. ACKNOWLEDGMENTS
The difference between the energies of the first excited state ) ., )

g=0.. Itis shown, by using th€ T2 method, that the anti- laboration during the course of this work.
crossing of the self-trapped and the delocalized polaron state
can link the behavior of the ground and first excited polaron APPENDIX
state. According to th€ T method, forg>g, the effective .
mass of the ground state is larger than the effective mass (%fxlvezrs?s:]stomcs Icgéahféda}nd E, of Bq. (9), the following
the first excited state, while f@g<g. the opposite is true. In P y ’
addition, it is found thatg., which characterizes the first 1
excited state, andst, obtained from ground state analysis YA=EXL{ 3 > (Eh—Emin)?],
[Eq. (14)] almost coincide fot<25iw. m

Upon further reduction ofy the total mean number of
phonons bound by the polaron becomes smaller than 1, and SA:YAE 7 Dnsa
the weak-coupling regime is reached. The nearly free elec- n
tron is dressed by a cloud of virtual phonons, and its mass is
slightly renormalized. The first excited state of the system,- _ _ * *
with momentumK~0, can be viewed as the ground state of Ea tYAEn: 7o (Tnsasa® 77n+A7l)+ﬁwSA§m: Eméms s
the polaron plus one additional uncorrelated phonon, rather
than as an excited polaron.

—gY * * 4 }
Finally, it is worth noting that there is a simple sum rule g Azn: 7 T+ a0+ éns)
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