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Characterization of nanometer-scale defects in metallic glasses by quantitative high-resolutio
transmission electron microscopy
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Although defects can have a significant effect on the properties of amorphous materials, in many cases these
defects are poorly characterized and understood. This is at least partly due to the difficulty of imaging defects
in amorphous materials in the electron microscope. In this work, we demonstrate the utility of quantitative
analysis of high-resolution transmission electron microscopy for the identification and characterization of
nanometer-scale defects in metallic glasses. For a proper identification of such defects, it is important to
carefully consider the effects of the imaging conditions and thickness variations in the sample, both of which
we describe in detail. As an example, we show that regions of localized plastic deformation~shear bands! in
bulk metallic glasses contain a high concentration of nanometer-scale voids. These voids apparently result from
the coalescence of excess free volume once the applied stress is removed.

DOI: 10.1103/PhysRevB.65.144201 PACS number~s!: 61.72.Dd, 61.43.Dq, 62.20.Fe
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I. INTRODUCTION

Transmission electron microscopy~TEM! is one of the
most useful tools for studying defects in crystalline meta
with a wide variety of imaging and diffraction modes th
can reveal defects such as dislocations. In most cases,
modes make use of the fact that defects create local dis
tions in the otherwise perfect periodicity of the crystalli
structure. Thus, it is the very existence of a lattice that allo
us to detect the defects in the structure. Defects are
important in amorphous materials, but the very fact t
these materials are noncrystalline makes the identifica
and characterization of defects in the TEM quite challengi

Despite the challenges, some progress has been mad
wards developing TEM techniques for imaging defects
amorphous materials. In this paper, we report on our us
quantitative high-resolution transmission electron micr
copy ~HRTEM! to identify nanometer-scale defects in she
bands in bulk metallic glasses, using a technique previou
described by Miller and Gibson.1 Of particular importance is
the influence of imaging conditions and variations in sam
thickness on the results, which we describe in some de
We observe a high concentration of defects in shear ba
~regions of the metallic glass which have undergone ex
sive local plastic deformation!. We believe the defects form
when excess free volume in the active shear band coale
into voids.

II. SAMPLE PREPARATION AND IMAGING

We prepared 3 mm diameter rods of amorpho
Zr57Ti5Cu20Ni8Al10 by arc melting master alloy ingots from
the pure elements, followed by casting into a copper mo
Samples for electron microscopy were prepared by e
tropolishing sections of the rods in a solution of 30% p
chloric acid in ethanol at230 °C for 20–30 s~until perfo-
ration!. We usually observed that samples electropolished
this way had some residual surface contamination, which
removed by a brief~1 h! ion milling process~3 kV, 0.1–0.25
0163-1829/2002/65~14!/144201~6!/$20.00 65 1442
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mA, at 11° incidence!. Ordinary handling of the TEM speci
mens produced small cracks at the edge of the elect
transparent region; ahead of and around these microcra
shear bands~regions of local plastic deformation! were ob-
served in ordinary bright-field TEM imaging. The contrast
bright-field imaging arises because the deformed regions
thinner than the undeformed material. For the particular
ample described below, the measured thickness of the u
formed material is approximately 10 nm and that of the sh
band region approximately 5 nm. We used a Philips CM3
field emission gun microscope operated at 300 kV; the
ages were collected on a charge-coupled device~CCD! cam-
era.

III. DATA ANALYSIS

A. Overview of an example of analysis

The analysis procedure we used follows that of Miller a
Gibson, who first described its use for identification
nanometer-scale voids in amorphous silica thin films.1 In this
section, we briefly outline the analysis procedure~with com-
ments relevant to our particular case! and provide images o
an example. Additional details on several critical points a
provided in the following sections.

~1! We begin by obtaining HRTEM images that conta
both deformed and undeformed regions in a single mic
graph@Fig. 1~a!#. Using a single image ensures that the co
trast transfer function~CTF! is the same for both regions
eliminating any effect of the microscope conditions on t
comparison of the two regions that might occur if they we
imaged separately. For imaging defects in metallic glasse
is convenient to chose a defocus value of aroun
2200 nm. At this defocus the first zero of the contrast tra
fer function occurs at aboutk51.8 nm21; this allows us to
examine the region of interest (0.5,k,1.5 nm21) without
having to worry about the effect of contrast reversal on
image. This is discussed in more detail below.

~2! We then calculate the two-dimensional Fourier tran
form of two portions of the image, one from an undeform
©2002 The American Physical Society01-1
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region and one from a region of plastic deformation. Se
rate transforms for the two regions are not shown; Fig. 1~b!
shows transform of the entire image, used below.

~3! Because there are no strong directional effects,
azimuthally average the two-dimensional transforms to
tain one-dimensional equivalents for each region~using the
program FIT2D2!, as shown in Fig. 2~a!. The one-
dimensional transforms for our samples always show a p
neark54 nm21, corresponding to the amorphous halo, a
a second peak at lowk, corresponding to small-angle scatte
ing. Although the various features in the ratio are not d
matic, in comparing undeformed and deformed regions,
always observe two systematic differences. First, the p
neark54 nm21 is always broader for the deformed regio
suggesting increased atomic disorder due to plastic defor
tion. Second, the peak in the small-angle scattering reg

FIG. 1. ~a! HRTEM image of a shear band ahead of a crack
The shear band is the brighter region that extends across the
hand side of the image.~b! Two-dimensional Fourier transform o
the image in~a!.

FIG. 2. ~a! One-dimensional Fourier transforms of two regio
of Fig. 1 ~the shear band and undeformed material!. The curve for
the shear band has been offset vertically for clarity.~b! Ratio of the
two one-dimensional transforms from~a!.
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near k51 nm21, is always more prominent for the de
formed region. This suggests that whatever structural f
tures may be responsible for the small-angle scattering e
in greater numbers in the deformed region. These obse
tions from the Fourier transform data agree well with t
results of a series of axially aligned dark-field images for
same samples.3

~4! We next take the ratio of the two one-dimension
transforms, dividing the data from the deformed region
that from the undeformed region@Fig. 2~b!#. This ratio
should be sensitive to any structural differences between
two regions.1 In the present case, the ratio is rather noisy d
to the small size of the shear band region~which limits the
size of the regions which can be Fourier transformed!, and
because the structural differences between the two reg
are small. Nevertheless, we see a peak in the ratio nek
51 nm21, indicating that the peak in the small-angle sc
tering region is indeed more significant for the deform
region. Although barely larger than the statistical uncertai
in the ratio, we have observed this peak at a variety of de
cus conditions and for several different deformed regio
We also observe that the intensity fluctuations in the sh
band ~described below! are larger, relative to those in th
matrix, for spatial frequencies aroundk51 nm21 than for
other spatial frequencies. We conclude, therefore, that
peak in the ratio neark51 nm21 is real, and not a statistica
anomaly.

This procedure allows us to identify particular ranges ok
that correspond to structural features of interest. To actu
image the defects giving rise to the enhanced small-an
scattering, we apply a Fourier filtering technique.

~5! Going back to the original HRTEM image~Fig. 1!, we
perform a two-dimensional Fourier transform of the ent
image, including both deformed and undeformed regio
@Fig. 1~b!#.

~6! Next, we apply an annular filter that passes the spa
frequencies of interest (0.5,k,1.5 nm21) identified from
the ratio, as described in step 4 above. All other spatial
quencies are excluded, which, among other things, eli
nates the effects of both contrast reversal and thickn
variations on the results. These are critical points, and
described in Sec. III D.

~7! With the filter applied, we do a reverse Fourier tran
form, to obtain a filtered image@Fig. 3~a!#. Notice that the
structural features on this image have characteristic len
on the order of 1 nm, as a result of the Fourier filtering. T
image intensity of this filtered image is related to the p
jected atomic density, with regions of locally lower dens
appearing bright and regions of locally higher density a
pearing dark. Interpreting the image in this way assumes
the weak-phase-object approximation~WPOA! applies, as
we discuss in Sec. III B.

~8! Most of the features in Fig. 3~a! merely represent sta
tistical fluctuations in the projected density. To identify a
tual defects, we apply a threshold filter in which the thres
old is set to pass regions which exceed the mean bright
by at least three standard deviations. The result of apply
this threshold filter is shown in Fig. 3~b!. The spots in this
image represent regions with projected densities with sta
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CHARACTERIZATION OF NANOMETER-SCALE DEFECTS . . . PHYSICAL REVIEW B65 144201
tically significantly lower densities than the average. No
that there is a much higher concentration of these feature
the deformed region of the sample; as we show below, if
features were the result of simple statistical fluctuations, th
apparent concentration would increase with thickness.
observe just the opposite~the deformed region is thinner tha
the undeformed material!, so we conclude that the features
Fig. 3~b! represent true structural defects.

The small spots in Fig. 3~b! serve only to identify which
of the features in Fig. 3~a! represent actual defects. The a
tual size of the defects is obtained from Fig. 3~a!, in which
the length scale of the features is determined by the rang
k space passed by the Fourier filter. From Fig. 3~a! we esti-
mate that the defects are approximately one nanomete
diameter.

The validity of this general approach to identifying d
fects in amorphous materials has been demonstrated
Miller and Gibson.1 In the present case, however, three cr
cal issues emerge from the discussion above. First, we
sider whether the weak-phase-object approximation app
in the present case and discuss the interpretation of the im
contrast. Second, we demonstrate that the ratio techn
~step 4! can be used to identify spatial frequencies cor
sponding to structural features of interest, even if the regi
examined are of different thicknesses. Finally, we show t
the Fourier filtering technique for identifying defects is st
valid, even if there are thickness variations across
sample. In what follows, we take up each of these issue
turn.

B. Validity of weak-phase-object approximation
and interpretation of image contrast

In the weak-phase-object approximation, the intensity o
HRTEM image is given by

I ~x,y!5112sf~x,y!* s~x,y!, ~1!

wheres is an interaction constant,f(x,y) is the projected
potential,s(x,y) is a smearing function equal to the Fouri
transform of the contrast transfer function, and * indicate
convolution operation.4

FIG. 3. ~a! Same image as Fig. 1~a!, Fourier-filtered using a
passband of 0.5–1.4 nm21. ~b! Same image as~a!, with a threshold
chosen to reveal features with brightness three standard devia
greater than the mean. The contrast in this image was inverted
improved reproduction, so that bright features from~a! appear dark
here.
14420
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The condition for the weak-phase-object approximation
that sf!1, which usually holds only for very thin spec
mens composed of light elements. For disordered mater
however, the range of thicknesses for which the weak-pha
object approximation applies is greatly extended.4 This is
because we can add or subtract an arbitrary constant to
phase changef(x,y) without affecting the image intensity
in effect, this merely changes the reference point relative
which the phases are measured. In particular, we can w
the projected potential asf(x,y)5f01f8(x,y), wheref0
is the average value of the projected potential~presumably
directly proportional to the specimen thickness! andf8(x,y)
represents local fluctuations about the average projected
tential. The magnitude off8(x,y) depends on the magnitud
of density fluctuations in the specimen, as we discuss be
With this change, the HRTEM image intensity becomes

I ~x,y!5c12sf8~x,y!* s~x,y!, ~2!

wherec is a constant.
In a crystalline material, with aligned atomic columns, t

fluctuationsf8(x,y) can be quite large and the sample mu
be very thin to satisfysf8!1. For a disordered materia
however, the atoms overlap randomly and the fluctuation
the projected potential are quite small relative to the avera
A quantitative determination off8(x,y) for the present case
would require a detailed model of the atomic-scale struct
of our five component glass. While this is the subject
ongoing research, it is beyond the scope of the present st
Instead, we provide some simple observations to show
the weak-phase-object approximation is expected to hold
our samples.

The magnitude off8(x,y) is proportional to the magni-
tude of the projected atomic density. IfN(x,y) is the number
of atoms in a column of material, then as a simple appro
mation it is sometimes assumed that the variation inN(x,y)
is given byN̄1/2, whereN̄ is the average value ofN(x,y).4

This simple approximation predicts much smaller fluctu
tions than would be observed for a crystalline material, bu
fact even it predicts fluctuations that are larger than th
actually observed. This is because it assumes that the
jected positions of the atoms are randomly distributed. I
real amorphous material, the atomic positions are not un
related; instead, there is short-range order that will make
fluctuations inN(x,y) much smaller thanN̄1/2. In practice,
we typically observe that the fluctuations from a amorpho
sample are about one-fourth the size of the fluctuations fr
a crystalline region of the same thickness. We also obse
that a threefold increase in specimen thickness yields an
crease of less than 25% in the magnitude of the fluctuati
for the amorphous regions. Thus, we conclude that the we
phase object approximation holds for our amorphous sp
mens, which are typically 5–10 nm thick.

When interpreting the HRTEM images, we also need
consider the effect of the smearing functions(x,y) in Eq.
~2!. Under Scherzer defocus conditions,s(x,y) approximates
a single, sharp negative peak, so that the image inten
represents the projected potential distribution~which is pro-
portional to the projected density!. Becauses(x,y),0, re-
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gions of high projected potential@f8(x,y).0# appear dark
in the image, while regions of low projected potent
@f8(x,y),0# appear bright.

In practice, we use Fourier-filtered images to exam
particular length scales of interest. The intensity of an ima
filtered by the application of an annular maskM (k) is

I f~x,y!52sf8~x,y!* FT@CTF3M ~k!#, ~3!

where CTF represents the contrast transfer function@the Fou-
rier transform ofs(x,y)].1 In what follows, we assume tha
the range of spatial frequencies passed by the annular m
(ki,k,k0) is entirely within the first zero of the contras
transfer function. This allows us to treat the contrast trans
function as approximately constant, in which case the im
intensity is indeed proportional to the projected potential,
discussed below.

With this assumption, the Fourier transform of CT
3M (k) is a sharp Gaussian-like peak, which smears
atomic potential but does not introduce significant compl
ity into the image interpretation. Equation~3! therefore be-
comes

I f ~x,y!.2csf8~x,y!, ~4!

where c is a constant.~Note that in applying the annula
mask, we have discarded all of the structural informat
other than forki,k,k0.! Thus, the intensity of the Fourier
filtered image represents the fluctuationsf8(x,y) in the pro-
jected potentialf(x,y). The effect of different specimen
thicknesses on the image will be to change the average
tensity, but the filtering process eliminates this, and what
observe are the fluctuations in intensity.

C. Effect of thickness on ratio of Fourier transform
amplitudes

The intensity of the HRTEM images is given byI (x,y)
from Eq. ~2!. The amplitude of the Fourier spectrumĨ (k) is
therefore

Ĩ ~k!5I 0$d~k!12suf̃~k!u@P2~k!3sin2x~k!#1/2%, ~5!

where f̃(k) is the Fourier transform off(x,y), P(k) is a
damping envelope caused by microscope instability and
ited coherence, and sinx(k) is the contrast transfer function1

In Eq. ~5!, the delta function represents the central spot d
to the transmitted beam, while the second term in brack
represents the rest of the spectrum, which is the contribu
from scattered beams~modulated by the contrast transf
function!.

As above, we write the inner potentialf(x,y) as the sum
of an average potentialf0 and fluctuationsf8(x,y) about
the averagef(x,y)5f01f8(x,y). Now we have

f̃~k!5FT@f01f8~x,y!# ~6!

5f0d8~k!1FT@f8~x,y!# ~7!

5f0d8~k!1f̃8~k!, ~8!
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where FT denotes the Fourier transform of the quantity
brackets. Thed 8(k) term here adds to the intensity of th
central spotd(k) in Eq. ~5!. We are interested only ink.0,
so we ignore these delta functions in the following develo
ment.

If two HRTEM images are taken under precisely the sa
conditions, the contrast transfer function and the damp
envelope are the same for both images, and the ratio of
Fourier spectra R~k! is given by

R~k!5
I 1~k!

I 2~k!
5

2suf̃1~k!u@P2~k!3sin2x~k!#1/2

2suf̃2~k!u@P2~k!3sin2x~k!#1/2
5

uf̃18~k!u

uf̃28~k!u
.

~9!

Thus, the ratio of the Fourier spectra fork.0 depends only
on the magnitude of the fluctuationsf8(x,y) in f(x,y), and
not on the average potentialf0. Taking the ratio in this way
greatly reduces the sensitivity of the technique to variatio
in sample thickness. The effect of sample thickness is th
fore much smaller than in conventional HRTEM. In additio
the fluctuation potentialf8(k) does not depend very sens
tively on sample thickness; this is discussed in more deta
the next section.

D. Effect of thickness on identification of defects

Images such as Fig. 3~b! identify regions in the sample
with statistically significant fluctuations in the projected p
tential, and therefore in the projected density. As we d
cussed in Sec. III B, the magnitude of the fluctuatio
uf8(x,y)u should increase with increasing sample thickne
and therefore the density of features identified from ima
such as Fig. 3~b! should also increase with sample thickne
In this section, we provide experimental evidence that de
onstrates this effect.

Figure 4~a! shows a HRTEM image from a region ne
the edge of a hole created during sample preparation. T
are no cracks or areas of plastic deformation in this regi
so we believe that there are few~if any! defects due to plastic
deformation of the type identified in Fig. 3~b!. Figure 4~b!
shows a Fourier-filtered image of the same region, with
filter chosen to select only the central spot of the tw
dimensional Fourier transform. In this filtered image, the i
age intensity corresponds to the transmitted intensity,
brighter portions of the image correspond to thinner regio
of the sample. A fairly uniform increase in sample thickne
is apparent as the distance from the edge of the hole
creases. Figures 4~c! and 4~d! are Fourier-filtered and thresh
olded images, respectively, of the same region, this time
ing the same filtering parameters as the earlier example~Sec.
III A ! to identify possible defects. From a comparison
Figs. 4~b! and 4~d!, it is apparent that as the thickness of t
specimen increases, the number of features identified
creases. This agrees with the conclusion reached in
III B.

Despite not being subjected to plastic deformation,
region of the sample Fig. 4~d! nevertheless shows many fe
tures identified by the filtering and thresholding process.
comparison, the undeformed region of Fig. 3~b! shows few
1-4
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CHARACTERIZATION OF NANOMETER-SCALE DEFECTS . . . PHYSICAL REVIEW B65 144201
such features. The reason for the difference is that altho
the threshold criterion is the same in each case~three times
the standard deviation of the intensity distribution!, the stan-
dard deviation is larger in the case of the image with
shear band because the fluctuations in the shear band
quite large. If the lower threshold from Fig. 4~d! were ap-
plied to Fig. 3~b!, we would see approximately the sam
density of identified features in both~in the undeformed re-
gions!.

Thus, we see two differences in identified features
tween the deformed and undeformed regions of the sam
First, the observed variation in the projected potential~and
hence projected density! is larger for the features observed
the shear bands. Second, we observe a much higher con
tration of these features in the shear band than in the u
formed material, despite the fact the shear band is thin
than the undeformed material. We conclude that the feat
apparent in Fig. 3~b! represent true structural defects in t
shear band, and are not merely the result of statistical fl
tuations in the projected density. Because the observed v
tions in intensity for the defects is quite large, they mu
represent regions of significantly lower density than the s
rounding material. The most likely explanation is that th
are actual voids; if they were merely regions of slightly r
duced density, they would not give rise to such large va
tions in the projected intensity.

FIG. 4. Four images of an undeformed region of the sample n
the edge of a hole. The scale is the same for all four images~a!
HRTEM image.~b! Fourier filtered image, with a filter chosen t
only pass the central spot of the Fourier transform. The intensit
related to the thickness of the sample, with thinner areas appea
bright and thicker areas dark.~c! Fourier filtered image, using a
passband of 0.5–1.4 nm21 to reveal features with a length scale
approximately one nanometer.~d! Same image as~c!, but with a
threshold chosen to reveal features with brightness three stan
deviations greater than the mean. Note that thick regions@dark areas
from ~b!# tend to have more features than thin regions.
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Because we are examining regions of different thickne
another potential complication is the effect of attenuation d
to absorption. We write an average attenuation fac
exp(2mfi) , wherem is an absorption coefficient andf i is
the imaginary part of the potential.5 Then the transmission
function becomes

q~x,y!5exp@2 isf8~x,y!#exp~2mf i!, ~10!

where we note thatf8(x,y) is real. The effect of the attenu
ation term is to reduce the Fourier amplitude throughout
entire range of spatial frequencies by a constant factor th
a function of specimen thickness. This will not affect th
identification of peaks in the ratio of Fourier amplitude
described above.

The absorption will, however, reduce the amplitude of t
intensity fluctuations in the Fourier filtered image. This r
duction will be greater for thicker regions of the specime
As a result, if absorption were a significant effect, we wou
expect to observe fewer features in the thicker regions of
sample. In fact, however, we observe just the opposite~see
Sec. III D!. Thus, we conclude that the effects of absorpti
are small for the range of sample thicknesses studied he

IV. DISCUSSION

Metallic alloys provide a good example of the differenc
in properties between crystalline and noncrystalline mat
als, and the effects of defects in each. In crystalline allo
plastic deformation is governed by the creation and propa
tion of dislocations, and their interactions with each other
well as with other defects~such as grain boundaries!. Our
understanding of dislocation behavior has been greatly
hanced by our ability to observe them in the electron mic
scope.

In metallic glasses, plastic deformation in shear ban
also occurs by the formation and motion of defects. In t
case, however, the flow defects are not dislocations, but
thought to be regions of a few nanometers extent of loca
higher atomic volume~‘‘free volume’’!.6,7 Direct observation
of these defects is a challenging prospect. In an amorph
material, there is no Bragg scattering that can be locally p
turbed to allow a defect to be imaged. Furthermore, the
pected density variations are quite small (;1 –2 %). The
existence of increased free volume in plastically deform
metallic glasses has been indicated by recent positron a
hilation observations,8 but that technique does not have su
ficient spatial resolution to investigate individual shear ban
in detail.

In the present case, the defects we observe are void
approximately one nanometer diameter, located primarily
regions of plastic deformation. The existence of such vo
in shear bands was inferred by Donovan and Stobbs, on
basis of electron scattering data.9 They speculated that if an
applied shear stress created excess free volume in a s
band, then when the shear stress was removed the exces
volume would coalesce into small voids. Quantitative hi
resolution electron microscopy, as described here, allow
to image these voids directly, and obtain quantitative inf
mation about their size, numbers, and distribution.
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Such quantitative information in turn allows us to beg
to understand the formation and behavior of defects.
instance, let us assume that all of the void volume w
uniformly distributed as free volume in the active she
band. Based on the size and number density of the vo
we can estimate that the active shear band had approxim
0.4% more volume per atom than the undeformed mate
This is comparable to the change in volume associa
with structural relaxation of a metallic glass due
annealing.10 Furthermore, we can also demonstrate, qu
titatively, that the coalescence of the voids is a th
modynamically favorable process. This is because
free energy reduction due to lowering the free volume
the shear band is more than enough to offset
surface energy cost associated with the formation of
voids.11

We believe that techniques described here can be
tended to obtain even more detailed information about
defects. For instance, by a suitable choice of Fourier filter
should be possible to estimate not only the average size
the size distribution of the voids. Such information could
very useful for determining the mechanism of void nuc
ation.
.
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V. CONCLUSIONS

We have shown that quantitative high resolution transm
sion electron microscopy can be usefully applied to the st
of defects in bulk metallic glasses. So long as the we
phase object approximation holds for the fluctuation com
nent of the projected potential, the image intensity is prop
tional to the projected atomic density. By suitable Four
filtering and image thresholding techniques, regions
atomic density significantly lower~or higher! than the aver-
age can be identified. We observe a large concentratio
nanometer-scale voids in shear bands, which we sugges
the result of the coalescence of excess free volume in
active shear bands into voids when the applied shear stre
removed.
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