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Characterization of nanometer-scale defects in metallic glasses by quantitative high-resolution
transmission electron microscopy
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Although defects can have a significant effect on the properties of amorphous materials, in many cases these
defects are poorly characterized and understood. This is at least partly due to the difficulty of imaging defects
in amorphous materials in the electron microscope. In this work, we demonstrate the utility of quantitative
analysis of high-resolution transmission electron microscopy for the identification and characterization of
nanometer-scale defects in metallic glasses. For a proper identification of such defects, it is important to
carefully consider the effects of the imaging conditions and thickness variations in the sample, both of which
we describe in detail. As an example, we show that regions of localized plastic deforrfstéar bandsin
bulk metallic glasses contain a high concentration of nanometer-scale voids. These voids apparently result from
the coalescence of excess free volume once the applied stress is removed.
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I. INTRODUCTION mA, at 11° incidence Ordinary handling of the TEM speci-
mens produced small cracks at the edge of the electron-
Transmission electron microscog¥ EM) is one of the transparent region; ahead of and around these microcracks,
most useful tools for studying defects in crystalline metals,shear bandsregions of local plastic deformatipnwvere ob-
with a wide variety of imaging and diffraction modes that served in ordinary bright-field TEM imaging. The contrast in
can reveal defects such as dislocations. In most cases, thaseght-field imaging arises because the deformed regions are
modes make use of the fact that defects create local disruphinner than the undeformed material. For the particular ex-
tions in the otherwise perfect periodicity of the crystalline ample described below, the measured thickness of the unde-
structure. Thus, it is the very existence of a lattice that allowgormed material is approximately 10 nm and that of the shear
us to detect the defects in the structure. Defects are aldpand region approximately 5 nm. We used a Philips CM300
important in amorphous materials, but the very fact thaffield emission gun microscope operated at 300 kV; the im-
these materials are noncrystalline makes the identificatioages were collected on a charge-coupled de{@eD) cam-
and characterization of defects in the TEM quite challengingera.
Despite the challenges, some progress has been made to-
wards developing TEM techniques for imaging defects in I1l. DATA ANALYSIS
amorphous materials. In this paper, we report on our use of
guantitative high-resolution transmission electron micros-
copy (HRTEM) to identify nanometer-scale defects in shear The analysis procedure we used follows that of Miller and
bands in bulk metallic glasses, using a technique previouslgibson, who first described its use for identification of
described by Miller and GibsohOf particular importance is nanometer-scale voids in amorphous silica thin fifrs this
the influence of imaging conditions and variations in samplesection, we briefly outline the analysis proced(wéth com-
thickness on the results, which we describe in some detaiments relevant to our particular casend provide images of
We observe a high concentration of defects in shear band® example. Additional details on several critical points are
(regions of the metallic glass which have undergone extenprovided in the following sections.
sive local plastic deformationWe believe the defects form (1) We begin by obtaining HRTEM images that contain
when excess free volume in the active shear band coalescbsth deformed and undeformed regions in a single micro-
into voids. graph[Fig. 1(@)]. Using a single image ensures that the con-
trast transfer functiofCTF) is the same for both regions,
eliminating any effect of the microscope conditions on the
comparison of the two regions that might occur if they were
We prepared 3 mm diameter rods of amorphousmaged separately. For imaging defects in metallic glasses, it
Zrs7TisCuyoNigAl 1o by arc melting master alloy ingots from is convenient to chose a defocus value of around
the pure elements, followed by casting into a copper mold—200 nm. At this defocus the first zero of the contrast trans-
Samples for electron microscopy were prepared by elecfer function occurs at abolt=1.8 nmi *; this allows us to
tropolishing sections of the rods in a solution of 30% per-examine the region of interest (&&<1.5 nm 1) without
chloric acid in ethanol at-30°C for 20—30 quntil perfo-  having to worry about the effect of contrast reversal on the
ration). We usually observed that samples electropolished image. This is discussed in more detail below.
this way had some residual surface contamination, which we (2) We then calculate the two-dimensional Fourier trans-
removed by a briefl h) ion milling procesg3 kV, 0.1-0.25 form of two portions of the image, one from an undeformed

A. Overview of an example of analysis

Il. SAMPLE PREPARATION AND IMAGING
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neark=1 nm !, is always more prominent for the de-
formed region. This suggests that whatever structural fea-
tures may be responsible for the small-angle scattering exist
in greater numbers in the deformed region. These observa-
tions from the Fourier transform data agree well with the
results of a series of axially aligned dark-field images for the
same samples.

(4) We next take the ratio of the two one-dimensional
transforms, dividing the data from the deformed region by
that from the undeformed regiofFig. 2(b)]. This ratio
should be sensitive to any structural differences between the

FIG. 1. (@) HRTEM image of a shear band ahead of a crack tip.two regions: In the present case, the ratio is rather noisy due
The shear band is the brighter region that extends across the leffp the small size of the shear band regi@vhich limits the
hand side of the imagéb) Two-dimensional Fourier transform of sjze of the regions which can be Fourier transforimead
the image in(@). because the structural differences between the two regions

) . ) ) are small. Nevertheless, we see a peak in the ratio kear
region and one from a region _of plastic deformation. Sepa— { nm?, indicating that the peak in the small-angle scat-
rate transforms for the two regions are not shown; Fif) 1 ering region is indeed more significant for the deformed
shows transform of the entire image, used below. region. Although barely larger than the statistical uncertainty

(3) Because there are no strong directional effects, We, the ratio, we have observed this peak at a variety of defo-
azimuthally average the two-dimensional transforms to obg,5 conditions and for several different deformed regions.
tain one-dimensional equivalents for each regiosing the  \ye ais0 observe that the intensity fluctuations in the shear
program FIT2B), as shown in Fig. @. The one- g (described beloyare larger, relative to those in the
dimensional transforms for our samples always show a peaﬁ]atrix, for spatial frequencies aroukd=1 nm™! than for
neark=4 nm*, corresponding to the amorphous halo, andyher spatial frequencies. We conclude, therefore, that the
a second peak at low corresponding to small-angle scatter- peak in the ratio nedc=1 nm ' is real, and not a statistical
ing. Although the various features in the ratio are not dra‘anomaly.
matic, in comparing undeformed and deformed regions, we s nrocedure allows us to identify particular range of
always obserytle ‘two systematic differences. First, the peajf,5; correspond to structural features of interest. To actually
neark=4 nm " is always broader for the deformed region, jyage the defects giving rise to the enhanced small-angle
suggesting increased atomic disorder due to plastic deform%‘cattering, we apply a Fourier filtering technique.
tion. Second, the peak in the small-angle scattering region, (5) Going back to the original HRTEM imag€ig. 1), we
perform a two-dimensional Fourier transform of the entire

@ 800 image, including both deformed and undeformed regions
§ 2504 [Fig. 1(b)].
g 200 (6) Next, we apply an annular filter that passes the spatial
2 1504 frequencies of interest (05k<<1.5 nm ) identified from
Ei Shear band the ratio, as described in step 4 above. All other spatial fre-
g 1007 quencies are excluded, which, among other things, elimi-
< 50 . nates the effects of both contrast reversal and thickness
n (@) Undeformed region S - .

A variations on the results. These are critical points, and are

5 ; 1'0 1'5 described in Sec. Il D. _
K (om' (7) With the filter applied, we do a reverse Fourier trans-
form, to obtain a filtered imagfFig. 3(@)]. Notice that the
» 1.06- structural features on this image have characteristic lengths
S 1044 on the order of 1 nm, as a result of the Fourier filtering. The
2 102 image intensity of this filtered image is related to the pro-
§ 100 jected atomic density, with regions of locally lower density
_E_ 0'98_ appearing bright and regions of locally higher density ap-
° = pearing dark. Interpreting the image in this way assumes that
: 0.96 7 b the weak-phase-object approximati®wPOA) applies, as
094 (0) we discuss in Sec. Il B.
o 1' ; é ) (8) Most of the features in Fig.(8) merely represent sta-

tistical fluctuations in the projected density. To identify ac-

tual defects, we apply a threshold filter in which the thresh-
FIG. 2. (a) One-dimensional Fourier transforms of two regions 0ld is set to pass regions which exceed the mean brightness

of Fig. 1 (the shear band and undeformed matgrighe curve for by at least three standard deviations. The result of applying

the shear band has been offset vertically for clattty.Ratio of the  this threshold filter is shown in Fig.(8). The spots in this

two one-dimensional transforms froa). image represent regions with projected densities with statis-
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ST R The condition for the weak-phase-object approximation is
— o : that 0p<<1, which usually holds only for very thin speci-
mens composed of light elements. For disordered materials,
however, the range of thicknesses for which the weak-phase-
object approximation applies is greatly extendethis is
because we can add or subtract an arbitrary constant to the
phase change(x,y) without affecting the image intensity;
in effect, this merely changes the reference point relative to
which the phases are measured. In particular, we can write
(b) the projected potential ag(X,y) = ¢o+ ¢’ (X,y), where ¢
is the average value of the projected poten@aksumably

FIG. 3. (a) Same image as Fig.(d, Fourier-filtered using a directly proportional to the specimen thicknpasd ¢’ (x,y)
passband of 0.5-1.4 nr. (b) Same image a&), with a threshold ~ represents local fluctuations about the average projected po-
chosen to reveal features with brightness three standard deviatiotential. The magnitude ab’(x,y) depends on the magnitude
greater than the mean. The contrast in this image was inverted fasf density fluctuations in the specimen, as we discuss below.

improved reproduction, so that bright features fr@anappear dark  With this change, the HRTEM image intensity becomes
here.

. N . l(x,y)=c+20¢'(X,y)*s(X,y), 2
tically significantly lower densities than the average. Note
that there is a much higher concentration of these features herec is a constant.
the deformed region of the sample; as we show below, if the In a crystalline material, with aligned atomic columns, the
features were the result of simple statistical fluctuations, theifluctuationse’(x,y) can be quite large and the sample must
apparent concentration would increase with thickness. Wée very thin to satisfyr¢’<1. For a disordered material,
observe just the oppositthe deformed region is thinner than however, the atoms overlap randomly and the fluctuations in
the undeformed materijalso we conclude that the features in the projected potential are quite small relative to the average.
Fig. 3(b) represent true structural defects. A quantitative determination ap’(x,y) for the present case
The small spots in Fig.(8) serve only to identify which would require a detailed model of the atomic-scale structure
of the features in Fig. (8) represent actual defects. The ac- of our five component glass. While this is the subject of
tual size of the defects is obtained from Figa)3 in which ~ ongoing research, it is beyond the scope of the present study.
the length scale of the features is determined by the range dfstead, we provide some simple observations to show that
k space passed by the Fourier filter. From Fig) 3ve esti-  the weak-phase-object approximation is expected to hold for
mate that the defects are approximately one nanometer i@ur samples.
diameter. The magnitude ok’ (x,y) is proportional to the magni-
The validity of this general approach to identifying de- tude of the projected atomic density.N{x,y) is the number
fects in amorphous materials has been demonstrated f atoms in a column of material, then as a simple approxi-
Miller and Gibsont In the present case, however, three criti- mation it is sometimes assumed that the variatioN {®,y)
cal issues emerge from the discussion above. First, we cos given byN2 whereN is the average value dfi(x,y).*
sider whether the weak-phase-object approximation applieshis simple approximation predicts much smaller fluctua-
in the present case and discuss the interpretation of the imagiens than would be observed for a crystalline material, but in
contrast. Second, we demonstrate that the ratio techniqu@ct even it predicts fluctuations that are larger than those
(step 4 can be used to identify spatial frequencies corre-actually observed. This is because it assumes that the pro-
sponding to structural features of interest, even if the regionfected positions of the atoms are randomly distributed. In a
examined are of different thicknesses. Finally, we show thateal amorphous material, the atomic positions are not uncor-

the Fourier filtering technique for identifying defects is still related; instead, there is short-range order that will make the
valid, even if there are thickness variations across th‘?luctuations iNnN(x,y) much smaller thalNY2. In practice

sample. In what follows, we take up each of these issues if}q typically observe that the fluctuations from a amorphous

turn. sample are about one-fourth the size of the fluctuations from

a crystalline region of the same thickness. We also observe

B. Validity of weak-phase-object approximation that a threefold increase in specimen thickness yields an in-

and interpretation of image contrast crease of less than 25% in the magnitude of the fluctuations

In the weak-phase-object approximation, the intensity of 4" the amorphous regions. Thus, we conclude that the weak-

HRTEM image is given by phase object approximation holds for our amorphous speci-
mens, which are typically 5—10 nm thick.

1(X,y) =1+ 20¢(X,y)*S(X,Y), (1) When interpreting the HRTEM images, we also need to

consider the effect of the smearing functisfx,y) in Eq.
where o is an interaction constant(x,y) is the projected (2). Under Scherzer defocus conditioséx,y) approximates
potential,s(x,y) is a smearing function equal to the Fourier a single, sharp negative peak, so that the image intensity
transform of the contrast transfer function, and * indicates aepresents the projected potential distribut{@rich is pro-
convolution operatiof. portional to the projected densjtyBecauses(x,y)<0, re-
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gions of high projected potentifkp’ (x,y)>0] appear dark
in the image, while regions of low projected potential
[¢'(x,y)<O0] appear bright.

PHYSICAL REVIEW B65 144201

where FT denotes the Fourier transform of the quantity in
brackets. Thes' (k) term here adds to the intensity of the
central spots(k) in Eqg. (5). We are interested only ik>0,

In practice, we use Fourier-filtered images to examineso we ignore these delta functions in the following develop-
particular length scales of interest. The intensity of an imagenent.

filtered by the application of an annular magi(k) is

li(x,y)=20¢"(Xx,y)* FTICTEXM(k)], )

where CTF represents the contrast transfer fundtiom Fou-
rier transform ofs(x,y)].* In what follows, we assume that
the range of spatial frequencies passed by the annular ma
(ki<k<kp) is entirely within the first zero of the contrast

k)

transfer function. This allows us to treat the contrast transfer

If two HRTEM images are taken under precisely the same
conditions, the contrast transfer function and the damping
envelope are the same for both images, and the ratio of the
Fourier spectra K) is given by

(k) _ 20]$1(W|[P?(k) xsirx (k)] _[1(K)]
12(K) 20| h,(K)|[P?(k) X sirPx (k) ]2 | ds(k)|
9

function as approximately constant, in which case the image
intensity is indeed proportional to the projected potential, ad hus, the ratio of the Fourier spectra for0 depends only

discussed below.
With this assumption, the Fourier transform of CTF

on the magnitude of the fluctuatiogs (x,y) in ¢(x,y), and
not on the average potentigl,. Taking the ratio in this way

XM (k) is a sharp Gaussian-like peak, which smears thegreatly reduces the sensitivity of the technique to variations
atomic potential but does not introduce significant complexin sample thickness. The effect of sample thickness is there-

ity into the image interpretation. EquatidB) therefore be-
comes

l1(X,y)=2co¢’(X.y), (4)

where ¢ is a constant(Note that in applying the annular

mask, we have discarded all of the structural information

other than fork;<k<kg,.) Thus, the intensity of the Fourier-
filtered image represents the fluctuatiah’{x,y) in the pro-

fore much smaller than in conventional HRTEM. In addition,
the fluctuation potentiath’ (k) does not depend very sensi-
tively on sample thickness; this is discussed in more detail in
the next section.

D. Effect of thickness on identification of defects

Images such as Fig.(l9 identify regions in the sample
with statistically significant fluctuations in the projected po-

jected potentialg(x,y). The effect of different specimen tential, and therefore in the projected density. As we dis-
thicknesses on the image will be to change the average iussed in Sec. Ill B, the magnitude of the fluctuations
tenSIty, but the fl|tel’lng process eliminates thIS, and what W?d)’(X,y)l should increase with increasing Samp'e thickness'

observe are the fluctuations in intensity.

C. Effect of thickness on ratio of Fourier transform
amplitudes

The intensity of the HRTEM images is given Ibyx,y)
from Eq. (2). The amplitude of the Fourier spectruirtk) is
therefore

T(k)=1o{8(k) +20] (k) [ P*(k) X sir’x(k) ]¥%}, ()
where ¢(k) is the Fourier transform of(x,y), P(k) is a
damping envelope caused by microscope instability and lim

ited coherence, and sitk) is the contrast transfer functidn.
In Eq. (5), the delta function represents the central spot du

represents the rest of the spectrum, which is the contributio
from scattered beamg@nodulated by the contrast transfer
function).

As above, we write the inner potenti@lx,y) as the sum
of an average potentiab, and fluctuationse’ (x,y) about
the averagep(x,y) = ¢do+ ¢’ (X,y). Now we have

d(K)=FT[ o+ ¢'(x,y)] (6)
= 00" (K)+FT[ ¢’ (X,y)] 7
= 00" (K) + &' (K), (8)

and therefore the density of features identified from images
such as Fig. &) should also increase with sample thickness.
In this section, we provide experimental evidence that dem-
onstrates this effect.

Figure 4a) shows a HRTEM image from a region near
the edge of a hole created during sample preparation. There
are no cracks or areas of plastic deformation in this region,
so we believe that there are fdiffany) defects due to plastic
deformation of the type identified in Fig(l3. Figure 4b)
shows a Fourier-filtered image of the same region, with the
filter chosen to select only the central spot of the two-
dimensional Fourier transform. In this filtered image, the im-
age intensity corresponds to the transmitted intensity, so
brighter portions of the image correspond to thinner regions

to the transmitted beam, while the second term in bracket%f the sample. A fairly uniform increase in sample thickness

apparent as the distance from the edge of the hole in-
Qreases. Figuresd and 4d) are Fourier-filtered and thresh-
olded images, respectively, of the same region, this time us-
ing the same filtering parameters as the earlier exaggde.
Il A) to identify possible defects. From a comparison of
Figs. 4b) and 4d), it is apparent that as the thickness of the
specimen increases, the number of features identified in-
creases. This agrees with the conclusion reached in Sec.
I B.

Despite not being subjected to plastic deformation, the
region of the sample Fig.(d) nevertheless shows many fea-
tures identified by the filtering and thresholding process. In
comparison, the undeformed region of Figb3shows few
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Because we are examining regions of different thickness,
another potential complication is the effect of attenuation due
to absorption. We write an average attenuation factor
exp(—ud), whereu is an absorption coefficient and; is
the imaginary part of the potentialThen the transmission
function becomes

ax,y)=exg —ioce'(xy)Jexp( — udi), (10

where we note thab’(x,y) is real. The effect of the attenu-
ation term is to reduce the Fourier amplitude throughout the
entire range of spatial frequencies by a constant factor that is
a function of specimen thickness. This will not affect the
identification of peaks in the ratio of Fourier amplitudes,
described above.

The absorption will, however, reduce the amplitude of the
intensity fluctuations in the Fourier filtered image. This re-
duction will be greater for thicker regions of the specimen.
As a result, if absorption were a significant effect, we would
expect to observe fewer features in the thicker regions of the
sample. In fact, however, we observe just the oppdsie
Sec. lll D). Thus, we conclude that the effects of absorption

FIG. 4. Four images of an undeformed region of the sample neat © small for the range of sample thicknesses studied here.

the edge of a hole. The scale is the same for all four ima@es.
HRTEM image.(b) Fourier filtered image, with a filter chosen to IV. DISCUSSION

only pass the central spot of the Fourier transform. The intensity is Metallic allovs provide a qood example of the differences
related to the thickness of the sample, with thinner areas appearin ysp 9 P

bright and thicker areas darkc) Fourier filtered image, using a 'ﬂ properties between crystallln_e and noncrystalllr_1e materi-
passband of 0.5-1.4 nm to reveal features with a length scale of als, "fmd the eﬁ(?CtS_Of defects in each. In C_rystalllne alloys,
approximately one nanometed) Same image a&c), but with a plastlc d_eforme_ttlon is governgd by thg creatllon and propaga-
threshold chosen to reveal features with brightness three standaftPn Of dislocations, and their interactions with each other as
deviations greater than the mean. Note that thick redidack areas  Well as with other defectésuch as grain boundariesOur
from (b)] tend to have more features than thin regions. understanding of dislocation behavior has been greatly en-
hanced by our ability to observe them in the electron micro-
such features. The reason for the difference is that althougécope.
the threshold criterion is the same in each cédbeee times In metallic glasses, plastic deformation in shear bands
the standard deviation of the intensity distribuliothe stan-  also occurs by the formation and motion of defects. In this
dard deviation is larger in the case of the image with thecase, however, the flow defects are not dislocations, but are
shear band because the fluctuations in the shear band di®ught to be regions of a few nanometers extent of locally
quite large. If the lower threshold from Fig(d} were ap- higher atomic volumé“free volume”).%’ Direct observation
plied to Fig. 3b), we would see approximately the same of these defects is a challenging prospect. In an amorphous
density of identified features in botin the undeformed re- material, there is no Bragg scattering that can be locally per-
gions. turbed to allow a defect to be imaged. Furthermore, the ex-
Thus, we see two differences in identified features bepected density variations are quite smat -2 %). The
tween the deformed and undeformed regions of the samplexistence of increased free volume in plastically deformed
First, the observed variation in the projected potent@md  metallic glasses has been indicated by recent positron anni-
hence projected densitis larger for the features observed in hilation observation8 but that technique does not have suf-
the shear bands. Second, we observe a much higher concdigient spatial resolution to investigate individual shear bands
tration of these features in the shear band than in the undén detail.
formed material, despite the fact the shear band is thinner In the present case, the defects we observe are voids of
than the undeformed material. We conclude that the featuregpproximately one nanometer diameter, located primarily in
apparent in Fig. @) represent true structural defects in the regions of plastic deformation. The existence of such voids
shear band, and are not merely the result of statistical fluon shear bands was inferred by Donovan and Stobbs, on the
tuations in the projected density. Because the observed varikasis of electron scattering datahey speculated that if an
tions in intensity for the defects is quite large, they mustapplied shear stress created excess free volume in a shear
represent regions of significantly lower density than the surband, then when the shear stress was removed the excess free
rounding material. The most likely explanation is that theyvolume would coalesce into small voids. Quantitative high
are actual voids; if they were merely regions of slightly re-resolution electron microscopy, as described here, allows us
duced density, they would not give rise to such large variaio image these voids directly, and obtain quantitative infor-
tions in the projected intensity. mation about their size, numbers, and distribution.

W

.
msiem
7

(c) (d)

K,
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Such gquantitative information in turn allows us to begin V. CONCLUSIONS
to understand the formation and behavior of defects. For

ms_tance, Ie_t us assume that all of the void vqlume Wa%ion electron microscopy can be usefully applied to the study
uniformly distributed as free volume in the active shear ¢ qafacts in bulk metallic glasses. So long as the weak-
band. Based on the size and number density of the void$hase ohject approximation holds for the fluctuation compo-
we can estimate that the active shear band had apprommqte,l,}ém of the projected potential, the image intensity is propor-
0.4% more volume per atom than the undeformed materiational to the projected atomic density. By suitable Fourier
This is comparable to the change in volume associateglitering and image thresholding techniques, regions of
with structural relaxation of a metallic glass due 1o atomic density significantly lowefor highej than the aver-
annealing® Furthermore, we can also demonstrate, quanage can be identified. We observe a large concentration of
titatively, that the coalescence of the voids is a ther-nanometer-scale voids in shear bands, which we suggest are
modynamically favorable process. This is because thehe result of the coalescence of excess free volume in the
free energy reduction due to lowering the free volume inactive shear bands into voids when the applied shear stress is
the shear band is more than enough to offset theemoved.
surface energy cost associated with the formation of the
voids! ACKNOWLEDGMENTS

We believe that techniques described here can be ex-
tended to obtain even more detailed information about th EM imaging, X. Gu for sample preparation, and fruitful
defects. For instance, by a suitable choice of Fourier filters, Hiscussions with Y. Ding, P. Voyles, J. M. Gibson, F.

should be possible to estimate not only the average size b'étpaepen, and R. C. Cammarata. This research was supported
the size distribution of the voids. Such information could beby the U. S. Army Research Office under Grant No.

very useful for determining the mechanism of void nucle-paaG55.98-1-0487 and the National Science Foundation

We have shown that quantitative high resolution transmis-

We gratefully acknowledge K. Livi for assistance with the

ation. under Grant No. 9875115,

*Electronic address: hufnagel@jhu.edu 53. M. Cowley, Diffraction Physics(North-Holland, New York,
1p.D. Miller and J.M. Gibson, Ultramicroscop#d, 221 (1998. 1986.

2A.P. Hammersley, FIT2D: An introduction and overview, 1997. °P.S. Steif, F. Spaepen, and J.W. Hutchinson, Acta Me3@)l447
3J. Li, X. Gu, L.-Q. Xing, K. Livi, and T. C. Hufnagel, irsuper- (1982.

cooled Liquid, Bulk Glassy and Nanocrystalline States of Alloys ’A. Argon, Acta Metall.27, 47 (1979.
edited by A. Inoue, A.R. Yavari, W.L. Johnson, and R.H. 8K.M. Flores, Daewoong Suh, R. Howell, P. Asoka-Kumar, P.A.
Dauskardt, MRS Symposia Proceedings No. 64i4terials Re- Sterne, and R.H. Dauskardt, Mater. Trans., JW2, 619
search Society, Pittsburgh, 200p. L12.19. (2002.

4J.M. Cowley, inHigh-Resolution Transmission Electron Micros- °P.E. Donovan and W.M. Stobbs, Acta MetaB, 1419(1981).
copy and Associated Techniqueslited by P. Buseck, J. Cowley, °A. L. Greer, inRapidly Solidified Alloysedited by H. H. Lieber-
and L. Eyring(Oxford Science Publications, Oxford, 199pp. mann(Marcel Dekker, New York, 1993 pp. 269-301.
3-37. 113, Li, F. Spaepen, and T. C. Hufnadehpublishedl

144201-6



