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Phenomenological theory of phase transitions in highly piezoelectric perovskites
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The recently discovered fine structure of the morphotropic phase boundaries in highly piezoelectric mixture
compounds PbZr ,Ti,Oz (PZT), Pb(MgysNby) 1 Ti,O3 (PMN-PT), and Pb(Zr3Nb,3) 1 Ti,O3 (PZN-PT)
demonstrates the importance of highly nonlinear interactions in these systems. We show that an adequate
Landau-type description of the ferroelectric phase transitions in these compounds is achieved by the use of a
twelfth-order expansion of the Landau potential in terms of the phenomenological order parameter. Group-
theoretical and catastrophe-theory methods are used in constructing the appropriate Landau potential. A com-
plete phase diagram is calculated in phenomenological parameter space. The theory describes both PZT and
PZN-PT types of phase diagrams, including the newly found monoclinic and orthorhombic phases. Anoma-
lously large piezoelectric coefficients are predicted in the vicinity of the phase transition lines.
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. INTRODUCTION ferroelectric order parameter-polarizati®n While success-
fully describing the phase diagram of BaTEiQhe potential
For many years, perovskite-type materials have been gsed in Ref. 8 lacks the high-order terms necessary to de-
subject of extensive research in both experimental and theggcribe the low-symmetry phases. Using a geometric argu-
retical physics. On one hand, different representatives of thehent based on the Curie principle, Zheludev and ShuValov
perovskite family exhibit a host of physical phenomena, suclt|assified possible positions & with respect to the cubic
as piezoelectricity, ferroelectricity, and superconductivity; onunit cell. Due to the purely symmetric nature of this ap-
the other hand, perovskite structure is a relatively simplgyroach, it fails to distinguish between monoclinic phalskes
and, thus, attractive object for theoretical studies. and Mg (P|[uuv], u>v), because these phases have the
Even though there is a long history of studies of perovssame crystallographic symmetym. The group-theoretical
kites, they still present new surprises. Recent x-ray and neyelationship between the geometric method and Landau ap-
tron diffraction studies on solid solutions PRZ(Ti,O3  proach was established in Refs. 10 and 11.
(PZT),  Pb(MgaNby3);-4TixO3  (PMN-PT),  and Using this approach, Gufan and Sakhnefkiound that
PH(ZnysNbyz); - TixO3 (PZN-PT) (Refs. 1-5 have re-  on a two-dimensionale.g., T-x) phase diagram of perovs-
vealed new phases in the vicinity of the morphotropic phasgites there can be a poinT§,x,) where five phase§, R, O,
boundary on the T-x phase diagram of the solutions. In a M., andT coexist. They calculated the phase diagram in the
narrow Ti concentration rangex{46—52%), the low- vicinity of this five-phase point. Only small solutions of the
temperature structure of PZT was found to be monoclinicequations of state that are close to the five-phase point were
M (crystallographic symmetr¢m) with polarization vec-  considered, justifying expansion in powers of small param-
tor P directed along thguuv ], u<v pseudocubic directioh.  etersT— T, andx—x,. However, the results of this work do
A similar M, structure has also been recently seen imnot apply to the recently discovered phases of the mixture
PMN-PT below room temperature far=35% > Another fine  compounds of Pb-based complex oxides since, in this case,
structure of the morphotropic phase boundary has beefhe R-O-T and R-M 4-T triple points are separate from the
found in PZN-PT. Forx=9-11%, the low-temperature C-R-T triple point. Therefore, theoretical consideration can-
structure is orthorhombicQ, Amn2) with P|[101].* The  not be limited to small solutions of the equations of state,
rhombohedral R, R3m) unpoled crystal of PZN-PTxX(  especially for the lowest-symmetry phases.
=8%) was also found to exhibit irreversible monocliMig Ab initio'® as well as phenomenologi¢alcalculations
(Pm, P|[Ouv]) distortion when an electric field above a have been used to account for the presence of monoclinic
certain critical value is applied along tfi@01] pseudocubic phases on thd-x phase diagrams of ferroelectric perovs-
direction’ kites. Vanderbilt and Cohéhcalculate the phase diagram in
Early theoretical investigations of phase transitions in perthe space of phenomenological parameters within the frame-
ovskites were concentrated on Bagj@hich goes through a work of Landau-Devonshire theory. Their model is based on
sequence of phases upon cooling: culii¢ (Pm3m), tetrag-  the eighth-order expansion of the Landau potential in terms
onal (T, P4mm), O, andR. Devonshiré explains the be- of the polarization orientatio®/|P|. Although monoclinic
havior of BaTiQ, within the framework of a phenomenologi- phases appear in the phase diagram of the model, it does not
cal Landau-type expansion up to sixth order in terms of thencorporate cubic and triclini€Tri, P1) phases.
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Having considered a number of successively more comparameter. In Sec. lIl, we fit th€-x phase diagrams of PZT
plicated models, a natural question arises: What is the mogind PZN-PT. In Sec. IV, we discuss the piezoelectric prop-
general phenomenological model of the phase diagram of arties of the compounds in the vicinity of the newly found
cubic system induced by a ferroelectric order parameterghase boundaries. The Appendixes are intended to give a
This question can be answered by use of the concept-of group-theoretical and catastrophe-theory background for
tegrity rational basis of invariant$IRBI), introduced in Ap-  some general statements we make in the text.
pendix A. The IRBI can be thought of as a basis in the space
of polynomials (formed from the order parameter compo- II. TWELETH-ORDER LANDAU-TYPE MODEL
nents, which are invariant under the transformations of the . ) ) )
symmetry group of the system. By a group-theoretical argu- Three algebraically independeRm3m-invariant polyno-
ment, if the IRBI contains polynomials of maximal order ~ Mials can be formegsee Appendix Afrom the polarization
then at least a @th-order phenomenological model is neces-Vvector componentsRy, Py ,P,).
sary to describe all the possible phases induced by the order J.—=p24 p24 p2
parametet® This statement is true for the irreducible repre- ity e

sentations of groups generated by reflections, including the J,=P2p2+ p2p2+ p2p2
p . . 27 Fxly y'z X'z

m3m symmetry of the perovskite structure. We will show B
that, in the case of perovskites, the Landau potential has to Jo= pipip?

be expanded up to the twelfth-order terms to describe the

phase diagram induced by the ferroelectric order parameter. The ferroelectric part of the Landau potential can then be
The results of the analysis of a simple twelfth-orderexpressed in terms of algebraic combinations of J,, and

model are presented in this paper. In Sec. I, we present th&,. Since polynomials of up to sixth order are present in the

solutions resulting in a phase diagram containing all thdRBI [Eq.(1)], the Landau potential has to be expanded up to

phases allowed by the symmetry of the ferroelectric ordethe twelfth-order terms:

F=a,J;+a,Ji+b.J, (2nd and 4th order terms
+agli+didiJ,+cid;s (6th order terms
+a,d7+d112030,+byJ5+di3)1 J3 (8th order termp
+agdi+dy112030,+ diopd I3+ diga)3ds+ dpgdyds (10th order terms)
+agdS+ di1110735+ d11520735+ 0335+ d1119)335+ d125)1 3203+ C2J5  (12th order terms 2

A complete investigation of extrema of the functibP) T, O, R, My, Mg, Mc, and Tri, and it correctly describes
in the multidimensional parameter space is a rather tediouthe phase boundaries. For example, although the symmetry
exercise. However, the main features of the phase diagragroups of the phaséd , (Mg) andR obey a group-subgroup
can be obtained from simplified models based on the poterrelationCmC R3m, phase transitionR-M , andR-Mg can-
tial (2) with some terms omitted. The truncated potentialnot be of second ordét:**
should satisfy at least two requirements) it has to be A complete phase diagram of the Landau poteri8atan
bounded from below, angi) it should be structurally stable be constructed in the space of phenomenological parameters
in catastrophe-theory senet® The latter requirement pro- (a;,by,c;). All the characteristic features can be seen from
vides that small perturbations, which can arise from thethe two-dimensional cross sections in thgh, plane, as
terms omitted in Eq(2), do not drastically change the results shown in Fig. 1.
obtained in a simplified model. In Appendix B, we briefly = Below we show how the phase diagram of Fig. 1 was
describe how compliance with the second requirement caobtained, using the example of phase R. Minimizing the po-
be verified. tential (3) with respect toP,,P,,,P, and then imposing the

A twelfth-order model condition P,=P,=P,=P,/\3, we obtain the value of

spontaneous polarizatid?g as a solution of the equation of
Fiit=apdi+bido+cidstaJi+byJd3+¢,05 (3 state

meets both requirements when, b,, andc, are positive

quantities, whilea,;, b;, and ¢, are parameters driving 2 , C1_, 4by . 2c, .o

phase transitions, and can be of any sign. In spite of its &% 3(38;+by)Ps+ 5P+ —=Ps+ 572P7=0, (4)
simplicity, model(3) is in full agreement with the results of

the group-theoretical analysis of the ferroelectric phase tran-

sitions in perovskites. It gives an account of all the ph&es which obeys the stability conditions
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(3a,+by) o b c
Fr(Pg)=a;P2+ TP;‘Jr 2—7P§+ — P8+ P

All the equations relating to isostructural phases have an
additional permutation symmetry? 2« P22, Introducing
S - new variablesU =(P.%2+P??)/3 and V= P’ZP’S’Z/Q, which
"""""""" T are invariant under the permutation, we obtain

isostrucrtural S
" transition R-R R

S 6a,— c,(U2+2V) — 180,U%— 2¢,U3(2U2—5V) =0,

—4(3a,+b;)U—c,(2U%+V)—12b,U(2U%-V)
—2¢,U%(2U%2-5V)=0, (10)

2(3ay+b;)+c,U+120,(U2—V)+2c,(U*—3U2V+V?)

=0.

® © V can be eliminated from Eq10) and the resulting equa-
FIG. 1. (a), (b) Phase diagram im;b; plane for the potential ~tions can be solved fa, andb,. One of the solutions para-
F.ie for (a) ¢,<0 and(b) ¢,>0. Solid lines are first-order phase Metrically defines an isostructurg+R transition line by
boundaries; dashed lines are second-order phase boundaries; dotted

X - . i - 2
lines are stability boundaries of phasés) Diagram of possible C1 b,c; ¢4 4c,
second-order phase transitions between the phases. a,(U)= 18c,U + c, + §U2_ 2b,U° 9 u®
5, (11
2 2
2 4 8 c 9b5 2c
3 ZU CZ
Cl 2 2 4 2 8 5C2
+ =P+ + —P.s< 4
by + 5 Ps+ 5b2Ps 81P <0. (6) +-5 U

The parametric equations for the boundaries of the phasa similar isostructural transition line appears in phadg
stability domain are obtained by replacing the inequality inand is shown enlarged in the bottom inset of Fig. 1.
either Eq.(5) or (6) with an equality and solving it together The first-ordeIR-C transition occurs when the two phases
with Eq. (4). The line resulting from Eq94) and(5), have equal potential&z(P)=0. This condition together
with equation of staté4) gives

_ G 4, 8b, 6 802 10
(Ps)= g Pt g Pt o543Ps s 2by o 4c, o
a;(Pg)= 27P + =5 Pet 75gPs’
c 5¢, 12
by(Pg)=—3a,~ 3 P{-2b,P{—2=Ps, (D) 26, 5¢, (12
bl(Ps)=—3a2—?Pi—bng—mpg.

has a cusp at;<<0 shown in the top inset of Fig.(d). This

feature is defined by the parametric equation We would like to point out some other important features

20c, of the phase diagram of Fig. 1, which can be represented in a
cy+12b,P2 cuspt >7 Pgusp—o_ (8) simple analytical form. Foc,>0, phaseM lies between
T-Mc andO-M second-order phase boundaries defined, re-

This equation has no real solutions for>0, as the cusp SPectively, by

merges with thea; axis. Another interesting feature of the )

phase diagram is a first-order transition line below ke aib,

axis, shown in the top inset of Fig(a. It corresponds to an b,=0 and b,=- 8a2 " (13
isostructural transition between two phases with the same 2

structure and symmetrR, with the value ofPg being the  The second-orde®©-Mj transition line is parabolic in the
only difference between theM.Let P, and P? be the two  (a,,b,) parameter space

values obtained from the equation of stede Then the tran-

sition line is defined byFg(P¢)=Fgr(P%), whereFg(Py) is (2bya; + clbl)z—(ciJr 8a,b,)(cia;—4ayb,)=0.

the potential of phasg: (14)
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The lowest-symmetrifri phase appears aj<0 between PbZs, 5.0
phasedM 4, and Mg in a slice restricted by a parametrically c
defined line mor
o - 009000 —00 -
—~ (4
cia ?”" \%
142 H
a,(t)=—4a,t’+ —, %
1) ot ] (i
g 250 : \\
(15 = PR
chbz 0 '% . ha
_ 4
by(t)=—2byt"+ o2’ © 45%obeTin0 ” % of PbTiO,
2 @ ®)
wheret is a real parameter. The coordinates of the four-phase Pb(Zn,.Nb,,), Ti,0,
R-M g-M 4-Tri critical point can be obtained from E¢L5): SO
C C
~ 600 4
4c,\ 13 20% 13 = IEPSEPSEEL -
a1:3a2 —_— y b]_: _3b2 — . (16) g 4009~ -
C2 c3 :
'g‘ 200 : :. T
The first-order transition linedg-R, R-M,, M,-T, and R io]
R-0O, and the isostructurdil,-M , line were obtained nu- Y B 89 m?u P
merically, as the method described in EgB—(12) in these % of PHTIO, % of PTIO,
cases leads to high order equationsdgrandb;.
All possible second-order phase transitions are shown ir. © @
Fig. 1(c). In agreement with the general analy%%sonly FIG. 2. (a), (c) Phase diagrams of PZT and PZN-PT from Refs.

phasesR a”_O_' T are access_ible from phaggvia .a. second- 3,4,6 and 18(b), (d) Phase diagrams calculated based on the model
order transition. TheM -Tri second-order transition occurs potentialsF o7 and Fp,y, as described in the text. Critical points

in thec;=0 plane and is not shown in Fig. 1. are shown as triangles, their coordinates are marked on axes.
In Sec. Ill we will give special attention to some other

features of the phase diagram shown in the lower inset off temperature and composition, while the rest of the param-
Fig. 1(a). They are related to the structure of the phase diagters are constant:
grams, recently observed in PZ{Refs. 3 and # and

_ 5
PMN-PT: a1 = ar(T—To)+ an(X—Xo),
(17

I1l. PHASE DIAGRAMS OF PZT, PMN-PT, AND PZN-PT bl:BT(T_TO)+BX(X_XO)'

The seemingly simple twelfth-order model potenfgl; P .
from Eq. (3) has led, as can be seen from Fig. 1, to a Com_Keepmg in mind the global topology of the phase diagram

lex phase diaaram describing all eight phases allowed bshown in Fig. 1, we can identify the features related to the
fhe SF;/mmetry %f the problen?. All p?ossipble second-orde lezoelectric ‘compounds. When applying the developed

.2 . model to th rticular tems, w m mmetry-
phase transitions among the proper ferroelectric phases odel to the particular systems, we add some symmetry

Wiowed terms to the ex i i

. . . - pansigkg. (3)]. This enables us to
perovskltes are esta_\bllshed b.y F'gc)?’ SO -any approxima- - g simple temperature and concentration dependencies of
tions made to describe transitions driven by the ferroelectri

order parameter should not add or forbid any second—ord%frhe phenomenological parameters while achieving a good fit

transition lines obtained in the modélq. (3)]. On the other 0 the experimental phase diagrams. To model a PZT-type

hand, first-order phase transitions between any two of thgir:)isfog It?]%rirzfr?(ljssursgiteencii;? PMN-PJT we use an expan-
0

eight phases can be expected, since, in general, there are n
arguments that can forbid these transitions. For example, a
direct O-T transition has been experimentally observed in

PZN-PT (Ref. 7) and earlier in BaTiq. .llJpon this modification, theM 5-T second-order transition

In Fig. 2 we plot the experimental phase diagrams of PZT: . . . .
and PZN-PT together with our calculations based on th%r;(ties.remams straight but becomes tilted with respect taghe
model described. In Sec. Il we have shown that the triple™ ™"

point of phase&, T, andM , can appear as an intersection of

Fpzr=Finit+ d12J1J5. (18

the first-order phase transition lingsee Fig. 13)]. A second- b= dipay _ (19

order phase transitioM 5-T is possible below the critical 2a,

pointS. This is exactly the topological structure of tNe,-T

phase transition line that has been observed in PZI ob- Since the phenomenological phase diagram can always be

tain reasonable agreement with the experiment, we assumésbmorphically transformed to fit the experimental data, we
that the coefficients, andb, in Eqg. (3) are linear functions do not try to obtain a perfect quantitative fit. Rather, we
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TABLE I. Parameters of the Landau potentials used for qualita-all four independent piezoelectric constants are expected to

tive fit of phase diagrams for PZT and PZHT. be large at all the phase transition lines with phages! 5,
andO.

Parameter Value foF pzr Value for Fpzy The tetragonal piezoelectrit;s (in this section we use a

ar 1 1 pseudocubic orthogonal basis in tihg notatio) component

of the piezoelectric tensor can be large at Th®, T-M,,

Z: 0(.)6(;7 é)_'; and T-O phase boundaries,_ whilé;; and d3; are not ex-

B 1 1 pected to have anomalies in temperature and composition
X dependence at these lines.

cy -25 —40 A complex behavior of the piezoelectric constants is ex-

a, 9 9 pected in phasé/, at the boundary with phasgé. In the

b, 0.8 0.7 second-order transition part of this phase boundary, no

C, 3.6 0 anomalies are expected. This is because no stability condi-

d, —03 8 tion is violated there, even though it is a bifurcation line

dis 0 13 where the monoclinic solution of the equations of state be-

comes imaginary. However, this situation changes drastically
when M ,-T is a first-order phase transition. In this part of
calculate the coefficients in arbitrary units to reproduce théheM A-T boundary and at th#l ,-R boundary, all ten mono-
qualitative features of the phase diagrams. The calculatedinic piezoelectric coefficients can be large.
values are shown in Table I. Another verifiable prediction of our theory is the connec-
We used a relatively large absolute value ¢grto obtain  tion between the proximity of phasdd , to the triclinic dis-
comparable lengths of the first-orddf,-T transition line tortion and anomalies in the monoclinic piezoelectric coeffi-
andR-T phase boundary, modeling the experimental data focientsd,;, d;,, dy4, andd;s, at low temperatures. Finally,
PZT. This results in a vanishingly small region of coexist-ds3 andds; can be large in phas® at theT boundary and
ence of the two isostructurd , phasegsee the bottom inset alsod,, at theR boundary.
in Fig. 1(@]. The critical pointS then almost merges with

point L, the latter being a tangency point of thieM 5 V. SUMMARY AND DISCUSSION
second-order transition line continuation and the stability '
boundary of phasél, . We have shown that the increasingly high-order phenom-

For the expansiofil8), point L has these coordinates: enological models, used to describe the highly nonlinear pi-
ezoelectric systems PZT, PMN-PT, and PZN-PT, are ap-
2a3c, a,c,dq, proximations of a complete twelfth-order mod&). Such a
N T (200 complex model is difficult to analyze, but even the signifi-
272 12 272 M2 cantly simplified model potential§p,r and Fpyy describe
the phase diagram of the compounds reasonably well, as

More extensive modifications df,,; have been used to Lo ;
init sgen in Fig. 2. We have allowed for some discrepancy be-

accommodate the features of the experimental phase diagratween the calculated and the experimental phase diagrams
of PZN-PT, namely a dire@-T transition and, more impor- for example, in the location d?R—MfandR—O pﬁase boun%— '

tantly, the separation of the triple poirRSO-T and C-R-T: aries, in order to keep the dependence of the phenomenologi-
Fpon=Finit+ d1001d5+ d1ad1Js. (21) ~ cal parameters on temperature and concentration as simple as
possible. On the other hand, it is clear that since our phe-
We find that the part of the global phase diagram, relevanfomenological models correctly describe the qualitative fea-
to PZN-PT, is almost unaffected by the variation of  tures of the phase diagram, a complete quantitative agree-

Therefore, we assume,=0. The other coefficients are ment can be achieved by a careful fitting of the
found in Table I. phenomenological parameters to the experimental data.

The important features that our simple models correctly
reproduce are the separation of the triple poRt®-T and
R-M4-T from the C-R-T triple point, and the switching of

Elastic energy and electrostrictive coupling have to bethe M ,-T phase transition between the first- and the second-
introduced into Landau potential to obtain the components obrder types.
the piezoelectric tensat;, . The piezoelectric constants are  We also predict an anomalous behavior of certain piezo-
inversely proportional to combinations of the second derivaelectric constants along the phase transition lines. These pre-
tives of Fpzr andFpzy with respect taP, Py , P, 1°Some of dictions elucidate the nature of the ultrahigh piezoelectricity
these combinations vanish at the stability boundaries of thand make our theory easily verifiable. To our knowledge,
phases, resulting in anomalous values of the piezoelectrisystematic measurements of evolution of the piezoelectric

IV. PIEZOELECTRIC PROPERTIES

constants. constants in the vicinity of the newly found phase boundaries
By analyzing the phase stability conditions obtained inin PZT, PMN-PT, and PZN-PT have not been done yet.
Sec. Il, we find the components, , which can be large for Finally, group-theoretical and catastrophe-theory methods

each phase of the phase diagrams in Fig. 2. InRlphase, of phase transition theory described in this paper stand on
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their own. We described a general approach that puts phe- To determine the structural stability of some potential

nomenological analysis on firm footing, and minimizes thefunction F(J,, ... ,J,), we need to introduce the algebraic
necessary amount of numerical calculations. combinations:
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APPENDIX A: CALCULATION OF IRBI whereV ], is the gradient of invariani; in the order param-
FOR REPRESENTATIONS OF SPACE GROUPS eter space. Scalar products that appear in(Bd) can al-
ways be expressed in terms of invariant polynomials

Let £ be the group of all different matrices of a
p-dimensional representation of a space group. Ltgroup
can be thought of as a point group in the space of the ord
parameter componentg, i=1, ... p. The Landau poten-

Ji, ... Jn. Aterm can be omitted in the potential function
without violating the type of the extremal behavior of this
&inction if its coefficient is small and if it can be expressed

as
tial is invariant under transformations of this group.
The integrity rational basis of invariantRBI) of the £
group is a minimal set of homogeneodsnvariant polyno- m
mials depending om; such that any other invariant homo- > Py dmUi(Jg, 3
geneous polynomial is an algebraic combination of the ele- i=1
ments of this set. One of the methods to find the IRBI is :
+ (higher-order t B2
described briefly belo* (higher-order terms (B2
It can be proved that for every group the following
sequence of subgroups can be constructed: HereP,(J4, ... Jy) are some polynomials.
Following this algorithm, we obtain for the integrity basis
E=LoCL1C-- - CLy=L, (A1) (1) and potential3)
where eachZ; is an invariant subgroup of;,,; and E the
identity group. 5 _
The problem of constructing IRBI of is reduced to con- (V3)7=4dy,  (VI1,V]p)=8J,,
structing invariants of the factor groups
Ai=Li L 4 (A2) (V32)?=4310,+1213, (VJ,,VI3)=8J1;, (B3)

at every step of EqAL). It turns out that for any group,
Aj acts on the invariants obtained in the previous {)th (V33)2=43,d3, (VI;,VI5)=12].
step as cyclic group of order 2 or 3, for which the invariants
can be easily constructed. Removing the algebraic dependen-
cies among the polynomials thus obtained at each step, at tiand
Nth step one obtains the IRBI for the givehgroup.
If mis the number of invariants constituting the IRBI for .
a space group representation, then, in genemap, and Uy =4a,J; + (higher-order terms
there exisitm— p algebraic relations of higher than first order
among thaninvariant polynomials. However, for irreducible .
representations of groups generated by reflectionsp. U,=8a,J,+ (higher-order terms (B4)
This is the situation for the ferroelectric order parameter in
Pm3m group, for which the step-by-step calculation of in-
variants results in the IRBIEq. (1)]. The method described Us=12a,J3+ (higher-orderterms
here allows for a simple generalization to groups with con-

tinuous subgroups, such as a gauge transformation d¢tdtip. _ _ N
It is now clear that every term in EQR), additional to Eq.

(3), can be represented in the forfB2). However, there is
another restriction that arises from the requirement for a
model to produce all the phases allowed by the symmetry of
In this appendix we review the method based on catastrahe order parameter. As can be seen from @§), the tri-

phe theory, which is used to analyze the stability of the po<linic phase cannot appear in the phase diagram of the trun-
tential functions. We consider the simplest case of an irrecated below the twelfth-order Landau potential expansion
ducible representation of a group generated by reflectiong3). Consequently, the potenti) is the simplest model that
for which m=p (see Appendix A meets all the requirements mentioned above.

APPENDIX B: STRUCTURAL STABILITY
OF PHENOMENOLOGICAL POTENTIALS
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