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Phenomenological theory of phase transitions in highly piezoelectric perovskites
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The recently discovered fine structure of the morphotropic phase boundaries in highly piezoelectric mixture
compounds PbZr12xTixO3 ~PZT!, Pb(Mg1/3Nb2/3)12xTixO3 ~PMN-PT!, and Pb(Zn1/3Nb2/3)12xTixO3 ~PZN-PT!
demonstrates the importance of highly nonlinear interactions in these systems. We show that an adequate
Landau-type description of the ferroelectric phase transitions in these compounds is achieved by the use of a
twelfth-order expansion of the Landau potential in terms of the phenomenological order parameter. Group-
theoretical and catastrophe-theory methods are used in constructing the appropriate Landau potential. A com-
plete phase diagram is calculated in phenomenological parameter space. The theory describes both PZT and
PZN-PT types of phase diagrams, including the newly found monoclinic and orthorhombic phases. Anoma-
lously large piezoelectric coefficients are predicted in the vicinity of the phase transition lines.
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I. INTRODUCTION

For many years, perovskite-type materials have bee
subject of extensive research in both experimental and th
retical physics. On one hand, different representatives of
perovskite family exhibit a host of physical phenomena, su
as piezoelectricity, ferroelectricity, and superconductivity;
the other hand, perovskite structure is a relatively sim
and, thus, attractive object for theoretical studies.

Even though there is a long history of studies of pero
kites, they still present new surprises. Recent x-ray and n
tron diffraction studies on solid solutions PbZr12xTixO3

~PZT!, Pb(Mg1/3Nb2/3)12xTixO3 ~PMN-PT!, and
Pb~Zn1/3Nb2/3)12xTixO3 ~PZN-PT! ~Refs. 1–5! have re-
vealed new phases in the vicinity of the morphotropic ph
boundary6 on theT-x phase diagram of the solutions. In
narrow Ti concentration range (x546–52 %), the low-
temperature structure of PZT was found to be monocli
MA ~crystallographic symmetryCm) with polarization vec-
tor P directed along the@uuv#, u,v pseudocubic direction.3

A similar MA structure has also been recently seen
PMN-PT below room temperature forx535%.5 Another fine
structure of the morphotropic phase boundary has b
found in PZN-PT. Forx59 –11 %, the low-temperatur
structure is orthorhombic (O, Amm2) with Pi@101#.4 The
rhombohedral (R, R3m) unpoled crystal of PZN-PT (x
58%) was also found to exhibit irreversible monoclinicMC
(Pm, Pi@0uv#) distortion when an electric field above
certain critical value is applied along the@001# pseudocubic
direction.7

Early theoretical investigations of phase transitions in p
ovskites were concentrated on BaTiO3, which goes through a
sequence of phases upon cooling: cubic (C, Pm3m), tetrag-
onal (T, P4mm), O, and R. Devonshire8 explains the be-
havior of BaTiO3 within the framework of a phenomenolog
cal Landau-type expansion up to sixth order in terms of
0163-1829/2002/65~14!/144104~7!/$20.00 65 1441
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ferroelectric order parameter-polarizationP. While success-
fully describing the phase diagram of BaTiO3, the potential
used in Ref. 8 lacks the high-order terms necessary to
scribe the low-symmetry phases. Using a geometric ar
ment based on the Curie principle, Zheludev and Shuva9

classified possible positions ofP with respect to the cubic
unit cell. Due to the purely symmetric nature of this a
proach, it fails to distinguish between monoclinic phasesMA

and MB (Pi@uuv#, u.v), because these phases have
same crystallographic symmetryCm. The group-theoretica
relationship between the geometric method and Landau
proach was established in Refs. 10 and 11.

Using this approach, Gufan and Sakhnenko12 found that
on a two-dimensional~e.g.,T-x) phase diagram of perovs
kites there can be a point (T0 ,x0) where five phasesC, R, O,
MC , andT coexist. They calculated the phase diagram in
vicinity of this five-phase point. Only small solutions of th
equations of state that are close to the five-phase point w
considered, justifying expansion in powers of small para
etersT2T0 andx2x0. However, the results of this work d
not apply to the recently discovered phases of the mixt
compounds of Pb-based complex oxides since, in this c
the R-O-T and R-MA-T triple points are separate from th
C-R-T triple point. Therefore, theoretical consideration ca
not be limited to small solutions of the equations of sta
especially for the lowest-symmetry phases.

Ab initio13 as well as phenomenological14 calculations
have been used to account for the presence of monoc
phases on theT-x phase diagrams of ferroelectric perov
kites. Vanderbilt and Cohen14 calculate the phase diagram
the space of phenomenological parameters within the fra
work of Landau-Devonshire theory. Their model is based
the eighth-order expansion of the Landau potential in ter
of the polarization orientationP/uPu. Although monoclinic
phases appear in the phase diagram of the model, it doe
incorporate cubic and triclinic~Tri, P1) phases.
©2002 The American Physical Society04-1
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Having considered a number of successively more co
plicated models, a natural question arises: What is the m
general phenomenological model of the phase diagram
cubic system induced by a ferroelectric order parame
This question can be answered by use of the concept oin-
tegrity rational basis of invariants~IRBI!, introduced in Ap-
pendix A. The IRBI can be thought of as a basis in the sp
of polynomials ~formed from the order parameter comp
nents!, which are invariant under the transformations of t
symmetry group of the system. By a group-theoretical ar
ment, if the IRBI contains polynomials of maximal ordern,
then at least a 2nth-order phenomenological model is nece
sary to describe all the possible phases induced by the o
parameter.15 This statement is true for the irreducible repr
sentations of groups generated by reflections, including
Pm3m symmetry of the perovskite structure. We will sho
that, in the case of perovskites, the Landau potential ha
be expanded up to the twelfth-order terms to describe
phase diagram induced by the ferroelectric order parame

The results of the analysis of a simple twelfth-ord
model are presented in this paper. In Sec. II, we present
solutions resulting in a phase diagram containing all
phases allowed by the symmetry of the ferroelectric or
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parameter. In Sec. III, we fit theT-x phase diagrams of PZT
and PZN-PT. In Sec. IV, we discuss the piezoelectric pr
erties of the compounds in the vicinity of the newly foun
phase boundaries. The Appendixes are intended to giv
group-theoretical and catastrophe-theory background
some general statements we make in the text.

II. TWELFTH-ORDER LANDAU-TYPE MODEL

Three algebraically independentPm3m-invariant polyno-
mials can be formed~see Appendix A! from the polarization
vector components (Px ,Py ,Pz).

J15Px
21Py

21Pz
2 ,

J25Px
2Py

21Py
2Pz

21Px
2Pz

2 ,
~1!

J35Px
2Py

2Pz
2 .

The ferroelectric part of the Landau potential can then
expressed in terms of algebraic combinations ofJ1 , J2, and
J3. Since polynomials of up to sixth order are present in
IRBI @Eq. ~1!#, the Landau potential has to be expanded up
the twelfth-order terms:
F5a1J11a2J1
21b1J2 ~2nd and 4th order terms!

1a3J1
31d12J1J21c1J3 ~6th order terms!

1a4J1
41d112J1

2J21b2J2
21d13J1J3 ~8th order terms!

1a5J1
51d1112J1

3J21d122J1J2
21d113J1

2J31d23J2J3 ~10th order terms)

1a6J1
61d11112J1

4J21d1122J1
2J2

21b3J2
31d1113J1

3J31d123J1J2J31c2J3
2 ~12th order terms! ~2!
s
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A complete investigation of extrema of the functionF(P)
in the multidimensional parameter space is a rather ted
exercise. However, the main features of the phase diag
can be obtained from simplified models based on the po
tial ~2! with some terms omitted. The truncated potent
should satisfy at least two requirements:~i! it has to be
bounded from below, and~ii ! it should be structurally stable
in catastrophe-theory sense.15,16 The latter requirement pro
vides that small perturbations, which can arise from
terms omitted in Eq.~2!, do not drastically change the resul
obtained in a simplified model. In Appendix B, we briefl
describe how compliance with the second requirement
be verified.

A twelfth-order model

F init5a1J11b1J21c1J31a2J1
21b2J2

21c2J3
2 ~3!

meets both requirements whena2 , b2, andc2 are positive
quantities, whilea1 , b1, and c1 are parameters driving
phase transitions, and can be of any sign. In spite of
simplicity, model~3! is in full agreement with the results o
the group-theoretical analysis of the ferroelectric phase t
sitions in perovskites. It gives an account of all the phaseC,
us
m
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l

e

n
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n-

T, O, R, MA , MB , MC , and Tri, and it correctly describe
the phase boundaries. For example, although the symm
groups of the phasesMA (MB) andR obey a group-subgroup
relationCm,R3m, phase transitionsR-MA andR-MB can-
not be of second order.11,14

A complete phase diagram of the Landau potential~3! can
be constructed in the space of phenomenological parame
(a1 ,b1 ,c1). All the characteristic features can be seen fro
the two-dimensional cross sections in thea1b1 plane, as
shown in Fig. 1.

Below we show how the phase diagram of Fig. 1 w
obtained, using the example of phase R. Minimizing the
tential ~3! with respect toPx ,Py ,Pz and then imposing the
condition Px5Py5Pz5Ps /A3, we obtain the value of
spontaneous polarizationPs as a solution of the equation o
state

a11
2

3
~3a21b1!Ps

21
c1

9
Ps

41
4b2

9
Ps

61
2c2

243
Ps

1050, ~4!

which obeys the stability conditions
4-2
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~3a21b1!1
c1

3
Ps

212b2Ps
41

5c2

81
Ps

8>0, ~5!

b11
c1

3
Ps

21
2

3
b2Ps

41
2c2

81
Ps

8<0. ~6!

The parametric equations for the boundaries of the ph
stability domain are obtained by replacing the inequality
either Eq.~5! or ~6! with an equality and solving it togethe
with Eq. ~4!. The line resulting from Eqs.~4! and ~5!,

a1~Ps!5
c1

9
Ps

41
8b2

9
Ps

61
8c2

243
Ps

10,

b1~Ps!523a22
c1

3
Ps

222b2Ps
42

5c2

81
Ps

8 , ~7!

has a cusp atc1,0 shown in the top inset of Fig. 1~a!. This
feature is defined by the parametric equation

c1112b2Pcusp
2 1

20c2

27
Pcusp

6 50. ~8!

This equation has no real solutions forc1.0, as the cusp
merges with thea1 axis. Another interesting feature of th
phase diagram is a first-order transition line below theb1
axis, shown in the top inset of Fig. 1~a!. It corresponds to an
isostructural transition between two phases with the sa
structure and symmetryR, with the value ofPs being the
only difference between them.17 Let Ps8 and Ps9 be the two
values obtained from the equation of state~4!. Then the tran-
sition line is defined byFR(Ps8)5FR(Ps9), whereFR(Ps) is
the potential of phaseR:

FIG. 1. ~a!, ~b! Phase diagram ina1b1 plane for the potential
F init for ~a! c1,0 and ~b! c1.0. Solid lines are first-order phas
boundaries; dashed lines are second-order phase boundaries;
lines are stability boundaries of phases.~c! Diagram of possible
second-order phase transitions between the phases.
14410
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FR~Ps!5a1Ps
21

~3a21b1!

3
Ps

41
c1

27
Ps

61
b2

9
Ps

81
c2

729
Ps

12.

~9!

All the equations relating to isostructural phases have
additional permutation symmetryPs8

2↔Ps9
2. Introducing

new variablesU5(Ps8
21Ps9

2)/3 and V5Ps8
2Ps9

2/9, which
are invariant under the permutation, we obtain

6a12c1~U212V!218b2U322c2U3~2U225V!50,

a124~3a21b1!U2c1~2U21V!212b2U~2U22V!

22c2U3~2U225V!50, ~10!

2~3a21b1!1c1U112b2~U22V!12c2~U423U2V1V2!

50.

V can be eliminated from Eq.~10! and the resulting equa
tions can be solved fora1 andb1. One of the solutions para
metrically defines an isostructuralR-R transition line by

a1~U !5
c1

2

18c2U
1

b2c1

c2
1

c1

9
U222b2U32

4c2

9
U5,

~11!

b1~U !52
c1

2

36c2U2
23a21

9b2
2

c2
2

2c1

9
U13b2U2

1
5c2

9
U4.

A similar isostructural transition line appears in phaseMA
and is shown enlarged in the bottom inset of Fig. 1.

The first-orderR-C transition occurs when the two phas
have equal potentialsFR(Ps)50. This condition together
with equation of state~4! gives

a1~Ps!5
c1

27
Ps

41
2b2

9
Ps

61
4c2

729
Ps

10,

~12!

b1~Ps!523a22
2c1

9
Ps

22b2Ps
42

5c2

243
Ps

8 .

We would like to point out some other important featur
of the phase diagram of Fig. 1, which can be represented
simple analytical form. Forc1.0, phaseMC lies between
T-MC andO-MC second-order phase boundaries defined,
spectively, by

b150 and b152
a1

2b2

8a2
2

. ~13!

The second-orderO-MB transition line is parabolic in the
(a1 ,b1) parameter space

~2b2a11c1b1!22~c1
218a2b2!~c1a124a2b1!50.

~14!

tted
4-3
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The lowest-symmetryTri phase appears atc1,0 between
phasesMA and MB in a slice restricted by a parametrical
defined line

a1~ t !524a2t21
c1a2

c2t4
,

~15!

b1~ t !522b2t41
2c1b2

c2t2
,

wheret is a real parameter. The coordinates of the four-ph
R-MB-MA-Tri critical point can be obtained from Eq.~15!:

a153a2S 4c1

c2
D 1/3

, b1523b2S 2c1
2

c2
2 D 1/3

. ~16!

The first-order transition linesMB-R, R-MA , MA-T, and
R-O, and the isostructuralMA-MA line were obtained nu-
merically, as the method described in Eqs.~4!–~12! in these
cases leads to high order equations fora1 andb1.

All possible second-order phase transitions are show
Fig. 1~c!. In agreement with the general analysis,12 only
phasesR and T are accessible from phaseC via a second-
order transition. TheMC-Tri second-order transition occur
in the c150 plane and is not shown in Fig. 1.

In Sec. III we will give special attention to some oth
features of the phase diagram shown in the lower inse
Fig. 1~a!. They are related to the structure of the phase d
grams, recently observed in PZT~Refs. 3 and 4! and
PMN-PT.5

III. PHASE DIAGRAMS OF PZT, PMN-PT, AND PZN-PT

The seemingly simple twelfth-order model potentialF init
from Eq. ~3! has led, as can be seen from Fig. 1, to a co
plex phase diagram describing all eight phases allowed
the symmetry of the problem. All possible second-ord
phase transitions among the proper ferroelectric phase
perovskites are established by Fig. 1~c!, so any approxima-
tions made to describe transitions driven by the ferroelec
order parameter should not add or forbid any second-o
transition lines obtained in the model@Eq. ~3!#. On the other
hand, first-order phase transitions between any two of
eight phases can be expected, since, in general, there a
arguments that can forbid these transitions. For exampl
direct O-T transition has been experimentally observed
PZN-PT~Ref. 7! and earlier in BaTiO3.

In Fig. 2 we plot the experimental phase diagrams of P
and PZN-PT together with our calculations based on
model described. In Sec. II we have shown that the tri
point of phasesR, T, andMA can appear as an intersection
the first-order phase transition lines@see Fig. 1~a!#. A second-
order phase transitionMA-T is possible below the critica
point S. This is exactly the topological structure of theMA-T
phase transition line that has been observed in PZT.3 To ob-
tain reasonable agreement with the experiment, we assu
that the coefficientsa1 andb1 in Eq. ~3! are linear functions
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of temperature and composition, while the rest of the para
eters are constant:

a15aT~T2T0!1ax~x2x0!,
~17!

b15bT~T2T0!1bx~x2x0!.

Keeping in mind the global topology of the phase diagra
shown in Fig. 1, we can identify the features related to
piezoelectric compounds. When applying the develop
model to the particular systems, we add some symme
allowed terms to the expansion@Eq. ~3!#. This enables us to
use simple temperature and concentration dependencie
the phenomenological parameters while achieving a goo
to the experimental phase diagrams. To model a PZT-t
phase diagram~also related to PMN-PT!, we use an expan
sion for the Landau potential

FPZT5F init1d12J1J2 . ~18!

Upon this modification, theMA-T second-order transition
line remains straight but becomes tilted with respect to thea1
axis:

b15
d12a1

2a2
. ~19!

Since the phenomenological phase diagram can alway
isomorphically transformed to fit the experimental data,
do not try to obtain a perfect quantitative fit. Rather, w

FIG. 2. ~a!, ~c! Phase diagrams of PZT and PZN-PT from Re
3,4,6 and 18.~b!, ~d! Phase diagrams calculated based on the mo
potentialsFPZT and FPZN, as described in the text. Critical point
are shown as triangles, their coordinates are marked on axes.
4-4
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PHENOMENOLOGICAL THEORY OF PHASE . . . PHYSICAL REVIEW B 65 144104
calculate the coefficients in arbitrary units to reproduce
qualitative features of the phase diagrams. The calcula
values are shown in Table I.

We used a relatively large absolute value forc1 to obtain
comparable lengths of the first-orderMA-T transition line
andR-T phase boundary, modeling the experimental data
PZT. This results in a vanishingly small region of coexi
ence of the two isostructuralMA phases@see the bottom inse
in Fig. 1~a!#. The critical pointS then almost merges with
point L, the latter being a tangency point of theT-MA
second-order transition line continuation and the stabi
boundary of phaseMA .

For the expansion~18!, point L has these coordinates:

a15
2a2

2c1

4a2b22d12
2

, b15
a2c1d12

4a2b22d12
2

. ~20!

More extensive modifications ofF init have been used to
accommodate the features of the experimental phase dia
of PZN-PT, namely a directO-T transition and, more impor
tantly, the separation of the triple pointsR-O-T andC-R-T:

FPZN5F init1d12J1J21d13J1J3 . ~21!

We find that the part of the global phase diagram, relev
to PZN-PT, is almost unaffected by the variation ofc2.
Therefore, we assumec250. The other coefficients ar
found in Table I.

IV. PIEZOELECTRIC PROPERTIES

Elastic energy and electrostrictive coupling have to
introduced into Landau potential to obtain the component
the piezoelectric tensordik . The piezoelectric constants a
inversely proportional to combinations of the second deri
tives ofFPZT andFPZN with respect toPx ,Py ,Pz .19 Some of
these combinations vanish at the stability boundaries of
phases, resulting in anomalous values of the piezoele
constants.

By analyzing the phase stability conditions obtained
Sec. II, we find the componentsdik , which can be large for
each phase of the phase diagrams in Fig. 2. In theR phase,

TABLE I. Parameters of the Landau potentials used for qual
tive fit of phase diagrams for PZT and PZN-xPT.

Parameter Value forFPZT Value for FPZN

aT 1 1
ax 20.07 20.8
bT 0.05 0.6
bx 1 1

c1 225 240
a2 9 9
b2 0.8 0.7
c2 3.6 0
d12 20.3 8
d13 0 13
14410
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all four independent piezoelectric constants are expecte
be large at all the phase transition lines with phasesT, MA ,
andO.

The tetragonal piezoelectricd15 ~in this section we use a
pseudocubic orthogonal basis in thedik notation! component
of the piezoelectric tensor can be large at theT-R, T-MA ,
and T-O phase boundaries, whiled33 and d31 are not ex-
pected to have anomalies in temperature and compos
dependence at these lines.

A complex behavior of the piezoelectric constants is e
pected in phaseMA at the boundary with phaseT. In the
second-order transition part of this phase boundary,
anomalies are expected. This is because no stability co
tion is violated there, even though it is a bifurcation lin
where the monoclinic solution of the equations of state
comes imaginary. However, this situation changes drastic
when MA-T is a first-order phase transition. In this part
theMA-T boundary and at theMA-R boundary, all ten mono-
clinic piezoelectric coefficients can be large.

Another verifiable prediction of our theory is the conne
tion between the proximity of phaseMA to the triclinic dis-
tortion and anomalies in the monoclinic piezoelectric coe
cientsd11, d12, d14, andd15, at low temperatures. Finally
d33 and d31 can be large in phaseO at theT boundary and
alsod24 at theR boundary.

V. SUMMARY AND DISCUSSION

We have shown that the increasingly high-order pheno
enological models, used to describe the highly nonlinear
ezoelectric systems PZT, PMN-PT, and PZN-PT, are
proximations of a complete twelfth-order model~2!. Such a
complex model is difficult to analyze, but even the signi
cantly simplified model potentialsFPZT and FPZN describe
the phase diagram of the compounds reasonably well
seen in Fig. 2. We have allowed for some discrepancy
tween the calculated and the experimental phase diagra
for example, in the location ofR-MA andR-O phase bound-
aries, in order to keep the dependence of the phenomeno
cal parameters on temperature and concentration as simp
possible. On the other hand, it is clear that since our p
nomenological models correctly describe the qualitative f
tures of the phase diagram, a complete quantitative ag
ment can be achieved by a careful fitting of th
phenomenological parameters to the experimental data.

The important features that our simple models correc
reproduce are the separation of the triple pointsR-O-T and
R-MA-T from the C-R-T triple point, and the switching of
the MA-T phase transition between the first- and the seco
order types.

We also predict an anomalous behavior of certain pie
electric constants along the phase transition lines. These
dictions elucidate the nature of the ultrahigh piezoelectric
and make our theory easily verifiable. To our knowledg
systematic measurements of evolution of the piezoelec
constants in the vicinity of the newly found phase boundar
in PZT, PMN-PT, and PZN-PT have not been done yet.

Finally, group-theoretical and catastrophe-theory meth
of phase transition theory described in this paper stand

-

4-5
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their own. We described a general approach that puts p
nomenological analysis on firm footing, and minimizes t
necessary amount of numerical calculations.
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APPENDIX A: CALCULATION OF IRBI
FOR REPRESENTATIONS OF SPACE GROUPS

Let L be the group of all different matrices of
p-dimensional representation of a space group. TheL group
can be thought of as a point group in the space of the o
parameter componentsh i , i 51, . . . ,p. The Landau poten-
tial is invariant under transformations of this group.

The integrity rational basis of invariants~IRBI! of the L
group is a minimal set of homogeneousL-invariant polyno-
mials depending onh i such that any other invariant homo
geneous polynomial is an algebraic combination of the e
ments of this set. One of the methods to find the IRBI
described briefly below.11

It can be proved that for every groupL the following
sequence of subgroups can be constructed:

E[L0,L1,•••,LN[L, ~A1!

where eachLi is an invariant subgroup ofLi 11 and E the
identity group.

The problem of constructing IRBI ofL is reduced to con-
structing invariants of the factor groups

Ai5Li /Li 21 ~A2!

at every step of Eq.~A1!. It turns out that for anyL group,
Ai acts on the invariants obtained in the previous (i 21)th
step as cyclic group of order 2 or 3, for which the invarian
can be easily constructed. Removing the algebraic depen
cies among the polynomials thus obtained at each step, a
Nth step one obtains the IRBI for the givenL group.

If m is the number of invariants constituting the IRBI fo
a space group representation, then, in general,m>p, and
there existm2p algebraic relations of higher than first ord
among them invariant polynomials. However, for irreducibl
representations of groups generated by reflectionsm5p.
This is the situation for the ferroelectric order parameter
Pm3m group, for which the step-by-step calculation of i
variants results in the IRBI@Eq. ~1!#. The method described
here allows for a simple generalization to groups with co
tinuous subgroups, such as a gauge transformation group11,20

APPENDIX B: STRUCTURAL STABILITY
OF PHENOMENOLOGICAL POTENTIALS

In this appendix we review the method based on catas
phe theory, which is used to analyze the stability of the
tential functions. We consider the simplest case of an i
ducible representation of a group generated by reflectio
for which m5p ~see Appendix A!.
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To determine the structural stability of some potent
function F(J1 , . . . ,Jm), we need to introduce the algebra
combinations:

Ui~J1 , . . . ,Jm!5 (
k51

m
]F

]Jk
~¹Jk ,¹Ji !, i 51, . . . ,m

~B1!

where¹Ji is the gradient of invariantJi in the order param-
eter space. Scalar products that appear in Eq.~B1! can al-
ways be expressed in terms of invariant polynomi
J1 , . . . ,Jm . A term can be omitted in the potential functio
without violating the type of the extremal behavior of th
function if its coefficient is small and if it can be express
as

(
i 51

m

Pi~J1 , . . . ,Jm!Ui~J1 , . . . ,Jm!

1~higher-order terms!. ~B2!

HerePi(J1 , . . . ,Jm) are some polynomials.
Following this algorithm, we obtain for the integrity bas

~1! and potential~3!

~¹J1!254J1 , ~¹J1 ,¹J2!58J2 ,

~¹J2!254J1J2112J3 , ~¹J2 ,¹J3!58J1J3 , ~B3!

~¹J3!254J2J3 , ~¹J1 ,¹J3!512J3 .

and

U154a1J11~higher-order terms!,

U258a1J21~higher-order terms!, ~B4!

U3512a1J31~higher-orderterms!.

It is now clear that every term in Eq.~2!, additional to Eq.
~3!, can be represented in the form~B2!. However, there is
another restriction that arises from the requirement fo
model to produce all the phases allowed by the symmetry
the order parameter. As can be seen from Eq.~15!, the tri-
clinic phase cannot appear in the phase diagram of the t
cated below the twelfth-order Landau potential expans
~3!. Consequently, the potential~3! is the simplest model tha
meets all the requirements mentioned above.
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