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Extended thermodynamical analysis of a motion of the solid-liquid interface
in a rapidly solidifying alloy
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On the basis of extended irreversible thermodynamics@D. Jou, J. Casas-Vazquez, and G. Lebon, Rep. Prog.
Phys. 51, 1005 ~1988!; 62, 1035 ~1999!# an analysis of the solid-liquid interface motion is presented. In
addition to the formalism of the classic irreversible thermodynamics of Onsager and Prigogine, a space of
independent thermodynamic variables is extended by introducing the solute diffusion flux in consistency with
the extended thermodynamic approach to local nonequilibrium processes. Considering the rapid solidification
front motion, when the crystal growth velocity is of the order or even greater than the speed for solute
diffusion, a local nonequilibrium at the solid-liquid interface and inside bulk liquid is adopted by the model.
Taking into account the solute diffusive speed at the phase interface and the finite speed of solute diffusive
propagation in bulk system, the equations for thermodynamical fluxes, conjugated driving forces, the Gibbs
free energy change on solidification, and liquidus line slope are derived. A discussion of the outcomes pre-
dicted by the present model and a comparative analysis of the model predictions with experimental data are
made.
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I. INTRODUCTION

Considerable study has been given in past decades to
thermodynamic description of rapid phase transformation
various materials and processes.1 Some first attempts to cre
ate thermodynamic models of rapid nonequilibrium transf
mations were successfully made in the pioneering works
Borisov,2 Aptekar and Kamenetskaya,3 generalized by Bake
and Cahn,4 and developed further in following works.5 In
these studies special attention is paid to the definition of
Gibbs free energy change as a driving force of transform
tion, response functions at the phase interface~temperature,
velocity, and chemical composition!, and solute trapping and
solute drag effects acting in a rapid nonequilibrium pha
transformation. A recently published overview on these t
ics is presented by Hillert in Ref. 6. In order to describe
transfer processes, the models developed in Refs. 2,4, a
are based on the classical irreversible thermodynamic
Prigogine7 and can consider a shift from local equilibriu
due to kinetic effects at the phase interface.

Special attention to nonequilibrium processes at the ph
interface has been paid in previous studies of rapid solid
cation of alloys.8–10 In this analysis, thermodynamically con
sistent models for the solidification of binary alloys are d
veloped. Describing the nonequilibrium process as a wh
due to macrogradients of temperature and substance, th
thors propose a view of classic irreversible thermodynam
in accordance with which every local volume is solidified
consistency with the diagram of an alloy phase state~so-
called ‘‘quasiequilibrium solidification’’! and they extend
this formalism to local nonequilibriumness at the interfa
due to solute trapping and kinetic effects.8–10

As is well known, Fick’s first law for transport process
can be obtained on the basis of classic irreversible ther
dynamics which assumes propagation of concentration
turbances with an infinite velocity and with local equilibriu
0163-1829/2002/65~14!/144103~11!/$20.00 65 1441
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in the bulk phases. Local equilibriumness can be charac
ized by the statistical distribution function given by the fir
order term of its expansion.11 However, for a high-velocity
solidification front, the time for crystallizing of a local vol
ume can be of the order of the time for relaxation of t
diffusion flux to its steady-state value.12 In such a case, the
approximation of local equilibrium may become unacce
able for a description of the diffusion process in rap
solidification.12 Solidification of undercooled alloys can b
so fast that the interface velocityV is of the order or even
greater than the diffusive speedVD in bulk liquid which is
the maximum speed of propagation of the diffusion profile
the system and defined asVD5(D/tD)1/2, whereD is the
diffusion coefficient andtD is the time of relaxation of dif-
fusion flux to its local equilibrium value. For metal alloy
the diffusion speed can be of the order of12 VD

;0.1–10 (m/s), and in modern experiments the interfa
velocity approaches13 V510–100 m/s. Therefore, the un
dercooling in melts is enough for detecting solidificatio
with the front velocity comparable with the diffusion spee
In this case, local equilibrium is absent in the bulk phas
and the solute flux cannot be described by the class
Fick’s first law. Thus one should take into account the dev
tions from local equilibrium in phases which affect both t
solute diffusion and the interface kinetics.14 The description
of nonequilibrium rapid solidification is provided by the fo
malism of extended thermodynamics15 which gives a caus-
ative description of transport processes and abandons th
quirement of local equilibrium. Therefore, in the prese
article, we extend the thermodynamical formalism for rap
solidification front motion which is caused by significant d
viations from local thermodynamic equilibrium.

We shall analytically investigate the influence of loc
nonequilibrium both at the interface and in the bulk pha
on the motion of a planar solidification front in a bina
alloy. Using the results of recently developed models,12 one
©2002 The American Physical Society03-1
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PETER GALENKO PHYSICAL REVIEW B 65 144103
can find that when the interface velocityV is of the order of
the diffusive speedVD , the solute propagates by a joint di
fusion and wave mechanism.16 When V>VD , the solute
propagates by the wave mechanism only,17 and the concen-
tration in the undercooled liquid becomes equal to the ini
concentration of the melt.14 As has been obtained analyt
cally for planar and nonplanar configurations of the solid
cation fronts,18 a complete solute trapping occurs withV
>VD .19 In this case, there is no solute diffusion in the liqu
and rapid solidification cannot be controlled by the sol
redistribution ahead of the interface withV>VD . Conse-
quently, first, we assume that local nonequilibrium in t
bulk phases plays a significant role in rapid solidification14

and extend the previous thermodynamical analysis for
description of the solid-liquid interface motion. And, secon
we shall evaluate the degree of local nonequilibrium by
relation of the interface velocityV to the diffusion speedVD .

The paper is organized as follows. In Sec. II we descr
the basic assumptions and general equations of the mode
addition to the thermodynamic theory developed in previo
investigations,2–4,8–10we introduce the dissipative diffusio
flux as an independent variable in accordance with exten
irreversible thermodynamics~EIT!.15,20,21 In Sec. III we
present a treatment of the driving forces for kinetics a
diffusion by taking into account deviations from local equ
librium at the interface and solute diffusion in the bulk sy
tem. A derivation of the expressions for the interfa
temperature-velocity relationship and for the slope of
nonequilibrium liquidus line in the kinetic phase diagram
an alloy solidification is given. In Sec. IV, using the limit fo
a dilute alloy, we compare the derived function for the int
face temperature with the available experimental results
tained on a Si-As alloy solidification. Finally, in Sec. V w
present a summary of our conclusions. Appendixes A an
clarify the details of the extended thermodynamics ap
cable for local nonequilibrium diffusion in rapid solidifica
tion of a binary system.

II. MODEL

A. Model characteristics

To describe the rapid solidification process, we examin
model with the following characteristics.

~i! An isothermal two-phase system with a sharp so
liquid planar interface is under study. Pressure is constan
the system.

~ii ! The system consists of a chemically inert binary all
that solidifies like a solid solution.

~iii ! Solidification of an alloy melt can be so fast that t
interface velocityV is of the order of the speed of the solu
diffusive propagation in the liquid.

~iv! Convection in liquid, diffusion in solid, and effects o
crossed-boundary transport processes are negligible.

Under these assumptions, the process is deemed t
controlled by both mass transfer and the kinetics of the
terface. Particularly, from system characteristic~iii ! it fol-
lows that one should take into account the finiteness of
speed of solute diffusive propagation in liquid and deviatio
from local equilibrium at the interface.14 Thus, a description
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of the system is to be obtained by consideration of the lo
nonequilibrium solute diffusion and kinetics at the interfac
In order to describe local nonequilibrium processes we s
use the formalism of EIT which has fueled much intere
during the last several decades.15,21An initially general view
of such formalism which might be applied successfully to t
problem of local nonequilibrium solute diffusion in rapi
processes is reviewed in the Appendix of the present arti

B. General equations

For systems out of equilibrium, a general set of indep
dent variables should be extended and can include the g
ents of corresponding thermodynamical potentials used
rational thermodynamics,22 thermodynamic fluxes used i
EIT,23 or internal variables related to the structural peculia
ties of the system.24 Following EIT,15,21,23we include dissi-
pative mass flux in the set of basic independent variable
a solidifying system~see Appendix A!. Starting from this
idea, EIT provides a causative description of nonequilibriu
processes and, for the case of rapid nonequilibrium solid
cation, leads to the non-Fickian diffusion problem describ
by the evolution equation for the mass flux. For solute d
fusion, such an approach gives rise to a partial differen
equation of a hyperbolic type which takes into account
finite speed for solute diffusive propagation~see Appendix
B!. Using this approach and the above model characteris
~i!–~iv!, we form the space of independent thermodynami
variables for the isothermal binary system which consists
the concentrations and dissipative mass fluxes. In suc
case, the local change of entropy at the solid-liquid interfa
is described by

T dS52 (
p5L,S

(
q5A

B

~mq
pdxp

q1aq
pJp

qdJq
p!. ~1!

HereT is the temperature,dS is the change of the irrevers
ible entropy per unit area of the interface,q5A,B is the
index of a number of alloy components~5 A or B compo-
nent!, index p is related to the liquid phase (p5L) or the
solid phase (p5S), mq

p is the chemical potential,xp
q is the

mole fraction of the alloy component,Jp
q is the diffusion flux

of the xp
q component~the dimension ofJp

q is m/s!, andaq
p is

the coefficient defined by

aq
p5

1

v~Vp
q!2

]mq
p

]xp
q

, ~2!

wherev is the unit area of the interface,Vp
q is the diffusive

speed of theq component inp phase. Note that the chang
dxp

q in Eq. ~1! occurs through the unit areav of the interface.
Equation~1! is the generalized Gibbs equation for the no
equilibrium entropy near the solid-liquid interface. Also, th
function T dS/dt described by Eq.~1! can be examined a
generalized dissipative function for nonequilibrium isothe
mal solidification of an alloy. In the limitsVp

q→` and aq
p

→0, Eq. ~1! transforms into the Gibbs equation for loc
equilibrium mass transfer in isothermal binary system.7
3-2
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The diffusive speedVp
q is one of the most important pa

rameters of solute diffusive propagation and it can have
ferent values at the interface and in bulk phases. In
present description one can estimate the characteristic le
lD for diffusion as follows:

lD5Vv21, ~3!

whereV is the atomic volume. Using Eq.~3!, the diffusion
times that are equal to the characteristic times for relaxa
of the diffusion fluxes to their steady-state values are
scribed by

tp
q5

lD

Vp
q

, Vp
q5S Dp

q

tp
q D 1/2

. ~4!

The values ofVp
q are different from the value of an interfac

diffusive speedVDI introduced in the continuous growt
model with the nonequilibrium condition at the interface10

From the definition it follows thatVDI is the speed for an
atomic jump over the interatomic distancel I at the interface,
i.e., VDI5l In, where n is an attempt frequency for sur
mounting barriers and is of the order of an atomic vibratio
frequency.10,25 The diffusive speedsVp

q in the phases are th
speeds for diffusion front propagation and these are defi
by Vp

q5lD /tp
q , where lD is the distance for a diffusion

jump of bulk atoms. For atoms in a majority of metall
systems and intermetallic compounds, the interface at
are packed more densely than in the bulk liquid, so the
equality l I,lD obtains. If we consider a situation whe
atoms diffuse in the vicinity of the interface, then we al
can have thatl I>lD . The time for atomic vibration at the
interface is of the order of time for diffusion relaxation in th
bulk liquid, n21>tp

q . Hence, from this it follows thatVDI

<Vp
q . These inequalities have been formulated in Ref.

and gave a satisfactory comparison with experimental d
on rapid dendritic solidification in undercooled bina
alloys.27

For a binary alloy the total mole fractions of the allo
components in the phases are

xL
A1xL

B51, xS
A1xS

B51. ~5!

Neglecting diffusion fluxes in the solid phase~see Sec. II A!,
from Eqs.~1! and ~5! it follows an equation for irreversible
entropy production. This yields

T
dS

dt
52DmA

dxS
A

dt
2aA

LJA

dJA

dt
2DmB

dxS
B

dt
2aB

LJB

dJB

dt
.

~6!

HereDmA5mA
S2mA

L andDmB5mB
S2mB

L are the differences
of the chemical potentials within the solidSand the liquidL
phases ofA andB atoms, respectively, and the fluxesJA and
JB are related to the liquid phase at the interface. The t
entropy productiondS/dt>0 which takes into account loca
nonequilibrium diffusion, Eq.~6!, can be treated as a sum
the local equilibrium part
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S dS

dt D
E

52
1

T S DmA

dxS
A

dt
1DmB

dxS
B

dt D ~7!

and local nonequilibrium part

S dS

dt D
NE

52
1

T S aA
LJA

dJA

dt
1aB

LJB

dJB

dt D , ~8!

so that

dS

dt
5S dS

dt D
E

1S dS

dt D
NE

>0. ~9!

With the local equilibrium limitsVp
q→` andaq

p→0 @see Eq.
~2!#, one obtains (dS/dt)NE→0 and the entropy production
Eq. ~6!, includes the local equilibrium part only. The produ
tion dS/dt of the generalized entropy, Eqs.~7!–~9!, is non-
negative due to the statement of the second law of ther
dynamics. It is evidenced in Ref. 15 for theories consist
with the formalism of EIT.

We define the atomic fluxesI A andI B across the interface
as the number ofA andB atoms per unit area of the interfac
per unit time. The atomic fluxes are10,28

VI A5V
dxS

A

dt
5~12xS!V,

VI B5V
dxS

B

dt
5xSV, ~10!

whereV is the velocity of the interface, andxS is the mole
fraction of B atoms in the solid. A connection between th
atomic and diffusion fluxes is described by the equations10,28

VI A5V
dxS

A

dt
5~12xL!V2JA , ~11!

VI B5V
dxS

B

dt
5xLV2JB , ~12!

wherexL is the mole fraction ofB atoms in the liquid phase
From Eqs.~10!–~12! it follows that the crystallization flux
JC and the total diffusive fluxJD are described by

JC5VV21, 2JA5JB5VJD ,

JD5~xL2xS!V/V. ~13!

Expressions~10!–~13! were used in various problems for th
description of alloy transformations~see Refs. 4,6,10 and
28!.

Taking into account Eqs.~10!–~13!, a linear transforma-
tion of the entropy production, Eq.~6!, to the new reference
frame ~see also Ref. 4! leads to the following expression:

T
dS

dt
5( JiFi5JDFD1JCFC52

dG

dt
>0, ~14!

whereG is the Gibbs free energy dissipated by irreversib
processes per unit area of the interface. Note that Eq.~14!
establishes two equivalent thermodynamic requirements
3-3
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PETER GALENKO PHYSICAL REVIEW B 65 144103
isothermal processes: necessity of non-negative entropy
duction and the nonincreasing of the Gibbs free energy
time.

In Eq. ~14! the expressions for fluxesJi and forcesFi are
described by

JD5xLI A2~12xL!I B , JC5I A1I B , ~15!

FD5FA2FB , ~16!

FA52DmA1VaA
L dJA

dt
,

FB52DmB1VaB
L dJB

dt
, ~17!

FC5~12xL!S FA2VaA
L dJA

dt D
1xLS FB2VaB

L dJB

dt D . ~18!

HereFD is the driving force of the diffusion defined by th
difference between the driving forcesFA andFB for the dif-
fusion of A and B atoms, respectively, andFC52(1
2xL)DmA2xLDmB is the crystallization driving force. Us
ing Eqs.~10!–~13!, a simple substitution of Eqs.~15!–~18!
for Eq. ~14! gives the initial equation for the irreversibl
entropy production, Eq.~6!. Note that the obtained system o
equations for fluxes and driving forces, Eqs.~15!–~18!, dif-
fers from those predicted by classic irreversible theory.10 In
addition to the previous analysis,10 the driving forceFD for
diffusion takes into account the relaxation termsaA

LdJA /dt
andaB

LdJB /dt. As Vp
q→`, the coefficientsaA

L andaB
L tend

to zero@see Eq.~2!# and Eqs.~15!–~18! describe fluxes and
driving forces under a local equilibrium approximation
accordance with classic irreversible thermodynamics.

The requirements of the second law given by the n
negative function of entropy production, Eq.~9!, imply a
relation between fluxes and conjugate driving forces whi
in a simple case, is assumed to be linear.15 For Eq.~14! this
fact can be expressed by the following linear relation:Ji
5Li j F j , where the indexesi or j are related to the indexesD
or C respectively, andLi j is a mobility matrix of kinetic
coefficients. Using Eqs.~15!–~18!, neglecting effects of the
crossed-boundary influence of crystallization and diffus
processes,LDC5LCD50, and also neglecting effects of th
crossed-boundary influence of atoms of one sort on ano
~see Sec. II A!, one can obtain

JD5LDDFD

5LDD
A FD

A2LDD
B FD

B

52LDD
A S DmA2VaA

L dJA

dt D
1LDD

B S DmB2VaB
L dJB

dt D , ~19!
14410
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JC5LCCFC52LCC
A ~12xL!DmA2LCC

B xLDmB , ~20!

where

LDD
A 5VL

AS ]mA
L

]~12xL!
D 21

, LDD
B 5VL

BS ]mB
L

]xL
D 21

~21!

are the kinetic coefficients for diffusion ofA and B atoms,
respectively,LCC

A and LCC
B are the kinetic coefficients fo

crystallization, andxL
A1xL

B5(12xL)1xL51. The evolution
equation~19! for diffusion flux and equation~20! for crys-
tallization flux are compatible with the non-negative chara
ter of the entropy production,dS/dt>0, as given by Eq.
~14!.

To define the coefficientsaq
p and LDD

q @see Eqs.~2! and
~21!#, we assume a model in which the equilibrium part
chemical potentials are given by Henry’s law. These are

mq
p5mq

p0~T!1RT ln~gq
pxp

q!, ~22!

whereq5A or B, p5L or S, gq
p are the coefficients of ac

tivity of atoms of sortA andB, andmq
p0(T) are the standard

chemical potentials which depend on the temperatureT. In
such a case, substituting Eq.~22! for Eqs. ~2! and ~21! one
can obtainaq

p andLDD
q . In the liquid these are described b

aq
L5

RT

vxL
q~VL

q!2
, LDD

q 5
xL

qVL
q

RT
. ~23!

As follows from Eqs.~3!, ~4!, and ~23!, the combination of
the coefficientsaq

L andLDD
q gives the time for diffusion re-

laxation, i.e., Vaq
LLDD

q 5tL
q , consistent with the genera

analysis of the fluxes and driving forces for non-Fickian d
fusion ~see, e.g., p. 289 in Ref. 23!.

III. INTERFACE TEMPERATURE AND SOLIDIFICATION
VELOCITY

Turnbull29 suggested a relationship between the free
ergy changeDG, interface temperatureTI , and the velocity
V. This yields

V5 f V0@12exp~DG/RTI !#. ~24!

Heref is the fraction of sites at the interface at which grow
can occur andV0 is the upper limit of interface advance. I
the present description we assume that the atomic attach
kinetics at the interface are collision limited. In such a ca
the prefactorV0 corresponds to the value comparable to t
speed of sound as an ultimate upper limit of crystal grow
velocity30 and, therefore, we have31 V0..V.

For alloys, the total free energy changeDG is interpreted
as a sum of the driving free energyDGDF for the transfor-
mation and driving forceDGK for the kinetics of atomic
attachment to the interface, so that

DG5DGDF1DGK . ~25!

Following the previous works4,8–10and using the above trea
ments~see Sec. II B!, one can calculate the total change
free energy,DG, in rapid solidification of an alloy. With this
3-4
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aim, one should express Eq.~14! in terms of the free energy
per mole of the alloy solidified.

From now on we consider a dilute alloy approximation
which we shall take only the diffusion process of atomsB for
diffusion flux JD in Eq. ~19!. Also, we shall imply for sim-
plicity that VL

B5VD is the diffusive speed ofB atoms in bulk
liquid. Then, after multiplying Eq.~14! by 2JC

21 and using
Eqs.~13! and ~15!–~18!, we find the driving free energy fo
transformation,DGDF5JC

21dG/dt, in the form

DGDF5DGD1DGC

5DGD
E1DGD

NE1DGC , V,VD ,

DGDF5DGC , V>VD , ~26!

where

DGD5DGD
E1DGD

NE ~27!

is the driving free energy for diffusion,

DGD
E5~xL2xS!~DmA2DmB!, V,VD ,

DGD
E50, V>VD , ~28!

is the solute-drag free energy that takes into account th
nite speed of solute diffusive propagation,

DGD
NE5~xL2xS!VaB

dJB

dt
, V,VD ,

DGD
NE50, V>VD , ~29!

is the change of free energy for local nonequilibrium part
diffusion, and

DGC5~12xL!DmA1xLDmB ~30!

is the crystallization free energy. Note that in Eqs.~26!–~30!
we have used one of the results of the solution of the ge
alized Stefan problem on solidification under local noneq
librium diffusion.14 In accordance with this solution, a sourc
of concentrational perturbations, i.e., the solid-liquid int
face, moving at the velocityV equal to or higher than the
maximum speedVD of these perturbations, cannot chan
the concentration or create the concentration profile ahea
itself. As a result, one obtainsxL5xS5x0 at V>VD (x0 is
the initial concentration of an alloy!. Therefore, in Eqs.
~26!–~30! we have found thatDGD

E50, DGD
NE50, and

DGD50 with V>VD .
From Eqs.~26!–~30! one can obtain an expression for th

driving free energyDGDF for transformation. This yields

DGDF5~12xS!DmA1xSDmB1~xL2xS!VaB
L dJB

dt
,

V,VD ,

DGDF5~12xS!DmA1xSDmB , V>VD . ~31!
14410
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A part of the driving free energyDGDF which is equal to the
two first terms on the right-hand side of Eq.~31! can be
obtained as~see Refs. 4,8 and 32!

~12xS!DmA1xSDmB

RT
5xLH ke2kF12 lnS k

ke
D G J ,

where

k~V!5
xS~V!

xL~V!
~32!

is the solute partitioning function which depends on the
lidification velocity V, andke is the equilibrium coefficient
of the solute distribution atV→0. To define in Eq.~31! the
local nonequilibrium part ofDGDF which equals (xL

2xS)VaB
LdJB /dt we shall use a relation between the flu

JD and conjugated driving forceFD @see Eqs.~19!–~21!#.
Using Eq.~23! and Eqs.~3! and~4!, one gets the equation fo
solute diffusion flux from Eq.~19!. This yields

tL
B dJB

dt
1JB5

VDxL

RT
DmB , ~33!

wheretL
B is the time for diffusion relaxation of the fluxJB to

its steady-state value. Equation~33! is the simplest evolution
equation for the fluxJB compatible with the formalism of
EIT @see Eqs.~A6! and~A7! in Appendix A# and gives non-
negative entropy production, Eq.~14!, for the binary system.
Using the result from the analysis of Baker and Cahn4 that
DmB5RTln(k/ke) and also using mass balance, Eq.~13!, we
substitute Eq.~33! into a local nonequilibrium part ofDGDF

in Eq. ~31!. As a result, one obtains (xL2xS)VaB
LdJB /dt

5(xL2xS)RT@ ln(k/ke)1(12k)V/VD#. Thus, assumingT
5TI , Eq. ~31! has the form

DGDF

RTI
5xLH ke2kF12 lnS k

ke
D G J 1~xL2xS!H lnS k

ke
D

1~12k!
V

VD
J , V,VD ,

DGDF

RTI
5x0~ke212 ln ke!, V>VD . ~34!

The driving forceDGK in Eq. ~25! is described by32

DGK

RTI
5

12ke

me
~Te1mexL2TI !, ~35!

whereTe is the equilibrium temperature of solidification o
the alloy main component andme is the liquidus line slope in
the equilibrium diagram of an alloy phase state. SinceV,
,V0 for collision-limited growth kinetics,30,31 Eqs.~24! and
~25! can be rewritten as

V

f V0
52

DGDF1DGK

RTI
. ~36!
3-5
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PETER GALENKO PHYSICAL REVIEW B 65 144103
Substituting Eqs.~34! and~35! in to Eq. ~36! one obtains an
equation for the temperature at the interface as a resp
function of the interface velocity and solute concentratio
This yields

TI5Te1m~V!xL2
meV

~12ke! f V0
, ~37!

where

m~V!5
me

12ke
H 12kF12 lnS k

ke
D G

1~12k!F lnS k

ke
D1~12k!

V

VD
G J , V,VD ,

m5
meln ke

ke21
, V>VD , ~38!

is the slope of the nonequilibrium liquidus line in the kine
phase diagram of alloy solidification.

Thus, we have found the slopem(V), Eq. ~38!, of the
nonequilibrium liquidus line as a function of nonequilibriu
solute partitioningk(V) and interface velocityV. In the lim-
its VD→` ~i.e., V/VD→0), Eq. ~38! reduces to a solution
which incorporates local equilibrium in the solute diffusio
and a deviation from equilibrium at the interface due to
netic effects.10 As a whole, Eq.~38! reflects the fact that with
V,VD the slopem(V) of the liquidus line deviates from its
equilibrium valueme due to both local nonequilibrium at th
interface, (me /(12ke))$12k@12 ln(k/ke)#% ~see Refs.
8–10!, and combined shifts from local equilibrium at th
interface and in the solute diffusion,@me(12k)/(12ke)#
3$ ln(k/ke)1(12k)V/VD%. The slopem(V) has a constant
value, Eq.~38!, due to the absence of the diffusion proce
ahead of the interface at finite velocity,V>VD , when com-
plete solute trapping occurs in alloys,xL5xS5x0 @i.e.,
k(V)51, Eq. ~32!# .

IV. DISCUSSION AND COMPARISON WITH
EXPERIMENTAL DATA

An interface kinetic model developed within the fram
work of the continuous growth model10~CGM! provides the
boundary condition for solute diffusive transport. The CG
gives a way to evaluate the solute trapping effect which
be expressed in terms of the solute partitioning function~32!.
Considering only dilute solutions, this function is describ
by10,33

k~V!5
ke1V/VDI

11V/VDI
, ~39!

whereVDI is the speed of diffusion at the interface.
One of the deficiencies of the function~39! is the diffi-

culty of the description of complete solute trapping at fin
solidification velocity, i.e., it predictsk→1 only with V
→`. However, as has been detected in a final crystal
structure of rapidly solidified binary alloys,34 a transition to
partitionless solidification occurs at a finite solidification v
14410
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locity. Also, molecular dynamic simulation has shown35 that
the transition to complete solute trapping is observed at fi
crystal growth velocity.

The extended version of the CGM which takes into a
count local nonequilibrium solute diffusion eliminates th
inconsistency. Particularly for solute partitioning functio
~32!, Sobolev26 suggested a generalized function for solu
partitioning in the case of local nonequilibrium solute diff
sion within the approximation of a dilute alloy. This yields

k~V!5
ke~12V2/VD

2 !1V/VDI

12V2/VD
2 1V/VDI

, V,VD,

k~V!51, V>VD, ~40!

where VDI is the interfacial diffusion speed with
VDI<VD .26,27 In the local equilibrium limit, i.e., when the
bulk diffusive speed is infinite,VD→`, expression~40! re-
duces to the functionk(V), which takes into account the
deviation from local equilibrium at the interface only, E
~39!. In addition to previous model,10,33 the functionk(V)
described by Eq.~40! includes the deviation from local equ
librium not only at the interface~introducing interfacial dif-
fusion speedVDI) but also in the bulk liquid~introducing
diffusive speedVD in the bulk liquid!. As Eq. ~40! shows,
complete solute trapping,k(V)51, proceeds atV5VD .

Thermodynamic analysis based on the hypothesis of lo
equilibrium in solidification of a binary system4 provided an
approach for the two models of solute trapping with or wit
out solute drag.8–10 These models have taken a shift fro
local equilibrium at the interface which can be expressed
unified form for the slopem(V) of the kinetic liquidus by the
following equation:

m~V!5
me

12ke
H 12k1@k1~12k!d0# lnS k

ke
D J . ~41!

Hered050 is for the model of solute trapping without solu
drag andd051 is for the model of solute trapping with so
ute drag. Introducing Eq.~39! into Eq. ~41! one obtains the
constant liquidus slopem ~independent fromV) only with
infinite solidification velocity,V→`.

Using the results of the present analysis, from Eq.~38!
one can get the slope of the liquidus line in the followin
form:

m~V!5
me

12ke
H 12k1 lnS k

ke
D1~12k!2

V

VD
J , V,VD ,

m5
melnke

ke21
, V>VD . ~42!

With V,VD , such a form of the functionm(V) includes the
functionm(V) described by Eq.~41! for solute trapping with
solute drag (d051) and an additional term (12k)2V/VD
which arises from analysis of the Gibbs free energy by tak
into account local nonequilibrium solute diffusion around t
interface ~see Sec. III!. Also note that the functionm(V)
described by Eq.~42! plays a crucial role for self-consistenc
of the theory of local nonequilibrium solidification. Thi
3-6
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form of them(V) function has been used in a self-consiste
model for rapid dendritic growth and gave quantitati
agreement with experimental data on the kinetics of al
solidification.27 In particular, the self-consistent dendrit
growth model obtained by inclusion of Eq.~42! predicts a
breakpoint atV5VD , providing good agreement with dat
on a number of investigated alloys.27

In order to verify the predictions of the present model
calculate the temperature-velocity relationship at the pla
solid-liquid interface, Eq.~37!, for rapid solidification of a
binary alloy. As a well-tested binary system we chose
Si-As alloy which has been investigated in detail by Aziz a
co-workers,36,37 particularly for obtaining material param
eters when undergoing rapid solidification. Experimen
measurements in liquid and resolidifying layers of the Si-
alloys by pulsed-laser melting have provided data on
temperature-velocity relationship and solute trapping w
the guarantee of planar solid-liquid front motion.37 The main
result of the investigations of these authors is the absenc
the solute-drag effect in solidification and a good descript
of the obtained experimental data by means of the CGM.10 A
complete available experimental test of previously sugge

FIG. 1. Function ‘‘interface temperature versus solidification v
locity’’ obtained for the Si–9 at. % As system. Curves are given
solution of Eq.~37!. In addition to this, the dashed curve is given
Eq. ~39! and Eq.~41! with the absence of the solute-drag effe
d050; the dashed-dotted curve is given by Eq.~39! and Eq.~41!
with including solute-drag effect,d051; the solid curve is given by
Eqs.~40! and ~42!. Data points are from Refs. 37 and 38.
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models confirms this conclusion.38 However, the predictions
of the CGM for solute trapping deviate significantly fro
their experimental data at high growth velocities of solidi
cation, namely, below about 2~m/s! ~see, e.g., Fig. 9 in Ref
38!. The solute partitioning function described by Eq.~40!
eliminates this inconsistency, and experimental data on
ute trapping in the Si-As alloys37,38 can be satisfactorily de
scribed in all regions of the solidification velocities inves
gated~see Fig. 1 in Ref. 26!.

At the same solidification velocity, i.e., below aboutV
52 (m/s), the interface temperature versus velocity also
hibit a clear deviation from experimental data~see Fig. 11 in
Ref. 38!. We attribute this deviation to the increasing infl
ence of the local nonequilibrium solute diffusion around t
interface at high solidification velocity. Therefore we ma
an attempt to describe the whole set of experimental data
means of the present outcome of the extended thermo
namic analysis.

Using material parameters presented in Table I, we h
calculated the temperature response function~37! substitut-
ing the solute partitioning function~40! and slope for kinetic
liquidus ~42! which take into account deviations from loc
equilibrium both at the interface and bulk liquid due to loc
nonequilibrium diffusion. In comparison with the two prev
ous models based on the CGM, the curve calculated u
Eqs.~37!, ~40!, and~42! is shown in Fig. 1. As can be seen
remarkably, in comparison with the CGM model whic
adopts the deviation from local equilibrium at the interfa
only ~and with or without solute drag in solidification!, the
present model is able to describe experimental data in
whole region of the solidification velocity investigated.
should be noted especially for the present calculations,
1, that we have used the dilute alloy approximation, E
~37!, ~40!, and~42!, which, strictly speaking, does not app
to the Si–9 at. % As alloy. Due to the satisfactory descript
of experimental data in the whole region of velocity, w
believe that this result confirms the correctness of the lo
nonequilibrium approach to rapid solidification. An exte
sion of the local nonequilibrium theory for the case of co
centrated binary alloys can be made in detail on the basi
the analysis presented in this paper.

V. CONCLUSIONS

Rapid solidification of a binary alloy has been consider
for conditions of strongly nonequilibrium transformatio

-
y

ature
TABLE I. Material parameters of the Si–9 at. % As alloy used in the calculations of the temper
response function at the solid-liquid planar interface.

Parameter Denotation Dimension Value

Initial concentration x0 at. % 9
Solidification temperature of Si Te K 1673
Liquidus slope me K/at. % 27.9
Partition coefficient ke — 0.3
Diffusion speed in bulk liquid VD m/s 2.1
Interface diffusion speed VDI m/s 0.8
Limiting speed for interface advancing V0 m/s 1500
Fraction of sites for growth f — 131022
3-7
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PETER GALENKO PHYSICAL REVIEW B 65 144103
from the liquid to solid crystal phase. Following the assum
tion of the absence of local equilibrium both at the sol
liquid interface and in the solute diffusion field around t
interface, we have developed a phenomenological mode
the response functions at the interface~the temperature
chemical composition, and solidification velocity! which is
based on the formalism of extended irreversible thermo
namics. Taking into account the finite speed for solute dif
sion propagation in bulk liquid we obtained equations for~i!
the diffusion and crystallization fluxes and their drivin
forces, Eqs.~15!–~18!; ~ii ! the total driving free energy
which includes the sum of energy for phase transforma
and kinetics of interface advancing, Eqs.~25!, ~34!, and~35!;
and ~iii ! the equation for the slope of the nonequilibriu
liquidus line in the kinetic phase diagram, Eqs.~38! and~42!.

Starting from the generalized Gibbs equation~1!, we
found that the present results differ from the results of
previous thermodynamic formalism8–10,32 by an additional
term proportional to the derivative of the diffusion flux wit
respect to time,dJB /dt, arising in equations for the driving
force for diffusion, Eq.~17!, driving free energies for the
diffusion and phase transformation, Eqs.~29! and ~31!, re-
spectively. AsdJB /dt tends to zero for local equilibrium
solidification, these equations are reduced to those obta
by using classical irreversible thermodynamics.

The resulting interface response function ‘‘temperat
versus solute concentration and velocity,’’ Eq.~37!, has been
tested with available experimental data on a binary allo
solidification with planar interface. Using the dilute allo
approximation and model’s functions for solute trapping, E
~40!, and nonequilibrium liquidus line slope, Eq.~42!, we
compared the model predictions with the experimental d
for the Si–9 at. % As alloy.37,38 As is shown in Fig. 1, the
temperature velocity relationship predicted by the pres
model describes satisfactorily the set of experimental dat
the whole range of the velocity investigated.
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APPENDIX A: ASSUMPTIONS UNDERLYING
EXTENDED IRREVERSIBLE THERMODYNAMICS FOR

THE PROBLEM OF SOLUTE DIFFUSION

Here we shall give the basic ideas of the modern therm
dynamical formalism applicable for local nonequilibriu
solute diffusion. This formalism is based on extended ir
versible thermodynamics which is a suitable theoreti
framework for the description of non-Fickian aspects of s
ute diffusion.39 In addition to classical irreversible thermod
namics, EIT goes beyond the hypothesis of local equilibri
and avoids the paradox of propagation of disturbances w
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an infinite speed.15,21 Due to the high interest of researche
in systems far from equilibrium, today EIT has a theoretic
foundation originating from the kinetic approach and at t
mesoscopic level of description. On this subject, origin
monographs have been published23,40and a wide spectrum o
applications were considered.21,41 To clarify a phenomeno-
logical approach to the problem of non-Fickian diffusion, w
shall enlarge the space of independent variables and for
late the evolution equation for solute diffusion flux. Reade
can also refer to Ref. 42 where the influence of the inclus
of dissipative fluxes on a set of thermodynamic variables
discussed in more formal detail.

1. Choice of the independent variables

For the isothermal and isobaric system~the temperatureT
and pressure P are constants!, classical irreversible
thermodynamics7 adopts the set$C%T,P consisting of the only
independent variable, the concentrationX. This fact can be
expressed formally as follows:

$C%T,P5X. ~A1!

The concentrationX satisfies the balance law equation of t
general form:

]X

]t
52¹•JWC1sC, ~A2!

whereJWC is the flux corresponding to the quantityX from the
set$C%T,P , sC is the source term.

Besides the classical variables, EIT enlarges the se
independent variables by including the dissipative fluxes.23,42

For the case of isothermal non-Fickian diffusion, the e
tended space of independent variablesVN is formed by the
union of the classical set$C%T,P and the space consisting o
the vector of the diffusion fluxJW . This yields

VN5$C%T,PøJW . ~A3!

The variables from the set$C%T,P are characterized as the s
consisting of the conserved and slow variables, as their
havior is governed by the conservation law and as they de
slowly in time. Contrary to this, the independent variableJW is
nonconserved and its rate of decay has a relatively h
value. It is of the order of magnitude of the time for th
relaxation of the diffusion flux to its steady-state value or t
time for smoothing of the concentrational inhomogeneity
diffusion in a local bulk of the system, or the time for diffu
sion jumps of atoms or molecules. Consequently, the rat
decay ofJW can be estimated by the timetD5D/VD

2 , whereD
is the diffusion constant andVD is the finite speed for diffu-
sion ~see Appendix B!. For instance, at the usual or high
temperatures in a binary alloy’s system or inorganic soluti
this time changes within a wide interval: 1027 s,tD
,10211 s. For time intervals much larger thantD , the rate
of variation ofJW can be ignored.
3-8
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2. Evolution equation for the diffusion flux

By analogy with Eq.~A2! which describes changing o
the classic variableX, one can assume that theJW variable
satisfies the following evolution equation:

]JW

]t
52¹JWF1sW F, ~A4!

whereJWF and sW F denote the corresponding flux and sour
terms respectively, and the upper indexF is related to the fas
variable of the diffusion fluxJW . The functionsJWF and sW F

include the variables from the whole setVN , Eq. ~A3!, and
for the lowest order of approximation they can be deriv
from the relevant constitutive equations

JWF~X,JW !5a1~X!UW , sW F~X,JW !5a2~X!JW , ~A5!

whereUW is the identity tensor, anda1 and a2 are undeter-
mined functions of concentrationX. Substituting Eq.~A5!
for Eq. ~A4!, one can get the evolution equation for the s
ute diffusion flux. This yields

]JW

]t
52

]a1

]X
¹X1a2JW . ~A6!

Defining]a1 /]X5D/tD anda25tD
21 , one obtains from Eq

~A6! the evolution equation

tD

]JW

]t
1JW1D¹X50. ~A7!

Equation~A7! can be treated as the simplest generalizat
of the classical Fick’s first lawJW1D¹X50, which is recov-
ered whentD50 or in stationary situations in which]JW /]t
50. The evolution equation~A7! takes into account the re
laxation to local equilibrium of the diffusion flux and i
known as the Maxwell-Cattaneo equation in the context
heat transport.15 As follows from Eq.~A7!, the concentration
gradient¹X at a point of a system defines the vectorJW of the
solute flux, not at timet as in the local equilibrium approxi
mation, but with a delay equal to the relaxation timetD .

The mass transfer in a system is governed by the bala
law

]X

]t
1¹•JW50. ~A8!

In contrast with Fick’s first law, which leads to the diffusio
equation of parabolic type, Eqs.~A7! and ~A8! give rise to
the hyperbolic equation for the mass concentration:

]X

]t
1tD

]2X

]t2
5D¹2X. ~A9!

Equation~A9! is the simplest mathematical model combi
ing the diffusive ~dissipative! mode and the propagativ
~wave! mode of mass transport under local nonequilibriu
conditions. In such a case, Eq.~A9! describes mass transpo
processes under non-Fickian diffusion.
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APPENDIX B: A FINITE SPEED OF SOLUTE
DIFFUSION PROPAGATION

Let us obtain a substance propagation law that follo
from analysis of the one-dimensional version of hyperbo
equation~A9!. For this purpose, we shall examine the pla
harmonic wave as the simplest solution of Eq.~A9!.

We examine a wave moving along thex direction. Using a
complex amplitude method, one can write

X~x,t !5X0exp@ i ~kvx2vct !#, ~B1!

whereX0 is an initial amplitude of the concentrational wav
kv is the complex wave number, i.e., the component of
wave vector in thex direction, vc is the real cyclic fre-
quency, and (kvx2vct) is the phase of the concentration
wave.

Substituting Eq.~B1! for Eq. ~A9!, we get a dispersion
equation

Dkv
2 5tDvc1 ivc

2T~vc!, ~B2!

where

T~vc!5tD1 ivc
21 ~B3!

is the complex time. Equation~B2! defines the concentra
tional wave propagation versus the frequencyvc . The elimi-
nation of the amplitudeX0 from Eq. ~B1! takes into account
the fact that the initial amplitudeX0 may be defined if the
source of the concentrational wave is known.

For further analysis, the wave number can be taken of
form kv5r exp(il). Substituting this expression for Eq
~B2!, one can get the following system of equation
r2cos(2l)5vc

2tD /D, r2sin(2l)5vc /D. A solution of this sys-
tem relative tor andl allows one to obtain the wave num
ber. This yields

kv5Re~kv!1 i Im~kv!

5vcS tD1uT~vc!u
2D D 1/2

1 ivcS uT~vc!u2tD

2D D 1/2

,

~B4!

where Re(kv) and Im(kv) are the real and imaginary parts o
the wave number, respectively, and

uT~vc!u5~tD
2 1vc

22!1/2 ~B5!

is the modulus of the complex time, Eq.~B3!.
The plane harmonic wave which propagates away fr

the source of concentrational disturbances has a phase s
vp and characteristic distancel a of attenuation. From the
expressions~B4! and~B5! one can findvp and l a . They are

vp5
vc

Re~kv!
5S 2D

tD1uT~vc!u
D 1/2

,

l a5
1

Im~kv!
5vc

21S 2D

uT~vc!u2tD
D 1/2

. ~B6!
3-9
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From Eqs.~B6! we have for slow frequencies,vc,,tD
21 ,

that uT(vc)u5vc
21 and, then, from Eqs.~B6! one gets

vp5~2Dvc!
1/2, l a5~2D/vc!

1/2. ~B7!

Expressions forvp and l a , Eqs.~B7!, can also be obtained
from the classical Fick’s theory of mass transfer.

In order to obtain the phase speed and the attenua
distance in the high-frequency limitvc..tD

21 , we expand
the time uT(vc)u in Eq. ~B5! by (vctD) to first order. This
yields uT(vc)u5tD@11(vctD)22#1/2>tD(11vctD/2).
Then, we obtain from Eqs.~B6! that the phase speed and th
attenuation distance tend to the following finite limits:

vp5~D/tD!1/25VD , l a52~DtD!1/2. ~B8!
e
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As follows from Eqs.~B8!, in the high-frequency limit,vc

..tD
21 , the phase speed of the wave is equal to the di

sive speed or, in other words, to the speed of propagation
diffusion signals.23

Thus, in the regionsvc,,tD
21 and vc;tD

21 the speed
and attenuation of the concentrational wave will depend
the frequencyvc @see Eqs.~B6! and ~B7!#. Such a depen-
dence on the frequency is directly connected to the phen
enon of dispersion. In addition to this result in the hig
frequency limit,vc@tD

21 , the speed and attenuation of th
concentrational wave will not depend on the frequencyvc
@see Eqs.~B8!#. In such a case, the concentrational wa
moves without dissipation and its phase speedvp is equal to
the diffusive speedVD .
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