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On the basis of extended irreversible thermodynarfislou, J. Casas-Vazquez, and G. Lebon, Rep. Prog.
Phys.51, 1005 (1988; 62, 1035 (1999] an analysis of the solid-liquid interface motion is presented. In
addition to the formalism of the classic irreversible thermodynamics of Onsager and Prigogine, a space of
independent thermodynamic variables is extended by introducing the solute diffusion flux in consistency with
the extended thermodynamic approach to local nonequilibrium processes. Considering the rapid solidification
front motion, when the crystal growth velocity is of the order or even greater than the speed for solute
diffusion, a local nonequilibrium at the solid-liquid interface and inside bulk liquid is adopted by the model.
Taking into account the solute diffusive speed at the phase interface and the finite speed of solute diffusive
propagation in bulk system, the equations for thermodynamical fluxes, conjugated driving forces, the Gibbs
free energy change on solidification, and liquidus line slope are derived. A discussion of the outcomes pre-
dicted by the present model and a comparative analysis of the model predictions with experimental data are
made.
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I. INTRODUCTION in the bulk phases. Local equilibriumness can be character-
ized by the statistical distribution function given by the first

Considerable study has been given in past decades to tleeder term of its expansiott. However, for a high-velocity
thermodynamic description of rapid phase transformations irsolidification front, the time for crystallizing of a local vol-
various materials and processeSome first attempts to cre- ume can be of the order of the time for relaxation of the
ate thermodynamic models of rapid nonequilibrium transfor-diffusion flux to its steady-state valdéIn such a case, the
mations were successfully made in the pioneering works oapproximation of local equilibrium may become unaccept-
Borisov? Aptekar and Kamenetskayayeneralized by Baker able for a description of the diffusion process in rapid
and Cahrf, and developed further in following worRsIn solidification? Solidification of undercooled alloys can be
these studies special attention is paid to the definition of theo fast that the interface velocily is of the order or even
Gibbs free energy change as a driving force of transformagreater than the diffusive spe&, in bulk liquid which is
tion, response functions at the phase interfaemperature, the maximum speed of propagation of the diffusion profile in
velocity, and chemical compositiprand solute trapping and the system and defined a4 =(D/7p)Y2, whereD is the
solute drag effects acting in a rapid nonequilibrium phasaiffusion coefficient andry is the time of relaxation of dif-
transformation. A recently published overview on these top{fusion flux to its local equilibrium value. For metal alloys,
ics is presented by Hillert in Ref. 6. In order to describe thethe diffusion speed can be of the order*?ofV,
transfer processes, the models developed in Refs. 2,4, and-50.1-10 (m/s), and in modern experiments the interface
are based on the classical irreversible thermodynamics afelocity approachéd V=10-100 m/s. Therefore, the un-
Prigogin€ and can consider a shift from local equilibrium dercooling in melts is enough for detecting solidification
due to kinetic effects at the phase interface. with the front velocity comparable with the diffusion speed.

Special attention to nonequilibrium processes at the phas@ this case, local equilibrium is absent in the bulk phases
interface has been paid in previous studies of rapid solidifiand the solute flux cannot be described by the classical
cation of alloys~°In this analysis, thermodynamically con- Fick’s first law. Thus one should take into account the devia-
sistent models for the solidification of binary alloys are de-tions from local equilibrium in phases which affect both the
veloped. Describing the nonequilibrium process as a wholsolute diffusion and the interface kinetitsThe description
due to macrogradients of temperature and substance, the aaf-nonequilibrium rapid solidification is provided by the for-
thors propose a view of classic irreversible thermodynamicsnalism of extended thermodynamiesvhich gives a caus-
in accordance with which every local volume is solidified in ative description of transport processes and abandons the re-
consistency with the diagram of an alloy phase sta®  quirement of local equilibrium. Therefore, in the present
called “quasiequilibrium solidificationf and they extend article, we extend the thermodynamical formalism for rapid
this formalism to local nonequilibriumness at the interfacesolidification front motion which is caused by significant de-
due to solute trapping and kinetic effeéts? viations from local thermodynamic equilibrium.

As is well known, Fick’s first law for transport processes We shall analytically investigate the influence of local
can be obtained on the basis of classic irreversible thermaionequilibrium both at the interface and in the bulk phases
dynamics which assumes propagation of concentration dissn the motion of a planar solidification front in a binary
turbances with an infinite velocity and with local equilibrium alloy. Using the results of recently developed modélsne
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can find that when the interface velochyis of the order of of the system is to be obtained by consideration of the local
the diffusive speed/, the solute propagates by a joint dif- nonequilibrium solute diffusion and kinetics at the interface.
fusion and wave mechanisth.When V=V, the solute In order to describe local nonequilibrium processes we shall
propagates by the wave mechanism dfilgnd the concen- use the formalism of EIT which has fueled much interest
tration in the undercooled liquid becomes equal to the initialduring the last several decad@$! An initially general view
concentration of the melf As has been obtained analyti- of such formalism which might be applied successfully to the
cally for planar and nonplanar configurations of the solidifi-problem of local nonequilibrium solute diffusion in rapid
cation frontst® a complete solute trapping occurs with  processes is reviewed in the Appendix of the present article.
=Vp .2 In this case, there is no solute diffusion in the liquid

and rapid solidification cannot be controlled by the solute B. General equations

redistribution ahead of the interface with=Vy. Conse-
quently, first, we assume that local nonequilibrium in the
bulk phases plays a significant role in rapid solidificatfon
and extend the previous thermodynamical analysis for th

description of the solid-liquid interface motion. And, second, “-5 © . o
we shall evaluate the degree of local nonequilibrium by theEIT,”” or internal variables related to the structural peculiari-
relation of the interface velocity to the diffusion speell, . ties of the systerfi: Following EIT,®*!**we include dissi-

The paper is organized as follows. In Sec. Il we describd@tive mass flux in the set of basic independent variables of

the basic assumptions and general equations of the model. fn SOlidifying system(see Appendix A Starting from this
addition to the thermodynamic theory developed in previoudd€@: EIT provides a causative description of nonequilibrium
investigation€*81%we introduce the dissipative diffusion Processes and, for the case of rapid nonequilibrium solidifi-

flux as an independent variable in accordance with extendeftion. leads to the non-Fickian diffusion problem described
irreversible thermodynamic¢EIT).*52%2% In Sec. Il we by the evolution equation for the mass flux. For solute dif-

present a treatment of the driving forces for kinetics andusion. such an approach gives rise to a partial differential
diffusion by taking into account deviations from local equi- €duation of a hyperbolic type which takes into account the

librium at the interface and solute diffusion in the bulk sys-finité speed for solute diffusive propagati¢see Appendix
tem. A derivation of the expressions for the interfaceE,’)' L)smg this approach and the above model characterlstlcs
temperature-velocity relationship and for the slope of thell)=(V), we form the space of independent thermodynamical
nonequilibrium liquidus line in the kinetic phase diagram of V&riables for the isothermal binary system which consists of
an alloy solidification is given. In Sec. IV, using the limit for the concentrations and dissipative mass fluxes. In such a
a dilute alloy, we compare the derived function for the inter-c@S€, the local change of entropy at the solid-liquid interface

face temperature with the available experimental results oS described by
tained on a Si-As alloy solidification. Finally, in Sec. V we
present a summary of our conclusions. Appendixes A and B

For systems out of equilibrium, a general set of indepen-
dent variables should be extended and can include the gradi-
gnts of corresponding thermodynamical potentials used in
rational thermodynamic¥, thermodynamic fluxes used in

B

clarify the details of the extended thermodynamics appli- TdS=—p:L]S qu (“gdxg+“g‘]gd‘]3)- @
cable for local nonequilibrium diffusion in rapid solidifica-

tion of a binary system. HereT is the temperaturedSis the change of the irrevers-

ible entropy per unit area of the interfacg=A,B is the

Il. MODEL index of a number of alloy components- A or B compo-

o nend, index p is related to the liquid phasep&L) or the

A. Model characteristics solid phase [f=S), f is the chemical potentiak is the

To describe the rapid solidification process, we examine anole fraction of the alloy componenlg is the diffusion flux

model with the following characteristics. of thex! componentthe dimension oﬂg is m/9, and ag is

(i) An isothermal two-phase system with a sharp solid-the coefficient defined by
liquid planar interface is under study. Pressure is constant in

the system. 1 ol
(ii) The system consists of a chemically inert binary alloy ag: . . )
that solidifies like a solid solution. w(V3)? ax3

(iii) Solidification of an alloy melt can be so fast that the ) _ ) . o
interface velocityV is of the order of the speed of the solute Wherew is the unit area of the interfac¥, is the diffusive

diffusive propagation in the liquid. speed of theg component inp phase. Note that the change
(iv) Convection in liquid, diffusion in solid, and effects of dx; in Eq. (1) occurs through the unit areaof the interface.
crossed-boundary transport processes are negligible. Equation(1) is the generalized Gibbs equation for the non-

Under these assumptions, the process is deemed to Igguilibrium entropy near the solid-liquid interface. Also, the
controlled by both mass transfer and the kinetics of the infunction T dSdt described by Eq(1) can be examined as
terface. Particularly, from system characteridiic) it fol- generalized dissipative function for nonequilibrium isother-
lows that one should take into account the finiteness of thenal solidification of an alloy. In the IimitS/g—wo and ag
speed of solute diffusive propagation in liquid and deviations—0, Eq. (1) transforms into the Gibbs equation for local
from local equilibrium at the interfacé. Thus, a description equilibrium mass transfer in isothermal binary system.
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The diffusive speed/g is one of the most important pa- ds 1 dxé dxg
rameters of solute diffusive propagation and it can have dif- (m) == $<AMAW+AMBW) 7
ferent values at the interface and in bulk phases. In the E
present description one can estimate the characteristic lengéihd local nonequilibrium part
\p for diffusion as follows:
s, 1 - dJ [ dJ
Ao=00 L, 3 (E)NE‘ - T(“AJAW”BJBW)' ®
where() is the atomic volume. Using E@3), the diffusion  so that
times that are equal to the characteristic times for relaxation
of the diffusion fluxes to their steady-state values are de- d_S:(d_S> +(d_3) ~0 9)
scribed by dt \dt)_ ldt) =
\ D\ 12 With the local equilibrium limitsvi— o anda§— 0 [see Eq.
7.q:_D, vi=| =P (4) (2)], one obtains ¢S/ dt)z— 0 and the entropy production,
P Vg P Tg Eq. (6), includes the local equilibrium part only. The produc-

tion dS/dt of the generalized entropy, Eqg§)—(9), is non-
The values ol} are different from the value of an interface negative due to the statement of the second law of thermo-
diffusive speedVp, introduced in the continuous growth dynamics. It is evidenced in Ref. 15 for theories consistent
model with the nonequilibrium condition at the interfd€e. with the formalism of EIT.
From the definition it follows tha¥/, is the speed for an We define the atomic fluxds, andlg across the interface
atomic jump over the interatomic distancgat the interface, as the number of andB atoms per unit area of the interface
i.e., Vp,=\,v, where v is an attempt frequency for sur- per unit time. The atomic fluxes af&®
mounting barriers and is of the order of an atomic vibrational

0,25 ; ; q dx?
frequencyt®? The diffusive speed¥ in the phases are the QIA=Q—S=(1—XS)V,

speeds for diffusion front propagation and these are defined dt

by Vi=\p/73, where\p is the distance for a diffusion

. . .. . B

jump of bulk atoms. For atoms in a majority of metallic dxg

systems and intermetallic compounds, the interface atoms Q'B:QW:XSVv (10

are packed more densely than in the bulk liquid, so the in-

equality \,<\p obtains. If we consider a situation where WhereV is the velocity of the interface, an is the mole
atoms diffuse in the vicinity of the interface, then we alsofraction of B atoms in the solid. A connection between the

can have thak,=\p . The time for atomic vibration at the atomic and diffusion fluxes is described by the equatidffs

interface is of the order of time for diffusion relaxation in the A

bulk liquid, vilz Ty .I—_|ence, from this it follows thaVD, Q|A:Qd_tsz(1—XL)V—JA, (12)
svg. These inequalities have been formulated in Ref. 26

and gave a satisfactory comparison with experimental data dxB

on rapid dendritic solidification in undercooled binary —0 S _ v

alloys?’ M= -gr=xV-Js, (12

For a binary alloy the total mole fractions of the alloy

. wherex, is the mole fraction oB atoms in the liquid phase.
components in the phases are

From Eqgs.(10)—(12) it follows that the crystallization flux

Xf+XE=1, x’§+x§=l. ©) Jc and the total diffusive fluXip are described by
RN . . Je=VQ!,  —Jx=3=0Jp,

Neglecting diffusion fluxes in the solid phatee Sec. I A

from Egs.(1) and(5) it follows an equation for irreversible Jo=(x_ —Xg)V/Q. (13

entropy production. This yields ) . )
Expression$10)—(13) were used in various problems for the

ds dxé dda dxg dJs gg)scription of alloy transformationsee Refs. 4,6,10 and
Taking into account Eq910)—(13), a linear transforma-

®  tion of the entropy production, E@6), to the new reference

frame (see also Ref. Mleads to the following expression:

- = - L - - -
Tat = " Aragp —aada gy ~Aregr ~@sle g

HereAua=pua— s andAug=ug— ug are the differences
of the chemical potentials within the solland the liquidL ds dc
phases oA andB atoms, respectively, and the fluxés and Ta = 2 JiFi=JpFptJcFc=— ar =0, (19

Jg are related to the liquid phase at the interface. The total

entropy productiord S/dt=0 which takes into account local whereG is the Gibbs free energy dissipated by irreversible
nonequilibrium diffusion, Eq(6), can be treated as a sum of processes per unit area of the interface. Note that(E4).

the local equilibrium part establishes two equivalent thermodynamic requirements for
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isothermal processes: necessity of non-negative entropy pro-  j.=L Fc=— Léc(l— XA pua— LcB;cXLAMB ., (20
duction and the nonincreasing of the Gibbs free energy in

In I_Eq. (14) the expressions for fluxek and forced; are gyt -1 Jul| -1
described by LA =vA A LB,=VE e (21)
DD L 07(1—X|_) ’ DD L &XL
Jo=x la—(1=x)lg, Jc=latlg, 15 - - T
p=Xla=(17x)ls cATB 9 re the Kinetic coefficients for diffusion f and B atoms,
Fo=FA—Fg (16) respectively,L2. and L&, are the kinetic coefficients for

crystallization, and{*+ xP=(1—x,)+x_=1. The evolution

dds equation(19) for diffusion flux and equatiori20) for crys-
Fa=—Auat Qakﬁ, tallization flux are compatible with the non-negative charac-
ter of the entropy productiondSdt=0, as given by Eq.
dJ (14).
Fg= _A“B+Qaéd_t8’ (17) To define the coefficientaf and L3y, [see Eqgs(2) and

(21)], we assume a model in which the equilibrium part of
chemical potentials are given by Henry's law. These are

dJA)
Fe=(1-x)| FaA—Qaz——
o=l L)( AT AT pb=ubo(T)+RTIn(yix?), (22)
dJ whereq=A or B, p=L or § yg are the coefficients of ac-
+X FB—Qa'éd—tB)_ (18 tivity of atoms of sortA andB, and,ugo(T) are the standard

chemical potentials which depend on the temperaiurin

HereFy, is the driving force of the diffusion defined by the such a case, substituting E@?2) for Egs.(2) and(21) one
difference between the driving forc&s, andFg for the dif-  can obtainag andLj, . In the liquid these are described by
fusion of A and B atoms, respectively, andFo=—(1

—X)Aua—X Aug is the crystallization driving force. Us- L RT x{VY
: : - at=——— LY, = :
ing Egs.(10)—(13), a simple substitution of Eq$15)—(18) q wxﬂ(VE)z' DD™ RT
for Eq. (14) gives the initial equation for the irreversible

entropy production, Eq6). Note that the obtained system of As follows from Eqgs.(3), (4), and(23), the combination of
equations for fluxes and driving forces, E¢$5)—(19), dif-  the coefficientSa(L1 andL{ gives the time for diffusion re-
fers from those predicted by classic irreversible thédiy laxation, i.e., QQEL%DZTE, consistent with the general
addition to the previous analysi&the driving forceF for analysis of the fluxes and driving forces for non-Fickian dif-
diffusion takes into account the relaxation termsdJ,/dt  fusion (see, e.g., p. 289 in Ref. 23

and agdJg/dt. As V-, the coefficientsxy and af tend

to zero[see Eq.2)] and Eqs(15)—(18) describe fluxes and IIl. INTERFACE TEMPERATURE AND SOLIDIFICATION
driving forces under a local equilibrium approximation in VELOCITY

accordance with classic irreversible thermodynamics. 9 . .
The requirements of the second law given by the non- TurnbulP® suggested a relationship between the free en-

negative function of entropy production, E(@), imply a €9y (_:ha_ngekG, interface temperatur€,, and the velocity
relation between fluxes and conjugatr?édriving forces whichY- This yields
in a simple case, is assumed to be lingdfor Eq.(14) this _ B
fact can be expressed by the following linear relatidp: V=1Vl 1-expAG/RT)) ] (24)
=L;;F;, where the indexeisor j are related to the index&  Heref is the fraction of sites at the interface at which growth
or C respectively, and_;; is a mobility matrix of kinetic ~can occur and/; is the upper limit of interface advance. In
coefficients. Using Eq9.15)—(18), neglecting effects of the the present description we assume that the atomic attachment
crossed-boundary influence of crystallization and diffusionkinetics at the interface are collision limited. In such a case,
processes,. pc=Lcp=0, and also neglecting effects of the the prefactol/, corresponds to the value comparable to the
crossed-boundary influence of atoms of one sort on anothespeed of sound as an ultimate upper limit of crystal growth

(23

(see Sec. Il A one can obtain velocity®® and, therefore, we haveV,>>V.
For alloys, the total free energy chand& is interpreted
Jo=LppFp as a sum of the driving free energyGpr for the transfor-

mation and driving forceAGy for the kinetics of atomic

bb' b =DD" D attachment to the interface, so that

dJ
- _LSD(AMA_Qakd_tA) AG=AGpr+AGy. (25)
Following the previous work€-1nd using the above treat-
+1LB A _QQL% (19) ments(see Sec. Il B one can calculate the total change of
op| S4B B dt )’ free energyAG, in rapid solidification of an alloy. With this
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aim, one should express E@.4) in terms of the free energy A part of the driving free energg& Gy which is equal to the

per mole of the alloy solidified. two first terms on the right-hand side of E(1) can be
From now on we consider a dilute alloy approximation in obtained agsee Refs. 4,8 and 32

which we shall take only the diffusion process of atdafer

diffusion flux Jp in Eq. (19). Also, we shall imply for sim- (1—Xg)ApatXsAug k

plicity that V=V, is the diffusive speed d atoms in bulk RT =X Ke—K 1~ ln(k_e '

liquid. Then, after multiplying Eq(14) by —J<* and using

Egs.(13) and (15)—(18), we find the driving free energy for Where

transformationAGDF=J61dG/dt, in the form

Xs(V)
K(V) =
AGDFZAGD+AGC XL(V)

(32

=AGE+AGNF+AG:, V<Vp, is the solute partitioning function which depends on the so-
lidification velocity V, andk, is the equilibrium coefficient
AGpr=AGc, V=Vp, (26)  of the solute distribution a8 —0. To define in Eq(31) the
local nonequilibrium part of AGpe which equals X_
where —xg)QagdJg/dt we shall use a relation between the flux
Jp and conjugated driving forc& [see Eqs(19—(21)].
AGD:AGEJFAGSE (27 UDsing Eq.(Z‘JS) gz]ind Eqs(3) gnd(4), gne gets tcﬂ\e equation for

is the driving free energy for diffusion, solute diffusion flux from Eq(19). This yields

AGE:(XL_XS)(A,U«A_A,U«B)y V<Vp, BdJB+ :_VDXL (33

E = =
AGp=0,  V=Vp, 28) where7? is the time for diffusion relaxation of the fluk to

is the solute-drag free energy that takes into account the fits steady-state value. Equati@8) is the simplest evolution
nite speed of solute diffusive propagation, equation for the fluxJg compatible with the formalism of
EIT [see Egs(A6) and(A7) in Appendix A] and gives non-
NE Js negative entropy production, E(L4), for the binary system.
AGp =(X.—xg)Qag—-, V<V, Using the result from the analysis of Baker and Catimat
A ug=RTIn(k/k.) and also using mass balance, Etf), we
substitute Eq(33) into a local nonequilibrium part Gy
in Eq. (31). As a result, one obtainsx,(—xS)Qa',ngB/dt

is the change of free energy for local nonequilibrium part of = (XL —Xs) RT[In(k/ke) + (1K) V/Vp]. Thus, assumingl

AGYF=0, V=Vp, (29)

diffusion, and =T,, Eq.(31) has the form
AGe=(1—-Xx)Auar+%x A AG k k
Gem(Imx)Ruatxudpe 30 08 ke K 1= In| | |1+ (x_~xg){ In|
RT, Ke Ke

is the crystallization free energy. Note that in E(&6)—(30)
we have used one of the results of the solution of the gener- \%
alized Stefan problem on solidification under local nonequi- +(1-k) V_) V<Vp,
librium diffusion* In accordance with this solution, a source b
of concentrational perturbations, i.e., the solid-liquid inter- AG
face, moving at the velocity equal to or higher than the DF
maximum speed/p of these perturbations, cannot change RT,
the concentration or create the concentration profile ahead - . . .
itself. As a result, one obtaing =xs=Xg at V=Vp (X; is qjhe driving forceA Gy in Eq. (25) is described b¥
the initial concentration of an aIIE()y Theref%rEe, in Egs. AG. 1-kK
(26)~(30) we have found thanGp=0, AGp =0, and RTK = (To+mex, —T)), (35)
AGp=0 with V=V,. o Me

From Eqs.(26)—(30) one can obtain an expression for the
driving free energyA Gpg for transformation. This yields

:Xo(ke_l_ln ke), VZVD (34)

where T, is the equilibrium temperature of solidification of
the alloy main component amd, is the liquidus line slope in
the equilibrium diagram of an alloy phase state. Sikice

AGpr=(1—Xg)A pupt XA g+ (XL_XS)QQE%, <V, for collision-limited growth kinetic$®>! Egs.(24) and
t (25) can be rewritten as
V<Vp,
V. AGpe+AGk
—_— (36)
AGDF:(l_Xs)A/.LA+XsAﬂB1 VBVD (31) fVO RTl
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Substituting Eqs(34) and(35) in to Eq.(36) one obtains an
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locity. Also, molecular dynamic simulation has shoWwthat

equation for the temperature at the interface as a responsie transition to complete solute trapping is observed at finite
function of the interface velocity and solute concentration.crystal growth velocity.

This yields
T =Tetm(V)x — 1k TV’ (37)
where
VLI P P k
m( )_1__ke — —1In k_e
1-k)|! k 1-k v V<V
+(—)na+(—)V—D, <Vp,

meln ke
M= =1

=

=

Vp, (38
is the slope of the nonequilibrium liquidus line in the kinetic
phase diagram of alloy solidification.

Thus, we have found the slopa(V), Eg. (38), of the
nonequilibrium liquidus line as a function of nonequilibrium
solute partitioningk(V) and interface velocity. In the lim-
its Vp—= (i.e., VIVp—0), Eq.(38) reduces to a solution
which incorporates local equilibrium in the solute diffusion

and a deviation from equilibrium at the interface due to ki-

netic effects’ As a whole, Eq(38) reflects the fact that with
V<Vp the slopem(V) of the liquidus line deviates from its
equilibrium valuem, due to both local nonequilibrium at the
interface, Me/(1—k)){1—-k[1-In(kky)]} (see Refs.
8-10, and combined shifts from local equilibrium at the
interface and in the solute diffusiofmg(1—Kk)/(1—Kkg)]
X{In(k/ko) +(1—K)V/Vp}. The slopem(V) has a constant

value, Eq.(38), due to the absence of the diffusion process

ahead of the interface at finite velocity=Vy, when com-
plete solute trapping occurs in alloys; =xs=X, [i.e.,
k(V)=1, Eq.(32)] .

IV. DISCUSSION AND COMPARISON WITH
EXPERIMENTAL DATA

An interface kinetic model developed within the frame-
work of the continuous growth mod&CGM) provides the

The extended version of the CGM which takes into ac-
count local nonequilibrium solute diffusion eliminates this
inconsistency. Particularly for solute partitioning function
(32), Sobole¥® suggested a generalized function for solute
partitioning in the case of local nonequilibrium solute diffu-
sion within the approximation of a dilute alloy. This yields

ke(1—V2IV3)+VIVp,

k(V)= , )

V) 1-V2IV2 +VIVp, P

k(V)=1, V=Vp, (40)
where Vp, is the interfacial diffusion speed with

Vp1<Vp.?®?"In the local equilibrium limit, i.e., when the
bulk diffusive speed is infiniteyp— oo, expression40) re-
duces to the functiork(V), which takes into account the
deviation from local equilibrium at the interface only, Eq.
(39). In addition to previous modéf:>® the functionk(V)
described by Eq40) includes the deviation from local equi-
librium not only at the interfacéntroducing interfacial dif-
fusion speedVp,) but also in the bulk liquid(iintroducing
diffusive speedVp in the bulk liquid. As Eqg. (40) shows,
complete solute trappindi(V)=1, proceeds a¥=Vp.

Thermodynamic analysis based on the hypothesis of local
equilibrium in solidification of a binary systehprovided an
approach for the two models of solute trapping with or with-
out solute drad° These models have taken a shift from
local equilibrium at the interface which can be expressed in
unified form for the slopen(V) of the kinetic liquidus by the
following equation:

Me

1-k,

Here §,=0 is for the model of solute trapping without solute
drag anddy=1 is for the model of solute trapping with sol-
ute drag. Introducing Eq39) into Eq. (41) one obtains the
constant liquidus slopen (independent fromV) only with
infinite solidification velocity,V— oo,

Using the results of the present analysis, from EB#8)
one can get the slope of the liquidus line in the following

m(V) = 1—k+[k+(1—k)6o]ln(k£)]. (41)

boundary condition for solute diffusive transport. The CGM form:
gives a way to evaluate the solute trapping effect which can

be expressed in terms of the solute partitioning functi).

Considering only dilute solutions, this function is described

by10,33

Ko+ V/Vp,

k(V)= 1+V/IVp, '

(39

whereVyp, is the speed of diffusion at the interface.
One of the deficiencies of the functidB9) is the diffi-

V)= 1—Kk+I X 1k2V V<V
m()_l——ke —+nk—e+(—)V—D, <Vp,
Melnke V=V 42
= =
m ke_l, D- ()

With V<Vp, such a form of the functiom(V) includes the
functionm(V) described by Eq41) for solute trapping with
solute drag §,=1) and an additional term (1k)2V/Vp

culty of the description of complete solute trapping at finitewhich arises from analysis of the Gibbs free energy by taking

solidification velocity, i.e., it predictk—1 only with V

into account local nonequilibrium solute diffusion around the

—o. However, as has been detected in a final crystallinénterface (see Sec. I). Also note that the functio(V)

structure of rapidly solidified binary alloy$,a transition to

partitionless solidification occurs at a finite solidification ve-

described by Eq42) plays a crucial role for self-consistency
of the theory of local nonequilibrium solidification. This
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FIG. 1. Function “interface temperature versus solidification ve-
locity” obtained for the Si—9 at. % As system. Curves are given by

solution of Eq.(37). In addition to this, the dashed curve is given by
Eqg. (39) and Eq.(41) with the absence of the solute-drag effect,
80=0; the dashed-dotted curve is given by E89) and Eq.(41)
with including solute-drag effeci,=1; the solid curve is given by
Egs.(40) and(42). Data points are from Refs. 37 and 38.

form of them(V) function has been used in a self-consisten

model for rapid dendritic growth and gave quantitative
agreement with experimental data on the kinetics of aIIO)}Eq

solidification?’ In particular, the self-consistent dendritic
growth model obtained by inclusion of E¢42) predicts a
breakpoint atv=Vp, providing good agreement with data
on a number of investigated allogs.

In order to verify the predictions of the present model we
calculate the temperature-velocity relationship at the plana)

solid-liquid interface, Eq(37), for rapid solidification of a

binary alloy. As a well-tested binary system we chose
Si-As alloy which has been investigated in detail by Aziz an
co-workers:®3" particularly for obtaining material param-

eters when undergoing rapid solidification. Experimenta
measurements in liquid and resolidifying layers of the Si-As’ .
alloys by pulsed-laser melting have provided data on th%
h

temperature-velocity relationship and solute trapping wit
the guarantee of planar solid-liquid front moti¥iThe main
result of the investigations of these authors is the absence
the solute-drag effect in solidification and a good descriptio
of the obtained experimental data by means of the CGA.

(
a . ) o
gto the Si—9 at. % As alloy. Due to the satisfactory description
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models confirms this conclusidf.However, the predictions
of the CGM for solute trapping deviate significantly from
their experimental data at high growth velocities of solidifi-
cation, namely, below about(@/s) (see, e.g., Fig. 9 in Ref.
38). The solute partitioning function described by E40)
eliminates this inconsistency, and experimental data on sol-
ute trapping in the Si-As alloy4® can be satisfactorily de-
scribed in all regions of the solidification velocities investi-
gated(see Fig. 1 in Ref. 26

At the same solidification velocity, i.e., below abovt
=2 (m/s), the interface temperature versus velocity also ex-
hibit a clear deviation from experimental ddtee Fig. 11 in
Ref. 38. We attribute this deviation to the increasing influ-
ence of the local nonequilibrium solute diffusion around the
interface at high solidification velocity. Therefore we make
an attempt to describe the whole set of experimental data by
means of the present outcome of the extended thermody-
namic analysis.

Using material parameters presented in Table I, we have
calculated the temperature response funct®n substitut-
ing the solute partitioning functio0) and slope for kinetic
liquidus (42) which take into account deviations from local
equilibrium both at the interface and bulk liquid due to local
tnonequilibrium diffusion. In comparison with the two previ-
ous models based on the CGM, the curve calculated using
s.(37), (40), and(42) is shown in Fig. 1. As can be seen,
remarkably, in comparison with the CGM model which
adopts the deviation from local equilibrium at the interface
only (and with or without solute drag in solidificatipnthe
present model is able to describe experimental data in the
whole region of the solidification velocity investigated. It
hould be noted especially for the present calculations, Fig.
, that we have used the dilute alloy approximation, Egs.
37), (40), and(42), which, strictly speaking, does not apply

of experimental data in the whole region of velocity, we
Ibelieve that this result confirms the correctness of the local
nonequilibrium approach to rapid solidification. An exten-
ion of the local nonequilibrium theory for the case of con-
entrated binary alloys can be made in detail on the basis of
the analysis presented in this paper.

of
n

V. CONCLUSIONS

Rapid solidification of a binary alloy has been considered

complete available experimental test of previously suggestefbr conditions of strongly nonequilibrium transformation

TABLE |. Material parameters of the Si—9 at. % As alloy used in the calculations of the temperature

response function at the solid-liquid planar interface.

Parameter Denotation Dimension Value
Initial concentration Xo at. % 9
Solidification temperature of Si Te K 1673
Liquidus slope Me K/at. % -7.9
Partition coefficient Ke — 0.3
Diffusion speed in bulk liquid Vp m/s 21
Interface diffusion speed Vp, m/s 0.8
Limiting speed for interface advancing Vo m/s 1500
Fraction of sites for growth f — 1x10°2
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from the liquid to solid crystal phase. Following the assump-an infinite speed®?! Due to the high interest of researchers
tion of the absence of local equilibrium both at the solid-in systems far from equilibrium, today EIT has a theoretical
liquid interface and in the solute diffusion field around thefoundation originating from the kinetic approach and at the
interface, we have developed a phenomenological model fanesoscopic level of description. On this subject, original
the response functions at the interfatthe temperature, monographs have been publisfi&tfand a wide spectrum of
chemical composition, and solidification veloditwhich is  applications were considerdt*! To clarify a phenomeno-
based on the formalism of extended irreversible thermodylogical approach to the problem of non-Fickian diffusion, we
namics. Taking into account the finite speed for solute diffu-shall enlarge the space of independent variables and formu-
sion propagation in bulk liquid we obtained equations(for late the evolution equation for solute diffusion flux. Readers
the diffusion and crystallization fluxes and their driving can also refer to Ref. 42 where the influence of the inclusion
forces, EQs.(15—(18); (ii) the total driving free energy of dissipative fluxes on a set of thermodynamic variables is
which includes the sum of energy for phase transformatioriscussed in more formal detail.
and kinetics of interface advancing, E¢g5), (34), and(35);
and (ii) the equation for the slope of the nonequilibrium
liguidus line in the kinetic phase diagram, E¢38) and(42).

Starting from the generalized Gibbs equati@h, we For the isothermal and isobaric systé¢iine temperaturd
found that the present results differ from the results of theand pressure P are constanjs classical irreversible
previous thermodynamic formalim®32 by an additional thermodynamicsadopts the s€itC}+ p consisting of the only
term proportional to the derivative of the diffusion flux with independent variable, the concentratd¥nThis fact can be
respect to timegdJg/dt, arising in equations for the driving expressed formally as follows:
force for diffusion, Eq.(17), driving free energies for the
diffusion and phase transformation, Eq29) and (31), re- {C}rp=X. (A1)
spectively. AsdJg/dt tends to zero for local equilibrium
solidification, these equations are reduced to those obtainethe concentratioiX satisfies the balance law equation of the
by using classical irreversible thermodynamics. general form:

The resulting interface response function “temperature
versus solute concentration and velocity,” E§7), has been aX
tested with available experimental data on a binary alloy’s —=-V.J%+¢C, (A2)
solidification with planar interface. Using the dilute alloy at
approximation and model’s functions for solute trapping, Eq. .
(40), and nonequilibrium liquidus line slope, E42), we whereJ€ is the flux corresponding to the quantiyfrom the
compared the model predictions with the experimental dat&et{C}rp, o° is the source term.
for the Si-9 at. % As alloy’*® As is shown in Fig. 1, the Besides the classical variables, EIT enlarges the set of
temperature velocity relationship predicted by the presenindependent variables by including the dissipative fILiRéS.
model describes satisfactorily the set of experimental data iffor the case of isothermal non-Fickian diffusion, the ex-
the whole range of the velocity investigated. tended space of independent variablgsis formed by the

union of the classical s¢C}y p and the space consisting of

the vector of the diffusion fludi. This yields

1. Choice of the independent variables
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APPENDIX A:  ASSUMPTIONS UNDERLYING relaxation of the diffusion flux to its steady-state value or the
EXTENDED IRREVERSIBLE THERMODYNAMICS FOR time for smoothing of the concentrational inhomogeneity by
THE PROBLEM OF SOLUTE DIFFUSION diffusion in a local bulk of the system, or the time for diffu-

Here we shall give the basic ideas of the modern thermo>'on JUMPS of atoms or molecules. Consequently, the rate of

dynamical formalism applicable for local nonequilibrium decay ofJ can be estimated by the timg =D/V{,, whereD
solute diffusion. This formalism is based on extended irredS the diffusion constant andp, is the finite speed for diffu-
versible thermodynamics which is a suitable theoreticafion (see Appendix B For instance, at the usual or higher
framework for the description of non-Fickian aspects of sol-temperatures in a binary alloy’s system or inorganic solution,
ute diffusion® In addition to classical irreversible thermody- this time changes within a wide interval: 10 s<rp
namics, EIT goes beyond the hypothesis of local equilibrium<10~** s. For time intervals much larger thag, the rate
and avoids the paradox of propagation of disturbances witlof variation ofJ can be ignored.
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2. Evolution equation for the diffusion flux APPENDIX B: A FINITE SPEED OF SOLUTE

By analogy with Eq.(A2) which describes changing of DIFFUSION PROPAGATION

the classic variableX, one can assume that tievariable Let us obtain a substance propagation law that follows
satisfies the following evolution equation: from analysis of the one-dimensional version of hyperbolic
_ equation(A9). For this purpose, we shall examine the plane
ZN| e - harmonic wave as the simplest solution of E49).
—=-VJF+oF, (A4)

We examine a wave moving along thelirection. Using a
R R complex amplitude method, one can write
whereJF and o" denote the corresponding flux and source
terms respectively, and the upper indeis related to the fast X(x,t) =Xoexgi(K,X— wct)], (B1)
variable of the diffusion fluxJ. The functionsJ® and o~ , - . .
include the variables from the whole éf, Eq. (A3), and whereX, is an initial amplitude of the concentrational wave,

for the lowest order of approximation they can be derivedk‘” 's the complex wave number, i.e., the component of the
.app ) y wave vector in thex direction, . is the real cyclic fre-
from the relevant constitutive equations

quency, and K x— w.t) is the phase of the concentrational
SEy 3 > “Ery 3 = wave.

FXN=a,(0U, (X )=a(X)d,  (A) Substituting Eq.(B1) for Eq. (A9), we get a dispersion
whereU is the identity tensor, and, anda, are undeter- €quation
mined functions of concentratiok. Substituting Eq.(A5) 5 o,
for Eq. (A4), one can get the evolution equation for the sol- Dk, = poctiwcT(w), (B2
ute diffusion flux. This yields

ot

where

aJ  oa B, o

—ZLyxta,d. (A6) T(wg)=Tp+ing " (B3)
is the complex time. EquatiofB2) defines the concentra-
tional wave propagation versus the frequeagy The elimi-
nation of the amplitud&, from Eqg. (B1) takes into account
- the fact that the initial amplitud&, may be defined if the
TD£+3+ DVX=0. (A7) source of the concentrational wave is known.

t For further analysis, the wave number can be taken of the

Equation(A7) can be treated as the simplest generalizatio orm K, =p exp(r). Substltutmg_ this expression for _Eq.'
B2), one can get the following system of equations:

of the classical Fick’ first !av§+ DVX=0, which is recov- 200631~ 20 1B, p2sin(2x)=w,/D. A solution of this sys-
ered whenrp =0 or in stationary situations in which)/dt  tem relative top and\ allows one to obtain the wave num-
=0. The evolution equatiofA7) takes into account the re- per, This yields
laxation to local equilibrium of the diffusion flux and is
known as the Maxwell-Cattaneo equation in the context of k,=Rek,,)+ilm(k,)
heat transport> As follows from Eq.(A7), the concentration

TD+|T(wc)I)“2 : <|T(wc)|_TD)1/2

C )

Definingda, /dX=D/rp anda,= 7-51, one obtains from Eq.
(A6) the evolution equation

gradientV X at a point of a system defines the veclasf the

=w¢

solute flux, not at time as in the local equilibrium approxi- 2D 2D
mation, but with a delay equal to the relaxation time. (B4)
The mass transfer in a system is governed by the balance
law where Rek,) and Im(,) are the real and imaginary parts of
the wave number, respectively, and
aX -
—+V-J=0. A8 -
t (A8) T(we)| = (75 +w; )2 (®5)
In contrast with Fick’s first law, which leads to the diffusion is the modulus of the complex time, E@®3).
equation of parabolic type, Eq#A7) and (A8) give rise to The plane harmonic wave which propagates away from
the hyperbolic equation for the mass concentration: the source of concentrational disturbances has a phase speed
) vp and characteristic distandg of attenuation. From the
X X i i
2 il —pvex, (A9) expressiongB4) and (B5) one can findv, andl,. They are
at Jt?
. . . . . __ @ _[_ 2D )1’2
Equation(A9) is the simplest mathematical model combin- Up= Rak,) |mpt|[T(w)]

ing the diffusive (dissipative mode and the propagative
(wave mode of mass transport under local nonequilibrium 1 2D 12
conditions. In such a case, EH#\9) describes mass transport |a:_:w1(—) _ (B6)
processes under non-Fickian diffusion. Im(k,) ¢ {[T(wc)|— 7o
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From Eqgs.(B6) we have for slow frequenciemc<<r,51,

that| T(wc)|= w, * and, then, from Eq9B6) one gets
vp=(2Dw)¥%  1,=(2D/w) "2 (B7)

Expressions fov, andl,, Egs.(B7), can also be obtained
from the classical Fick’s theory of mass transfer.

PHYSICAL REVIEW B 65 144103

As follows from Eqgs.(B8), in the high-frequency limitw,
>>T,51, the phase speed of the wave is equal to the diffu-
sive speed or, in other words, to the speed of propagation for
diffusion signals®

Thus, in the regionso,< <75 and w,~ 5" the speed
and attenuation of the concentrational wave will depend on

In order to obtain the phase speed and the attenuatioie frequencyw. [see Eqs(B6) and (B7)]. Such a depen-

distance in the high-frequency Iimitc>>751, we expand
the time|T(w.)| in Eq. (B5) by (w.7p) to first order. This
yields |T(we)|= o[ 14 (wep)  2]%=1p(1+ wemp/2).

dence on the frequency is directly connected to the phenom-
enon of dispersion. In addition to this result in the high-
frequency limit, w > 7-,51, the speed and attenuation of the

Then, we obtain from Eq¢B6) that the phase speed and the concentrational wave will not depend on the frequeagy

attenuation distance tend to the following finite limits:

vp=(D/mp)"?=Vp, 1,=2(Dp)"%  (BY

[see Egs.(B8)]. In such a case, the concentrational wave
moves without dissipation and its phase spegds equal to
the diffusive speed/p .

*Electronic address: Peter.Galenko@dir.de
1Advances in Research and Applicatip®l. 3. of Solid State
Physics edited by F. Seitz and D. TurnbulAcademic Press,

New York, 1956; Science and Technology of the Undercooled

Melt, edited by P.R. Sahm, H. Jones, and C.M. Adafartinus
Nijhoff, Dordrecht, 198§ Science and Technology of Crystal

13D.M. Herlach, Mater. Sci. Eng., R.2, 177 (1994).

14p. Galenko and S. Sobolev, Phys. Re\6% 343 (1997).

15D, Jou, J. Casas-Vazquez, and G. Lebon, Rep. Prog. Bhys.
1005(1988.

18As soon as the interface velocity is of the order of the diffusive
speed in bulk liquid we take into account the motion of the front

Growth, edited by J.P. van der Eerden and O.S.L. Bruinsma o the solute profile which moves with the diffusive spaégl.

(Kluwer Academic, Dordrecht, 1995Phase Transformations
and Systems Driven Far From EquilibriymlRS Symposia Pro-

ceedings No. 481, edited by E. Ma, M. Atzmon, P. Bellon, and

R. Trivedi (Materials Research Society, Warrendale, PA, 1998

2\/.T. Borisov, Dokl. Akad. Nauk SSSR42, 69 (1962 [Sov. Phys.
Dokl. 7, 50 (1962].

31.L. Aptekar and D.S. Kamenetskaya, Fiz. Met. Metallovad,
358(1962.

4J.C. Baker and J.W. Cahn, Svlidification edited by T.J. Hughel
and G.F. BollinglAmerican Society of Metals, Metals Park, OH,
1972, p. 23.

SM. Hillert and B. Sundman, Acta Metaf24, 731(1976); ibid. 25,
11 (1977; C.V. Thompson and F. Spaepeijid. 27, 1855
(1979; D.E. Temkin, Kristallografiya32, 1331 (1987; M.J.
Aziz and W.J. Boettinger, Acta Metall. Mate$2, 527 (1994).

5M. Hillert, Acta Mater.47, 4481(1999.

’1. Progogine, Introduction to Thermodynamics of Irreversible
ProcessegInterscience, New York, 1961S. De Groot and P.
Mazur, Non-equilibrium Thermodynamid#lorth-Holland, Am-
sterdam, 196@ P. Glansdorff and I. Prigogindhermodynami-
cal Theory of Structure, Stability and Fluctuatiof&/iley, New
York, 1971,

8W.J. Boettinger and S. R. Coriell, iicience and Technology of
the Undercooled Meltedited by P.R. Sahm, H. Jones, and C. M.
Adam (Martinus Nijhoff, Dordrecht, 1986 p. 81.

SW.J. Boettinger, S.R. Coriell, and R. Trivedi, Rapid Solidifica-
tion Processing: Principles and Technologies, Bbited by R.
Mehrabian and P.A. ParristClaitor’s, Baton Rouge, 1988p.
13.

10M.J. Aziz and T. Kaplan, Acta MetalB6, 2335(1989.

1. Prigogine, Physic#Amsterdam 15, 272 (1949.

12p K. Galenko, Kristallografiy8 (6), 238 (1993 [ Crystallogr.
Rep.38, 836(1993]; Dokl. Akad. Nauk334, 707(1994 [ Phys.
Dokl. 39, 111 (1999]; Phys. Lett. A190, 292 (1994); J. Tech.
Phys.65 (11), 110(1995.

Therefore, under the “wave mechanism” of solute propagation
we imply the propagation of the solute profile ahead of the mov-
ing interface.
On some occasior{see, e.g., W. Dreyer and H. Struchtrup, Con-
tinuum Mech. Thermodyn5, 3 (1993; T. Dedeurwaerdere, J.
Casas-Vazquez, D. Jou, and G. Lebon, Phys. ReB3E498
(1996] the “wave” mechanism of solute propagation can also
be considered as “ballistic” propagation. The study of the bal-
listic regime is directly connected with the transition from the
collision-dominated diffusive regime to the collisionless ballistic
regime. In this case, one would expect to describe the transition
from short-relaxation time(collision-dominated behaviprto
long-relaxation timgballistic behavioy for solute propagation.
18p K. Galenko and D.A. Danilov, J. Cryst. Growthlg 512
(2000; Phys. Lett. A272, 207 (2000.

9The term “solute trapping” has been introduced to define the
processes of solute redistribution at the interface which are ac-
companied by(i) the increasing of chemical potentidRef. 4,
and (ii) the deviation of the partition coefficient for solute dis-
tribution towards unity from its equilibrium valuéndepen-
dently of the sign of the chemical potenji@Ref. 10. The exact
analytical solutions for planar and nonplanar configurations of
the interface show that complete solute trapping, i. e., partition-
less solidification with the initial chemical composition, pro-
ceeds in a solidifying system if the steady-state interface veloc-
ity is equal to or greater than the diffusive spéBaf. 18. These
solutions do not depend on the form of a function for solute
partitioning vs velocity, and such a phenomenon can be also
related to “solute trapping” by terminology.
20D, Josef and L. Preziosi, Rev. Mod. Phgd, 41 (1989; ibid. 62,
375(1990.

21Dp. Jou, J. Casas-Vazquez, and G. Lebon, Rep. Prog. Bfys.
1035(1999.

22C. Truesdell, Rational ThermodynamicgMcGraw-Hill, New
York, 1969.

17

144103-10



EXTENDED THERMODYNAMICAL ANALYSIS OF A . .. PHYSICAL REVIEW B 65 144103

23D, Jou, J. Casas-Vazquez, and G. LebBrtended Irreversible (Trans Tech Publications, Aedermannsdorf, 1992
Thermodynamics2nd ed.(Springer, Berlin, 1996 33M.J. Aziz, J. Appl. Phys53, 1158(1982).

24G.A. Maugin, The Thermodynamics of Nonlinear Irreversible Be- 34|.S, MiroshnichenkoQuenching From the Liquid Statéetal-
haviors (World Scientific, Singapore, 1999 lurgia, Moscow, 198p K. Eckler, R.F. Cochrane, D.M. Herlach,

#A.A. Chernov, inModern CrystallographyVol. Ill, edited by M. B. Feuerbacher, and M. Jurisch, Phys. Rev835019(1992.
Cardona, P. Fulde, and H.-J. Queissiringer Series in Solid- 355 3 Cook and P. Clancy, J. Chem. Pr88.2175(1993.

2 State Sciencevol. 36 (Springer, Berlin, 1984 Chap. 3. %J.A. Kittl, R. Reitano, M.J. Aziz, D.P. Brunco, and M.O. Thomp-

S.L. Soboley, Phys. Status Solidi¥56, 293 (1996 son, J. App| PhyS73, 3725(1993

2’p K. Galenko and D.A. Danilov, Phys. Lett. 285, 271(1997); J.
Cryst. Growth197, 992 (1999.

28D.E. Temkin, in Rost Kristalloy edited by E.l. Givargizov
(Nauka, Moscow, 1980 Vol. 13, p. 134.[English translation:
Growth of CrystalgConsultants Bureau, New York, 1984

29D, Turnbull, J. Phys. Chen®6, 609 (1962.

303 R. Coriell and D. Turnbull, Acta MetalB0, 2135(1982.

3Note that the crystal growth of many metals and metallic systemg, (1999. o . )
give evidence for a collision-limited mechanism of kinetics B.C. Eu, Kinetic Theory and lrreversible Thermodynamics

(Ref. 13. On the other hand, growth of a superlattice structure  (Wiley, New York, 1992; in Extended Thermodynamic Systems
in intermetallic systems is expected to be governed by short- €dited by S. Sieniutycz and P. Salam@aylor & Francis, New
range atomic diffusior{see, e.g., M. Barth, B. Wei, and D. York, 1992; I. Muller and T. RuggeryRational Extended Ther-
Herlach, Phys. Rev. B51, 3422 (1995]. In such a case, the modynamics(Springer, New York, 1999 D. Jou, J. Casas-
atomic attachment kinetics are controlled by diffusion processes, Vazquez, and M. Criado-Sanclithermodynamics of Fluids Un-
and the prefactoY, in Eq. (24) is given by the atomic diffusion der Flow (Springer, Berlin, 2000
speed defined by the activation energy for atomic diffusion at*'R.E. Nettleton and S.L. Sobolev, J. Non-Equilib. Thermod®.
the interface. If the growth velocity can be of the order of the 205 (1995; ibid. 21, 1 (1996; D. Y. Tzou, Macroscale to Mi-
upper limitV, of interface advance for the growth limited by the croscale Heat Transport: The Lagging Behavidaylor & Fran-
short-range atomic diffusion, then the analysis presented in Sec. cis, New York, 1997.
11l might need to be revised. 42R. Luzzi, A.R. Vasconcellos, J. Casas-Vazquez, and D. Jou,
32W. Kurz and D.J. FishefFundamentals of Solidificatior8rd ed. Physica A248 111(1998.

873.A. Kittl, M.J. Aziz, D.P. Brunco, and M.O. Thompson, Appl.
Phys. Lett.64, 2359(1994; J. Cryst. Growth148 172(1995;
M.J. Aziz, Metall. Mater. Trans. &7, 671(1996.

38J.A. Kittl, P.G. Sanders, M.J. Aziz, D.P. Brunco, and M.O. Th-
ompson, Acta Mater8, 4797 (2000.

%9D. Jou, J. Camacho, and M. Grmela, Macromolec®4s3597

144103-11



