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We report high-resolution specific-heat measurements on the quasi-two-dimensional organic superconductor
k-(BEDT-TTF),Cu(NCS),, performed by using a sensitive ac-modulation technique. The main observations
are(i) a discontinuity aff . much in excess of what is expected for a weak-coupling BCS superconductor and
(i) a quasiparticle contribution to the specific heat with an exponentially weak temperature dependence at
<T.. The latter finding is incompatible with an order parameter that vanishes at certain parts of the Fermi
surface. The data foF<T; can be well described by a strong-coupling extension of the BCS theory — the
a-model — similar to what has been recently found for #¢BEDT-TTF),CU N(CN),]Br salt [Elsinger
et al, Phys. Rev. Lett84, 6098(2000].
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The quasi-two-dimensional organic charge-transfer saltthe gap structure has been seen in all of these studies, they
x-(BEDT-TTF),X based on the electron-donor molecule come to quite different conclusions on the direction of the
bis(ethylenedithig-tetrathiafulvalene, commonly abbreviated gap zeros, see e.g., Ref. 19.
to BEDT-TTF or simply ET, are of particular interest be-  Conversely, there are numerous experimental studies
cause of their rich phase diagram including superconductivthat are consistent with a conventional BCS-type of super-
ity at relatively high temperatures next to an antiferromag-conductivity. Among them are measurements of the magnetic
netic insulating stat&? The pressure-induced transition from penetration depffi and surface impedan©eas well as the
an antiferromagnetic insulator to a superconductor Xor observation of a BCS-like mass isotope effé@nd a pro-
=CU N(CN),]Cl is one of the intriguing observations that nounced  superconductivity-induced phonon renorm-
places these materials in line with other exotic superconduclization?® The latter two experiments clearly demonstrate
ors where pairing mechanisms that are different from théhe relevance of intermolecular phonons for the pairing in-
conventional electron-phonon interaction might be of rel-teraction.
evance. In fact, the proximity of magnetic order and super- A very powerful method to probe certain aspects of the
conductivity along with the presence of spin fluctuationsgap structure — in particular, the question whether gap zeros
aboveT, as inferred from'3C-NMR measurement§® have  exist or not — is provided by specific-heat measurements. In
been taken as strong indications for a spin-fluctuationcase this integral thermodynamic technique were to find a
mediated superconductivity'® similar to that that has been low-temperature electronic quasiparticle contributi@ae
proposed first for the high; cuprates® Since the identi- that varies exponentially weakly with the temperature, the
fication of the relevant pairing interaction is a very diffi- existence of gap zeros on the Fermi surface could be defi-
cult problem, many experiments have focused on the detenitely ruled out. On the other hand, the observation
mination of the structure of the superconducting orderof a nonexponential temperature dependence does not repre-
parameter — the gap amplitudg k) — which is intimately ~ sent a clear proof of gap zeros as it may also originate in
related to the pairing mechanism. However, despite intensivextraneous contributions such as impurity phases, normal-
experimental efforts devoted to this issue, no consensus hasnducting regions, or pair breaking. In fact, an exponential
been achieved yét Arguments in favor of an unconven- low-T specific-heat behavior implying a finite energy gap
tional order parameter witd-wave symmetry for the above has been found in recent high-resolution specific-heat mea-
k-(ET),X salts have been derived from temperature-surements on th¥=CuN(CN),]Br salt?* Moreover it has
dependent investigations, notably NMR measuremehts*  been shown in this study that tieé dependence iIC re-
thermal conductivity® and one specific-heat stufyMore  ported for the same compound by Nakazawa and K&ffoda
recent attempts such as STM spectroscdpyjllmeter-wave  most likely originates in their incorrect determination of the
transmissiort® or thermal conductivit}? have focused on phonon background.
orientational-dependent investigations aiming at a direct de- Here we present high-resolution specific-heat measure-
termination of the gap anisotropy. Although a modulation ofments on the related-(ET),Cu(NCS), salt with the inten-
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FIG. 1. Specific-heat data &/T vs T of «-(ET),Cu(NCS), T X)

crystal 1. The inset shows data @&T vs T2 on a compilation of -~
several single crystals with a total mass of 25.8 mg taken at low F!G. 2. Specific-heat data &/T vs T of «x~(ET),Cu(NCS),

temperatures in a magnetic figB=10 T. The solid line is a linear  ¢ryStal 2, in the vicinity of the superconducting transition. Data
fit of the form C/T= y+,8T2 to the data belowr=2 K. have been taken in zero field and in an overcritical fild8 T.

The line represents a polynomial fit to the dai{T<8 K,B

= = = .
tion to clarify the existence or absence of gap nodes for this 8T) andC(T=10K,B=0), see text

compound.

The single crystals used were synthesized by the standatbe unknownC,, and all other extraneous contributions
electrocrystallization technique as described elsewldfer  (such as a small amount of Apiezon grease used to improve
the present investigations, two high-quality single crystalghe thermal contact to the thermometer and h¢atancel
with regular platelike shapes and masses of 0.63@nd  each other out. The experimental fact tiatis independent
0.72 mg(2) have been selected. The specific heat has beegf the magnetic field within the experimental resolutbit
measured utilizing a high-resolution ac-modulationis consistent withC,= Cppt vT %% where y is the Sommer-
technique?® The setup has been designed for investigatinge|d coefficient.
very small platelike single crystals such as the present com- Figure 2 shows the specific-heat data ®+0 and B
pounds. The sample holder consisting of a resistive ther—g T applied along the* axis, i.e., perpendicular to the
mometer(Cernox CX-1080-BG and heater is attached to a conducting planes. For technical reasons, measurements in
“He-bath cryostat equipped with an 8 T superconducting Sofields of B=8 T were limited toT<8 K. For C(T,B=8T)
lenoid. The calorimeter has been checked by measuring C,(T) at T=8K, an interpolation based on a polynomial
high-purity samples of Cu and Ag with typical masses offi; petween theC(T<8 K,B=8T) and C(T>10K,B=0)
about 3—4 mg that have absolute heat capacities comparall@ta was used, cf. the solid line in Fig. 2. The so derived
to those of the small crystals studied here. In the temperaturgc — C(0T)—C(8 T)=Co T of crystal 2 is shown in
range 2 KsT<30K, the maximum deviations from the lit- Fig. 3 together withAC expected from the BCS weak-
erature results amount t6 2%. coupling theory** The theoretical curve is based on a Som-

Figure 1 shows the specific heat@&T vs T of crystal 1 merfeld coefficienty=(23=1) mJ/(mol K) as determined
over _the entire temperaturg range inve.st.igéfe'fhe phase_- by low-temperature C(T) measurements employing a
transition anomaly atT. is clearly visible although it thermal-relaxation technique on a compilation of three single
amounts to only about five percent of the total specific hea&rystals with total mass of 25.8 mg, see inset of Fig® This
at this temperature. To determine the quantity of interest —y value is consistent witly= (25+3) mJ/(mol K) derived
the quasiparticle specific heat in the superconducting statgom an earlier specific-heat study on the same compdund
Ces — One has to get rid of the large phonon backgroundyy analyzing the data in the range 1.3R<3 K which is
Cpn- It is known for these molecular systems that, due t0gjightly above that used hef®.We note that the above
low-lying optical phonon mode; , starts to deviate froma AC(T) data are in good agreement with the results of an
Debye-like behavior already at low temperatui®® To  gqyier ac-calorimetry stud§which focused on the tempera-
avoid uncertainties related ©,,, we proceed in analyzing e range around,, i.e., 6 K<KT<12K3’
the differenceAC(T)=C(T,B=0)—C(T,B=8T). For the Figure 3 demonstrates that, similarly to what has been
field orientation used in our experimer|a*, where the recently observed for th¥=Cu N(CN),]Br salt?* AC(T)
upper critical field isB.,~6 T,** the data taken at 8T repre- deviates markedly from the weak-coupling BCS-behavior in
sent the normal-state specific h&gt. Provided thatC, is  both the jump height af; as well as the overall temperature
field independent, which has been found in previous meadependence. However, as f¥r=CuU N(CN),]Br, a much
surements for the present compotittf and also forX  better description of the data is obtained by using the semi-
=CU N(CN),]Br,?* the quantityAC has the advantage that empirical extension of the BCS formalism to strong-coupling
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FIG. 3. Specific-heat difference AC=C(0 T)—C(8T) [ ~exp(-25T/T)
=C(0 T)—C, of crystals 2 and linse). The dotted and solid thick —_ .

lines represent the BCS curves for weak and strong coupling, re- 1.0 L5 2.0 2.5 30 35
spectively. T/T
(v

superconductors, the so-callednodel® It contains a single FIG. 4. Semilogarithmic plot of the electronic contribution to
free parameter=A(0)/kgT. (kg being the Boltzmann con- the specific heat in the superconducting stat€agyT, vs T./T.
stan) that scales the BCS energy gap(T)=(a/apc9 The dotted and solid lines represent the weak- and strong-coupling
-AgeqT) with ages=1.764. As Fig. 3 clearly demonstrates, BCS behavior, respectively, see text.

the strong-coupling BCS model with=2.8+0.1 provides

an excellent description of the data over the entire temperay, s an energy gap without zeros at the Fermi surface. The
:Ere rang(te !n;/.est!gage(tjb.r The elrlrorTmarlglr:k_jmr'acc?ur;thpr same conclusions have been drawn from a similar analysis of
e uncertainties in botfy as well asT.. In the inset of Fig. (T B data onk-(ET),CU N(CN),]Br.2* As the specifi
; . : » ,]Br. pecific
3 we showA C data of crystal 1 together with the theoretical heat is an integral technique that picks up all excitations at

results of thea model. AlthoughT of crystal_ Lis shghtly the Fermi surface, the above findings are incompatible with
reduced compared to that of crystal 2, we find again an ex; : : .

. . “the existence of gap zeros as claimed by other experiments,
cellent agreement with the strong-coupling results employin

5,13,14 q;

the same parameter=2.8. The fact that both data sets in otably NMR- Since the latter results have been ob-
Fig. 3 are well described within the strong-coupling BCSta'ne.d in a finite magnetlc f'ek.j applied pqrallel o the con-
model implies (i) that C., reveals an exponentially weak ducting planes, the_dlscrepanues are pOSSI.blyl related to an as
temperature dependence at low temperatures (@hcthe ygt not _understooq mfluenc_e_ of the magnetic field. In conclu-
thermodynamic consistency of the data, i.e., entropy consefion: high-resolution specific-heat measurements on small
vation. The exponential variation &.;becomes clearer in high-quality single crystals ok—(BEDT-TTF),Cu(NCS),
Fig. 4, whereCo¢/ yT, is shown in a semilogarithmic plot as have been performed in both the normal and superconduct-
a function of T./T. Here, C.=AC+yT with y=(23 ing state. The data analysis employed, which minimizes un-
+1) md/(mol K) has been used. The solid line representscertainties associated with the unknown, large phonon back-
the same strong-coupling curve shown in Fig. 3. The figureground reveals an electronic quasiparticle contribution to the
also includes the weak-coupling BCS res(dashed ling  specific heat that varies exponentially weakly with tempera-
that predicts Coo/ yT.cexp(—a T./T) with ay=1.44 for ture atT<T,. This behavior is fully consistent with a finite-
2.5<T./T<6.2° The data ofx-(ET),Cu(NCS), presented energy gap all over the Fermi surface and rules out the exis-
here follow C.o/yT.xexp(—2.5T./T) down to the lowest tence of gap nodes. Moreover, we find an excellent
accessible temperature. The enhanced prefactor in the expagreement with the predictions of the strong-coupling variant
nent ofa,=2.5 as compared to 1.44 for the weak-couplingof the BCS model employing am parameter 2.8 that
BCS model reflects the strong-coupling character of theslightly exceeds the one found recently for the related
present superconductor. k-(ET),CU N(CN),]Br salt?*

Figure 4 demonstrates that our results are fully consistent We acknowledge fruitful discussions with C. Langham-
with an exponentially vanishinG.sat low temperatures and, mer.
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