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Screening behavior of a charged Bose-Einstein condensate including many-body effects

A. Gold
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~Received 24 October 2001; published 27 March 2002!

We study static screening effects of a charged Bose condensate in two and three dimensions. Using the
Kukkonen and Overhauser approach, we show that the screening function depends on the nature of the
screened particles. We derive the effective interaction between equally charged bosons screened by a charged
Bose condensate. We find that screening including many-body effects gives rise to attraction between equally
charged bosons.
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I. INTRODUCTION

Screening effects are essential in interacting quantum
uids and have been discussed extensively in many textbo
For electron screening, most work was done using
random-phase approximation~RPA!.1 Many-body effects de-
scribed by the local-field correction~LFC! are known to
modify the screening function, compared to the RPA, wh
the density of charged carriers become small.2 For electron
screening, due to the spin effects, one has to use two LFC
order to describe the effective electron-electron interact
for instance, within the Kukkonen-Overhauser approac3

For electrons, the Kukkonen-Overhauser approach is a t
retical frame to describe many-body effects for interact
systems.

Our study is motivated by the discovery of the Bose co
densation of neutral atoms at very low temperature. Col
tive modes have been studied.4 In systems with neutral at
oms, the interaction potential is modeled by a short-ra
interaction potential. In this paper we generalize t
Kukkonen-Overhauser approach to boson systems and
apply it here to a charged Bose condensate~i! in order to see
what is modified compared to electrons and~ii ! to point out
the implications of LFC screening on physical properties
charged boson systems. In fact, we present some intere
results concerning the screened potential in the normal s
and in the Fourier space. The present study of a long-ra
interaction potential can also be applied to a short-range
teraction potential.

For an electron gas, due to the spin, two LFCs are ne
sary to describe the effective electron-electron interaction3 If
the screening is provided by a Bose condensate, a single
is sufficient to describe the effective boson-boson interact
In the following, we generalize the Kukkonen-Overhaus
approach to boson systems and we study the effective bo
boson interaction in the real space and the inverse spac

In Sec. II we shortly describe the model. Our theoreti
results for the screened potential and the effective dielec
function in theq space are given in Sec. III. The results f
the screened potential in the normal space are presented
discussed in Sec. IV. The conclusion is found in Sec. V. T
detailed calculations of the screening functions for the B
condensate using the Kukkonen and Overhauser approa
given in the Appendix.
0163-1829/2002/65~13!/134521~4!/$20.00 65 1345
-
ks.
e

n

in
n,
.
o-

g

-
c-

e
e
we

f
ing
ce
ge
n-

s-

C
n.
r
n-

l
ic

and
e
e
is

II. MODEL

As the model, we use ad-dimensional Bose gas (d
52,3) with parabolic dispersion and boson densityNd . The
relevant length is the effective Bohr radiusa* 5«L /m* e2

with the Planck constanth/2p51. m* is the effective mass
and«L is the dielectric constant of the background. The r
evant energy scale is the effective Rydberg R*
5m* e4/2«L

2. The density parameterr s is given by r s
5@3/4pN3a* 3#1/3 for d53 and by r s5@1/pN2a* 2#1/2 for
d52.

We consider a jellium model. For a negatively charg
Bose condensate, a positive background charge en
charge neutrality. In the Fourier space, the interaction po
tial between the bosons is denoted byVd(q). The unscreened
Coulomb interaction potential between two equally charg
particles is repulsive and given byV(q)5Vd(q) with
V3(q)54pe2/«Lq2 andV2(q)52pe2/«Lq. A Bose particle
is assumed to hold a single elementary charge. By a sim
rescaling, our results could by applied to particles with d
ferent mass and charge.

III. THEORY

The screened potentialVi j ,sc(q) between particlei andj is
written in terms of the screening function« i j (q) by

Vi j ,sc~q!5
V~q!

« i j ~q!
. ~1!

i and j stand for charged test particles~t! or bosons~b!. Our
main interest in this paper is the effective boson-boson in
actionVb-b,sc(q). A test charge is, by definition, distinct from
the boson medium providing the screening. In the followi
we use the Kukkonen-Overhauser3 approach to calculate
Vi j ,sc(q). Details can be found in the Appendix.

The dielectric function« t-t(q) is given by 1/« t-t(q)5@1
2Vd(q)Gd(q)X0(q)#/$11Vd(q)@12Gd(q)#X0(q)% where
Gd(q) is the LFC function.X0(q)54Ndm* /q2 is the static
density-density response function of the free Bo
condensate.5,6 The calculation for Bose condensate screen
is given in the Appendix. In the followingG2(q) andG3(q)
denote the LFC functions ind52 and d53, respectively.
For explicit forms concerning the LFC for bosons, see R
7. The LFC we use in this paper fulfills the compressibil
sum rule.
©2002 The American Physical Society21-1
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A. GOLD PHYSICAL REVIEW B 65 134521
The dielectric function for the test-charge–test-charge
teraction is given by

1

« t-t~q!
512

1

12Gd~q!1qd11/qd
d11 , ~2!

with q3a* 5121/4/r s
3/4 and q2a* 52/r s

2/3. 1/qd is the rel-
evant length scale for screening in the Bose condensate
goes to infinity for r s→`, which corresponds to the un
screened limit. The second term on the right-hand side~rhs!
of Eq. ~2! describes screening effects. The LFCGd(q) in Eq.
~2! describes many-body effects.

The screened test-charge–boson (t-b) interaction
Vt-b,sc(q) is written asVt-b,sc(q)5V(q)/« t-b(q) where the
inverse dielectric function for test-charge–boson (t-b) inter-
action is 1/« t-b(q)51/$11Vd(q)@12Gd(q)#X0(q)%; see
Appendix. Of course, the symmetry relation« t-b(q)
5«b-t(q) is fulfilled. This leads to

1

« t-b~q!
512

12Gd~q!

12Gd~q!1qd11/qd
d11 . ~3!

The screened boson-boson (b-b) interactionVb-b,sc(q) is
given by Vb-b,sc(q)5V(q)/«b-b(q). The inverse dielectric
function for the boson-boson interaction is given
1/«b-b(q)5$11Vd(q)@12Gd(q)#Gd(q)X0(q)%/$11Vd(q)
3@12Gd(q)#X0(q)%; for details see the Appendix. Explic
itly we find for theb-b interaction

1

«b-b~q!
512

@12Gd~q!#2

12Gd~q!1qd11/qd
d11 . ~4!

We mention that the form given above for 1/«b-b(q) is simi-
lar to those of 1/« t-t(q) and 1/« t-b(q): replacing one tes
charge by one boson introduces a factor 12Gd(q) in the
second term on the rhs of Eq.~2!; see Eq.~3!. For theb-b
interaction both test charges must be replaced by bosons
a factor@12Gd(q)#2 enters the second term of the rhs of E
~4!.

For Gd(q)50 one gets the familiar RPA expressio
«RPA(q)511Vd(q)X0(q), which can be written as

«RPA~q!511qd
d11/qd11, ~5!

with VRPA(q)5V(q)/«RPA(q). For r s!1, many-body effects
can be neglected and one obtains« t-t(q)'« t-b(q)
'«RPA(q). For r s.1, however, one must specify which kin
of interaction one wants to study.« t-b(q) takes a different
form from « t-t(q) to account for the indistinguishability o
bosons.

We obtain the long wavelength limits of the inverse d
electric functions as

1/«RPA~q→0!5qd11/qd
d11}qd11, ~6a!

1/« t-t~q→0!52Gd~q→0!}2qd21, ~6b!

1/« t-b~q→0!5qd11/qd
d11}qd11, ~6c!

and
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1/«b-b~q→0!5Gd~q→0!}qd21. ~6d!

We mention thatGd(q→0) is related to the compressibilit
of the Bose condensate. In the limit of short wavelengths
large wave numbers we find 1/«RPA(q→`)51/« t-t(q→`)
51/« t-b(q→`)51/«b-b(q→`)51.

In Fig. 1 we show 1/« i j (q) ( i , j 5t,b) versusq for d53
andd52, with density parametersr s510 andr s55, respec-
tively. Many-body effects are more important ind52 than in
d53. Figure 1 illustrates that one must be careful in cho
ing the appropriate screening function, corresponding to
physical problem one considers. Even the sign of the inve
screening function can change. It strongly points to the f
that many-body effects are an essential ingredient in orde
get a ‘‘correct’’ screening function.

IV. RESULTS AND DISCUSSION

Now we present results for the screened potential in
real space. This is of importance because our physical i
ition is more adapted to this space. The screened Coulo
interaction is given by

Vi j ,sc~r !5
1

2p2r E0

`

dq qsin~qr !Vi j ,sc~q! ~7!

in d53 and by

Vi j ,sc~r !5
1

2p E
0

`

dq qJ0~qr !Vi j ,sc~q! ~8!

in d52. J0(x) is the zero-order Bessel function of the fir
kind. The above formulas allow to calculateVi j ,sc(r ) includ-
ing many-body effects. Bound state energies fort-t, t-b, and
b-b interactions are given elsewhere.8 In the following, we
concentrate on theb-b-interaction, the interaction potentia
between equally charged screened bosons.

Our results for the screened boson-boson interac
Vb-b,sc(r ) versusr are given in Fig. 2 ford53 and d52
with r s50.7. A smallr s value was chosen in order to kee
the difference withVRPA(r ) small. Again we notice that
many-body effects are larger ind52 than ind53. For small

FIG. 1. Inverse dielectric function 1/« i j (q) versus wave numbe
for d53 (r s510) andd52 (r s55). The solid~dotted! line repre-
sents the dielectric function of the boson-boson (b-b) ~RPA! inter-
action. The dashed~dashed-dotted! line represents the dielectri
function of the test-charge–test-charge interaction (t-t) @test-
charge–boson interaction (t-b).#.
1-2
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SCREENING BEHAVIOR OF A CHARGED BOSE- . . . PHYSICAL REVIEW B 65 134521
distances, the screened potential is strongly repulsive
becomes attractive at intermediate distances with a nega
minimum Vb-b,sc(r min) at r 5r min . In the following we study
in detail the behavior ofVb-b,sc(r min) and r 5r min versusr s .

The minimum of the screened potential represents
overscreening effect. Within the RPA one ge
VRPA(r min)/Ry* 520.0781/r s

3/4 in d53 and
VRPA(r min)/Ry* 520.384/r s

2/3 in d52.8 It is clear from
these results that overscreening effects are more impo
for small rs . Vb-b,sc(r min) and r min versusr s are shown in
Fig. 3 for d53 andd52. In the high density limit, as ex
pected, one findsVb-b,sc(r min)5VRPA(r min). On the other
hand, for large r s one finds uVb-b,sc(r min)u!uVRPA(r min)u
,uVt-b,sc(r min)u!uVt-t,sc(r min)u. This means that overscreenin
effects are less pronounced for theb-b-interaction than for
the RPA.

From Fig. 1 we conclude that no evident criterion for t
existence of an attractive part can be found from the scree
potential in the Fourier space. For instance, the screened
tential VRPA(q) andVb-b,sc(q) are positive for anyq. On the

FIG. 2. Screened potentialVBCb-b(r ) versus distancer for r s

50.7 in d53 and d52 for equally charged particles. The sol
~dotted! lines represent the boson-boson (b-b) ~RPA! interaction.

FIG. 3. r min and VSC(r min) versusr s for d53 and d52. The
solid ~dotted! lines represent the boson-boson (b-b) ~RPA! interac-
tion.
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other hand, in the real space, it is quite clear that the scree
potential VRPA(r ) and Vb-b,sc(r ) always has an attractive
part, see Fig. 2, and bound states exist.8

In order to better understand the origin of the oscillatio
of the screened potential, as shown in Fig. 2, we consider
case of an electron gas ind52 with a finite valley degen-
eracy gv . One finds9 X0(q<2kF)5rF and X0(q.2kF)
5rF@12(124kF

2/q2)1/2# with the density of statesrF
5gvm* /p and the electron densityN25gvkF

2/2p. For
large wave numbers, one getsX0(q@2kF)52rFkF

2/q2

54m* N2 /q2, which is just the response function of th
Bose condensate. A similar result,X0(q@2kF)
54m* N3 /q2, is obtained for the three-dimensional electr
gas. For a given density and forgv→` the Fermi wave
numberkF goes to zero. Therefore, one can argue that
oscillations in the Bose-condensate screened potential re
sent Friedel oscillations10 in the limit of gv→`.

The expression given for the static dielectric functi
1/« i j (q) can be generalized to include the frequency dep
dence 1/« i j (q,v) when replacing X0(q) by X0(q,v).
X0(q,v) is the dynamical density-density response funct
of the free charged Bose condensate, see Appendix. In
books the collective modes are defined by the equa
1/« t-t(q,v)50. In fact, the same condition holds fo
1/« t-t(q,v)50, 1/« t-b(q,v)50, and 1/«b-b(q,v)50 as
well, namely,

11Vd~q!@12Gd~q!#X0~q,v!50. ~9!

This shows that the different dielectric functions described
this paper lead to the same dispersion for the collec
modes. In fact, the genuine collective modes should be
fined by 1/«b-b(q,v)50. We note that in general the LFC
Gd(q,v) depends on the frequency. Here we considered
static LFC only.

We believed that the study of 1/« i j (q) and of the effective
boson-boson interactionVb-b,sc(r ) needed a detailed discus
sion, as presented in this paper. We would like to stress
effective interaction potentials and attraction effects betw
equally charged particles are hot topics, not only for ind
tinguishable particles11 as fermions or bosons, but also whe
particles are distinguishable as for classical particles.12,13

V. CONCLUSION

We have studied some screening functions« i j (q) of a
charged Bose gas in three and two dimensions includ
many-body effects by generalizing the Kukkone
Overhauser approach to Bose particles. The inverse diele
function 1/« i j (q) was shown to depend on the nature of t
particles~test particles or bosons!, which are screened by th
condensate. Detailed results have been presented for th
fective boson-boson interaction. It was shown that ov
screening effects are a quite natural phenomena if scree
is due to bosons. In two dimensions many-body effects
more important than in three dimensions.

APPENDIX

We apply the Kukkonen-Overhauser approach3 to a Bose
condensate. In the following we assume that the Bose c
1-3
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A. GOLD PHYSICAL REVIEW B 65 134521
densate is perturbed by an external test chargerext(q,v).
The external potential is given by Vext(q,v)
5Vd(q)rext(q,v), with V3(q)54pe2/«Lq2 and V2(q)
52pe2/«Lq. We write this equation asVext5Vdrext.

The external perturbation induces a density variationDn
in the Bose condensate, which is given in linear respo
theory asDn52X0Vb-t . X0 as the density-density respon
function. The test-charge–test-charge interaction poten
which is the total potential seen by another test charge
written asVt-t5Vd(rext1Dn). The dielectric function« t-t is
defined asVt-t5Vext/« t-t . The boson–test-charge interactio
potential Vb-t is given by Vb-t5Vt-t1Vxc,b-t with an
exchange-correlation potentialVxc,b-t caused byDn. We use
the approximation thatVxc,b-t is a local potential:Vxc,b-t5
2VdGdDn. This equation defines the LFCGd(q,v). Notice
that within the jellium model the total direct Coulomb inte
action vanishes. The dielectric function« r is defined as
Vt-b5Vext/« t-b .

From these equations it follows that 1/«b-t is expressed as
1/«b-t51/@11Vd(12Gd)X0#. With Vt-t5Vb-t2Vxc,b-t one
can show that the dielectric function 1/« t-t is given by
1/« t-t5@12VdGdX0#/« t-b5@12VdGdX0#/@11Vd(12Gd)X0#.
From these equations we finally derive

1/« t-t~q,v!5121/@12Gd~q,v!11/Vd~q!X0~q,v!#
~A1!

and

1/« t-b~q,v!512@12Gd~q,v!#/@12Gd~q,v!

11/Vd~q!X0~q,v!#. ~A2!
.

13452
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In the static case the LFCGd(q,v) and the response func
tion X0(q,v) are replaced byGd(q) andX0(q). We obtain
expressions for 1/« i j (q) shown in Fig. 1.

For the boson-boson interaction we findVb-b05Vb-t
1Vxc,b-b with Vb-t5Vt-t1Vxc,b-t , Vxc,b-t52VdGdDn,
Vxc,b-b52VdGdr, and Dn52X0Vb-b0 . r is the charge
density of the Bose condensate. Consequently, one ob
Vxc,b-t52VdGdX0Vb-b0 . From these equations one deriv
Vb-b05@12Gd#Vdr/@11Vd(12Gd)X0#.

The real boson-boson interaction potential is given
Vb-b5Vb-b01VdGdr. We define the inverse dielectric con
stant 1/«b-b by Vb-b5Vdr/«b-b and get 1/«b-b5@11Vd(1
2Gd)GdX0#/@11Vd(12Gd)X0#. This can be written as

1/«b-b~q,v!512@12Gd~q,v!#2/@12Gd~q,v!

11/Vd~q!X0~q,v!#. ~A3!

The expression of Kukkonen and Overhauser3 for the
electron-electron interactionVe-e(q,v) contains two terms,
one spin-independent termV0(q,v) @depending on
G1(q,v)# and one spin-dependent termJ(q,v) @depending
on G2(q,v)#. The expression~A3! for bosons can be ob
tained from the expression for electrons in Ref. 3@Eqs.~34!
and ~35!# by usingJ(q,v)50 andG1(q,v)5Gd(q,v).

Finally, we note thatX0(q,z) with X0(q,v)5X0(q,z
5v1 i0) is expressed as

X0~q,z!522Nd«~q!/@z22«~q!2#, ~A4!

with «(q)5q2/2m* . For z50 one getsX0(q)5X0(q,z
50)54Ndm* /q2.
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