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Screening behavior of a charged Bose-Einstein condensate including many-body effects
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We study static screening effects of a charged Bose condensate in two and three dimensions. Using the
Kukkonen and Overhauser approach, we show that the screening function depends on the nature of the
screened particles. We derive the effective interaction between equally charged bosons screened by a charged
Bose condensate. We find that screening including many-body effects gives rise to attraction between equally
charged bosons.
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I. INTRODUCTION 1. MODEL

. o . . As the model, we use a-dimensional Bose gasd(
Screening effects are essential in interacting quantum I|q-:2 3) with parabolic dispersion and boson denlty. The

uids and have been d_iscussed extensively in many te_thOOlﬁselevant length is the effective Bohr radiag =&, /m*e?

For electron screening, most work was done using ¢ the planck constart/2m=1. m* is the effective mass

random-phase approximatioRPA).” Many-body effects de- 5,4, s the dielectric constant of the background. The rel-

Scrldb_?;itr?y the Iogal-f;eldt_correctm(LFC(; tar?h kanVPv/-r\] toh evant energy scale is the effective Rydberg *Ry

modi e screening function, compared to the , When_ o« o4/, 2 ; e i

the density of charged carriers become srhabr electron :g,fﬂﬁ‘z;*'sﬁgiof %n:sgy aﬁzriyftirf 1;737N92|;S 2]15)2yfcr)?

screening, due to the spin effects, one has to use two LFCs jji= o °

order to describe the effective electron-electron interaction, e consider a jellium model. For a negatively charged

for instance, within the Kukkonen-Overhauser approach.Bose condensate, a positive background charge ensure

For electrons, the Kukkonen-Overhauser approach is a the@harge neutrality. In the Fourier space, the interaction poten-

retical frame to describe many-body effects for interactingtial between the bosons is denoted\yy(q). The unscreened

systems. Coulomb interaction potential between two equally charged
Our study is motivated by the discovery of the Bose con-particles is repulsive and given by/(q)=V4(q) with

densation of neutral atoms at very low temperature. CollecV(q)=4me?/ e q? andV,(q)=2m7e? e q. A Bose particle

tive modes have been studiédn systems with neutral at- is assumed to hold a single elementary charge. By a simple

oms, the interaction potential is modeled by a short-rangé&escaling, our results could by applied to particles with dif-

interaction potential. In this paper we generalize theferent mass and charge.

Kukkonen-Overhauser approach to boson systems and we

apply it here to a charged Bose condenggte order to see Ill. THEORY

what is modified compared to electrons &gl to point out . . -

the implications of LFC screening on physical properties of, The screened potentid; .{q) between particléand; is

: _written in terms of the screening functien; (q) by
charged boson systems. In fact, we present some interesting

results concerning the screened potential in the normal space V(q)

and in the Fourier space. The present study of a long-range Vij,sdQ)= e () 1
interaction potential can also be applied to a short-range in- .

teraction potential. i andj stand for charged test particlé&$ or bosongb). Our

For an electron gas, due to the spin, two LFCs are necegnain interest in this paper is the effective boson-boson inter-
sary to describe the effective electron-electron interactibn. actionVy,_, «{q). Atest charge is, by definition, distinct from
the screening is provided by a Bose condensate, a single LFtbe boson medium providing the screening. In the following
is sufficient to describe the effective boson-boson interactiorwve use the Kukkonen-Overhau$eapproach to calculate
In the following, we generalize the Kukkonen-OverhauserVij s{q). Details can be found in the Appendix.
approach to boson systems and we study the effective boson- The dielectric functiore,.((q) is given by 1£.(q)=[1
boson interaction in the real space and the inverse space. —V4(0)G4(q) Xo(a) 1/{1+ V4(a)[1—G4(a)]1Xo(a)} where

In Sec. Il we shortly describe the model. Our theoreticalGq4(q) is the LFC function X,(q) =4Nygm* /g2 is the static
results for the screened potential and the effective dielectridensity-density response function of the free Bose
function in theq space are given in Sec. lIl. The results for condensat&® The calculation for Bose condensate screening
the screened potential in the normal space are presented aisdgiven in the Appendix. In the followinG,(q) andG;(q)
discussed in Sec. IV. The conclusion is found in Sec. V. Thalenote the LFC functions id=2 andd=3, respectively.
detailed calculations of the screening functions for the Bosé-or explicit forms concerning the LFC for bosons, see Ref.
condensate using the Kukkonen and Overhauser approachds The LFC we use in this paper fulfills the compressibility
given in the Appendix. sum rule.
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The dielectric function for the test-charge—test-charge in-

teraction is given by

1 1
=1— ,
) 1-Gy(q)+q% gyt

with gga* =12"%4r 3 and g,a* =2/r 2. 1/q4 is the rel-

)

evant length scale for screening in the Bose condensate and

goes to infinity forrg—o, which corresponds to the un-
screened limit. The second term on the right-hand &idg
of Eqg. (2) describes screening effects. The LBg(q) in Eq.
(2) describes many-body effects.

The screened test-charge—bosort-b] interaction
Vip,sdQ) is written asVyp (0)=V(0)/erp(q) where the
inverse dielectric function for test-charge—bostibj inter-
action is 1£.(q) =11+ Vg(a)[1-Ggy(a)]Xe(a)}; see
Appendix. Of course, the symmetry relation;.,(q)
=¢ep.4(q) is fulfilled. This leads to

1, 1-Gyu
en(Q) 1-Gy(a)+q9 g™t

©)

The screened boson-bosdm-) interactionVy,_p, {Q) is
given by Vpp <{0)=V(0)/ep.p(0). The inverse dielectric

function for the boson-boson interaction is given by

Lepp(a) ={1+Vy(q)[1—Gy(a) 1G4(a) Xo(a) {1+ Vq4(q)
X[1—Gy(q)]1Xoe(q)}; for details see the Appendix. Explic-
itly we find for theb-b interaction

1 [1-Gy@P
Eb-p(0) 1-Gy(q)+qi gt

We mention that the form given above forl/,(q) is simi-
lar to those of 14,.(q) and 1k,.,(q): replacing one test
charge by one boson introduces a factor G4(q) in the
second term on the rhs of E(R); see Eq.(3). For theb-b

(4)

interaction both test charges must be replaced by bosons a
a factor[ 1— G4(q) ]? enters the second term of the rhs of Eq.

(4).

For G4(q)=0 one gets the familiar RPA expression

erpa(@) =1+V4(q)Xo(q), which can be written as

erpa(q)=1+04% g4, 5

with Vrpa(Q) =V(q)/erpa(q). Forr <1, many-body effects
can be neglected and one obtains._(q)~e.p(q)
~erpa(q). Forrg>1, however, one must specify which kind
of interaction one wants to study, ,(q) takes a different
form from &,.,(q) to account for the indistinguishability of
bosons.
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FIG. 1. Inverse dielectric function 44 (q) versus wave number
for d=3 (r¢=10) andd=2 (r;=5). The solid(dotted line repre-
sents the dielectric function of the boson-bosbrh) (RPA) inter-
action. The dasheddashed-dottedline represents the dielectric
function of the test-charge—test-charge interactidnt)( [test-
charge—boson interaction-p).].

1ep(q—0)=Gy4(q—0)xq? ™. (6d)

We mention thatG4(g—0) is related to the compressibility
of the Bose condensate. In the limit of short wavelengths or
large wave numbers we find eifpa(q— ) = 1/e;.(q— )
=1lerp(q— ) =1ley p(q—e)=1.

In Fig. 1 we show 1;;(q) (i,j=t,b) versusq for d=3
andd=2, with density parameters=10 andr =5, respec-
tively. Many-body effects are more importantdrs=2 than in
d=3. Figure 1 illustrates that one must be careful in choos-

ing the appropriate screening function, corresponding to the
physical problem one considers. Even the sign of the inverse
screening function can change. It strongly points to the fact
that many-body effects are an essential ingredient in order to

get a “correct” screening function.

IV. RESULTS AND DISCUSSION

nd Now we present results for the screened potential in the
real space. This is of importance because our physical intu-
ition is more adapted to this space. The screened Coulomb

interaction is given by

1 0
Vij,sdl)= 222 jo dq gsin(qr)Vij s{q) (7)
in d=3 and by
1 o
Vij,s&r)zzfo ddq gh(ar)Vij s{a) (8)

in d=2. Jy(x) is the zero-order Bessel function of the first

We obtain the long wavelength limits of the inverse di- Kind. The above formulas allow to calcula# {r) includ-
electric functions as ing many-body effects. Bound state energiestfort-b, and

b-b interactions are given elsewhétén the following, we

1erpa(q—0)=q4" /g8 * tocqd ™, (6a)  concentrate on the-b-interaction, the interaction potential
between equally charged screened bosons.
/e, (q—0)= —Gy(q—0)x — g1, (6b) Our results for the screened boson-boson interaction
Vyp.psdl) versusr are given in Fig. 2 ford=3 andd=2
1e,.p(q—0) =g+ Y d*Leqd*?, (60) with r¢=0.7. A smallrg value was chosen in order to keep

the difference withVgzpa(r) small. Again we notice that

and many-body effects are larger th=2 than ind= 3. For small
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02 10 other hand, in the real space, it is quite clear that the screened
potential Vgpa(r) and Vi, {r) always has an attractive
part, see Fig. 2, and bound states eXist.

In order to better understand the origin of the oscillations
of the screened potential, as shown in Fig. 2, we consider the
case of an electron gas th=2 with a finite valley degen-
eracy g,. One findS Xo(q=<2kg)=pr and Xo(q>2kg)

=pe[1—(1—4ke?/g?)Y?] with the density of stategpr

o
w

VSC(r )V Ry*

Vscr)/Ry*
e
T

o
I

1
<o

T

|

1

1
o
w

0 1 2 o 1 2 3 =g,m*/7 and the electron densitN,=g,kr2/27. For
r/a large wave numbers, one gebéy(q>2kg)=2peks?/q?
_ 2 Ch e -
FIG. 2. Screened potentidlgc,r) versus distance for rg =4m*N,/q*, which is just t_he' response function of the
=0.7 ind=3 andd=2 for equally charged particles. The solid Bose Conzde_nsate._ A similar  result,Xo(q>2k)
(dotted lines represent the boson-bosdnlf) (RPA) interaction. =4m*N3/q-, is obtained for the three-dimensional electron

gas. For a given density and fg,—>~ the Fermi wave

distances, the screened potential is strongly repulsive anfimberkg goes to zero. Therefore, one can argue that the

becomes attractive at intermediate distances with a negativScillations in the Bose-condensate screened potential repre-

MINIMUM Vp_p o{Fmir) @LF =T min. In the following we study ~ Sent Friedel osc_lllano_ﬁg in the limit of g, —. _

in detail the behavior 0¥y, (T min) @NAT =T i, VErSUST . The expression given for the static dielectric function
The minimum of the screened potential represents af/sij(d) can be generalized to include the frequency depen-

overscreening effect. Within the RPA one getsdence 1¢;(q,0) when replacingXo(q) by Xo(q,).
Virpa(f min)/RY* = —0.0781¢ 3/ in d=3 and Xo(g,w) is the dynamical density-density response function

Viea(Tmin)/RY* = —0.384f 22 in d=228 It is clear from Of the free charged Bose condensate, see Appendix. In text-

these results that overscreening effects are more importaR0ks the collective modes are defined by the equation
for small rg. Vi p sd(Fmin) @ndr i, Versusr are shown in 1/ey4(q,w)=0. In fact, the same condition holds for
Fig. 3 ford=3 andd=2. In the high density limit, as ex- /&w1(q,@)=0, 1l p(q,0)=0, and 14,,(q,w)=0 as
peCIEd, one ﬁndg/b-b,sc(rmin):VRPA(rmin)- On the other well, namely’

hand, for largerg one finds |V p sd{T min)|<|Vrpa(r min) B _

< Ve, T min) [ <Vt sd F min)- This| means tha|t (lverscreerLing 1+Va()[1=Ga(a)]Xo(q, @) =0. 9
effects are less pronounced for theb-interaction than for This shows that the different dielectric functions described in

the RPA. this paper lead to the same dispersion for the collective
From Fig. 1 we conclude that no evident criterion for themodes. In fact, the genuine collective modes should be de-

existence of an attractive part can be found from the screendthed by 1£y,,(q,)=0. We note that in general the LFC

potential in the Fourier space. For instance, the screened p&d(d,®) depends on the frequency. Here we considered the

tential Vgpa(q) andVy,., <{q) are positive for any. On the ~ static LFC only.
We believed that the study of&l{(q) and of the effective

boson-boson interactiov, , ({r) needed a detailed discus-
100" 10 M sion, as presented in this paper. We would like to stress that
N effective interaction potentials and attraction effects between
equally charged particles are hot topics, not only for indis-
tinguishable particlé$ as fermions or bosons, but also when

Ao particles are distinguishable as for classical partities.

'Zg 1. V. CONCLUSION

~ [=]

= w0 E We have studied some screening functiengq) of a

E e . . / . .

< = charged Bose gas in three and two dimensions including

>|'” —0o many-body effects by generalizing the Kukkonen-

Overhauser approach to Bose particles. The inverse dielectric
A ko function 1k;;(q) was shown to depend on the nature of the
particles(test particles or bosopswhich are screened by the

10 condensate. Detailed results have been presented for the ef-

fective boson-boson interaction. It was shown that over-
screening effects are a quite natural phenomena if screening
is due to bosons. In two dimensions many-body effects are
more important than in three dimensions.

APPENDIX
FIG. 3. rmin and Vs(r min) versusrg for d=3 andd=2. The
solid (dotted lines represent the boson-bosdnrl§) (RPA) interac- We apply the Kukkonen-Overhauser apprositha Bose
tion. condensate. In the following we assume that the Bose con-
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densate is perturbed by an external test charggq,w).
The external potential is given by Vq(J,)
=Vg(q)pex(d, ), with Vz(q)=4me’/s g° and V,(q)
=2me’le q. We write this equation a¥q,=Vgpex:-

The external perturbation induces a density variathon

PHYSICAL REVIEW B 65 134521

In the static case the LFG4(q,w) and the response func-
tion Xo(qg,w) are replaced by54(q) and Xy(q). We obtain
expressions for %f;(q) shown in Fig. 1.

For the boson-boson interaction we find, ,o=Vp.
TViepb With V=Vt Vieht, Vieht= — VaGaln,

in the Bose condensate, which is given in linear respons¥xcp-b=—VaGap, and An=—XyVypo. p is the charge
theory asAn=—X,V,.;. X, as the density-density response density of the Bose condensate. Consequently, one obtains
function. The test-charge—test-charge interaction potentialxcb-t= —VdaGaXoVp-no. From these equations one derives
which is the total potential seen by another test charge, i¥p-p0=[1—Gg]Vgp/[1+Vy(1—Gy)Xo].

written asV.=Vy(pext An). The dielectric functiorz,_; is

The real boson-boson interaction potential is given by

defined a3/,= Ve /. The boson—test-charge interaction Vp-p=Vp.0+VyGap. We define the inverse dielectric con-

potential Vy,.; is given by V, =V i+ V,cp With an
exchange-correlation potentil. ,.; caused byAn. We use
the approximation thaV,. . is a local potentialV,., =
—V4Gg4An. This equation defines the LFGy(q, ). Notice
that within the jellium model the total direct Coulomb inter-
action vanishes. The dielectric functiot} is defined as
Vio=Vext/&tp -

From these equations it follows thatl/; is expressed as
1/8b_t=1/[1+Vd(1—Gd)Xo]. With Vt-t:Vb-t_VXC,b-t one
can show that the dielectric function &l is given by
Ve =[1-VyGyXol/&.5=[1-VyGgXol/[ 1+V4(1-Gg) Xo].
From these equations we finally derive

Ve (q,0)=1-111-Gy(q,w) +1N4(q)Xe(q, )]
(A1)

and
Ve p(q,0)=1-[1-Gy(q,0)]/[1-Gy(q,»)

+1INVg(4)Xo(Q, ) ]. (A2)

stant 1éb-b by Vb_b=Vdp/sb_b and get '_Iéb_b=[l+Vd(1
—Gq)GgXpl/[1+Vy(1—Gq)Xe]. This can be written as

Uepp(0,@)=1-[1-Gy(q,»)]%/[1-G4(q, )
+1INV4(Q) Xo(q, ) ].

The expression of Kukkonen and Overhadsfr the
electron-electron interactioW.¢(q,w) contains two terms,
one spin-independent termVy(q,w) [depending on
G, (q,w)] and one spin-dependent tethq, w) [depending
on G_(q,w)]. The expressiofA3) for bosons can be ob-
tained from the expression for electrons in RefEgs. (34)
and(35)] by usingJ(q,w)=0 andG . (q,w)=G4(q,).

Finally, we note thatXy(q,z) with Xq(q,w)=Xy(q,z
=w+i0) is expressed as

Xo(a,2) = —2Nge(a)/[ 2~ &(a)?],

with e(q)=q%2m*. For z=0 one getsXq(q)=Xo(q,z
=0)=4Nym*/qg>.

(A3)
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