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Rotationally invariant approximation for the two-dimensional t-J model
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Using the description in terms of the Hubbard operators hole and spin Green’s functions of the two-
dimensionalt-J model are calculated in an approximation that retains the rotation symmetry of the spin
susceptibility in the paramagnetic state and has no predefined magnetic ordering. In this approximation,
Green’s functions are represented by continued fractions that are interrupted with the help of the decoupling
corrected by the constraint of zero site magnetization in the paramagnetic state. Results obtained in this
approach for an undoped 32332 lattice~the Heisenberg model! and for one hole in a 434 lattice are in good
agreement with Monte Carlo and exact-diagonalization data, respectively. In the limit of heavy doping the hole
spectrum described by the obtained formulas acquires features of the spectrum of weakly correlated excita-
tions.
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I. INTRODUCTION

The two-dimensionalt-J model is one of the most fre
quently used models for the description of CuO2 planes of
perovskite high-Tc superconductors~for a review, see Ref
1!. Together with the numerical methods—the exact dia
nalization of small clusters,2,3 Monte Carlo simulations4 and
the density-matrix renormalization-group technique5—a
number of analytical methods, such as the mean-fi
slave-boson6 and spin-wave approximations, were used
the investigation of the model. The latter method that
based on the spin-wave description of the magnetic exc
tions was shown to be remarkably accurate in the cas
small hole concentrations and zero temperature.7 This ap-
proach was extended to the ranges of moderate hole con
trations and finite temperatures,8 in particular with the use of
the spin-wave approximation modified9 for short-range
order.10 The positions, symmetry and size of the pseudog
in the hole and magnon spectra, values of the magnetic
ceptibility, and spin-lattice relaxation rates obtained in t
approach are close to those observed in photoemission,
lattice relaxation, and neutron-scattering experiments on
prate perovskites.10,11

The apparent shortcomings of the spin-wave approxim
tion of the t-J model are the violation of the rotation sym
metry of the spin susceptibility components in the param
netic state, the predefined magnetic ordering in the Ne´el state
that serves as the reference state of the approximation,
the neglect of the kinematic interaction. In this paper we
to overcome these shortcomings by using the descriptio
terms of Hubbard operators. Green’s functions construc
from these operators are calculated with the use of the c
tinued fraction representations following from the Mori pr
jection procedure.12 To interrupt these otherwise infinite con
tinued fractions we use decouplings of the higher-or
Green’s functions arising in later stages of this calculat
0163-1829/2002/65~13!/134520~8!/$20.00 65 1345
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procedure. Following the idea of Ref. 13, a correction p
rameter is introduced in these decouplings to fulfill the co
straint of zero site magnetization in the paramagnetic st
In this state the obtained components of the spin Gree
functions are rotationally invariant. The self-energy equ
tions are similar in their form to the equations derived in t
modified spin-wave approximation.10 In the case of heavy
doping the pole in the hole Green’s function corresponds
weakly correlated nearest-neighbor band. To check the va
ity of the obtained equations in the opposite case of li
doping, we have performed calculations for conditions t
allow comparison with exact-diagonalization and Mon
Carlo results. We found good agreement of our results w
the results of Refs. 2 and 14 for spin correlations in an
doped 32332 lattice and for the hole spectral function of
434 lattice with one hole. To gain a notion of the spect
function in larger lattices it was calculated in a 20320 clus-
ter.

II. DESCRIPTION OF THE MODEL

The Hamiltonian of the two-dimensionalt-J model reads

H5 (
nms

tnmans
† ams1

1

2 (
nm

Jnm~sn
zsm

z 1sn
11sm

21!1m(
n

Xn ,

~1!

whereans5uns&^n0u is the hole annihilation operator,n and
m label sites of the square lattice,s561 is the spin projec-
tion, anduns& and un0& are site states corresponding to t
absence and presence of a hole on the site. If Hamiltonian~1!
is obtained from the extended Hubbard Hamiltonian,15 these
states are linear combinations of the products of the res
tive 3dx22y2 copper and 2ps oxygen orbitals.10 We take into
account nearest-neighbor interactions only,tnm5t(adn,m1a
and Jnm5J(adn,m1a , where t and J are hopping and ex-
©2002 The American Physical Society20-1
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A. SHERMAN AND M. SCHREIBER PHYSICAL REVIEW B65 134520
change constants and the four vectorsa connect nearest
neighbor sites. The spin-1

2 operators can be written in th
Dirac notations assn

z5 1
2 (ssuns&^nsu and sn

s5uns&^n,
2su. The chemical potentialm is included into Hamiltonian
~1! to control the hole concentration.Xn5un0&^n0u. The
term 2J/8(naXnXn1a is frequently included into Hamil-
tonian~1!. For problems considered below this term leads
an unessential renormalization of the chemical potential
therefore it is omitted. The operatorsans , sn

z , sn
s , andXn are

the Hubbard operators in the space of states of thet-J model.
The statesuns& and un0& satisfy the following complete-

ness condition:

(
s

uns&^nsu1un0&^n0u51. ~2!

Using this condition and the above expression forsn
z the

constraint of zero site magnetization, which has to be
filled in the paramagnetic state, can be reduced to the fo

^sn
z&5

1

2
~12x!2^sn

21sn
11&50, ~3!

where angular brackets denote averaging over the grand
nonical ensemble and the hole concentrationx5^Xn& in the
homogeneous state. It should be noticed that in accord
the Mermin-Wagner theorem16 the long-range antiferromag
netic ordering is destroyed for any nonzero temperature
the two-dimensional system. Therefore, the fulfillment
constraint~3! has to be ensured for the considered states

The above operators satisfy the following commutat
~anticommutation! relations:

@sn
21 ,sm

11#522sn
zdnm , @sn

s ,sm
z #52ssn

sdnm ,

@ans ,sm
z #52

1

2
sansdnm ,

@ans ,sm
s8#52an,2sdnmds,2s8 ,

~4!
$ans ,am,s8

† %5~12sn
2ssn

s!dnmdss81sn
sdnmds,2s8 ,

$ans ,ams8%50,

@sn
21 ,Xm#50, @sn

z ,Xm#50, @ans ,Xm#5ansdnm .

Notice that the hole creation and annihilation operators
not satisfy the fermion anticommutation relations. This is
consequence of the exclusion of doubly occupied site st
due to the strong on-site repulsion@see Eq.~2!#.

III. CONTINUED FRACTION REPRESENTATION
OF GREEN’S FUNCTIONS

To investigate the energy spectrum and magnetic pro
ties, we shall calculate the hole and spin retarded Gre
functions

G~kt !5^^aksuaks
† && t52 iu~ t !^$aks~ t !,aks

† %&,
13452
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D~kt !5^^sk
zus2k

z && t52 iu~ t !^@sk
z~ t !,s2k

z #&, ~5!

where

aks5N21/2(nexp~2 ikn!ans ,

sk
z5N21/2(nexp~2 ikn!sn

z ,

N is the number of sites, andaks(t)5exp(iHt)aksexp
(2iHt). In the considered statesG(kt) does not depend on
s.

To calculate the above Green’s functions, we use th
continued fraction representations that can be obtained u
the Mori projection operator technique.12 Let us consider the
inner productuA•B†u of the operatorsA andB that is defined
in such a manner that the following conditions are fulfille
i! u(aA1bB)•C†u5auA•C†u1buB•C†u, a and b are arbi-
trary numbers;~ii ! u@A,H#•B†u5uA•@H,B†#u; ~iii ! uA•B†u
5uB•A†u* . We notice that the inner products defined
^$A,B†%&, ^@A,B†#&, and

~A,B†!5 i E
0

`

dt e2ht^@A~ t !,B†#&, h→10 ~6!

satisfy the above properties. Let us divide the result of
commutation of some operatorA0 with the Hamiltonian into
longitudinal and transversal parts with respect toA0. The
transversal partA1 is determined as an operator the inn
product of which withA0 is equal to zero. Thus,

@A0 ,H#5E0A01A1 , ~7!

whereE0 is determined from the conditionuA1•A0
†u50,

E05u@A0 ,H#•A0
†u uA0•A0

†u21.

Given A0 and E0, the operatorA1 may be found from Eq.
~7!. The commutator ofA1 with the Hamiltonian will contain
already three terms,

@A1 ,H#5E1A11A21F0A0 .

The coefficientsE1 and F0 and the new operatorA2 are
determined with the use of the two orthogonality conditio
uA2•Ai

†u50, i 50,1,

E15u@A1 ,H#•A1
†u uA1•A1

†u21,

F05u@A1 ,H#•A0
†u uA0•A0

†u215uA1•A1
†u uA0•A0

†u21,

where we have used the properties of the inner product. T
procedure can be continued. In each step of it the coefficie
and a new operator are determined by the conditions of
orthogonality of this operator to all operators obtained p
viously. Using the properties of the inner product it can
shown that only thenth, (n11)th, and (n21)th operators
appear in the commutator of thenth operator with the
Hamiltonian,17

@An ,H#5EnAn1An111Fn21An21 ,

En5u@An ,H#•An
†u uAn•An

†u21, ~8!
0-2
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ROTATIONALLY INVARIANT APPROXIMATION FO R . . . PHYSICAL REVIEW B 65 134520
Fn215uAn•An
†u uAn21•An21

† u21.

As can be seen, algorithm~8! is the modification of the
Lanczos orthogonalization procedure that is well known
computational mathematics~see, e.g., Ref. 18 and referenc
therein! and physics.19 In Eq. ~8!, operatorsAn play the role
of mutually orthogonal wave functions or vectors in t
usual Lanczos procedure.

Following Mori,12 we introduce the projection operato
Pn that projects an arbitrary operatorQ on the operatorAn ,

PnQ5uQ•An
†u uAn•An

†u21An ,

and determine the time evolution of the operatorAn by the
equation

i
d

dt
Ant5 )

k50

n21

~12Pk!@Ant ,H#, An,t505An , ~9!

Due to the projection operators in Eq.~9! this time depen-
dence of the operator differs from the conventional one
cept the dependence ofA0. To underline this difference we
use the subscript notation for the time dependence in Eq.~9!.
Notice also that in accord with this equationAnt remains
orthogonal to operatorsAi , i ,n for t.0. Let us divideAnt
into two parts,

Ant5Rn~ t !An1Ant8 , Rn~ t !5uAnt•An
†uuAn•An

†u21.

From this definition it follows thatAnt8 5(12Pn)Ant . Equa-
tions ~8! and ~9! determine the time evolution of this oper
tor,

i
d

dt
Ant8 5Rn~ t !An111)

k50

n

~12Pk!@Ant8 ,H#.

Solving this equation we find

Ant5Rn~ t !An2 i E
0

t

dtRn~t!An11,t2t .

This result allows us to obtain the following equation for t
functionsRn(t):

i
d

dt
Rn~ t !5EnRn~ t !2 iF nE

0

t

dtRn~t!Rn11~ t2t!.

After the Laplace transformation Rn(v)52 i *0
`dt

3exp(ivt)Rn(t) this equation reads

Rn~v!5@v2En2FnRn11~v!#21. ~10!

If the inner product is defined as the average of the co
mutator ~anticommutator! of operators, the functionR̃0(v)
5R0(v)uA0•A0

†u coincides with the Fourier transform
^^A0uA0

†&&v5*2`
` dt exp(ivt)^^A0uA0

†&&t , of the commutator
~anticommutator! retarded Green’s functions of the type
Eq. ~5!. If the inner product is defined by Eq.~6!, the func-
tion R̃0(v) coincides with Kubo’s relaxation function
13452
-
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~~A0uA0
†!!v5E

2`

`

dt eivt~~A0uA0
†!! t ,

~11!

~~A0uA0
†!! t5u~ t !E

t

`

dt8^@A0~ t8!,A0
†#&.

From Eq.~10! for all these functions we obtain the fo
lowing continued fraction representation:

R̃0~v!5
uA0•A0

†u

v2E02
F0

v2E12
F1

�

. ~12!

Thus, the recursive procedure~8! in course of which the
coefficientsEn and Fn of the continued fraction~12! are
determined allows us to calculate Green’s or Kubo’s rel
ation functions.

IV. THE SPIN GREEN’S FUNCTION

The direct application of Eqs.~8! and ~12! to the spin
Green’s functionD(kv), ~5! meets with difficulties becaus
the inner product̂ @sk

z ,s2k
z #& in the numerator of the contin

ued fraction~12! is equal to zero. To overcome this difficult
we consider Kubo’s relaxation function ((sk

zus2k
z )) defined in

Eq. ~11!. In this case the inner product~6! in the numerator
of the respective continued fraction is nonzero. After calc
lating the relaxation function the spin Green’s function c
be obtained from the relation

v~~sk
zus2k

z !!5^^sk
zus2k

z &&1~sk
z ,s2k

z !, ~13!

where we dropped the subscriptv in the relaxation and
Green’s functions.

We postpone the calculation of the numerator (sk
z ,s2k

z ) of
the continued fraction and consider its other coefficien
From definition ~6! we find that E0(sk

z ,s2k
z )5( i ṡk

z ,s2k
z )

5^@sk
z ,s2k

z #&50 and thereforeA1 is the Fourier transform of
the operator

i ṡl
z5

1

2 (
mn

Jmn~d ln2d lm!sn
11sm

21

1
1

2 (
mns

tmns~d lm2d ln!ans
† ams

5A l
s1A l

h . ~14!

Here the dot over the operator indicates the time derivat
As can be seen,A1 contains contributions from spin and ho
componentsA s and A h. Using this result in calculating
R1(v), which is the Laplace transform of the functio
(A1t ,A1

†), we neglect the terms (A 1t
h ,A s†), and (A 1t

s ,A h†).
This approximation is motivated by vanishing values
these correlations obtained with the decoupling. Therefo

~A1t ,A1
†!'~A h~ t !,A h†!1~A 1t

s ,A s†!, ~15!
0-3
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A. SHERMAN AND M. SCHREIBER PHYSICAL REVIEW B65 134520
where we have additionally neglected the difference betw
A 1t

h and A h(t) ~again due to zero values of the respect
decoupling!. In accord with our estimation the influence
terms connected with holes in (sk

z ,s2k
z ) and ((A k

suA k
s†)) on

the spin Green’s function is small in comparison with t
quantity ((A k

huA k
h†)) even for moderate hole concentration

Therefore, in the forthcoming discussion we neglect th
terms in (sk

z ,s2k
z ) and ((A k

suA k
s†)) and consider the time

evolution of operators in these quantities as determi
solely by the Heisenberg part of Hamiltonian~1!. In this
approximation the numerator of the continued fraction r
resenting ((A k

suA k
s†)) reads

~A k
s ,A k

s†!5~ i ṡk
z ,2 i ṡ2k

z !5^@ i ṡk
z ,s2k

z #&54JC1~gk21!,
~16!

where gk5 1
4 (aexp(ika), Cp51/N(kgk

pCk , and Ck

5(nexp@ik(n2m)#^sn
11sm

21&. For E1 we get E1( i ṡk
z ,

2 i ṡ2k
z )5( i 2s̈k

z ,2 i ṡ2k
z )5^@ i ṡk

z ,2 i ṡ2k
z #&50. Thus, break-

ing off the continued fraction on this step we obtain fro
Eqs.~12!, ~13!, ~15!, and~16!

D~kv!5
v~~A k

huA k
h†!!14JC1~gk21!

v222v P~kv!2vk
2

, ~17!

where the polarization operator and the excitation freque
are given by

P~kv!5
1

2
~~A k

huA k
h†!!~sk

z ,s2k
z !21,

~18!
vk

254JC1~gk21!~sk
z ,s2k

z !21.

To calculate (sk
z ,s2k

z ) in the above formulas, we notic

that in the considered caseA25 i 2s̈k
z2( i ṡk

z ,2 i ṡ2k
z )

3(sk
z ,s2k

z )21sk
z and

~A2 ,A2
†!5^@ i 2s̈k

z ,2 i ṡ2k
z #&2

16J2C1
2~gk21!2

~sk
z ,s2k

z !
50.

~19!

We set the above result equal to zero in conformity with
approximation made above in the continued fraction, wh
we dropped all terms containingA2 and operators of highe
orders. Equation~19! can be used for calculating (sk

z ,s2k
z ) if

the value of̂ @ i 2s̈k
z ,2 i ṡ2k

z #& is known. An analogous equa
tion was obtained in Ref. 20 with another method.

We calculatê @ i 2s̈k
z ,2 i ṡ2k

z #& in Eq. ~19! by decoupling
terms in the second derivative ofsz,

i s̈l
z5

1

2 (
mn

@JlmJln~2sl
zsn

11sm
212sn

zsl
11sm

212sn
11sm

z sl
21!

1JlmJmn~sn
zsm

11sl
212sm

z sn
11sl

211sl
11sn

zsm
21

2sl
11sm

z sn
21!#. ~20!

In the decoupling we approximatesl
zsn

11sm
21 by the value

@aCnm(12dnm)1 1
2 dnm#sl

z where Cnm5^sn
11sm

21&. In the
13452
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last expression we took into account that in accordance w
Eq. ~3! Cnn5 1

2 for x50 @let us remind that we neglect th
influence of holes on the value of (sk

z ,s2k
z )#. Following Ref.

13 the parametera is introduced to fulfill the constraint o
zero site magnetization~3! in the paramagnetic state. Befor
carrying out the decoupling it has to be taken into acco
that terms of Eq.~20! in which the site index of thesz op-
erator coincides with the site index ofs11 or s21 operators
cancel each other. To verify this statement it is necessar
take into consideration that in these terms the operatorsn

z

can be substituted by2 1
2 , since for the spin-12 case sn

z

52 1
2 1sn

11sn
21 andsn

11sn
1150. To retain this exact cancel

lation it has to be taken into account before the decoupli
As the result we find

i 2s̈l
z5a(

mn
@JlmJln~Cmnsl

z2Clmsn
z!

1JlnJmn~Clnsm
z 2Clmsn

z!#

1(
n

Jln
2 @~12a!Cnn~sl

z2sn
z!1aCln~sn

z2sl
z!#,

and after the Fourier transformation

i 2s̈k
z5vk

2sk
z ,

where

vk
25

^@ i 2s̈k
z ,2 i ṡ2k

z #&
4JC1~gk21!

516J2auC1u~12gk!~D111gk!,

~21!

D5
C2

uC1u
1

12a

8auC1u
2

3

4
.

Combining Eqs.~16!, ~18!, and~21! we find

~sk
z ,s2k

z !2154Ja~D111gk!. ~22!

In the absence of holes Eqs.~17! and~21! are close to the
equations for the spin Green’s function and the excitat
frequency obtained for the two-dimensional Heisenberg
tiferromagnet in Ref. 21 and 22 with the use of the equatio
of motion for Green’s functions and Tserkovnikov
formalism,20 respectively. In these works, somewhat mo
complicated decouplings were used. These decouplings
tain several decoupling parameters of the typea that depend
on the site indices in the decoupled average. These additi
parameters allow one to obtain somewhat better agreem
with numeric simulations. However, to fix the additional p
rameters exterior data from numerical simulations or
spin-wave theory have to be engaged and the theory ce
to be closed.

As can be shown by the analogous calculation of
transversal spin Green’s function^^sk

21usk
11&&, in the para-

magnetic state

^^sk
21usk

11&&52^^sk
zus2k

z &&. ~23!

Thus, the rotation symmetry of the components of the m
netic susceptibility is retained in this approach. This fact c
0-4
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be used for the calculation of parametersC1 , C2, anda in
the above formulas. From Eq.~17! simplified for the absence
of holes, Eq.~23!, and the relation

^sk
z~ t !s2k

z &5E
2`

`

dve2 ivtebvnB~v!B~kv!, ~24!

we find

Ck54JuC1u~12gk!vk
21cothS 1

2
bvkD , ~25!

where B(kE)52p21Im D(kE) is the spin spectral func
tion, nB(E)5@exp(bE)21#21 and b5T21 is the inverse
temperature. Substituting this equation in the definitions
C1 , C2 and in constraint~3!, we obtain three equations fo
the three unknown parametersC1 , C2, anda. This problem
can be reduced to the optimization problem and solved
the steepest descent method.

To check the validity of the approximations made abo
we used the obtained formulas for calculating spin corre
tions in an undoped antiferromagnet. In Fig. 1 our resu
obtained in a 32332 lattice for three temperatures are co
pared with data of Monte Carlo simulations performed
the same lattice in Ref. 14. As can be seen, the agreeme
good. However, it should be noted that at elevated temp
tures in our approximation the spin correlations are syst
atically overestimated in comparison with the Monte Ca
results.

As follows from Eq.~21!, for low temperatures and larg
crystals the spectrum of elementary spin excitations is c
to the spectrum of spin waves.23 For an infinite crystal and
T50, we founda51.704 94 andC252C150.206 734. In
this case in Eq.~21! the parameterD50 and the excitation
frequency vanishes in the two points of the Brillouin zon
k5(0,0) and (p,p) ~here and below the intersite distance
taken as the unit of length!. For any nonzero temperatureD
becomes finite, which generates a gap at the (p,p) point. It
can be shown9,21 that the gap leads to the exponential dec
of spin correlations with distance and the respective corr
tion length is defined by the magnitude of the gap. Thus
agreement with the Mermin-Wagner theorem16 for a nonzero

FIG. 1. The spin correlationsC( l )54u^sl
zs0

z&u, l5( l ,0) calcu-
lated for T/J50.5, 0.75, and 1 in this work~open circles! and by
the Monte Carlo method in Ref. 14~filled circles!. In both calcula-
tions a 32332 lattice without holes was used.
13452
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temperature the long-range antiferromagnetic order is
stroyed in the considered two-dimensional system.

Now let us calculate the polarization operatorP(kv),
~18!. Using the decoupling that is equivalent to the Bo
approximation8 and the relations

^aks~ t !aks
† &5E

2`

`

dve2 ivtebvnF~v!A~kv!,

~26!

^aks
† aks~ t !&5E

2`

`

dve2 ivtnF~v!A~kv!,

we find

Im P~kv!5
p

v (
k8

f k8k
2 E

2`

`

dv8@nF~v8!2nF~v82v!#

3A~k82k,v82v!A~k8v8!,
~27!

ReP~kv!5PE
2`

` dv8

p

Im P~kv8!

v82v
,

where A(kv)52p21Im G(kv) is the hole spectra
function, nF(v)5@exp(bv)11#21, f k8k52tN21/2(gk8
2gk82k)(sk

z ,s2k
z )21/2, and P indicates Cauchy’s principa

value of the integral. We notice that Eq.~27! is close in its
form to the polarization operator obtained for thet-J model
in the spin-wave approximation.8,10 We cannot directly com-
pare the interaction constants, because the definition of
spin Green’s function in this paper differs from the magn
Green’s functions in Refs. 8 and 10. However, we notice t
the spin-wave interaction constant and the respective qu
tity f k8k

2 vk
21 in Eq. ~27! are of the same order of magnitud

and tend to zero linearly withuku when uku→0. The spin-
wave constant behaves analogously near the (p,p) point,
while the quantityf k8k

2 vk
21 does so only in the case of a

infinite crystal and zero temperature.

V. THE HOLE GREEN’S FUNCTION

Now let us consider the hole Green’s function. To use
continued fraction representation~12! for the anticommuta-
tor Green’s functionG(kt) ~5!, the average of the anticom
mutator of operators has to be taken as the definition of
inner product in the recursive procedure~8!. From the com-
mutation relations~4!, we find for the numerator of the con
tinued fraction^$aks ,aks

† %&5 1
2 (11x)5f and for the time

derivative

i ȧ ls5(
m

t lm@~12sl
2ssl

s!sm
s 1sl

s#am,2s

2
1

2 (
m

Jlm~ssm
z sl

s1sm
s !al,2s1mals . ~28!

With these results we get

E05^$ i ȧks ,aks
† %&^$aks ,aks

† %&215«k1m8,
0-5
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«k5~4tf16tC1f2123JF1f21!gk , ~29!

m85m1~4tF123JC1!f21,

whereF15N21(kgkFk andFk5(nexp@ik(n2m)#^an
†am&.

The estimation oft andJ based on the parameters of th
extended Hubbard model24 givesJ/t lying in the range 0.2–
0.3. For low hole concentrations we can approximate
parameterC1 by its value in an undoped lattice. ForT
50.02t in a 434 lattice C1520.2119, while in a 20320
latticeC1520.2068. With these parameters the unrenorm
ized hole dispersion can be estimated as«k'20.27tgk in
the former case and20.47tgk in the latter case. Thus, th
first approximation of the recursive procedure describe
band that is much narrower than the two-dimensio
nearest-neighbor band in the absence of correlations 4tgk .
The reason for this is the antiferromagnetic alignment
spins when the hole movement is accompanied by the
flipping. With increasing the hole concentrationC1→0 and
the unrenormalized dispersion tends to its uncorrela
value.

The hole Green’s function reads

G~kv!5
f

v2«k2m82S~kv!
,

S~kv!5f21^^A1uA1
†&&, A15 i ȧks2~«k1m8!aks ,

~30!

where the difference betweenA1t andA1(t) was neglected.
Due to the mentioned smallness of«k for low hole concen-
trations and ofJ in comparison with t, only the term
N21/2( lmexp(2ikl ) t lm@(12sl

2ssl
s)sm

s 1sl
s#am,2s may be

retained inA1 in the calculation of̂ ^A1uA1
†&&. The terms in

A1 that are linear in spin operators produce the followi
contribution to the self-energy:

32t2

Nf (
k8

E E
2`

`

dv1dv2

nF~2v1!1nB~v2!

v2v12v21 ih

3~gk1gk2k8!
2A~k2k8,v1!B~k8,v2!.

Up to the prefactor this expression coincides with the resp
tive term in the hole self-energy calculated in the spin-wa
approximation.10

The term with three-spin operators inA1 produces terms
in the self-energy that contain two- and three-spin Gree
functions. To calculate these functions one would have
solve the respective self-energy equations that could be
rived in the same way as the equations in the preceding
tion. However, such program would essentially complic
the calculation procedure. One of the possible ways to o
come this difficulty is to use the decoupling in the sam
manner as we applied it in the preceding section, this tim
the term with three-spin operators inA1. However, the com-
parison with the exact-diagonalization data shows that
approximation does not give satisfactory results. Anot
way of simplification is suggested by the above observa
that the terms with the one-spin Green’s function in se
energy ~30! are similar to the terms obtained in the spi
13452
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wave approximation. This gives grounds to suppose that
correcting terms containing two- and three-spin Gree
functions can be approximated by the respective terms of
spin-wave approximation modified for short-range antifer
magnetic order. Using the results of Refs. 10 and 25,
Eqs.~24! and ~26! we find

Im S~kv!5
16pt2

Nf (
k8

E
2`

`

dv8@nB~2v8!1nF~v2v8!#

3A 11gk8

D112gk8
F ~gk2k81gk!A4 12gk8

D111gk8

1sgn~v8!~gk2k82gk!A4 11gk8

D112gk8
G 2

3A~k2k8,v2v8!B~k8v8!,
~31!

ReS~kv!5PE
2`

` dv8

p

Im S~kv8!

v82v
.

For low hole concentrations the spin spectral function
the above equation can be substituted by its value in
absence of holes,

B~kv!5
1

2
AuC1u

a
A 12gk

D111gk
@d~v2vk!2d~v1vk!#.

~32!

With this substitution and for low temperatures Eq.~31! ac-
quires the form

Im S~kv!52
8pt2

Nf
AuC1u

a (
k8

3H F ~gk2k81gk!A4 12gk8

D111gk8

1~gk2k82gk!A4 11gk8

D112gk8
G 2

3@11nB~vk8!#A~k2k8,v2vk8!

1F ~gk2k81gk!A4 12gk8

D111gk8

2~gk2k82gk!

3A4 11gk8

D112gk8
G 2

nB~vk8!A~kÀk8,v1vk8!J.

~33!

Excluding the numeric prefactor and some other small
tails this formula is similar to the respective formula of th
spin-wave approximation.10

To check the validity of the approximations made, w
compare the hole spectral function calculated using Eqs.~30!
and ~33! for the case of one hole in a 434 lattice with the
available exact-diagonalization data obtained in this syste2
0-6
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The left panels in Fig. 2 demonstrate the results of the ex
diagonalization, the right panels present our calculatio
Both series of calculations were performed for the same
of parameters:J/t50.2, t,0, T50 and h50.1t ( ih was
added to the frequencyv in the denominator of Green’
function to visualized functions; in our calculations param
etersC1 anda were estimated for low but finite temperatu
T50.02t). As can be seen from the figure, the spectral fu
tions obtained in our calculations are in good agreement w
the functions found in the exact diagonalization. This agr
ment is somewhat better than that achieved in the spin-w
approximation,7 because in contrast to this approximati
our approach takes into account the difference between
spectral functions for wave vectors separated by (p,p) @cf.
the spectra fork5(0,0) and (p,p)#. As can be seen, in ou
approximation the binding energy of the quasiparticle pea
underestimated in comparison with the exact-diagonaliza
result. This may be connected with the fact that the con
ered hole concentrationx51/16 is not low enough and ca
lead to some deviations from the used spin spectral func
~32!.

An example of the one-hole zero-temperature spectra
larger lattice is given in Fig. 3. We notice that the shapes
the spectra cease to change perceptibly with increasing

FIG. 2. The hole spectral functionA(kv) for the case of one
hole in a 434 lattice and parametersJ50.2t, h50.1t, andT50.
Left: exact-diagonalization data from Ref. 2, right: our calculatio
The respective wave vectors are indicated in the upper right cor
of the panels.
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FIG. 3. The hole spectral functionA(kv) for the case of one
hole in a 20320 lattice and parametersJ50.2t, h50.01t, andT
50. Wave vectors indicated near the curves are selected along
symmetry lines (0,0)2(0,p) in ~a! and (0,0)2(p,p) in ~b!.
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tice size starting from a 16316 lattice. Excluding the men
tioned difference in spectra with wave vectors spaced
(p,p) they are close to those obtained in the spin-wa
approximation.7

With the use of the Hubbard operators, equations sim
to Eq. ~31! were obtained also in Ref. 26 for the two
dimensionalt-J model and in Ref. 27 for a somewhat diffe
ent model of the CuO2 plane. The interaction constant d
rived in the former work differs from the constant in E
~31!. The constant of Ref. 26 is not applicable for low ho
concentration: the spectral functions calculated with it dif
essentially from those obtained by the exact diagonalizat2

and in the spin-wave approximation.7,8 However, this con-
stant can be applicable in the region of heavy doping.

VI. CONCLUDING REMARKS

Equation ~31! was obtained under the supposition of
small hole concentration. We have verified that in this lim
Eq. ~31! in combination with Eq.~30! describes the hole
spectral function in good agreement with the exa
diagonalization data. On the other hand, with increasing h
ys
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concentration spin correlations are weakened, the self-en
becomes small and elementary excitations described by
two equations tend to the weakly correlated nearest-neigh
band with the dispersion«k , Eq. ~29!, whereC1→0. Thus,
the obtained equations give the correct behavior of the h
spectrum in the two limiting cases. Besides, it was dem
strated that Eqs.~17! and ~21! with the parameters deter
mined self-consistently give a quantitatively correct descr
tion of the spin subsystem in the undoped case. Equation
the spin-wave approximation, which are similar to Eqs.~17!,
~21!, and~27!, describe the rapid weakening of spin corre
tions with hole doping,10 as it is necessary for the above
discussed transformation of the hole spectrum from light-
heavy doping. This gives ground to suppose that the obta
equations can provide a qualitatively correct interpolat
between these two limiting cases.
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