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Rotationally invariant approximation for the two-dimensional t-J model
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Using the description in terms of the Hubbard operators hole and spin Green’s functions of the two-
dimensionalt-J model are calculated in an approximation that retains the rotation symmetry of the spin
susceptibility in the paramagnetic state and has no predefined magnetic ordering. In this approximation,
Green’s functions are represented by continued fractions that are interrupted with the help of the decoupling
corrected by the constraint of zero site magnetization in the paramagnetic state. Results obtained in this
approach for an undoped 332 lattice(the Heisenberg modeand for one hole in a 4 4 lattice are in good
agreement with Monte Carlo and exact-diagonalization data, respectively. In the limit of heavy doping the hole
spectrum described by the obtained formulas acquires features of the spectrum of weakly correlated excita-
tions.
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[. INTRODUCTION procedure. Following the idea of Ref. 13, a correction pa-
rameter is introduced in these decouplings to fulfill the con-
The two-dimensionat-J model is one of the most fre- straint of zero site magnetization in the paramagnetic state.
quently used models for the description of Guanes of In thi_s state the ol_)tained'com_ponents of the spin Green’s
perovskite hight, superconductorgfor a review, see Ref. functions are rotationally invariant. The self-energy equa-
1). Together with the numerical methods—the exact diagofions are similar in their form to the equations derived in the
nalization of small clusterd® Monte Carlo simulatiofsand ~ modified spin-wave approximatidfl.in the case of heavy
the density-matrix renormalization-group techniu@  doping the pole in the hole Green’s function corresponds to a
number of analytical methods, such as the mean-fielqveakly correlated nearest-neighbor band. To check the valid-
slave-bosofiand spin-wave approximations, were used fority of the obtained equations in the opposite case of light
the investigation of the model. The latter method that isdoping, we have performed calculations for conditions that
based on the spin-wave description of the magnetic excitz@llow comparison with exact-diagonalization and Monte
tions was shown to be remarkab'y accurate in the case df:arlo reSUItS. We found gOOd agreement of our reSUItS W|th
small hole concentrations and zero temperafuféis ap- the results of Refs. 2 and 14 for spin correlations in an un-
proach was extended to the ranges of moderate hole concefioped 3X 32 lattice and for the hole spectral function of a
trations and finite temperatur@s particular with the use of 4x4 lattice with one hole. To gain a notion of the spectral
the spin-wave approximation modifiedfor short-range  function in larger lattices it was calculated in @200 clus-
order® The positions, symmetry and size of the pseudogapter-
in the hole and magnon spectra, values of the magnetic sus-
ceptibility, and spin-lattice relaxation rates obtained in this Il. DESCRIPTION OF THE MODEL
approach are close to those observed in photoemission, spin-
lattice relaxation, and neutron-scattering experiments on cu- The Hamiltonian of the two-dimension&l) model reads
prate perovskite® .
The apparent shortcomings of the spin-wave approxima;, + 77 411
tion of thet-J model are the violation of the rotation sym- H_%:U thm@ngBmo T 5 % Jnm(SnSmt Sn “Sy )+M§n: Xn,
metry of the spin susceptibility components in the paramag- (1)
netic state, the predefined magnetic ordering in thel Nete
that serves as the reference state of the approximation, ancherea,,=|no)(n0| is the hole annihilation operatar,and
the neglect of the kinematic interaction. In this paper we trym label sites of the square lattice=*1 is the spin projec-
to overcome these shortcomings by using the description ition, and|no) and|n0) are site states corresponding to the
terms of Hubbard operators. Green’s functions constructedbsence and presence of a hole on the site. If Hamiltddjan
from these operators are calculated with the use of the coris obtained from the extended Hubbard Hamiltorfiathese
tinued fraction representations following from the Mori pro- states are linear combinations of the products of the respec-
jection proceduré? To interrupt these otherwise infinite con- tive 3d,2_,2 copper and B,, oxygen orbitals? We take into
tinued fractions we use decouplings of the higher-ordemaccount nearest-neighbor interactions omly,=t=,6n m+a
Green's functions arising in later stages of this calculatiorand J,,=JX 6, m+a, Wheret andJ are hopping and ex-
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change constants and the four vectarsonnect nearest- D (kt) = ((silsZ ) e= =1 0(O([s(1), S 1), ©)
neighbor sites. The spih-operators can be written in the

Dirac notations ass’=13, o|no)(no| and s’=|ns)(n, Where
— o|. The chemical potentigk is included into Hamiltonian

(1) to control the hole concentratiorX,,=|n0){n0|. The

term —J/8% . XX+ IS frequently included into Hamil- z_ N\ 12 i z
tonian(1). For problems considered below this term leads to k=N aexp(—ikn) sy,

an unessential renormalization of the chemical potential antll is the number of sites, and,(t)=exp(Ht)a,,exp
therefore it is omitted. The operatas, , s7., sy, andX, are  (—iHt). In the considered stat&3(kt) does not depend on
the Hubbard operators in the space of states of-thenodel.  o.

The stategno) and|n0) satisfy the following complete- To calculate the above Green’s functions, we use their
ness condition: continued fraction representations that can be obtained using
the Mori projection operator technigdLet us consider the
inner product{A- BT| of the operator#\ andB that is defined
in such a manner that the following conditions are fulfilled:

i) [(aA+bB)-C'|=a|A-C'|+b|B-C'|, a and b are arbi-
Using this condition and the above expression $frthe trary numbers;(ii) |[A,H]-Bf|=|A-[H,B"]|; (i) |A-B|
constraint of zero site magnetization, which has to be ful-=|B.A'|*. We notice that the inner products defined as
filled in the paramagnetic state, can be reduced to the form{A B'}), ([A,B']), and

a,=N"Y23 exp(—ikn)a,,

20: Ina)(no|+|n0)(n0|=1. 2

1 o
(s)=5(1=x)=(s,'s;)=0, 3) (A,BT)=if dte" ™([A(1),BT]), 7—+0 (6
0

where angular brackets denote averaging over the grand caatisfy the above properties. Let us divide the result of the
nonical ensemble and the hole concentratien(X,,) in the  commutation of some operatég, with the Hamiltonian into
homogeneous state. It should be noticed that in accord witfbngitudinal and transversal parts with respectAg The
the Mermin-Wagner theoreththe long-range antiferromag- transversal par\, is determined as an operator the inner

netic ordering is destroyed for any nonzero temperature ifyroduct of which withA, is equal to zero. Thus,
the two-dimensional system. Therefore, the fulfilment of

constraint(3) has to be ensured for the considered states. [Ag,H]=EpAgt+Ay, @
The above operators satisfy the following commutation . . .
(anticommutatiobq relations: fy g whereE, is determined from the conditioi,-Al|=0,
(5 S51= 2830, (7S5 =— 076, Eo=I[Ao.H]- Adl 140 A ™

Given Ay and E,, the operatorA; may be found from Eg.
[a,,,s]=— Eaa S (7). The commutator of; with the Hamiltonian will contain
nor=m 2~ Thornme already three terms,

[@ng ,Sﬁq,] =8, 40m0y,— o [A, H]I=E1A + A+ FoAo.

(4)  The coefficientsE; and F, and the new operatof, are
{@ng,al 1 =(1=5,7S7) 8undser + S5 Oumdy, — o' determined with the use of the two orthogonality conditions
|A,-All=0,i=0,1,
{an(r 1am(r’}: 01
Ei=[A1H]-A]l|A-Al T,

[SrTl Xm]=0, [Srz1 Xml=0,  [@ne: Xm]=ane0nm-

_ . _ Fo=I[A1,H]-Afl [Ag- Al ~*=[Ay- All [Ag-Agl Y,
Notice that the hole creation and annihilation operators do
not satisfy the fermion anticommutation relations. This is awhere we have used the properties of the inner product. This
consequence of the exclusion of doubly occupied site statggrocedure can be continued. In each step of it the coefficients

due to the strong on-site repulsipsee Eq.(2)]. and a new operator are determined by the conditions of the
orthogonality of this operator to all operators obtained pre-
IIl. CONTINUED FRACTION REPRESENTATION viously. Using the properties of the inner product it can be

OF GREEN’'S FUNCTIONS shown that Only thenth, (n+1)th, and ('I_ 1)th operators

appear in the commutator of theth operator with the
To investigate the energy spectrum and magnetic propeHamiltonian®’

ties, we shall calculate the hole and spin retarded Green’s
functions [An HI=ErAn+ A iR A1,
G(kt) =((a,lak,))i=—10(t) ({as(t),af,}), En=I[An HI-All|A- Al ®)
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_ T o1 ”
Fn—l |An An| |An—1 An—1| . ((A0|A§)))w:f dtelwt((A0|Ag))t'
As can be seen, algorithr(8) is the modification of the m
Lanczos orthogonalization procedure that is well known in (11)
computational mathemati¢see, e.g., Ref. 18 and references Ty — f“ , NI
therein and physicg® In Eq. (8), operatorsA,, play the role ((AolA))=0(t) t At {[Ao(t").Aol).
of mutually orthogonal wave functions or vectors in the
usual Lanczos procedure. From Eq.(10) for all these functions we obtain the fol-

Following Mori? we introduce the projection operator lowing continued fraction representation:
P, that projects an arbitrary operatQron the operatoA,,,

i i Ro(w) = [£0:Ad (12)
P,Q=1Q-All [A- AT IA,, e Fo
W—Ey
and determine the time evolution of the operatgrby the w—E.— E
equation o
n-1 Thus, the recursive proceduf8) in course of which the
i—An=1 (1-PO[AL.H], A,i_o=A,, (9 coefficientsE, and F, of the continued fractior(12) are
dt k=0 ’ determined allows us to calculate Green’s or Kubo’s relax-

Due to the projection operators in E@) this time depen- ation functions.

dence of the operator differs from the conventional one ex- ,

cept the dependence #f,. To underline this difference we IV. THE SPIN GREEN'S FUNCTION

use the subscript notation for the time dependence if%g. The direct application of Eqg(8) and (12) to the spin

Notice also that in accord with this equatig, remains  Green’s functiorD (kw), (5) meets with difficulties because

orthogonal to operatord; , i<n for t>0. Let us divideAn:  the inner product[s,s?,]) in the numerator of the contin-

Into two parts, ued fraction(12) is equal to zero. To overcome this difficulty

B , A aTla  at-1 we consider Kubo's relaxation functions(s” ,)) defined in

Ant=Ra(DAF Ane, Ra(t)=[Anc Agl|[An- Ag . Eg. (11). In this case the inner produf®) in the numerator

From this definition it follows that\,= (1— P,)An. Equa- of the respective continued fraction is nonzero. After calcu-

tions (8) and (9) determine the time evolution of this opera- lating the relaxation functi_on the spin Green’s function can
be obtained from the relation

tor,
d n w((SﬂSZ_k))=<<S§|Sz_k>>+(sﬁ,Sz_k), (13)
Vi Ant= R“(t)A“+1+£o (1Pl A HI. where we dropped the subscript in the relaxation and
. . _ _ Green’s functions.
Solving this equation we find We postpone the calculation of the numeratsfr, 62, ) of
. the continued fraction and consider its other coefficients.
AL=R. (DA~ J drRy(7)Ans1e - From definition (6) we find that Eo(s?,s% ) = (iS7, )
0

={[s¢,s”])=0 and thereford\, is the Fourier transform of

This result allows us to obtain the following equation for thethe operator

functionsR,(t): o1

d ¢ iSIZZE % ‘]mn( Oin— 5Im)sr:— 15;11
iﬁRn(t):Ean(t)_iFndeTRn(T)Rn+1(t_T)- 1
+35 2 tno (Oim— 5In)agaamo

After the Laplace transformation R (w)=—i[qdt mno
9 . )
exp(wt)R,(t) this equation reads :Als_i_Alh. (14)
Rn(@)=[@—E,—FRy1(@)] 7" (100 Here the dot over the operator indicates the time derivative.

) ] i As can be seery; contains contributions from spin and hole
If the inner product is defined as the average of the COMzomponentsA® and A", Using this result in calculating

mutator (anticommutator of operators, the functioRy(w)  R;(w), which is the Laplace transform of the function
=Ro(w)|Ag-Al| coincides with the Fourier transform, (Ay,Al), we neglect the terms4",, 45", and (45,,.4").
((A|AD)) =7 .dtexplwt)((AAD), of the commutator This approximation is motivated by vanishing values of
(anticommutator retarded Green’s functions of the type of these correlations obtained with the decoupling. Therefore
Eq. (5). If the inner product is defined by E¢), the func-

tion Ry(w) coincides with Kubo's relaxation function (A AD~ (A1), AM) + (A3, AT, (15
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where we have additionally neglected the difference betweelast expression we took into account that in accordance with
A'l‘t and A"(t) (again due to zero values of the respectiveEq. (3) C,,=3 for x=0 [let us remind that we neglect the
decoupling. In accord with our estimation the influence of influence of holes on the value ofy,s” ,)]. Following Ref.
terms connected with holes isy,s?,) and ((45|.45")) on 13 the parametes is introduced to fulfill the constraint of
the spin Green’s function is small in comparison with thezero site magnetizatio(8) in the paramagnetic state. Before
quantity ((A|.4]")) even for moderate hole concentrations. carrying out the decoupling it has to be taken into account
Therefore, in the forthcoming discussion we neglect theséhat terms of Eq(20) in which the site index of the” op-
terms in &f,s*,) and ((,4§|,4§T)) and consider the time erator coincides with the site index sf * or s~! operators
evolution of operators in these quantities as determine§ancel each other. To verify this statement it is necessary to
solely by the Heisenberg part of Hamiltonid). In this take into consideration that in these terms the operatbrs
approximation the numerator of the continued fraction repcan be substituted by-3, since for the spin- cases;

resenting (A3].A5") reads =—1+s/1s, ands s/ =0. To retain this exact cancel-
. ) ) lation it has to be taken into account before the decoupling.
(AS, A =(is?,—is% ) =([is?,5% ])=4ICy(y—1), As the result we find
(16)
where y,=33exp(ka), Cp= INZ¥C, and Cy izéIZ: aZ [JimJIin(CrnnSI — CimSn)
=3 exgik(n—m)(s:'s ). For E; we get E,(is?, m
—is? )= (%%, —is? ) =([isZ,—is?,])=0. Thus, break- +Jindmn(CinSm— CimSh) ]
ing off the continued fraction on this step we obtain from
Egs.(12), (13), (15), and(16) + ; J2[(1— a)Cpn(SF—s%) + aCin(s2—sP) ],

o((AR AR +43C,(y—1)

(17) and after the Fourier transformation
0’20 (ko) - wi

D(kw)=

1282 2.z
ISy = WSk,
where the polarization operator and the excitation frequency kK
are given by where

1 L [i%s,—is%,]
(k)= 5 ((AJAD) (55,207 wi=w=lﬁlza|cl|(l—'yk)(A—I—l—l—'yk),

(18 (22)
wg=43Cy(y—1)(sf %) L Ao G, l-a 3

= — + _—
To calculate §;,s”,) in the above formulas, we notice [Cal * 8alCy| 4
that in the considered caseA,=i2si—(isZ,—is?,)  Combining Eqs(16), (18), and(21) we find

X(sp,S%y) sy and

(st,8%,) 1=4Ja(A+1+7y,). (22
2
(A AT):<[i2§z _js? - 160°C(y—1)? -0 In the absence of holes Eq4.7) and(21) are close to the
22 koo TPk (SZ,5%,) ' equations for the spin Green’s function and the excitation

(19) frequency obtained for the two-dimensional Heisenberg an-

. L tiferromagnet in Ref. 21 and 22 with the use of the equations
We set the above result equal to zero in conformity with theys  otion for Green’s functions and Tserkovnikov's

approximation made above in the continued fraction, wherg, ., 5lism2° respectively. In these works, somewhat more
we dropped all terms containing, and operators ofzh|g_her complicated decouplings were used. These decouplings con-
orders. Equatioril9) can be used for calculating{,s” ) if  tain several decoupling parameters of the typthat depend

the value of([i?s;, —is?]) is known. An analogous equa- on the site indices in the decoupled average. These additional

tion was obtained in Ref. 20 with another method. parameters allow one to obtain somewhat better agreement
We calculate([i2&Z,—is?,]) in Eq. (19) by decoupling With numeric simulations. However, to fix the additional pa-
terms in the second derivative sf, rameters exterior data from numerical simulations or the
spin-wave theory have to be engaged and the theory ceases

to be closed.
As can be shown by the analogous calculation of the
transversal spin Green’s functigs, |s, 1)), in the para-

1
faZ Zotla—1 Zatla—1 +1oz o1
ISI_E% [JImJIn(zslsn Sm TShSI Sm T Sh SmS )

+Imdmn(Sisils t—sisits T+ s ts?s ! magnetic state
="'t D (20 ((si s ) =2((stls? ). (23)

In the decoupling we approximatfs, 's,,' by the value Thus, the rotation symmetry of the components of the mag-
[aCrm(1— 6nm) + 3 8am]S? where Com=(s.'s,,}). In the netic susceptibility is retained in this approach. This fact can
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FIG. 1. The spin correlation§(1)=4|(s{sg)|, I=(l,0) calcu-
lated forT/J=0.5, 0.75, and 1 in this workopen circley and by
the Monte Carlo method in Ref. 1dilled circles. In both calcula-
tions a 3% 32 lattice without holes was used.

be used for the calculation of paramet&s, C,, and« in

the above formulas. From E¢L7) simplified for the absence
of holes, Eq.(23), and the relation

(sp(t)s” )= fidwe“‘"teﬂ‘“nB(w)B(kw), (24)

we find

B 1
Cy=4J|Cy|(1— y) o lCOt"(E,Bwk), (25

where B(KE)=— 7" 'ImD(KE) is the spin spectral func-
tion, ng(E)=[exp(BE)—1]"* and =T is the inverse

temperature. Substituting this equation in the definitions o
C;, C, and in constraint3), we obtain three equations for

the three unknown parametets, C,, and«. This problem

PHYSICAL REVIEW B 65 134520

temperature the long-range antiferromagnetic order is de-
stroyed in the considered two-dimensional system.

Now let us calculate the polarization operatdi(kw),
(18). Using the decoupling that is equivalent to the Born
approximatiofi and the relations

(c’:\kg(t)al(,):f7oc dwe ' “efnc(w)A(kw),
(26)
(@l ,(0)= | doe ne(w)Ako),

we find

ImII(kw)= g %‘, fﬁ,kfldwr[nF(wr)_nF(wr_w)]

XAK' —k,0'— o)Ak’ o),
(27
= do' IMT(Ke')
Rell(kw)=P| — ——,

—0 T 0w —w

where A(kw)=-7"'ImG(kw) is the hole spectral
function, ne(w)=[expBw)+1]"%  fi=2tN"Yy,,
— Y~ (st,s%,) Y2 and P indicates Cauchy’s principal
value of the integral. We notice that E@7) is close in its
form to the polarization operator obtained for @ model
in the spin-wave approximatidht’ We cannot directly com-
pare the interaction constants, because the definition of the
spin Green'’s function in this paper differs from the magnon
reen’s functions in Refs. 8 and 10. However, we notice that
he spin-wave interaction constant and the respective quan-
tity fﬁ,kwgl in Eq. (27) are of the same order of magnitude

can be reduced to the optimization problem and solved bj"d tend to zero linearly withk| when |k|—0. The spin-

the steepest descent method.

wave constant behaves analogously near ther] point,
2

To check the validity of the approximations made aboveWwhile the quantityf,, », * does so only in the case of an
we used the obtained formulas for calculating spin correlainfinite crystal and zero temperature.

tions in an undoped antiferromagnet. In Fig. 1 our results
obtained in a 3% 32 lattice for three temperatures are com-
pared with data of Monte Carlo simulations performed for ) )
the same lattice in Ref. 14. As can be seen, the agreement is NOW let us consider the hole Green's function. To use the
good. However, it should be noted that at elevated temperé:Ontinued fraction representatigh2) for the anticommuta-
tures in our approximation the spin correlations are systemfor Green's functiorG(kt) (5), the average of the anticom-
atically overestimated in comparison with the Monte Carlomutator of operators has to be taken as the definition of the
results. inner product in the recursive proceduf. From the com-

As follows from Eq.(21), for low temperatures and large mutation relationg4), we find for the numerator of the con-
crystals the spectrum of elementary spin excitations is closéinued fraction({ay,.aj,})=3(1+x)=¢ and for the time
to the spectrum of spin wavé$ For an infinite crystal and derivative
T=0, we founda=1.704 94 andC,= —C;=0.206 734. In
this case in Eq(21) the parameteA =0 and the excitation
frequency vanishes in the two points of the Brillouin zone,
k=(0,0) and @r,7) (here and below the intersite distance is
taken as the unit of lengthFor any nonzero temperatuse
becomes finite, which generates a gap at then() point. It
can be showt?! that the gap leads to the exponential decay
of spin correlations with distance and the respective correla!Vith these results we get
tion length is defined by the magnitude of the gap. Thus, in
agreement with the Mermin-Wagner theor&rfor a nonzero

V. THE HOLE GREEN’S FUNCTION

11,= 2, tin[ (187 ")+ 8 Tam,

1
3 ; Im(ospsy tspa,—,+pa,. (28

E0:<{iakavala}x{ako’alo}>_1:8k+ﬂlv
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g =(4tp+ 6tC1¢‘1—33 Fl¢—1) Vs (29 wave a_pproximation. Th_is.gives grounds to suppose that the
correcting terms containing two- and three-spin Green'’s
w'=u+(4tF,—3JC o 1, functions can be approximated by the respective terms of the

spin-wave approximation modified for short-range antiferro-

_N-1 - ; T
whereF,=N""% % F\ andF =2 exdik(n—m)](a&am).  magnetic order. Using the results of Refs. 10 and 25, and
The estimation of andJ based on the parameters of the Egs.(24) and (26) we find

extended Hubbard modélgivesJ/t lying in the range 0.2—

0.3. For low hole concentrations we can approximate the 16mt? o

parameterC, by its value in an undoped lattice. Far  ImZ(kw)= N > J do'[ng(—o')+np(0—o')]
=0.02 in a 4X4 lattice C;=—0.2119, while in a 2820 k' o

lattice C,= —0.2068. With these parameters the unrenormal- 1+ i 1y
ized hole dispersion can be estimatedegs- —0.27%ty, in XA — | (e )\ ——
the former case ane 0.4y, in the latter case. Thus, the A+l-ye A+1+ye
first approximation of the recursive procedure describes a 2
band that is much narrower than the two-dimensional , 4 14y
nearest-neighbor band in the absence of correlatidng .4 @) (v = v V

) A + 1_ Yk
The reason for this is the antiferromagnetic alignment of
spins when the hole movement is accompanied by the spin XAK=K" o—w')B(k'o"),
flipping. With increasing the hole concentratiGh—0 and (31
the unrenormalized dispersion tends to its uncorrelated * do' IM3 (ko)
value. Rez(k“’):PJ oo

The hole Green’s function reads
For low hole concentrations the spin spectral function in

G(kw)= ¢ the above equation can be substituted by its value in the
w—ey—u' —3 (ko) absence of holes,
S(ko)= b H(AJAD),  Ar=iag,— (et u')ak,. :E\/W_ﬂ\/ Low oo
(30) B(kw) 5 - A+1+yk[5(w wy) — (ot wy)].
(32

where the difference betweeky; and A;(t) was neglected.
Due to the mentioned smallness gf for low hole concen-  With this substitution and for low temperatures Egl) ac-
trations and ofJ in comparison witht, only the term quires the form

N~Y23 exp(ikl) tin[(1—s; s))sg+s ]am -, may be

retained inA; in the calculation of (A;]Al)). The terms in IS (k)= — 8t? @2

A, that are linear in spin operators produce the following @)= N¢ a 7

contribution to the self-energy:

32” - Ne(— 1)+ ng(wy) | e ) 2
> JJ dwidw, j . Yk A+1+ye

Ng 17 w—w—wyt+iy
2

X (et o) Ak =K' 01 B(K',05). ey oA
A+1_ Yk

Up to the prefactor this expression coincides with the respec-
tive term in the hole self-energy calculated in the spin-wave X[1+ng(wp ) JAK=K,0— wyr)

approximationt?
4 1- Yk'
Mkt )\ 7 Yk = %)
A + 1+ Yk

The term with three-spin operators & produces terms

in the self-energy that contain two- and three-spin Green'’s +

functions. To calculate these functions one would have to

solve the respective self-energy equations that could be de- 2

. . . . . 4 1+ ’yk/

rived in the same way as the equations in the preceding sec- % — | ng(w)AK=K' 0+ ).
tion. However, such program would essentially complicate A+1— 1y

the calculation procedure. One of the possible ways to over- (33)
come this difficulty is to use the decoupling in the same

manner as we applied it in the preceding section, this time ifExcluding the numeric prefactor and some other small de-
the term with three-spin operators A3. However, the com- tails this formula is similar to the respective formula of the
parison with the exact-diagonalization data shows that thispin-wave approximatiot

approximation does not give satisfactory results. Another To check the validity of the approximations made, we
way of simplification is suggested by the above observatiorompare the hole spectral function calculated using Bf5.
that the terms with the one-spin Green’s function in self-and (33) for the case of one hole in a4 lattice with the
energy (30) are similar to the terms obtained in the spin- available exact-diagonalization data obtained in this system.
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(a)
(n/2,7/2) (=/2,/2)
{O,m)
(r,m/2) (r,m/2)
(m,m) (m, %)
(0,0.2r)
| &o)

2 0 2
oft

I

(0,0) (0,0)

(b)
-4 -2 0 2 4 4 -2 (I) 2 4
woft woft
FIG. 2. The hole spectral functioA(kw) for the case of one

hole in a 4x 4 lattice and parameteds=0.2, »=0.1t, andT=0. (r.m)
Left: exact-diagonalization data from Ref. 2, right: our calculations.
The respective wave vectors are indicated in the upper right corners
of the panels.

(0.8#,0.8n)

The left panels in Fig. 2 demonstrate the results of the exact
diagonalization, the right panels present our calculations. LA/\/\/\
{0.67,0.6m)

Both series of calculations were performed for the same set
(0.4r,0.4n)

|

of parametersJ/t=0.2, t<0, T=0 and »=0.1t (i» was
added to the frequency in the denominator of Green’s
function to visualizes functions; in our calculations param-
etersC,; anda were estimated for low but finite temperature
T=0.02). As can be seen from the figure, the spectral func-
tions obtained in our calculations are in good agreement with
the functions found in the exact diagonalization. This agree-
ment is somewhat better than that achieved in the spin-wave
approximatior!, because in contrast to this approximation
our approach takes into account the difference between the
spectral functions for wave vectors separated ty=) [cf.
the spectra fok=(0,0) and ¢r,7)]. As can be seen, in our
approximation the binding energy of the quasiparticle peak is
underestimated in comparison with the exact-diagonalization , , ,
result. This may be connected with the fact that the consid- 2 0 ot 2 4
ered hole concentratiox=1/16 is not low enough and can
lead to some deviations from the used spin spectral function
(32. FIG. 3. The hole spectral functioA(kw) for the case of one

An example of the one-hole zero-temperature spectra in fiole in a 20< 20 lattice and parametets=0.2t, »=0.0%, and T
larger lattice is given in Fig. 3. We notice that the shapes of=0. Wave vectors indicated near the curves are selected along the
the spectra cease to change perceptibly with increasing lagymmetry lines (0,0) (0,7) in (@) and (0,0)- (4, ) in (b).

.

0.,0)
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tice size starting from a 2616 lattice. Excluding the men- concentration spin correlations are weakened, the self-energy
tioned difference in spectra with wave vectors spaced byecomes small and elementary excitations described by the
(7,7) they are close to those obtained in the spin-wavewo equations tend to the weakly correlated nearest-neighbor
approximatior. band with the dispersion,, Eq. (29), whereC,;—0. Thus,
With the use of the Hubbard operators, equations similathe obtained equations give the correct behavior of the hole
to Eq. (31) were obtained also in Ref. 26 for the two- spectrum in the two limiting cases. Besides, it was demon-
dimensionak-J model and in Ref. 27 for a somewhat differ- strated that Eqs(17) and (21) with the parameters deter-
ent model of the Cu@plane. The interaction constant de- mined self-consistently give a quantitatively correct descrip-
rived in the former work differs from the constant in Eg. tion of the spin subsystem in the undoped case. Equations of
(31). The constant of Ref. 26 is not applicable for low hole the spin-wave approximation, which are similar to EdS),
concentration: the spectral functions calculated with it differ(21), and(27), describe the rapid weakening of spin correla-
essentially from those obtained by the exact diagonalizationtions with hole dopind® as it is necessary for the above-
and in the spin-wave approximatiéfi.However, this con- discussed transformation of the hole spectrum from light-to-

stant can be applicable in the region of heavy doping. heavy doping. This gives ground to suppose that the obtained
equations can provide a qualitatively correct interpolation
VI. CONCLUDING REMARKS between these two limiting cases.
Equation (31) was obtained under the supposition of a ACKNOWLEDGMENTS
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