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Effective action approach and Carlson-Goldman mode ind-wave superconductors
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We theoretically investigate the Carlson-Goldman~CG! mode in two-dimensional cleand-wave supercon-
ductors using the effective ‘‘phase-only’’ action formalism. In conventionals-wave superconductors, it is
known that the CG mode is observed as a peak in the structure factor of the pair susceptibilityS(V,K ) only
just below the transition temperatureTc and only in dirty systems. On the other hand, our analytical results
support the statement by Ohashi and Takada@Phys. Rev. B62, 5971~2000!# that ind-wave superconductors the
CG mode can exist in clean systems down to much lower temperatures,T'0.1Tc . We also consider the
manifestations of the CG mode in the density-density and current-current correlators and discuss the gauge
independence of the obtained results.

DOI: 10.1103/PhysRevB.65.134516 PACS number~s!: 74.40.1k, 74.72.2h, 11.10.Wx
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I. INTRODUCTION

More than 25 years ago, an unusual propagating sou
like (V/K5vCG) Carlson-Goldman~CG! mode incharged
superconducting systems with the velocityvCG5103–
104 m/c was discovered1 ~see also Ref. 2!. It was a wide-
spread opinion before the CG mode discovery that sinc
the charged systems, the soundlike Bogolyubov-Anderso3,4

~BA! mode associated withneutral superconductors is con
verted to the plasma mode due to the Anderson-Hi
mechanism, there is no soundlike phase mode in cha
systems.

A magnificent effort~see, for example, Refs. 5–8! was
made to understand the mechanism responsible for the
pearance of the CG mode and its relation to other phen
ena of nonequilibrium superconductivity. While the major
theories of the CG mode5–8 were essentially based on th
kinetic equations that are usually derived using the quasic
sical Green’s functions, the paper by Kulik, Entin-Wohlma
and Orbach9 used a more conventional approach based
the Matsubara Green’s functions without kinetic equatio
In the subsequent papers of Takada and co-workers~see
Refs. 10 and 11 and references therein! the approach of Ref
9 was further developed and very recently applied for
case ofd-wave superconductivity.12 The collective oscilla-
tions in d-wave superconductors were also studied using
kinetic equations for Green’s functions13 ~see also Ref. 14!.

Since the discovery of high-Tc compounds,dx22y2 super-
conductivity has attracted much attention15 and the claim of
Ref. 12 that the CG mode in cleand-wave superconductor
may survive in a much wider region of temperatures down
0.2Tc appears to be very different from the established pr
erties of the CG mode ins-wave superconductors, so that
is important to check it by an independent calculation.

On the other hand, the importance of phase fluctuation
high-temperature superconductors~HTSC! ~see, e.g., Ref.
16! stimulated interest in the derivation of the ‘‘phase-onl
effective actions from the microscopic theory. It is importa
to emphasize that although there is no commonly acce
theory of HTSC, it seems reasonable that one can us
simple BCS-like approach to describe the properties
HTSC below the critical temperatureTc even though such an
0163-1829/2002/65~13!/134516~17!/$20.00 65 1345
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approach fails aboveTc . Relying on this argument the
‘‘phase-only’’ actions ford-wave superconductors were re
cently derived in Refs. 17–19. However, the only phase
citations that are described by these actions are the BA m
in the neutral superconductor18 and the plasma mode,17,19

which appears when the Coulomb interaction is taken i
account. This corresponds to the standard paradigm that
not yield the existence of the CG mode. Thus the purpos
the present paper is to investigate which ingredient is m
ing in the treatments of Refs. 17–19 so that the CG mo
does not appear in these approaches and to establish a
between the results of Ref. 12 and the phase-only ac
formalism. This missing link is established here and the C
mode is obtained within the effective-action formalism. O
main results can be summarized as follows.

~1! We extend the phase-only effective-action formalis
for chargedsystems to incorporate thedensity-currentcou-
pling, which was so far considered only using oth
methods9–12 ~see also Refs. 20–22, where the effect of t
coupling appears to be important for the description of di
superconductors!. In neutral systems the density-current co
relatordoes contributein so-calledLandau termsof the ef-
fective action,18,24 so that the correct expression for the
terms can only be obtained when this correlator is taken
account.

~2! We show that when the density-current coupling
included it becomes possible to obtain the CG mode us
the phase-only action. In particular, we derive an analyti
expression for the pair-susceptibility structure factor a
solve numerically the equation for the CG-mode velocity.

~3! We show the gauge-independent character of the eq
tion for the collective phase excitations, one of the solutio
of which is the CG mode. Establishing a link between t
pair susceptibility and this gauge-independent equation
the phase excitations we argue that the peaks in the struc
factor associated with the CG mode are independent of
choice of the gauge. The gauge independence of the equ
for the CG mode used in the previous papers10–12 is also
shown, applying the identity derived recently in Ref. 22.

~4! We consider possible manifestations of the CG mo
in the gauge-independent density-density and current-cur
response functions.
©2002 The American Physical Society16-1
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SERGEI G. SHARAPOV AND HANS BECK PHYSICAL REVIEW B65 134516
~5! We derive analytical expressions for the densi
density, current-current, and density-current polarizat
functions for two-dimensional~2D! cleand-wave supercon-
ductors atT!Tc .

The paper is organized as follows. In Sec. II we introdu
our model. In Sec. III, we describe all details about the f
malism used in the paper, necessary for further underst
ing. The various forms of the effective actions~for the phase
and electric potential, phase only and electric potential on!
are expressed in terms of density-density, current-curr
and density-current polarization functions in Sec. IV. T
general expressions for these polarization functions are g
in Appendix A, their derivation ford-wave superconductor
is considered in Appendix C, and the nodal approximat
employed for this derivation is briefly discussed in Append
B. In Sec. IV we also discuss in detail the difference betwe
the present and other9–12,20–22 approaches. In Sec. V w
briefly recall the properties of the phase excitations in
absence of the density-current coupling and stress s
points such as gauge independence of the equation fo
collective phase excitations and the properties of the gau
independent density-density and current-current correlat
which are particularly useful for better understanding of o
main results, which are presented in Sec. VI. In particular
Sec. VI A we derive the equation for the CG mode, give
physical interpretation, and discuss the gauge independ
of the present and previous approaches. In Sec. VI B
present the results for the velocity of the CG mode and S
VI C is devoted to the structure factor~the calculational de-
tails for these sections are given in Appendix D!. We con-
clude in Sec. VII with a discussion and summary of o
results.

II. MODEL HAMILTONIAN

Let us consider the following action~in our notations the
functional integral is expressed viaeS!:

S52E
0

b

dtF(
s

E d2rcs
†~t,r !@]t2 ieA0~t,r !#cs~t,r !

1H~t!G , r5~x,y!, b[
1

T
, ~1!

where the HamiltonianH(t) is

H~t!5(
s

E d2rcs
†~t,r !F«X2 i“2

e

c
A~t,r ! C2mGcs~t,r !

2
1

2 (
s

E d2r 1E d2r 2cs
†~t,r2!

3cs̄
†
~t,r1!V~r1 ;r2!cs̄~t,r1!cs~t,r2!

1
1

2 E d2r 1E d2r 2S (
s

cs
†~t,r1!cs~t,r1!2nD

3Vc~r12r2!S (
s8

cs8
†

~t,r2!cs8~t,r2!2nD . ~2!

Here cs(t,r ) is a fermion field with spins5↑,↓, s̄
[2s, t is the imaginary time,V(r1 ;r2) is an attractive
short-range potential,Vc(r12r2) is the long-range Coulomb
interaction, andn is the neutralizing background charge de
13451
-
n

e
-
d-

t,

en

n

n

e
e

he
e-
rs,
r
n

ce
e
c.

r

-

sity. Throughout the paper we call the superconducting s
temneutral if the last term of Eq.~2! is omitted andcharged
if this term is taken into account. Even in the latter case
whole superconductor remains, of course, neutral due to
neutralizing ionic background.

We assume that the momentum representation
V(r1 ;r2) contains attraction only in thed-wave channel~see
the discussion in Ref. 17!. The Fourier transform of the Cou
lomb interactionVc(q) depends on the detail of the model.
can, for example, be taken asVc(q)54pe2/q2 in 3D,
Vc(q)52pe2/q in 2D, or a more complicated expressio
~see, e.g., Refs. 12,17! if the layered structure of HTSC is
taken into account. However, the detailed expression is
crucial for the CG mode, because the mode appears whe
Coulomb interaction is screened out by the quasipartic
~The form of the expression would be, of course, essen
for the analysis of the plasma mode.17,23! The form of dis-
persion law,«(k), is also not essential because the final
sults for thed-wave case will be formulated in terms of th
noninteracting Fermi velocityvF[]«(k)/]kuk5kF

and the
gap velocity vD[]D(k)/]kuk5kF

, where D(k) is the
momentum-dependent superconducting gap. We will also
the parameteraD[vF /vD , which is called the anisotropy o
the Dirac cone. Throughout the paper\5kB51 units are
chosen. An external electromagnetic fieldA5(A0 ,A) was
introduced in the action~1! to calculate various correlation
functions using the functional derivatives with respect to t
external source field.

III. DERIVATION OF THE EFFECTIVE ACTION AND
THE STRUCTURE FACTOR

The derivation of the effective ‘‘phase-only’’ action fo
neutral~see, e.g., Refs. 16,18,24! and charged17,19,25,26s- and
d-wave superconducting systems is widely discussed in
literature, so we briefly recap the main steps, including
functional integral representation for the structure factor, a
making in Sec. IV a point on the appearance of the term t
couples density and current.

The first step of the derivation is to use the appropri
Hubbard-Stratonovich transformations to decouple fo
fermion interaction terms in the attractive and repuls
channels. The attractive part of the interaction was rece
considered in detail in Sec. II of Ref. 18 using the biloc
Hubbard-Stratonovich fieldsF(t,r1 ;r2) and F†(t,r1 ;r2)
~see Ref. 27 for a review!, so we show explicitly the corre
sponding transformation only for the Coulomb interaction

expF2
1

2E dtE d2r 1E d2r 2S (
s

cs
†~t,r1!cs~t,r1!2nD

3Vc~r1 ,r2!S (
s8

cs8
†

~t,r2!cs8~t,r2!2nD G
5E Dw expH 2E dtE d2r 1E d2r 2

3F1

2
ew~t,r1!Vc

21~r1 ,r2!ew~t,r2!2 iew~t,r1!

3S (
s

cs
†~t,r1!cs~t,r1!2nD d~r12r2!G J , ~3!
6-2
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where the Hubbard-Stratonovich fieldw has the meaning of electric potential. Thus, the partition function is

Z5E DC†DCDF†DFDw exp@S~C†,C,F†,F,w,A!#,

S~C†,C,F†,F,w,A!5E
0

b

dtE d2r 1E d2r 2H 2
1

V~r1 ;r2!
uF~t,r1 ;r2!u22

1

2
ew~t,r1!Vc

21~r1 ,r2!ew~t,r2!1C†~t,r1!

3F2]t1 iet3A01 iet3w~t,r1!2t3jS 2 i“2t3

e

c
AD GC~t,r2!d~r12r2!2 iew~t,r1!nd~r12r2!

1F†~t,r1 ;r2!C†~t,r1!t2C~t,r2!1C†~t,r1!t1C~t,r2!F~t,r1 ;r2!J , ~4!
.
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where C and C† are the Nambu spinors,j(2 i“)
[«(2 i“)2m andt3 , t65(t16 i t2)/2 are Pauli matrices

To consider the Hubbard-Stratonovich fieldF it is conve-
nient to use the relative coordinater5r12r2 and center-of-
mass coordinate R5(r11r2)/2, so that F(t,r1 ,r2)
[F(t,R,r ). Now, using the functional integral represent
tion, the imaginary-time pair susceptibility is defined as

h~t,R12R2!52
1

Z~A50!
E DC†DCDF†DFDw

3F~t,R1 ,0!F†~0,R2 ,0!

3exp@S~C†,C,F†,F,w!#. ~5!

Since the distanceuR12R2u is expected to be larger than th
internal Cooper-pair scale, it is possible to putr50 in Eq.
~5!. The structure factorS(V,K ), which is used to presen
the experimental data,2,6 is related to the real-frequency pa
susceptibilityh( iVn→V1 i0,K ) by

S~V,K !522@12exp~2bV!#21Imh~V1 i0,K !

'2
2T

V
Imh~V1 i0,K !. ~6!

The definition of the pair susceptibility~5! is apparently
gauge dependent, since the auxiliary Hubbard-Stratono
field is gauge dependent. Nevertheless, as we discuss
the poles ofh(V,K ) aregauge independentand this justifies
the use of Eqs.~5! and ~6! to extract the observable values

The simplest way to study the low-energy pha
dynamics28 is to employ the canonical gaug
transformation29

C~x!→S eiu(x)/2 0

o e2 iu(x)/2DY~x!, x[~t,r ! ~7!

separating the phase of the ordering field,

F~t,R,r !'D~t,R,r !exp@ iu~t,R!#. ~8!

Then after the integration over the Fermi fields the partit
function becomes
13451
ch
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n

Z5E DDDDuDw exp@2bV$D,]u,w,A%#, ~9!

where the effective potential

bV$D,]u,w,A%5E
0

b

dtE d2r 1E d2r 2FD2~t,R,r !

V~r12r2!

1
1

2
ew~t,r1!Vc

21~r1 ,r2!ew~t,r2!

1 iew~t,r1!nd~r12r2!G2TrLnG21

~10!

with the inverse Green’s function

G215G 212S, ~11!

^t1 ,r1uS~]u,w,A!ut2 ,r2&

5F t3S i
]t1

u

2
2 iew~t1 ,r1!2 ieA0~t1 ,r1! D

1t3O1~r1!1 ÎO2~r1!Gd~t12t2!d~r12r2!. ~12!

For T!Tc it is reasonable to neglect the amplitude fluctu
tions and assume that the amplitude of the order param
D(t,R,r ) does not depend onR. Then the frequency-
momentum representation ofG in Eq. ~11! is the usual
Nambu-Gor’kov Green’s function

G~ ivn ,k!52
ivnÎ 1t3j~k!2t1D~k!

vn
21j2~k!1D2~k!

, ~13!

where, becaused-wave pairing is considered,D(k)
5D/2(coskxa2coskya) (a is the lattice constant! and vn
5p(2n11)T is fermionic ~odd! Matsubara frequency
Since, in what follows, only the low temperaturesT!D(T)
are considered, we can replace the temperature-depen
amplitude D(T) by its zero-temperature valueD0[D(T
50). Thus all linear low-temperature dependences of
6-3
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SERGEI G. SHARAPOV AND HANS BECK PHYSICAL REVIEW B65 134516
polarization functions considered below are due to the no
of D(k), but not to the temperature dependence ofD(T)
itself.

The precise form of the operatorsO1 andO2 in Eq. ~12!
which depends on the particular form of the tight-bindi
spectrum«(k) is given in Ref. 18~see also Ref. 19 for the
formulation of the general rules for representation ofS). It is
essential, however, that the coordinate representation oS
does not depend on the phaseu itself and contains only its
derivatives. Thus the coordinate representation ofVkin is
also expressed via the derivatives ofu. This property is par-
ticularly convenient for studying 2D models when a const
space-independent phase is prohibited by the Colem
Mermin-Wagner-Hohenberg~CMWH! theorem.

Since we are interested only in the phase dynamics in
presence of Coulomb interaction, in what follows we co
sider only the phase- (u) and the electric-potential- (w) de-
pendent parts of the thermodynamical potential~10!. This
part of V, which we denote asVkin , can be presented as
series

Vkin$]u,w%5E
0

b

dtE d2r 1E d2r 2F1

2
ew~t,r1!Vc

21~r1 ,r2!

3ew~t,r2!1 iew~t,r1!nd~r12r2!G
1TTr(

n51

`
1

n
~GS!n. ~14!

This way of deriving the effective action has many adva
tages. The main among them is that the gauge-invariant c
binations\]tu/22ew2eA0 and \¹u/22e/cA are explic-
itly present during all stages of the derivation.30 This
property is obviously related to the introduction of the pha
via the gauge transformation~7!. There is no need because
this to keep the external electromagnetic field (A0 ,A) during
the intermediate stages of the derivation since it can be ea
restored following the above-mentioned prescription, wh
in the frequency-momentum space is

iVnu~K !→ iVnu~K !12eA0~K !,

iK au~K !→ iK au~K !2
2e

c
Aa~K !. ~15!

Differentiating with respect to this source field we will d
rive physical correlation functions~see the discussion in Re
17! in what follows. It has to be stressed that theminimal-
couplingprescription~15! does not guarantee itself the gau
independence of the final result. The gauge independ
treatment of the transformations~7! and~8! for d-wave pair-
ing is, in particular, one of the complications.29

In the previous studies of the CG mode9–12 the phase field
was introduced using the expansion of the ordering fi
F(x) around the equilibrium valueD via F(x)5D
1F1(x)1 iF2(x) and associating the fieldsF1(x) with the
amplitude andF2(x) ~or to be more preciseF2(x)/D0) with
the phase fluctuations. Although, as will be discussed be
the final result obtained in the both the methods agrees,
present method of the investigation of the CG mode is m
transparent because it explicitly uses the gauge-indepen
combinations of the fields over the whole derivation. F
13451
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example, one can easily recognize thatS contains a gauge
independent Cooper-pair chemical potentialu̇/22ew,8 which
in other approaches has to be collected from the differ
parts of the equations. Other advantages of the presen
proach will be discussed in the subsequent sections w
the effective action is presented.

To consider the phase and charge fluctuations at
Gaussian level it is sufficient to include only the terms w
n51,2 in the infinite series in Eq.~14!. Finally, we rewrite
the pair susceptibility~5! in terms of the new variables,

h~t,R12R2!52E DDDDuDwD~t,R1 ,0!exp@ iu~t,R1!#

3D~0,R2 ,0!exp@2 iu~t,R2!#

3exp@2bV$D,]u,w%#. ~16!

As was mentioned above, we are interested only in
phase-fluctuation structure factor neglecting the presenc
the amplitude fluctuations. This implies that one can us
saddle-point approximation forD, so that omitting unimpor-
tant constants in the expansion of the exponent in Eq.~16!
one arrives at

h~t,R12R2!52
D0

2

4 E DuDwu~t,R1!u~t,R2!

3exp@2bVkin$]u,w%#. ~17!

In writing Eq. ~17! we have also expanded the expone
that were present in Eq.~16!, because there are no free vo
tices in the system forT,Tc and the multivalued characte
of the phase is irrelevant. This approximated form of the p
susceptibility is equivalent to the expressions for suscepti
ity used in Refs. 9–12. Expanding the exponents we neg
a widening of the structure-factor peaks, which is related
the absence of the long-range order in 2D~CMWH theorem!.
It is known, for example, from the analysis of the dynam
structure factor of lattices31,32 that the d-function phonon
resonance obtained in 3D harmonic crystals in the 2D cas
converted to the power-law singularity,

S~v,q!;
f ~a!

uv22v2q2u12a(T)
, ~18!

where f (a) is a function ofa that goes to zero asa→0, so
that in this limit the structure factor transforms to ad func-
tion. Since for low temperaturesa(T)!1 we may safely
neglect this effect of widening because it does not move
position of the peak and we are primarily interested in
temperaturesT!Tc .

IV. GENERAL FORM OF THE EFFECTIVE ACTION

In this section we present the effective potent
Vkin$u,w% and discuss the term that leads to the appeara
of the CG mode. We also derive the effective phase-only
electric-potential-only actions integrating out the electric p
tential w and the phaseu, respectively.

A. The effective action and polarization functions

Calculating the terms withn51,2 in Eq. ~14! ~see, e.g.,
Refs. 18,24! one arrives at
6-4
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bVkin$u,w%5
T

8 (
n52`

` E dK

~2p!2
@w~2K !4e2Vc

21~K !w~K !1$ iVnu~2K !22ew~2K !%P33~K !

3$ iVnu~K !12ew~K !%1u~2K !$L0
ab1P00

ab~K !%KaKbu~K !1u~2K !~2Ka!P30
a ~K !

3$ iVnu~K !12ew~K !%1$ iVnu~2K !22ew~2K !%~2Ka!P03
a ~K !u~K !#, ~19!
n

e

-
t

the
D,

he

n-

-
l

x

-
ion
. 1

e
nd

gap
nal

ac-
where we introduced short-hand notationsK5( iVn ,K ) with
K being a 2D vector~summation over dummy indicesa,b
51,2 is implied!. In Eq. ~19! the current-current polarizatio
function P00 is

P00
ab~ iVn ,K ![T (

l 52`

` E d2k

~2p!2
p00~ iVn ,K ; iv l ,k!

3vFa~k!vFb~k! ~20!

with the Fermi velocityvFa(k)5]j(k)/]ka ; the density-
density polarization functionP33 is

P33~ iVn ,K ![T (
l 52`

` E d2k

~2p!2
p33~ iVn ,K ; iv l ,k!,

~21!

and the density-current polarization functionP03
a is

P03
a ~ iVn ,K ![T (

l 52`

` E d2k

~2p!2
p03~ iVn ,K ; iv l ,k!vFa~k!.

~22!

p i j in Eqs.~20!–~22! is given by

p i j ~ iVn ,K ; iv l ,k![Tr@G~ iv l1 iVn ,k1K /2!t iG
3~ iv l ,k2K /2!t j #, ~t0[ Î !

~23!

and L0
ab in Eq. ~19! is the first-order contribution in the

superfluid stiffness,

L0
ab5E d2k

~2p!2
n~k!mab

21~k!, mab
21~k![]2j~k!/]ka]kb

~24!

with

n~k!512
j~k!

E~k!
tanh

E~k!

2T
, E~k!5Aj2~k!1D2~k!.

~25!

In writing Eq. ~19! we omitted the linear time-derivativ
term ~see, e.g., Refs. 17,18!, which is irrelevant for the
present analysis.

The general expressions for the polarizations~20!–~22!
are given in Appendix A~see also Ref. 18! and calculated
analytically for 2D cleand-wave superconductors in Appen
dix C ~a brief discussion of the nodal approximation used
13451
o

calculate these polarizations and the transformation to
global coordinate system are given in Appendixes B and
respectively!.

As an example we show in Fig. 1 the real part of t
density-density polarization functionP33(V,K ) ~this func-
tion is in fact just the Lindhard’s function for the superco
ducting state!, which is given by Eq.~C3! @and its dimen-
sionless form is given by Eqs.~C4! and ~C5!# as a function
of V/vFK for the different directions ofK . The anglef
determines the direction ofK with respect to the (10) direc
tion in such a way thatf5p/4 corresponds to the noda
direction@see also Eq.~D5! and the explanation in Appendi
D#. Comparing this figure with Fig. 7 from Ref. 12~our
definition off is equivalent to the definition of the angleuq
used in Ref. 12!, which was obtained by numerical integra
tion of Eq. ~A1!, one can see that our analytical express
~C3! gives essentially the same result. In particular, Fig
shows thatP33 has a peak atV/vFK5cos(f2p/4). Further-
more, as shown, for instance, forf5p/16, there is a lower
peak in ReP33(V,K ) at V/vFK5cos(f2p/41p/2). Note
that the casesf50 andf5p/4 are ‘‘degenerate’’ becaus
for f50 the lower peak coincides with the upper one a
for f5p/4 the lower peak is atV/vFK50 ~see also Fig.
5,12 where the casef50.2,0.23p is shown!.

In Ref. 12 the origin of these peaks was related to the
nodes, which can be regarded as two ‘‘one-dimensio
normal-state electronic bands’’ towardf56p/4. These
‘‘normal bands’’ are able to screen out the Coulomb inter
tion in certain regions of the Fermi surface even forT!Tc

and this screening along with the presence ofP03
a will make

FIG. 1. Real part ofP33(V,K ) @or more preciselyP̃33(V,K )
5(p/m)P33(V,K ), see Eq.~C5!#. We put T50.5Tc (Tc and the
anglef are defined in Appendixes C and D, respectively! andaD

510.
6-5
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the appearance of the CG mode possible. Substituting
~D5! in the analytical expression~C3! it is indeed easy to se
that these peaks are due to the square-root singularitie
P33. These are the same singularities that are present in
normal-state Lindhard’s function due to the lowered dime
sionality of the momentum integration,33 but since the
d-wave superconducting state is considered, the positio
these singularities does depend on the direction ofK with
respect to the Fermi surface. Finally we note that these
gularities in ReP33 at V5vFK cos(f2p/4)10 are accom-
panied by the singularity in ImP33 at V5vFK cos(f2p/4)
20, which was considered in Ref. 18.
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The effective potential~19! becomes more tractable in th
matrix form,

bVkin$u,w%5
T

8 (
n52`

` E dK

~2p!2
@u~2K !ew~2K !#

3M 21F u~K !

ew~K !
G , ~26!

where
M 215F2Vn
2P33~K !1Lab~K !KaKb2 iVnKaP03

a ~K !2 iVnKaP30
a ~K ! 2iVnP33~K !22KaP30

a ~K !

22iVnP33~K !12KaP30
a ~K ! 4@2P33~K !1Vc

21~K !#
G ~27!
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with the bare~unrenormalized by the phase fluctuations! su-
perfluid stiffnessLab5L0

ab1P00
ab(K).

B. Comparison with other approaches

Let us compare our effective action, Eqs.~26! and ~27!,
with the action obtained in Ref. 17 and see the differen
between the present and previous9–12approaches. As one ca
notice, the only difference between Eqs.~26!, ~27! and Eqs.
~25!, ~26! in Ref. 17 is due to the presence of the densi
current polarization functionP03

a . It is a general belief tha
this term has to be zero due to the ‘‘symmetry arguments25

However, as shown in Ref. 24~see also Ref. 18, where th
d-wave case is considered! this correlator has to be taken int
account to obtain the correct expressions for theLandau
termsof the effective action. This is the term that nontrivial
couples phase and density fluctuations and makes the
mode possible in the present approach.

From this point of view, the role ofP03
a is the same as the

role of the phase-charge coupling

P23~ iVn ,K ![T (
l 52`

` E d2k

~2p!2
p23~ iVn ,K ; iv l ,k!g~k!,

g~k![
2D~k!

D0
, ~28!

with p23 given by Eq.~23! in the approach of Kuliket al.9

and Takada with co-workers.10–12 Note that P2352P32,
while P03

a 5P30
a .

It is interesting that techniques essentially similar to tho
of Refs. 9–12 have been used in Refs. 20–22 to cons
suppression of the critical temperature in disordered su
conductors. In Refs. 21 and 22 both amplitude and ph
fluctuations were taken into account, and to consider the
fluence of nonmagnetic impurities, the electronic Gree
functions had a 434 matrix structure. The main differenc
between the present approach and Refs. 9–12, 20
s

-

G

e
er
r-

se
n-
’s

2,

nevertheless, remained the same, viz., in these papers
order-parameter phase itself was expressed via the ope
O25C†t2C, as summarized in Table II of Ref. 21. Thust2

also enters the phase-density correlator,P23 in the notations
of Refs. 9–12~or Pfr in the notations of Refs. 21 and 22!.

In our opinion, the physical meaning ofP23 is, however,
more obscure than that ofP03

a . Indeed, sinceP23 is ex-
pressed via the Pauli matrixt2, so that it seems like the
phase itself is a dynamical variable on its own, while phy
cally meaningful are only the space and time derivatives
the phase.

These derivatives can only enter into the formal expr

sions as a current viaÎ and as a density viat3 matrices,
respectively. This property is obviously present in the de
nition ~22! of P03

a , which thus has the more clear meaning
a density-current polarization function.

Another important difference between the present a
previous9–12,20–22approaches is that the present derivati
does not need an explicit use of the gap equation forD. For
example, in Ref. 9 the charge conservation follows from
explicit use of the gap equation, while in the present a
proach as we will discuss later, the charge conservatio
already built in the phase dynamics itself.

The fact that the present approach does not rely on
particular form of the gap equation is more convenient
modeling HTSC, where the gap does not close at the crit
temperatureTc , so that the equationD(Tc

0)50 gives only
the mean-field transition temperatureTc

0 . Thus another defi-
nition of the true critical temperatureTc is necessary. As
recently discussed in Ref. 34~see also Ref. 16!, it is reason-
able for HTSC to estimateTc as the temperature of th
Berezinskii-Kosterlitz-Thouless transition@see Eq.~C10! in
Appendix C#.

Finally, it is worth mentioning here the recent paper35

where an approach very similar to that of the present pa
was employed to study the CG mode in the model of co
superconducting quark matter. One of the advantages of
6-6
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35 is that it treats the problem in an explicitly gaug
invariant way, while here, the Coulomb gauge is already
posed in writing the Hamiltonian Eq.~2! and then, when
necessary, the gauge independence of the results obtain
discussed in a more intuitive way. In general, however,
prove the gauge independence of the results, an arbit
gauge has to be considered to show that the physical obs
ables do not depend on the gauge-fixing parameter as
been done in Ref. 35~see also Ref. 36, where the gau
invariance of the physical quantities calculated using thT
50 effective potential is discussed!. Following this route
one can obtain the ‘‘relativistic’’@see Ref. 35~b! for the de-
tails of the proof# generalization of Eq.~19!, which contains
a gauge-fixing parameterl,

bVkin$u,Am%5T(
K

1

8 H 1

p FAm~2K !~K2dmn2KmKn!An~K !

1
1

l
Am~2K !KmKnAn~K !G

1@2 iK mu~2K !22eAm~2K !#Pmn~K !

3@ iK nu~K !22eAn~K !#J , ~29!

with Km[(Vn ,K ), K25KmKm5Vn
21K2, m,n50,1,2

A0(K)52w(K), and c51. Note that in Eq.~29! we have
the whole electromagnetic potentialAm instead of the Cou-
lomb component present in Eq.~19!. The polarization tenso
Pmn(K) is obviously related to the polarizations used in E
~19!. The question of gauge independence~or dependence!
can be addressed considering how the calculated quan
depend onl.

C. Effective actions for the phase and electric potential

Integrating outw and u from Eq. ~26! one can obtain,
respectively,

bVkin$u%5
T

8 (
n52`

` E dK

~2p!2
u~2K !M u

21~ iVn ,K !u~K !,

M u
215M11

212M22M12
21M21

21 ~30!

and

bVkin$w%5
T

8 (
n52`

` E dK

~2p!2
w~2K !M w

21~ iVn ,K !w~K !,

M w
215e2~M22

212M11M12
21M21

21!. ~31!

It is evident that M w
215e2M22

21M11M u
21

5e2M22
21detM 21, so that if M11

21 ,M22
21Þ0 the equations

M u
215M w

215detM 2150 are equivalent.
Using Eqs.~17! and ~31! it is straightforward to obtain

that the structure factor~6! is given by
13451
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S~V,K !5
T

V

D0
2

8
ImMu~V1 i0,K !. ~32!

V. PHASE EXCITATIONS IN THE CHARGED SYSTEM
IN THE ABSENCE

OF THE DENSITY-CURRENT COUPLING

A. Equation for the collective phase excitations

Let us assume for a moment that there is no dens
current coupling (P03

a 5P30
a 50) and discuss briefly the col

lective excitations that follow from Eqs.~27!, ~30!, and~31!.
As mentioned above, the matrixM 21 reduces in this case to
the known expression.17 Therefore, it is not surprising tha
the phase-only action~30! takes the form

M u
21~ iVn ,K !52Vn

2P̄331LabKaKb ,

P̄335
P33~K !

12P33~K !Vc~K !
, ~33!

which coincides with the corresponding expression in R
17 ~see also Ref. 25!. The dispersion law of the collective
phase modes is defined by the equation

M u
21~ iVn→V1 i0,K !50. ~34!

This equation can also be regarded as a direct consequ
of charge conservation,

]r~ t,r !

]t
1“• j ~ t,r !50, ~35!

where the current and charge density are defined via

j52c
dVkin$u,A%

dA
, r5

dVkin$u,A%

dA0
, ~36!

where the electromagnetic fieldA in Vkin was restored using
the rule~15!. Evaluating Eq.~36! one arrives at Eq.~45! with
P03

a 50, so that Eq.~34! is indeed recovered. There is, i
fact, no surprise in the link between Eqs.~35! and ~34!,
which is just a consequence of the way we introduced
phaseu in Eq. ~7!.

As discussed in Refs. 17 and 25 the only solution of t
equation forK→0 is the plasma mode. Using as an exam
the 3D form of the Coulomb potential and assuming th
Lab5Ldab , which is valid for isotropic system withmab
5mdab , one obtains from this equation that the plasma f
quencyvp5A4pLe2 for the limit K→0. The expression
for vp can be reduced to the standard one,A4pne2/m, if
one uses the superfluid stiffnessL5n/m obtained for the
continuum model withs-wave pairing.

It is clear that for the plasma modeVp(K )/K→` as K
→0. This property remains valid even if 2D Coulomb p
tential is used and it makes plasmons different from a
sound mode withV/K→const asK→0. For example, if a
neutral superconductor were considered the polarizationP̄33
6-7
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SERGEI G. SHARAPOV AND HANS BECK PHYSICAL REVIEW B65 134516
in Eq. ~33! would be replaced byP33 and the solution of Eq.
~34! for K→0 is the soundlike BA mode and its velocity
given by Eq.~C9!.

B. Phase excitations via electric-potential propagator
and gauge-independent density-density

and current-current correlators

It is instructive also to look at the formMw for the elec-
tric potentialw which is,

M w
21~ iVn ,K !54e2S 2P33L

abKaKb

2Vn
2P331LabKaKb

1Vc
21~K !D .

~37!

Considering the same example of an isotropic system wi
3D Coulomb potential, Eq.~37! in the limit K→0 and
V/K→` can be reduced to the known expression~see, e.g.,
Ref. 25!

M w
21~ iVn ,K !5

K2

p S 11
vp

2

Vn
2D . ~38!

It is obvious that the above-discussed plasma mode ca
also seen inMw . Indeed after the analytical continuatio
iVn→V1 i0, Mw(V,K ) acquires a pole atV5vp .

It is also useful to evaluate gauge-independent dens
density and current-current correlators, which are defined

x~ iVn ,K !52
d2T ln Z$A%

dA0~2K !dA0~K !
,

xab~ iVn ,K !52
d2T ln Z$A%

dAa~2K !dAb~K !
, ~39!

where

Z$A%5E DuDw exp@2bVkin$u,w,A%# ~40!

with the external field (A0 ,A) restored using the rule~15!.
Then we arrive at the standard expressions17

x~ iVn ,K !52
e2P̄33L

abKaKb

LabKaKb2P̄33Vn
2

~41!

and

xab~ iVn ,K !5e2S Lab2
LamLnbKmKn

2Vn
2P̄331LabKaKb

D .

~42!

Again assuming thatLab5Ldab one can reduce Eq.~42!
to the known form of the current-current correlator

xab~ iVn ,K !5e2L

2Vn
2P̄33dab1LK2S dab2

KaKb

K2 D
2Vn

2P̄331LK2
.

~43!
13451
a
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The difference between the gauge-independent equat
~41! and~42! and the gauge-dependentP̄33, Lab in Eq. ~33!
was recently discussed in Ref. 17. The link considered ab
between charge-conservation expressed by Eq.~35! and Eq.
~34! shows that the solutions of Eq.~34! are gauge indepen
dent, even thoughP̄33, Lab are gauge dependent. At a mo
formal level it can be argued that Eqs.~41! and ~42! are
gauge independent because even if one derives them sta
from Eq. ~29! the gauge-fixing parameterl does not enter
the final result and one obtains the same expressions.

Putting this in another way, one can say that the posit
of zeros ofM u

21(V,K ) is gauge independent, because the
zeros coincide with the poles of the gauge-independ
x(V,K ). As we will see in Sec. VI D, density-current cou
pling modifies both Eqs.~41! and~42!; nevertheless the gen
eral argument about zeros ofM u

21(V,K ) @poles of
Mu(V,K )] remains valid.

VI. PHASE EXCITATIONS IN THE PRESENCE
OF DENSITY-CURRENT COUPLING

Here we generalize all expressions from the preced
section for nonzeroP30

a . In particular, Eq.~33! becomes

M u
21~ iVn ,K !52Vn

2P̄332 iVnKa„P̄03
a ~K !1P̄30

a ~K !…

1L̄abKaKb , ~44a!

P̄03
a ~K ![

P03
a ~K !

12P33~K !Vc~K !
,

L̄ab[Lab1
P03

a ~K !P30
b ~K !

2P33~K !1Vc
21~K !

. ~44b!

The dispersion law for all collective phase excitations is s
defined by Eq.~34!, but with Mu given by Eq.~44a!. It has
to be pointed out that the interpretation of Eqs.~34! and~44!
as a charge-conservation law, Eq.~35!, remains valid even
for P30

a Þ0. The only difference is that the expressions~36!
for current and density

j a~ iVn ,K !5
e

2
@L̄ab~K !iK b2 i P̄03

a ~K !iVn#u~K !,

r~ iVn ,K !52
e

2
@P̄33~K !iVn1 i P̄03

a ~K !iK a#u~K !

~45!

are now more complicated and containP̄03
a . Nevertheless

substitution of Eq.~45! in Eq. ~35! indeed results in Eq.~34!
with Mu given by Eqs.~44a!. Hence, even in the most gen
eral caseP03

a Þ0, the position of zeros ofM u
21 ~poles ofM u)

is gauge independent.

A. Equation for the CG mode, its physical interpretation,
and gauge independence

It can be checked that in the limitK→0 andV/K→`
one of the collective modes is the plasma mode conside
6-8



un

th

ita

e
o

ti

o
t

in

e

u

, it
ing
tes

al
ic-

in

is
uid
ib-

qs.

olar-

nce

bey
any

for

p-

ua-
on

re
lcu-
the

n

for
a-

nt

r-
on

ef.

EFFECTIVE ACTION APPROACH AND CARLSON- . . . PHYSICAL REVIEW B 65 134516
above. We are, however, more interested in whether a so
like mode (V/K5const for K→0) that would be similar to
the BA mode in neutral superconductors can exist in
charged system. It is seen from Eqs.~44! that if the ratio
V/K is fixed and one is interested in the low-energy exc
tions with V→0, only the last term of Eq.~44a! is relevant
becauseP̄33(K) andP̄03

a (K) are;Vc
21(K ) in this limit. In

this case the equationM u
21(V,K )50 after the analytical

continuationiVn→V1 i0 reduces to

L̄ab~V,K !KaKb5S Lab~V,K !2
P03

a ~V,K !P30
b ~V,K !

P33~V,K !
D

3KaKb50, ~46!

so that the detailed form of the Coulomb interaction becom
irrelevant, as was mentioned above. The solutions
Eq. ~46! are gauge independent because forK→0 this
equation is equivalent to the gauge-independent equa
M u

21(V,K )50.
It is interesting that practically the same arguments ab

the gauge independence of the CG mode studied using
formalism of Refs. 9–12 can be made. The correspond
equation for the CG mode is

P̄22~V,K !2P22~0,0!50, ~47!

where

P̄22~V,K !5P22~V,K !1P23~V,K !
Vc~K !

12Vc~K !P33~V,K !

3P32~V,K !. ~48!

P23 is given by Eq.~28! and the definition ofP22 is given in
Ref. 12@in addition to two obvioust2 matrices, it also con-
tains the factorg2(k) becaused-wave pairing is considered#.
One can show that in the limitK→0, Eq.~47! reduces to the
Ward identity

@22/V1P22~V,K→0!#P33~V,K→0!1P23
2 ~V,K→0!50.

~49!

Exactly this identity was recently proven in Ref. 22~to be
precise,s-wave pairing was considered! using the gauge-
independence~charge-conservation! arguments ~see, e.g.,
Ref. 37! and the mean-field gap equation

2

V
1P22~0,0!50. ~50!

As has already been mentioned this equation has to be
plicitly used in the formalism of Refs. 9–12.

It is possible to establish a link between Eq.~46! and a
simple and transparent interpretation of the CG mode s
gested by Schmid and Scho¨n38 ~see also Chap. 13 in Ref. 8!.
Comparing the expression for current in Eqs.~45! and ~46!

one can notice that sinceP̄03
a (K) disappears in the limitK

→0, Eq. ~46! is just a condition
13451
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“• j50, j a~ iVn ,K !5
e

2
L̄ab~K !iK bu~K !, ~51!

which implies that if there is a supercurrent in the system
should be compensated by some normal current minimiz
the total current. Exactly the same condition, which rela
the CG mode to a counterflow of supercurrent and norm
current, is discussed in Ref. 8. Thus using the two-fluid p
ture one may say thatL̄ab(K) in Eq. ~46! consists of the
supercurrentLab and normal-currentL̄ab(K)2Lab(K)
parts.

Although this counterflow resembles second sound
He,4 it was pointed out in the earliest studies38 ~see also Ref.
6 and 8! that the CG mode is not the second sound, which
a hydrodynamic mode since in the CG mode the normal fl
and superfluid are not in the local thermodynamic equil
rium and this mode is not a hydrodynamic mode.

It has to be stressed that even though the solutions of E
~46! and~47! are gauge independent forK→0, the existence
of such solutionsis not requiredby the gauge invariance
because no general statement can be made about the p
izationsP33, Lab, andP03

a for arbitrary values ofV andK .
Thus, in contrast to the BA and plasma modes, the existe
of which is guaranteed by the Goldstone theorem39 and the
Anderson-Higgs mechanism, the CG mode does not o
any theorem and its existence is a fortunate result of m
subtle features of the system dynamics.

B. Velocity of the CG mode

It is difficult to solve Eq. ~46! analytically for d-wave
pairing and even numerically, a more simple equation
real part ReL̄ab(V,K )50 is usually considered.11,12 This
significantly simplifies its solution but, in general, this a
proximation can be justified onlya posteriori, when the
imaginary part is estimated. It is possible to study this eq
tion in two ways. The first way is to extract the dispersi
law V(K ) for, in general, arbitraryK . The second way is to
find the velocity of the CG mode,vCG(f)[V/uK u in the
limit K→0. The extraction of the dispersion law is mo
sensitive to the approximations that were made in the ca
lation of the polarization operators. In particular, usage of
approximated expressions~A3!, ~A4!, and ~A5!, which ne-
glect the pair breaking forV>2D0, introduces the restriction
vFK,D0. Moreover, for the polarization equations~C4!,
~C7!, and ~C11! calculated using the nodal approximatio
~see Appendix B! the condition of smallness ofK becomes
even more strict, so that here we study only the equation
vCG . As also discussed in Appendix B the nodal approxim
tion is valid forT!D0. This is the reason why in the prese
paper only the temperaturesT,0.6Tc are considered, where
Tc is defined by Eq.~C10!. Nevertheless, the presented fo
malism allows, in principle, to study the phase-fluctuati
structure factor up toTc if no additional approximations are
made in the calculation of the polarizations.

Thus for illustrative purposes and comparison with R
12 we also solve numerically the equation
6-9
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ReL̄abS V

K
5vCG~f!,K→0DKaKb

K2
50 ~52!

@it is rewritten in dimensionless form~D1! for the numerical
work# instead of Eq.~46! and the results are presented in F
2. We stress that forf5p/16 we obtain two solutions
vCG'0.83vF andvCG'0.56vF . These results are in fact i
n

,

f
al

G
s
a

w
r
b-
.

B

13451
.

very good agreement with the results shown in Figs. 2~a! and
Fig. 2~b! of Ref. 12. In particular, we also obtain that th
velocity of the CG mode is practically temperature indepe
dent and its value is well described byvCG5vF cos(f
2p/4) @or vCG8 5vF cos(f2p/41p/2) for the other pair of
nodes, which is rotated with respect to the first pair byp/2#.
Indeed, this equation gives
vCG5vF35
0.707 (0.711 at T50.5Tc): f50 ~antinodal direction!

0.831 (0.833 at T50.5Tc): f5p/16

0.555 (0.562 at T50.5Tc): f5p/16 ~other pair of nodes!

1 (1.00 at T50.5Tc): f5p/4 ~nodal direction!.

~53!
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Interestingly we obtain that the CG mode disappears eve
somewhat lower temperatures than in Ref. 12,T50.1Tc .
This lowest value ofT when the CG mode still exists is
however, more the result of a numerical solution of Eq.~52!
than a real threshold temperature, because the peaks o
structure factor considered below disappear rather gradu

C. Structure factor

The knowledge of the structure factorS(V,K ) is even
more important than the value of the velocityvCG because
this factor contains information about the damping of the C
mode.40 Furthermore, as we have already mentioned, thi
the quantity that is measured in the Carlson-Goldm
experiment.1,2

One of the main results of the present paper is that
obtain a closedanalytical expression for the structure facto
~32! for a cleand-wave superconductor, which is just a su
stitution of P33, P03

a and L given, respectively, by Eqs

FIG. 2. Temperature dependence of the velocities of the
mode~dashed line! and, the CG mode forf50 ~full line! and f
5p/16 ~dot-dashed lines!. We put aD510 and the velocities are
expressed in units ofvF .
at

the
ly.

is
n

e

~C4!, ~C11!, and~C7! in Eq. ~44b! and the inverse imaginary
part of Eq. ~44a! in Eq. ~32!. The dimensionless form o
M u

21 which is convenient for numerical evaluation, is give
in Appendix D @Eqs. ~D2! and ~D3!#. In our formalism
M u(V,K ) for a fixed value ofvFK depends on the following
dimensionless ratios: ~i! aD5vF /vD , ~ii ! T/eF

[T/Tc(Tc/e f) @see Eq.~C10! whereTc is expressed viaeF#,
~iii ! vF

2K2/vp
2[vF

2K2/eF
2(eF

2/vp
2), and the anglef that char-

acterizes the direction ofK with respect to the Fermi surfac
~see Appendix D!. The ratiovF

2K2/vp
2 , which was absent in

Eq. ~52! is now present because the full expression forM u
21

contains the Coulomb potentialVc(K ) @see its representatio
in terms ofvFK andvp in Eq. ~D4!#, which we chose in the
simplest 3D form. It is indeed easy to see that sincevFK
!vp , the detailed form ofVc is not important and here we
computeS(V,K ) including the Coulomb potential only to
demonstrate this explicitly.

Despite the gauge-dependent definition of the pair susc
tibility ~5!, the peaks of the structure factor~32! considered
below, which are associated with the singularities
Mu(V,K ) @zeros ofM u

21(V,K )#, can be regarded asgauge
independentin the sense that the position of these singula
ties is gauge independent as was argued above. Furtherm
as shown in Ref. 35, a more general expression forMu
derived from Eq.~29! does dependon the gauge-fixing pa-
rameterl, but in such a way that the position of thepole of
Mu andits residuearegauge invariant. This justifies the use
of the structure factorS(V,K ) which is expressed via
ImMu(V,K ).

In Figs. 3~a!–3~c! we show the structure factor calculate
using the analytical expressions mentioned above for dif
ent temperatures. The position of the peaks defined by
ratio V/vFK is well fitted by Eq.~53!. In particular, forf
5p/16 two peaks are seen. This allows one to associate
origin of these peaks with the gap nodes. As expected,
peaks are getting less sharp and higher as the temper
increases. The width of the peaks also depends on the d
tion of K : for a larger value off(0,f,p/4) the corre-

A

6-10
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EFFECTIVE ACTION APPROACH AND CARLSON- . . . PHYSICAL REVIEW B 65 134516
sponding peak is wider. All these results are in agreem
with Fig. 3 from Ref. 12, but due to the analytical charac
of the calculation the subtle peak features have a better r
lution.

To argue that these peaks in Fig. 3 are indeed due to
density-current coupling in Fig. 4 we show for comparis
the structure factor, which was calculated settingP30

a 50.
The disappearance of the peaks confirms our claim that
CG mode demands nonzero density-current coupling.

This procedure of settingP03
a equal to zero is in fact very

convenient in clarifying the origin of the peaks, because e
for P03

a 50 some peaks can be seen, because bothP33 and
P00

ab have the square-root singularities discussed in Sec
For example, forp/16,f,p/4 ~see Fig. 5! the lower peak
becomes even sharper, but in contrast to to Fig. 4 itdoes not
disappearwhen we setP03

a 50.

FIG. 3. Structure factorS(V,K ) in arbitrary units: ~a! T
50.2Tc , ~b! T50.4Tc , and ~c! T50.6Tc . We put vp50.5eF ,
vFK50.01eF ~i.e., vFK50.02vp), and aD510, so that Tc

'0.063eF .
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V.

D. Manifestations of the CG mode
in the classical response functions

The structure factor considered above is very import
for the investigation of the CG mode because for superc
ductors there is no classical laboratory field that couples
and in the static limit is the thermodynamic conjugate of, t
order parameter. The reason why there is no laboratory c
jugate field in the superconductor and superfluid cases is
these order parameters are off-diagonal in number spa2

Nevertheless it is interesting to investigate whether or not

FIG. 4. Structure factorS(V,K ) in arbitrary units for T
50.4Tc . The rest of the parameters is the same as in Fig. 3, ex
for the fact that the density-current coupling is ‘‘switched of
(P03

a 50.)

FIG. 5. Structure factorS(V,K ) in arbitrary units for T
50.4Tc . ~a! P03Þ0, ~b! P0350. The rest of the parameters is th
same as in Fig. 3.
6-11
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CG mode can manifest itself in the ‘‘classical’’ correlato
when one goes beyond the static limit.

Let us first consider the formMw for the electric potential.
Substituting the elements of the matrix~27! in Eq. ~31! we
arrive at the following expression@compare with Eq.~37!#:

M w
21~ iVn ,K !

54e2S 2P33L
abKaKb1P03

a P30
b KaKb

2Vn
2P331LabKaKb2 iVnKaP03

a 2 iVnKaP30
a

1Vc
21~K !D . ~54!

One can verify that both plasma and CG modes are pre
in the equationM w

2150.
ity
t
si

G
a

to
it

13451
nt

Although the equationM w
2150 is gauge independen

M w
21 itself as well asM u

21 is gauge dependent. This time
however, we can take instead ofMw , truly gauge-
independent correlators~39!. Note that the definition~39!
with the source fields (A0 ,A) clearly shows that the ‘‘clas-
sical laboratory field’’ is used to probe the correspondi
response. Then repeating the calculation of Eqs.~41! and
~42! with nonzeroP03

a we arrive at the gauge-independe
density-density correlator

x~ iVn ,K !5
e2~P̄03

a P̄30
b 2P̄33L̄

ab!KaKb

L̄abKaKb2P̄33Vn
22 iVnKaP̄03

a 2 iVnKaP̄30
a

~55!

and current-current correlator
xab~ iVn ,K !5e2S L̄ab2
~ iVnP̄03

a 2L̄amKm!~ iVnP̄30
b 2L̄nbKn!

L̄abKaKb2P̄33Vn
22 iVnKaP̄03

a 2 iVnKaP̄30
a D . ~56!
the
rse
any

l of
the

ure
and
ity
12
ing
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u-
on-
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t

Re-

t

CG
rmi
t
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In Fig. 6 we show the spectral density

B~V,K !5
1

p
Imx~V,K ! ~57!

calculated for the density-density correlator~55!. The plasma
mode @see Fig. 6~b!# and the CG mode@see Fig. 6~a!#, as
proven by Fig. 6~c!, are clearly seen in the density-dens
correlator. We note that forf5p/16 the lower peak does no
change strongly, showing that it is due to the density-den
correlations and not the CG mode.

As the value ofK decreases, the relative weight of the C
mode with respect to the plasma mode becomes smaller
smaller as shown in Fig. 7. Finally in the limit

x~ iVn ,K !;2
e2P̄33L̄

abKaKb

L̄abKaKb

,
V

K
5const, K→0,

~58!

the CG mode disappears from the density-density correla
This agrees with the statement of Ref. 23 that the dens
density correlator in the limitK→0 is dominated by the
plasma oscillation only.

Treating the current-current correlator~56! in the same
way one obtains

xab~ iVn ,K !;e2S L̄ab2
L̄amKmL̄nbKn

L̄abKaKb
D ,

V

K
5const, V→0. ~59!

Taking into account that the structure ofL̄ab is L̄ab

5Ldab2FvFavFb one can check that the term withF can-
ty

nd

r.
y-

cels out from the transverse correlator. This shows that
longitudinal CG mode cannot be seen in the transve
current-current correlator and its presence does not have
influence on the Meissner effect in the limitK→0.

VII. DISCUSSION

In the present paper we have shown that the 2D mode
cleand-wave superconductors predicts the existence of
CG mode in a wide temperature region down toT50.1Tc .
This is done using the analytical expression for the struct
factor, which has peaks associated with the CG mode,
solving numerically the equation for the CG-mode veloc
vCG . All our results are in a good agreement with Ref.
where a similar model has been studied numerically us
the formalism of Ref. 9. It was also shown in Ref. 12 that
contrast tos-wave superconductors, where the impurities s
pressing the Landau damping result in more favorable c
ditions for the observation of the CG mode, ind-wave su-
perconductors the CG mode disappears in the dirty syste

Thus the main physical question is whether our predict
of the CG mode in a cleand-wave superconductor is relevan
for HTSC cuprates, which are very complex compounds.
cent measurements41 done in high-purity YBa2Cu3O7 crys-
tals show that the in-plane mean free pathl increases to
.1 mm below T520 K ('0.22Tc). This suggests tha
these systems are deeply in the clean limitl @j;10 Å (j is
the in-plane superconducting coherence length! and the
model we considered can be applied to describe the
mode in these compounds. Using the value of the Fe
velocity vF'1.83107 cm/s from Ref. 41 we predict tha
the velocity of the CG mode is expected to be within t
range vCG5(1/A2 –1)vF'(1.3–1.8)3105 m/c depending
on the direction ofK , which is one or two orders of magni
6-12
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EFFECTIVE ACTION APPROACH AND CARLSON- . . . PHYSICAL REVIEW B 65 134516
tude faster than the velocity of the CG mode observed
conventional superconductors.

From the theoretical point of view there are many qu
tions that deserve further theoretical investigation. First
all, it would still be important to consider the influence
impurities and inelastic scattering by antiferromagnetic s
fluctuations within the proposed formalism. It is also inte
esting to estimate the widening of the structure-factor pea
which is discussed above Eq.~18!. This widening may be-
come important if temperaturesT&Tc are considered.

The discovery of the CG mode in conventional superc
ductors has led to much deeper understanding of super
ductivity, so we hope that the investigation of the same pr
lem in HTSC would also increase the understanding of th
complex systems.

FIG. 6. Spectral densityB(V,K ) in arbitrary units for T
50.5Tc . ~a! 0<V/vFK<1 andP03

a Þ0, ~b! 49<V/vFK<51 and
P03

a Þ0, ~c! 0<V/vFK<1 andP03
a 50. We putvp50.5eF , vFK

50.01eF ~i.e., vp550vFK), and aD510. To display thed-like
plasma peak seen in~b! a small imaginary part is added tovp .
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APPENDIX A: GENERAL EXPRESSIONS
FOR POLARIZATIONS P i j

The general expressions for the polarization functionsP i j
are ~see, e.g., Refs. 11, 18, and 24!

FP00
ab~ iVn ,K !

P33~ iVn ,K !
G52E d2k

~2p!2 H 1

2 S 12
j2j16D2D1

E2E1
D

3F 1

E11E21 iVn
1

1

E11E22 iVn
G

3@12nF~E2!2nF~E1!#

1
1

2 S 11
j2j16D2D1

E2E1
D

3F 1

E12E21 iVn
1

1

E12E22 iVn
G

3@nF~E2!2nF~E1!#J V6~k!. ~A1!

V6~k![H vFa~k!vFb~k!, ‘ ‘ 1 ’ ’ ,

1, ‘ ‘ 2 ’ ’ ,

and

FIG. 7. Spectral densityB(V,K ) in arbitrary but the same units
in Fig. 6 for T50.5Tc . We put vp50.5eF , vFK50.001eF ~i.e.,
vp5500vFK), andaD510.
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SERGEI G. SHARAPOV AND HANS BECK PHYSICAL REVIEW B65 134516
P03
a ~ iVn ,K !5E d2k

~2p!2 H S j1

2E1
2

j2

2E2
D F 1

E11E21 iVn

2
1

E11E22 iVn
G@12nF~E2!2nF~E1!#

1S j1

2E1
1

j2

2E2
D F 1

E12E21 iVn

2
1

E12E22 iVn
G@nF~E2!

2nF~E1!#J vFa~k!, ~A2!

where j6[j(k6K /2), E6[E(k6K /2), and D6[D(k
6K /2). One can also check thatP30

a ( iVn ,K )
5P03

a ( iVn ,K ).
The first and second terms in Eqs.~A1! and ~A2! have a

clear physical interpretation.37 The first term proportional to
12nF(E2)2nF(E1) gives the contribution from ‘‘super
fluid’’ electrons. The second term gives the contribution
the thermally excited quasiparticles~i.e., ‘‘normal’’ fluid
component!. This is the term responsible for the appearan
of the Landau termsin the effective action~see, e.g., Refs
18 and 24!. The imaginary part of these terms is the on
source of damping of the phase excitations in the clean
tem considered here. The physical origin of this damping
due to the scattering of the thermally excited quasipartic
from the phase excitations.

Since in what follows we are interested in the lim
V,vFK!D0 we may safely neglectV and K in the first
terms of Eqs.~A1! and ~A2! and write

P33~V,K !'2E d2k

~2p!2 H D2~k!

E3~k!
tanh

E~k!

2T

1
j2~k!

E2~k!

2~E12E2!

~E12E2!22V2

3@nF~E2!2nF~E1!#J , ~A3!

P00
ab~V,K !'2E d2k

~2p!2

2~E12E2!

~E12E2!22V2

3@nF~E2!2nF~E1!#vFa~k!vFb~k!,

~A4!

P03
a ~V,K !'2E d2k

~2p!2

j~k!

E~k!

2V

~E12E2!22V2

3@nF~E2!2nF~E1!#vFa~k!. ~A5!

This approximation is in agreement with that used in App
dix C of Ref. 11.
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APPENDIX B: NODAL APPROXIMATION

The key values that are necessary for evaluation of
polarizations, Eqs.~A3!, ~A4!, and~A5!, are the differences
E12E2 andnF(E1)2nF(E2). Expanding inK ,

E~k1K /2!2E~k2K /2!5vg~k!K , ~B1!

where the quasiparticle group velocity is given by

vg~k!5¹kE~k!5
1

E~k!
@j~k!vF1D~k!vD#. ~B2!

It is obvious that due to the gapk dependence, Eq.~B1!
differs from thes-wave case24 by the second term.42 To per-
form the calculation analytically it is useful to rewrite Eq
~B1! and~B2! in terms of the nodal approximation describe
in detail in Ref. 42~see also Sec. VII of Ref. 18 where th
imaginary parts of these polarizations were calculated!. In
particular, using this approximation one has«(k).p1
[vFk15p cosd, D(k).p2[vDk25p sind with E(k).p
5Ap1

21p2
25AvF

2k1
21vD

2 k2
2, where the quasiparticle momen

tum k5(k1 ,k2) is written in the nodal coordinate systemk̂1 ,
k̂2 associated with thej th node (j 51, . . . ,4).~Note that the
angled was denoted in Refs. 18 and 42 asw.) Then

vgK5vFK1cosd1vDK2sind[P cos~d2c!,

E~k6K /2!!D0 , ~B3!

where the momentumK5(K1 ,K2) of the u particle is also
expressed in the nodal coordinate systemk̂1 , k̂2, so that
P1[vFK15P cosc, P2[vDK25P sinc, and P
5A(P1)21(P2)25AvF

2K1
21vD

2 K2
2. ~We denoted the compo

nents ofP as P1,P2 to make them different from the nod
label Pj used in what follows.! Finally, we can approximate
the differencenF(E1)2nF(E2) as

nF~E1!2nF~E2!'
dnF~E!

dE
vgK5

dnF~E!

dE
P cos~d2c!.

~B4!

Recall also that in the nodal approximation the integral o
the original Brillouin zone is replaced by the integration ov
four nodal subzones as

E d2k

~2p!2
→(

j 51

4 E dk1dk2

~2p!2

→(
j 51

4 E d2p

~2p!2vFvD

5(
j 51

4 E
0

pmax pdp

2pvFvD
E

0

2pdw

2p
,

pmax5ApvFvD/a. ~B5!
6-14
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It is necessary to underline that the nodal approximat
is designed for the low-temperature regimeT!D0. Thus
all polarizations derived in Appendix C are applicable f
T!D0.

APPENDIX C:
CALCULATION OF P i j AND EQUATION FOR Tc

After the substitution of Eqs.~B3!, and~B4! in Eq. ~A3!
and integration overp ~see Ref. 18! P33 is expressed via the
integral

I 5E
0

2p dd

2p

cos2d cos2~d2c!

cos2~d2c!2b2
~C1!

with b5uVu/Pj . ~Note that we have omitted the subzo
index j in c andb.! This integral can be calculated using th
table integral~3.682! from Ref. 43 forb2.1 giving

I 5
1

2
1b2cos 2c2

ubu3

Ab221
cos2c1ubuAb221 sin2c.

~C2!

Then using the analytical continuation in the regionb2,1,
we finally arrive at the result

P33~V,K !52k~T!2(
j 51

4 ln 2

p

T

vFvD

3H 1

2
1

V2

Pj
2
cos 2c j2

uVu

Pj

1

AV2

Pj
2

21

3FV2

Pj
2
cos2c j2S V2

Pj
2

21D sin2c jGQS uVu

Pj

21D
1 i

V

Pj

1

A12
V2

Pj
2

FV2

Pj
2
cos2c j

1S 12
V2

Pj
2 D sin2c jGQS 12

uVu

Pj
D J , ~C3!

where k(T) denotes the term that originates from the fi
term in the braces of Eq.~A3!, which cannot be accuratel
calculated using the nodal approximation.18 It is easy to
show, however, thatk5m/p at T50 for the continuum
s-wave pairing model. This can be used to writeP33 in the
dimensionless form,

P33~V,K !5
m

p
P̃33~V,K !, ~C4!

where
13451
n

t

P̃33~V,K !52k̃2(
j 51

4
ln 2

2

T

eF
aD$•••%, ~C5!

where ••• are the terms in the braces in Eq.~C3!, eF

5mvF
2/2 is the Fermi energy,aD5vF /vD ~see Sec. II!, and

we assume thatk̃;1. One can also check that the imagina
part of P33 coincides with the expression calculated in R
18 by integratingd(P cos@d2c#2V).

In the same way we arrive at the expression for
current-current polarization function, Eq.~A4!,

P00
ab~V,K !KaKb /K2

52(
j 51

4 ln 2

p

T

vFvD

Pj
2cos2c j

K2 F 12
uVu

Pj

1

AV2

Pj
2

21

3QS uVu

Pj

21D 1 i
V

Pj

1

A12
V2

Pj
2

QS 12
uVu

Pj
D .G

~C6!

The zero-order superfluid stiffnessL0
ab5dabn/m for the

continuum@mab(k)5mdab# system atT50, wheren is the
total carrier density which, of course, coincides with the de
sity of the neutralizing background. Using the express
eF5pn/m, which is, strictly speaking, valid only for the 2D
systems with the quadratic dispersion law, we can also
write the superfluid stiffnessLab in the dimensionless form

Lab~V,K !
KaKb

K2
[

eF

p
L̃5

eF

p F L̃02(
j 51

4

ln 2
T

eF
aD

3
Pj

2

~vFK !2
cos2c j•••G . ~C7!

As was already mentioned after Eq.~C3!, the terms that con-
tain the averaging over the Fermi surface@see, e.g., Eqs.~24!
and ~25!# cannot be accurately calculated using the no
approximation.18 Thus, in general,L̃0 as well ask̃ should be
considered as a free parameter of the model. In particu
decreasing the value ofL̃0 it is possible to describe a low
ering of the zero-temperature superfluid stiffness in HTS
Nevertheless, for the numerical computations we will a
sume thatL̃0;1. It is easy to obtain~see, e.g., Refs. 18 an
42! the static, zero-momentum bare superfluid stiffness

L5
eF

p S L̃022 ln 2aD

T

eF
D ~C8!

and the velocity of the BA mode

v5A L

P33~0,0!
5

vF

A2
AL̃022 ln 2aDT/eF

k̃
~C9!
6-15



re
e

pa

rm

s

po-

ns
r
r

ys-

SERGEI G. SHARAPOV AND HANS BECK PHYSICAL REVIEW B65 134516
so that for L̃05k̃51 the BA-mode velocityv(T50)
5vF /A2. Using Eq.~C8! one can estimate the temperatu
of the Berezinskii-Kosterlitz-Thouless transition from th
equationTc5p/2L(Tc), which gives

Tc5
eFL̃0

2~11 ln 2aD!
. ~C10!

We will use this definition ofTc to express the temperatureT
in units of Tc andeF .

Finally, we obtain that expression for Eq.~A5!,

P03
a ~V,K !Ka /K

52(
j 51

4 T

pvF H aDln 2
V

vFK
cosc j

3F cosc j2
uVu

Pj

cosc j

AV2

Pj
2

21

QS uVu

Pj

21D

1 i
V

Pj

cosc j

A12
V2

Pj
2

QS 12
uVu

Pj
D G J . ~C11!

where we put inside the braces the dimensionless
P̃03

a Ka /K.

APPENDIX D: EQUATIONS FOR VCG , STRUCTURE
FACTOR AND TRANSFORMATION TO THE GLOBAL

COORDINATE SYSTEM

Substituting Eqs.~C4!, ~C7!, and ~C11! in Eq. ~46!, we
obtain the equation for CG mode in the dimensionless fo
which is convenient for numerical investigation,
ca

ss

13451
rt

,

L̃5
T2

2eF
2

~P̃03
a Ka /K !2

P̃33

. ~D1!

The whole expression~44a! for M u
21 can also be written

as

M u
21~V,K !5

m

p
vF

2K2M̃ u
21~V,K !, ~D2!

where

M̃ u
21~V,K !5

V2

vF
2K2

P̂33~V,K !2
V

vFK
P̂03

a ~V,K !
Ka

K

1
1

2
L̂ab

KaKb

K2
, ~D3!

where the dimensionless polarization functionsP̂33, P̂03
a ,

and L̂ab were made from the full polarization function
P̂33, P̂03

a , L̄ab @see Eqs.~33! and~44b!# in the same way as
the polarizations Eqs.~C4!, ~C7!, and~C11!. The only differ-
ence is that these full polarizations include the Coulomb
tential Vc(K ) ~for simplicity we take the 3D potential!,
which for our purposes is convenient to rewrite as

Vc
21~K !5

m

2p

vF
2K2

vp
2

, ~D4!

wherevp is the plasma frequency defined after Eq.~36!.
Although the local nodal coordinate systems (Pj ,c j ) are

very convenient for calculating the polarization functio
~C5!, ~C7!, and~C11!, the final expressions for them and, fo
example, Eq.~D2! have to be calculated in the global o
laboratory coordinate system (K,f). It is convenient to mea-
sure the anglef from the vectork̂x , so thatf50 corre-
sponds to the corner of the Fermi surface~see, e.g., Fig. 1 in
Ref. 18! and the first node is atf5p/4. Thus the transfor-
mations from the global coordinate system into the local s
tem related to thej th node are
Pj5KAvF
2cos2S f2

p

4
1

p

2
~ j 21! D1vD

2 sin2S f2
p

4
1

p

2
~ j 21! D ,

cosc j5
vFK

Pj
cosS f2

p

4
1

p

2
~ j 21! D , sinc j5

vDK

Pj
sinS f2

p

4
1

p

2
~ j 21! D , j 51, . . . ,4. ~D5!
,
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