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Effective action approach and Carlson-Goldman mode ind-wave superconductors
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We theoretically investigate the Carlson-Goldm{&%) mode in two-dimensional cleagtwave supercon-
ductors using the effective “phase-only” action formalism. In conventiostalave superconductors, it is
known that the CG mode is observed as a peak in the structure factor of the pair suscegfiiili§) only
just below the transition temperatufg and only in dirty systems. On the other hand, our analytical results
support the statement by Ohashi and TaKdteys. Rev. B52, 5971(2000] that ind-wave superconductors the
CG mode can exist in clean systems down to much lower temperaflxe8,1T.. We also consider the
manifestations of the CG mode in the density-density and current-current correlators and discuss the gauge
independence of the obtained results.
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[. INTRODUCTION approach fails abovel.. Relying on this argument the
“phase-only” actions ford-wave superconductors were re-
More than 25 years ago, an unusual propagating soundaently derived in Refs. 17—19. However, the only phase ex-
like (Q/K=vcg) Carlson-Goldmar{CG) mode incharged citations that are described by these actions are the BA mode
superconducting systems with the velocityeg=10°~  in the neutral superconductd? and the plasma modé®
10" m/c was discovered(see also Ref. 2 It was a wide- which appears when the Coulomb interaction is taken into
spread opinion before the CG mode discovery that since iaccount. This corresponds to the standard paradigm that does
the charged systems, the soundlike Bogolyubov-Andérson not yield the existence of the CG mode. Thus the purpose of
(BA) mode associated witheutral superconductors is con- the present paper is to investigate which ingredient is miss-
verted to the plasma mode due to the Anderson-Higgéng in the treatments of Refs. 17-19 so that the CG mode
mechanism, there is no soundlike phase mode in chargedbes not appear in these approaches and to establish a link
systems. between the results of Ref. 12 and the phase-only action
A magnificent effort(see, for example, Refs. 5>-8as  formalism. This missing link is established here and the CG
made to understand the mechanism responsible for the amode is obtained within the effective-action formalism. Our
pearance of the CG mode and its relation to other phenonmain results can be summarized as follows.
ena of nonequilibrium superconductivity. While the majority (1) We extend the phase-only effective-action formalism
theories of the CG mode® were essentially based on the for chargedsystems to incorporate thdensity-currentcou-
kinetic equations that are usually derived using the quasiclapling, which was so far considered only using other
sical Green’s functions, the paper by Kulik, Entin-Wohlman, method$™1? (see also Refs. 20—22, where the effect of this
and Orbach used a more conventional approach based omoupling appears to be important for the description of dirty
the Matsubara Green’s functions without kinetic equationssuperconductojsin neutral systems the density-current cor-
In the subsequent papers of Takada and co-workees relatordoes contributén so-calledLandau termsof the ef-
Refs. 10 and 11 and references therdie approach of Ref. fective action:®2* so that the correct expression for these
9 was further developed and very recently applied for theerms can only be obtained when this correlator is taken into
case ofd-wave superconductivitif The collective oscilla- account.
tions in d-wave superconductors were also studied using the (2) We show that when the density-current coupling is
kinetic equations for Green’s functiofigsee also Ref. 34 included it becomes possible to obtain the CG mode using
Since the discovery of higii; compoundsd,2_,2 super-  the phase-only action. In particular, we derive an analytical
conductivity has attracted much attentidand the claim of expression for the pair-susceptibility structure factor and
Ref. 12 that the CG mode in cle@hwave superconductors solve numerically the equation for the CG-mode velocity.
may survive in a much wider region of temperatures down to (3) We show the gauge-independent character of the equa-
0.ZT appears to be very different from the established proption for the collective phase excitations, one of the solutions
erties of the CG mode is-wave superconductors, so that it of which is the CG mode. Establishing a link between the
is important to check it by an independent calculation. pair susceptibility and this gauge-independent equation for
On the other hand, the importance of phase fluctuations ithe phase excitations we argue that the peaks in the structure
high-temperature superconductaidTSC) (see, e.g., Ref. factor associated with the CG mode are independent of the
16) stimulated interest in the derivation of the “phase-only” choice of the gauge. The gauge independence of the equation
effective actions from the microscopic theory. It is importantfor the CG mode used in the previous pap®r¥ is also
to emphasize that although there is no commonly accepteshown, applying the identity derived recently in Ref. 22.
theory of HTSC, it seems reasonable that one can use a (4) We consider possible manifestations of the CG mode
simple BCS-like approach to describe the properties ofn the gauge-independent density-density and current-current
HTSC below the critical temperatufie even though such an response functions.
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(5) We derive analytical expressions for the density-sity. Throughout the paper we call the superconducting sys-
density, current-current, and density-current polarizatiortem neutralif the last term of Eq(2) is omitted anctharged
functions for two-dimensional2D) cleand-wave supercon- if this term is taken into account. Even in the latter case the
ductors afT<T,. whole superconductor remains, of course, neutral due to the

The paper is organized as follows. In Sec. Il we introduceneutralizing ionic background.
our model. In Sec. lll, we describe all details about the for- We assume that the momentum representation of
malism used in the paper, necessary for further understand(ry;r,) contains attraction only in the-wave channe(see
ing. The various forms of the effective actioffer the phase the discussion in Ref. 37The Fourier transform of the Cou-
and electric potential, phase only and electric potential onlylomb interactiorV¢(q) depends on the detail of the model. It
are expressed in terms of density-density, current-currengan, for example, be taken ag.(q)=4me’q” in 3D,
and density-current polarization functions in Sec. IV. TheVc(q)=2me’/q in 2D, or a more complicated expression
general expressions for these polarization functions are givet$€e, €.g., Refs. 12,17 the layered structure of HTSC is
in Appendix A, their derivation fod-wave superconductors taken into account. However, the detailed expression is not
is considered in Appendix C, and the nodal approximatiorfrucial for the CG mode, because the mode appears when the
employed for this derivation is briefly discussed in Appendix Coulomb interaction is screened out by the quasiparticles.
B. In Sec. IV we also discuss in detail the difference betweer) | '€ form of the expression would ge, of course, essential
the present and otH&r22-22 approaches. In Sec. V we or the analysis of the plasma mote?d The form of dis-

. . o . ersion law,e(k), is also not essential because the final re-
briefly recall the properties of the phase excitations in thegults for thed-wave case will be formulated in terms of the

absence of the density-current coupling and stress SOME interacting Eermi velocit — 98 (K)/ K] and the
points such as gauge independence of the equation for the ng Wr k=kg <

collective phase excitations and the properties of the gaugdlaP Velocity Va=dA(k)/dk|,—, where A(k) is the
independent density-density and current-current correlatorgfomentum-dependent superconducting gap. We will also use
which are particularly useful for better understanding of ourthe parameteap=vg /v, which is called the anisotropy of
main results, which are presented in Sec. VI. In particular, irfh€ Dirac cone. Throughout the paperkg=1 units are
Sec. VI A we derive the equation for the CG mode, give itschosen. An external electromagnetic fighd=(Ag,A) was
physical interpretation, and discuss the gauge independen{fdroduced in the actioiil) to calculate various correlation
of the present and previous approaches. In Sec. VI B w unctions using the functional derivatives with respect to this

present the results for the velocity of the CG mode and Sece_xternal source field.

VI C is devoted to the structure facthe calculational de- , LERNATION OF THE EFFECTIVE ACTION AND

tails fo.r these sections are given in Appendix. Ve con- THE STRUCTURE FACTOR

clude in Sec. VII with a discussion and summary of our

results. The derivation of the effective “phase-only” action for

neutral(see, e.g., Refs. 16,18,2dnd charget(192°>2%. and
d-wave superconducting systems is widely discussed in the
Let us consider the following actiofin our notations the literature, so we briefly recap the main steps, including the
functional integral is expressed &g): functional integral representation for the structure factor, and
making in Sec. IV a point on the appearance of the term that
fﬁ couples density and current.
S=—| dr
0
+H(7)

Il. MODEL HAMILTONIAN

2, 1 i

; f Ay (nr)ld,—ieAg(7,1)]¢,(71) The first step of the derivation is to use the appropriate

1 Hubbard-Stratonovich transformations to decouple four-

_ — 1 fermion interaction terms in the attractive and repulsive

il r (ny)y - 1 ( ) . . .

T channels. The attractive part of the interaction was recently
where the Hamiltoniam (7) is considered in detail in Sec. Il of Ref. 18 using the bilocal

Hubbard-Stratonovich fieldsb(7,ry;r,) and ®'(7,rq;ry)
s(—iV— EA(TJ))—M}%(N) (see Ref. 27 for a re\_/ie)4vso we show explicitly.the corre-
c sponding transformation only for the Coulomb interaction,

-3 2 [ @l exr{—%f ar | dzrljdzrz(g UL DG (7r) =
XY r DV ) gl ) (7T )

o3 [ @[ @ S mumn)
XVc(fl_r2)<2 ‘W;(T:rz)l//a'(Tvrz)_n)- @ ZJD‘PeXp{_Ide o)

1 _
See(nr)Ve H(rry)ee(r,r;) —iee(rry)

H(r)=>, | d?ryl(nr)

ch(rl!rZ)( 2/ wjr'(T!rZ)l//a"(T!rZ)_n)

X

Here ¢,(7,r) is a fermion field with spinc=1,], o
=—o, 7 is the imaginary timeV(ry;r,) is an attractive
short-range potential/.(r;—r>,) is the long-range Coulomb X
interaction, and is the neutralizing background charge den-

; lﬂZ(T:rl)l//a(T:rl)_n)5(r1_|'2) ], (3
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where the Hubbard-Stratonovich fiejdhas the meaning of electric potential. Thus, the partition function is

= f DYDY DO DODe exgd (¥, ¥, 0T D, p,A)],

SV W, T D, p,A)= ﬁd d?ry | d?r,) — _t O = vt vl
il il il I(P! T rl r2 . | (T!rler)l e‘P(T!rl) C (rl!rZ)e‘lD(Tlrz)+ (Tlrl)
0 V(rq;rp) 2

W(T,rp)o(ri—ry)—iee(7,ry)nd(ry—ry)

e
_(97+ie7'3A0+ie7'3(,D(7',r1)_ T3§< _|V_ T3€A)

+(I)T(T,I'1;I'2)\I’T(7',I'l)7'\I’(T,rz)‘i“I’T(T,I’l)T+\If(7',l'2)q)(7',l'l;r2)], (4

where ¥ and ¥' are the Nambu spinorsé(—iV)

=g(—iV)—u and 7y, 7.=(7,+i7,)/2 are Pauli matrices. Z=f ADADODp exd — pQ{A,30,¢,A], (9
To consider the Hubbard-Stratonovich figidit is conve-

nient to use the relative coordinatesr,—r, and center-of- Where the effective potential

mass coordinate R=(r,+r,)/2, so that ®(7,rq,ry)

2
=®(7,R,r). Now, using the functional integral representa- (A 6,9, A} = f de d r1J dzrz[A mR1)

tion, the imaginary-time pair susceptibility is defined as V(ri—rs)
1 -1
N1 R1=R) == 7= O)ID\PTD\PDCI)TD@D@ +5ee(mr)Ve (11, ra)ee(mry)
T
X®(7,R1,009(0R2,0) +ie¢(7,r1)n5(r1—r2)}—TanG1
Xexd (v, ¥, 07, 0,¢)]. (5) 10
Since the distancfR; — R,| is expected to be larger than the . . , .
internal Cooper-pair scale, it is possible to pat0 in EQ. with the inverse Green’s function
(5). The structure factoB({2,K), which is used to present G l=g-t-3 (11)
the experimental datz is related to the real-frequency pair '
susceptibility (iQ,— Q +i0,K) by (11.,11|3(30,0,A)| 72,15)
S(Q,K)=—2[1—exp—BQ)] Imn(Q+i0K) 0.0 .
oT =785 (71,r1) —i€Ay(71,r1)
~— Elmn(QJriO,K). (6)

The definition of the pair susceptibilitys) is apparently +7301(r1)+|02(r1)}5(rl—7-2)5(r1—r2). (12

gauge dependent, since the auxiliary Hubbard—StratonovicE

field is gauge dependent. Nevertheless, as we discuss lat PrT<Te it is reasonable to neglect the amplitude fluctua-
gaug P ions and assume that the amplitude of the order parameter

A(r,R,r) does not depend omR. Then the frequency-
momentum representation @ in Eq. (11) is the usual
Nambu-Gor’kov Green'’s function

the poles ofp({},K) aregauge independernd this justifies

the use of Eqs(5) and (6) to extract the observable values.
The simplest way to study the low-energy phase

dynamicé® is to employ the canonical gauge

transformatio”’ .
Glioon k)= iw,l + 736(K)— 7 A(K) 13
ei 0(x)/2 0 ns a)ﬁ—}—gz(k)—l—Az(k) )
W(x)— e 100012 Y(x), x=(7r) (7)
where, becaused-wave pairing is consideredA (k)

=A/2(coska—coska) (a is the lattice constaptand w,
=m(2n+1)T is fermionic (odd Matsubara frequency.
®(7,R,r)~A(7,R,r)exdifo(7,R)]. (8)  Since, in what follows, only the low temperaturés<A(T)
are considered, we can replace the temperature-dependent
Then after the integration over the Fermi fields the partitionamplitude A(T) by its zero-temperature valud,=A(T
function becomes =0). Thus all linear low-temperature dependences of the

separating the phase of the ordering field,
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polarization functions considered below are due to the nodesxample, one can easily recognize thatontains a gauge-

of A(k), but not to the temperature dependenceA¢T)  independent Cooper-pair chemical potentiéd— e, which
itself. . . in other approaches has to be collected from the different

The precise form of the operato®; andO, in Eq.(12)  parts of the equations. Other advantages of the present ap-
which depends on the particular form of the tight-bindingproach will be discussed in the subsequent sections where
spectrume (k) is given in Ref. 18(see also Ref. 19 for the the effective action is presented.
formulation of the general rules for representatioff It is To consider the phase and charge fluctuations at the
essential, however, that the coordinate representatiod of Gaussian level it is sufficient to include only the terms with
does not depend on the phagétself and contains only its n=1,2 in the infinite series in Eq14). Finally, we rewrite
derivatives. Thus the coordinate representation()gf, is  the pair susceptibility5) in terms of the new variables,
also expressed via the derivativesfThis property is par-
ticularly convenient for studying 2D models when a constant oy :
space-independent phase is prohibited by the Colemany( TR1=Rg)= f ADADIDPA(7,Ry,00exri 0(7,Ry)]
Mermin-Wagner-Hohenber@CMWH) theorem. .

Since we are interested only in the phase dynamics in the XA(ORz,0)exd —i6(7,Rz)]
presence of Coulomb interaction, in what follows we con- xexd — BOQ{A,d0,0}]. (16)
sider only the phase-6) and the electric-potential-«() de-
pendent parts of the thermodynamical potentid). This As was mentioned above, we are interested only in the
part of (2, which we denote a€),;,, can be presented as a phase-fluctuation structure factor neglecting the presence of
series the amplitude fluctuations. This implies that one can use a

saddle-point approximation fak, so that omitting unimpor-
Quinl 90,0} = deTf dzflf dr, tant constants in the expansion of the exponent in (E6).
0

1
Seq(T,r)Ve H(ry,r i
2 @(mr)Ve 7 (ry,ra) one arrives at

2
xecp(r,r2)+iego(r,rl)nﬁ(rl—rz)} (1R —Ry) = — %f DODO(7,R,) 6(7,R,)
1
FTTr Y (3" (14) xexf - BQin{ 90, ¢}1. (17)

) o _ ) In writing Eq. (17) we have also expanded the exponents

This way of deriving the effective action has many advan-hat were present in Eq16), because there are no free vor-
tages. The main among them is that the gauge-invariant conjizes in the system fof <T. and the multivalued character
binations.d,0/2—e¢—eA, and iV 6/2—elcA are explic-  of the phase is irrelevant. This approximated form of the pair
ity present during all stages of the derivatidhThis  gusceptibility is equivalent to the expressions for susceptibil-
property is obviously related to the introduction of the phasety ysed in Refs. 9-12. Expanding the exponents we neglect
via the gauge transformatidid). There is no need because of 5 widening of the structure-factor peaks, which is related to
this to keep the external electromagnetic fiedg (A) during  the absence of the long-range order in @MWH theoren).
the intermediate stages of the derivation since it can be easily js known, for example, from the analysis of the dynamic
restored following the above-mentioned prescription, whichstrycture factor of latticé4®? that the s-function phonon

in the frequency-momentum space is resonance obtained in 3D harmonic crystals in the 2D case is
i0,0(K)—iQ,0(K)+2eAy(K) converted to the power-law singularity,
n n ’
f(a)
2e _
K B(K) =K ,0(K) = A, (K). (15) S ) g (18)

Differentiating with respect to this source field we will de- wheref(«) is a function ofa that goes to zero a8—0, so
rive physical correlation functionsee the discussion in Ref. that in this limit the structure factor transforms tosdunc-
17) in what follows. It has to be stressed that ténimal-  tion. Since for low temperatures(T)<1 we may safely
couplingprescription(15) does not guarantee itself the gauge neglect this effect of widening because it does not move the
independence of the final result. The gauge independedosition of the peak and we are primarily interested in the
treatment of the transformatioitg) and(8) for d-wave pair- temperature§ <T,.
ing is, in particular, one of the complicatiofis.

In the previous studies of the CG mdd¥ the phase field IV. GENERAL FORM OF THE EFFECTIVE ACTION
was introduced using the expansion of the ordering field |y this section we present the effective potential
®(x) around the equilibrium valueA via ®(x)=A ({6 o} and discuss the term that leads to the appearance
+@,(x) +id,(x) and associating the fieldB,(x) with the  of the CG mode. We also derive the effective phase-only and
amplitude andb,(x) (or to be more precis®,(x)/Ag) with  electric-potential-only actions integrating out the electric po-
the phase fluctuations. Although, as will be discussed belowential ¢ and the phase, respectively.
the final result obtained in the both the methods agrees, the
present method of the investigation of the CG mode is more A. The effective action and polarization functions

transparent because it explicitly uses the gauge-independent Calculating the terms witln=1,2 in Eq.(14) (see, e.g.,
combinations of the fields over the whole derivation. ForRefs. 18,24 one arrives at
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T & dK A ,
BQkin{av‘P}:gn;m f(zT)z[cp(—KMe Ve (K)e(K)+{iQ,0(—K)—2e¢(—K)}Iz5(K)

x{iQn0(K) +2ep(K)}+ 0(— K){AGP + TIEH(K)IK (K g8(K) + 6(— K) (= K ) TT54(K)

X{1 Q2 0(K) +2e¢(K)} +{iQ6(—K) = 2eo(— K)}(— K, ) gy (K) 6(K) ],

where we introduced short-hand notatid¢hs (i€, ,K) with

K being a 2D vectofsummation over dummy indices, 8
=1,2 is implied. In Eq. (19) the current-current polarization
function Iy, is

d?k ] )
(ZT)ZWOO(IQ”’K;I(‘)' ,k)

X vga(K)vep(k) (20)

with the Fermi velocityv g, (k) =0d£&(k)/ ok, ; the density-
density polarization functioihl 53 is

Hg‘f(iﬂn,K)ETIZx

. ’ d*k : .
MayiQn K)=T 2 | ——mag(iQy Kiiw k),
=== J (2m)?
(21)
and the density-current polarization functiblf; is

2

. - d%k _ _
M0, K)=T X | ——modi Q. Kiiw) K vea(K).

1= ) (2m)?
(22)
mj; in Egs.(20—(22) is given by
Wij(iQn,K;iw| ,k)ETr[g(iw|+iQn,k+K/2)Tig
X(iw k—K2)7], (7o=1)
(23)

and Agﬁ in Eqg. (19) is the first-order contribution in the
superfluid stiffness,

s [ 9% . o
Ag _f(z )zn(k)maﬁ(k), m,z(K)=d%&(K)/ 9K 40K g

o
(24
with
k E(k
nk)=1-— %k))tanhz(—T), E(k)= V& (K)+A%(K).

(29

In writing Eq. (190 we omitted the linear time-derivative
term (see, e.g., Refs. 17,18which is irrelevant for the
present analysis.

The general expressions for the polarizatig@6)—(22)
are given in Appendix Alsee also Ref. 1)8and calculated

(19

calculate these polarizations and the transformation to the
global coordinate system are given in Appendixes B and D,
respectively.

As an example we show in Fig. 1 the real part of the
density-density polarization functioH 33(Q2,K) (this func-
tion is in fact just the Lindhard’s function for the supercon-
ducting statg which is given by Eq(C3) [and its dimen-
sionless form is given by Eq$C4) and (C5)] as a function
of Q/veK for the different directions oK. The angle¢
determines the direction ¢f with respect to the (10) direc-
tion in such a way thatp=7/4 corresponds to the nodal
direction[see also Eq(D5) and the explanation in Appendix
D]. Comparing this figure with Fig. 7 from Ref. 1@ur
definition of ¢ is equivalent to the definition of the anglg
used in Ref. 1§ which was obtained by numerical integra-
tion of Eqg. (Al), one can see that our analytical expression
(C3) gives essentially the same result. In particular, Fig. 1
shows thalll;; has a peak &@/v K= cos(p—7/4). Further-
more, as shown, for instance, fgr= /16, there is a lower
peak in Rél35(Q,K) at Q/veK=cos(p—n/4+ w/2). Note
that the case®=0 and ¢=m/4 are “degenerate” because
for =0 the lower peak coincides with the upper one and
for ¢=ml4 the lower peak is af/vgK=0 (see also Fig.
5,12 where the case>=0.2,0.23r is shown.

In Ref. 12 the origin of these peaks was related to the gap
nodes, which can be regarded as two “one-dimensional
normal-state electronic bands” towargh= = 7/4. These
“normal bands” are able to screen out the Coulomb interac-
tion in certain regions of the Fermi surface even 76T,
and this screening along with the presencélgf will make

N ¢=0
—— ¢=n*16""

et |

0 02 04 06

. 0.8 1
Q * V]:K_1

FIG. 1. Real part ofiI35(Q),K) [or more preciselyl(€),K)
=(m/m)1135(Q,K), see Eq(C5]. We putT=0.5T; (T, and the

analytically for 2D cleard-wave superconductors in Appen- angle ¢ are defined in Appendixes C and D, respectiyelyd ap
dix C (a brief discussion of the nodal approximation used to=10.
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the appearance of the CG mode possible. Substituting Eq. The effective potentiall9) becomes more tractable in the
(D5) in the analytical expressiai€3) it is indeed easy to see matrix form,

that these peaks are due to the square-root singularities of

I155. These are the same singularities that are present in 2D

normal-state Lindhard’s function due to the lowered dimen- T
sionality of the momentum integratidd, but since the BLnl 0.0} =g n;_m f
d-wave superconducting state is considered, the position of

dK 0(—K) -K)
ol Kee(—K)]

these singularities does depend on the directiofK ofvith (K)
respect to the Fermi surface. Finally we note that these sin- -t eo(K)|’ (26)
gularities in Réls3 at O =vgK cos(—n/4)+0 are accom- 4
panied by the singularity in lids3 at QO =v K cos(p—m/4)
—0, which was considered in Ref. 18. where
|
L[~ QA(K) + ATAKIK K 5= i QK TTG(K) =i QK TT5(K) 21 QTT55(K) — 2K TT54(K) -
M7= . o _ 2
—2i QM 54(K) + 2K, I15(K) 4 —Tgo(K) + V¢ H(K)]

with the bare(unrenormalized by the phase fluctuatipes-  nevertheless, remained the same, viz., in these papers the

perfluid stiffnessA “¥=A§P+TI55(K). order-parameter phase itself was expressed via the operator
0,=¥"7,¥, as summarized in Table Il of Ref. 21. Thus
B. Comparison with other approaches also enters the phase-density correlakby; in the notations

Let us compare our effective action, Eq86) and (27), of Refs. 9_12.(” Iy, in th? notations of Ref_s. 21 and 2
with the action obtained in Ref. 17 and see the differences " OUr Opinion, the physmgl meaning by is, however,
between the present and previdugapproaches. As one can More obscure than that dilg;. Indeed, sincellys is ex-
notice, the only difference between E26), (27) and Eqs.  Pressed via the Pauli matrix;, so that it seems like the
(25), (26) in Ref. 17 is due to the presence of the density-Phase itself is a dynamical variable on its own, while physi-
current polarization functiofil ;. It is a general belief that cally meaningful are only the space and time derivatives of
this term has to be zero due to the “symmetry argumefts.” the phase.

However, as shown in Ref. 2&ee also Ref. 18, where the  These derivatives can only enter into the formal expres-
d-wave case is considerethis correlator has to be taken into sions as a current vik and as a density via; matrices,
account to obtain the correct expressions for teedau  respectively. This property is obviously present in the defi-
termsof the effective action. This is th_e term that nontrivially pition (22) of [1g,, which thus has the more clear meaning of
couples phase and density fluctuations and makes the CQdensity-current polarization function.

mode poss_,lble _|n the present approagh_. Another important difference between the present and
From this point of view, the role dfl 3 is the same as the previoug-1220-22apnroaches is that the present derivation

role of the phase-charge coupling does not need an explicit use of the gap equatiomfoFor
w0 &K example, in Ref. 9 the charge conservation follows from the
: — ; i explicit use of the gap equation, while in the present ap-
1_[ZS(IQ“’K)_T|:2_OC (2m)? ma3(12 Ko, K) y(K), proach as we will discuss later, the charge conservation is
already built in the phase dynamics itself.
2A(K) The fact that the present approach does not rely on the
7(k)EA—O, (28)  particular form of the gap equation is more convenient for

modeling HTSC, where the gap does not close at the critical

with 7,3 given by Eq.(23) in the approach of Kulilet al®  temperatureT,, so that the equation(T9)=0 gives only
and Takada with co-workerS87*2 Note thatIT,;=—1Tl5,,  the mean-field transition temperatufe. Thus another defi-
while I1g;=115,. nition of the true critical temperatur&, is necessary. As

It is interesting that techniques essentially similar to thoseecently discussed in Ref. 34ee also Ref. 16it is reason-
of Refs. 9-12 have been used in Refs. 20—22 to considable for HTSC to estimatd . as the temperature of the
suppression of the critical temperature in disordered supeBerezinskii-Kosterlitz-Thouless transitidsee Eq.(C10) in
conductors. In Refs. 21 and 22 both amplitude and phasAppendix C.
fluctuations were taken into account, and to consider the in- Finally, it is worth mentioning here the recent papers
fluence of nonmagnetic impurities, the electronic Green’'swhere an approach very similar to that of the present paper
functions had a X4 matrix structure. The main difference was employed to study the CG mode in the model of color
between the present approach and Refs. 9-12, 20-28uperconducting quark matter. One of the advantages of Ref.
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35 is that it treats the problem in an explicitly gauge- T Ag

invariant way, while here, the Coulomb gauge is already im- S(Q,K)= a glm/\/l@(QHO,K). (32

posed in writing the Hamiltonian Eq2) and then, when

necessary, the gauge independence of the results obtained is

discussed in a more intuitive way. In general, however, to V. PHASE EXCITATIONS IN THE CHARGED SYSTEM

prove the gauge independence of the results, an arbitrary IN THE ABSENCE

gauge has to be considered to show that the physical observ- OF THE DENSITY-CURRENT COUPLING

ables do not depend on the gauge-fixing parameter as has

been done in Ref. 3%see also Ref. 36, where the gauge

invariance of the physical quantities calculated usingThe Let us assume for a moment that there is no density-

=0 effective potential is discussedrFollowing this route current coupling [I153=115,=0) and discuss briefly the col-

one can obtain the “relativisticfsee Ref. 3t) for the de- lective excitations that follow from Eq$27), (30), and(31).

tails of the proof generalization of Eg(19), which contains  As mentioned above, the matrix ~* reduces in this case to

a gauge-fixing parametex, the known expressiolf. Therefore, it is not surprising that
the phase-only actiof80) takes the form

A. Equation for the collective phase excitations

11 )
B OAL =T 51— Au(—K)(K?8,,— KK )A(K)

MM, K)=— Q25+ APK K5,
IT35(K)

—AL(—KIK,K,A,(K) Mo~ 1-T53(K)Ve(K)'
33 c

(33
F=IKLO(=K)=2eA,(=K)JIL,(K) which coincides with the corresponding expression in Ref.
17 (see also Ref. 25 The dispersion law of the collective

X[IK,0(K)—2eA,(K)]{, (29 phase modes is defined by the equation

with K,=(0,.K), K2=K,K,=02+K? =012 M N0 —Q+i0K) =0, (39
Ap(K)=—¢(K), andc=1. Note that in Eq(29) we have
the whole electromagnetic potentiaj, instead of the Cou-
lomb component present in E(L9). The polarization tensor
IT,,,(K) is obviously related to the polarizations used in Eq.

This equation can also be regarded as a direct consequence
of charge conservation,

(19). The question of gauge independerioe dependenge op(t1) V-.j(t,r)=0, (35)

can be addressed considering how the calculated quantities ot

depend on. where the current and charge density are defined via
C. Effective actions for the phase and electric potential . SQint 0,A} 8Qinl 6,A}
Integrating oute and 6 from Eq. (26) one can obtain, =77 PT T en, (36)

respectively,
where the electromagnetic fiefdin Q,;, was restored using
the rule(15). Evaluating Eq(36) one arrives at Eq45) with

Bl =% E 219(—K)/\/l§1(iﬂn,K)é’(K), [1§;=0, so that Eq(34) is indeed recovered. There is, in
n= (2m) fact, no surprise in the link between Eq85) and (34),
which is just a consequence of the way we introduced the
Myt =M =MuM M E (30 phased in Eq. (7).
As discussed in Refs. 17 and 25 the only solution of this
and equation fork — 0 is the plasma mode. Using as an example
the 3D form of the Coulomb potential and assuming that
L A= A 68,5, Which is valid for isotropic system witm,z
BQin{ @} = E j o (KM H([1Qn K)e(K),  =ms,,, one obtains from this equation that the plasma fre-
(27) quencywp—\/47-r/\e2 for the limit K—0. The expression
1 o1 P for w, can be reduced to the standard oRdmne?/m, if
M =My —MM 1 Mop). (3)  one uses the superfluid stiffneds=n/m obtained for the
continuum model withrs-wave pairing.

It is evident that M; =e’M MMt It is clear that for the plasma mode,(K)/K— asK
=e’M,, det/\/l’l, so that |f|\/|l |\/|22 #0 the equations —0. This property remains valid even if 2D Coulomb po-
M; M 1=detM ~=0 are equivalent. tential is used and it makes plasmons different from any

Using Egs.(17) and (31) it is straightforward to obtain sound mode with)/K— const ask —0. For example, if a
that the structure factdl) is given by neutral superconductor were considered the polarizdfign

134516-7
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in Eq. (33) would be replaced bll 33 and the solution of Eq.

PHYSICAL REVIEW B5 134516

The difference between the gauge-independent equations

(34) for K—0 is the soundlike BA mode and its velocity is (41) and(42) and the gauge-dependdiz, A*# in Eq. (33)

given by Eq.(C9).

B. Phase excitations via electric-potential propagator
and gauge-independent density-density
and current-current correlators

It is instructive also to look at the form\,, for the elec-
tric potential¢ which is,

- H33A aﬁKaKﬁ
— Qa3+ A*PK K

M9, ,K)=4¢?

+VC1(K)).
(37

was recently discussed in Ref. 17. The link considered above
between charge-conservation expressed by(&5).and Eq.
(34) shows that the solutions of E(B4) are gauge indepen-

dent, even thoughl,;, A“# are gauge dependent. At a more
formal level it can be argued that Eqgll) and (42) are
gauge independent because even if one derives them starting
from Eq. (29) the gauge-fixing parameteér does not enter
the final result and one obtains the same expressions.
Putting this in another way, one can say that the position
of zeros of M ;1(Q,K) is gauge independent, because these
zeros coincide with the poles of the gauge-independent
x(Q,K). As we will see in Sec. VI D, density-current cou-

Considering the same example of an isotropic system with aling modifies both Eqs41) and(42); nevertheless the gen-

3D Coulomb potential, Eq(37) in the limit K—0 and
Q/K—x can be reduced to the known expressisee, e.g.,
Ref. 25

K? A
MY K)=—(1+—p). (38)
¢ n» T QZ

n

eral argument about zeros Qi\/lgl(Q,K) [poles of
M (Q,K)] remains valid.

VI. PHASE EXCITATIONS IN THE PRESENCE
OF DENSITY-CURRENT COUPLING

Here we generalize all expressions from the preceding

It is obvious that the above-discussed plasma mode can [f€ction for nonzerdls,. In particular, Eq(33) becomes

also seen inM,,.
1Qp—Q+i0, M,(Q,K) acquires a pole &l = w,.

It is also useful to evaluate gauge-independent density-
density and current-current correlators, which are defined as

_ B 5°TInZ{A}
X 0= SR KT oA (K
wpy B 5°TInZ{A}
X K= = S ) ALK (39
where
zial- [ DoDoextT— Ol 0.A ] @O

with the external field Ay,A) restored using the rulélb).
Then we arrive at the standard expressténs

2171, af
. e“I3A 7K K
X(lQn:K):_ aB — '32 (41)
APK K g— 5507
and
_ 5 A*FAVEK K,
X0y K) =¥ A% —— et .
_QnH33+A KaKﬁ
(42

Again assuming tharkaﬁzAéaﬁ one can reduce E¢42)
to the known form of the current-current correlator

KoK
K2

(43

— Q205365+ AK?

5(1,'3_

B(iQ,,K)=e’A —
X120 K) — 02T+ AK?

Indeed after the analytical continuation

M QK== Q2IM35— i QK (T K) + TT5(K))

+ AYPK K 5, (443
_ o TIK)
Mo K= T kv(K)
_ ME(K)TTE(K
AeBe paB 03(K)I5¢(K) (a4

—Tay(K) + Vo Y(K)

The dispersion law for all collective phase excitations is still
defined by Eq(34), but with M, given by Eq.(443. It has

to be pointed out that the interpretation of E($) and(44)

as a charge-conservation law, E§5), remains valid even
for I15,#0. The only difference is that the expressid@s)

for current and density

i€2,K) = STA(K)IK i T(K) 1 2,10(K),

(02 K) = = 2 [T K)i QT TTEK) K 10(K)
(@5

are now more complicated and contdilf;. Nevertheless
substitution of Eq(45) in Eq. (35) indeed results in Eq34)
with M, given by Eqs(448. Hence, even in the most gen-
eral casdlg,# 0, the position of zeros d¥l ,* (poles ofM )

is gauge independent.

A. Equation for the CG mode, its physical interpretation,
and gauge independence

It can be checked that in the limkK—0 andQ/K—©
one of the collective modes is the plasma mode considered

134516-8
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above. We are, however, more interested in whether a soun
like mode (/K= const for K—0) that would be similar to

PHYSICAL REVIEW B 65 134516

d- _
V=0, (100 K)=SA(K)IK 40K), (5D

the BA mode in neutral superconductors can exist in the

charged system. It is seen from Eq44) that if the ratio

Q/K is fixed and one is interested in the low-energy excitawhich implies that if there is a supercurrent in the system, it

tions with () —0, only the last term of Eq443 is relevant
becausdlI;y(K) andITI3(K) are ~V, }(K) in this limit. In
this case the equatiom ;1(Q,K)=O after the analytical
continuationi Q,,—Q +i0 reduces to

(46)

o4 QKI5 Q,K)
IT55(Q,K)

A®P(Q, KK K 5= A?P(Q,K) -

XK K z=0,

so that the detailed form of the Coulomb interaction become
irrelevant,
Eq. (46) are gauge independent because For-0 this

equation is equivalent to the gauge-independent equation

MHQ,K)=0.
It is interesting that practically the same arguments abo

the gauge independence of the CG mode studied using thg,
formalism of Refs. 9-12 can be made. The corresponding,

equation for the CG mode is

I,,(,K) ~11,/0,0) =0, (47)
where
— V(K)
HZZ(Q’K):HZZ(Q'K)+H23(Q'K)1—VC(K)H33(Q,K)
X TI3x(Q,K). (48

I1,5is given by Eq(28) and the definition ofl,, is given in

Ref. 12[in addition to two obviousr, matrices, it also con-
tains the factor/?(k) becausal-wave pairing is consideréd
One can show that in the limiK — 0, Eq.(47) reduces to the
Ward identity

[ 2N+ 11,0, K—0) ]34 Q,K—0)+I124Q,K—0)=0.
(49

Exactly this identity was recently proven in Ref. 2 be
precise,swave pairing was considergdising the gauge-
independence(charge-conservatignarguments(see, e.g.,
Ref. 379 and the mean-field gap equation

2
y +2:00)=0. (50)

as was mentioned above. The solutions o

should be compensated by some normal current minimizing
the total current. Exactly the same condition, which relates
the CG mode to a counterflow of supercurrent and normal
current, is discussed in Ref. 8. Thus using the two-fluid pic-

ture one may say thaK”‘B(K) in Eq. (46) consists of the

supercurrentA“? and normal-currentA*#(K) — A *A(K)

parts.

Although this counterflow resembles second sound in

He,” it was pointed out in the earliest studi®ésee also Ref.

6 and 8 that the CG mode is not the second sound, which is
hydrodynamic mode since in the CG mode the normal fluid
nd superfluid are not in the local thermodynamic equilib-

rium and this mode is not a hydrodynamic mode.

It has to be stressed that even though the solutions of Egs.

46) and(47) are gauge independent fii— 0, the existence

f such solutionds not requiredby the gauge invariance

cause no general statement can be made about the polar-

ationsll;, A*#, andIl§; for arbitrary values of) andK.

Thus, in contrast to the BA and plasma modes, the existence

of which is guaranteed by the Goldstone theoteand the

Anderson-Higgs mechanism, the CG mode does not obey

any theorem and its existence is a fortunate result of many

subtle features of the system dynamics.

B. Velocity of the CG mode

It is difficult to solve Eq.(46) analytically for d-wave
pairing and even numerically, a more simple equation for

real part RA“#(Q,K)=0 is usually considereth:** This
significantly simplifies its solution but, in general, this ap-
proximation can be justified onla posteriori when the
imaginary part is estimated. It is possible to study this equa-
tion in two ways. The first way is to extract the dispersion
law Q(K) for, in general, arbitrar)K. The second way is to
find the velocity of the CG modea;cg(#)=Q/|K| in the
limit K—0. The extraction of the dispersion law is more
sensitive to the approximations that were made in the calcu-
lation of the polarization operators. In particular, usage of the
approximated expressionfé3), (A4), and (A5), which ne-
glect the pair breaking fdl=2A, introduces the restriction
veK<A,. Moreover, for the polarization equatio€4),
(C7), and (C1) calculated using the nodal approximation
(see Appendix Bthe condition of smallness d€ becomes
even more strict, so that here we study only the equation for
vcg- As also discussed in Appendix B the nodal approxima-

As has already been mentioned this equation has to be eon is valid forT<A,. This is the reason why in the present

plicitly used in the formalism of Refs. 9-12.

It is possible to establish a link between E46) and a
simple and transparent interpretation of the CG mode su
gested by Schmid and Saii (see also Chap. 13 in Ref).8
Comparing the expression for current in EG45) and (46)

one can notice that sin(ﬁ§3(K) disappears in the limiK
—0, Eq.(46) is just a condition

paper only the temperatur@s<0.6T; are considered, where
T, is defined by Eq(C10. Nevertheless, the presented for-

Ymalism allows, in principle, to study the phase-fluctuation

structure factor up td@. if no additional approximations are
made in the calculation of the polarizations.

Thus for illustrative purposes and comparison with Ref.
12 we also solve numerically the equation

134516-9
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very good agreement with the results shown in Figa) and
=0 (52 Fig. 2(b) of Ref. 12. In particular, we also obtain that the
velocity of the CG mode is practically temperature indepen-
[it is rewritten in dimensionless forfD1) for the numerical dent and its value is well described hycc=v cos(p
work] instead of Eq(46) and the results are presented in Fig. —m/4) [or vig=vf cOSl@p— w4+ w/2) for the other pair of
2. We stress that forp=7/16 we obtain two solutions: nodes, which is rotated with respect to the first pairaig].
vee~0.8%F andvcg~0.560¢ . These results are in fact in Indeed, this equation gives

KK 5
KZ

8 Q
ReAa K:UCG(QS)!K_)O

0.707 (0.711 at T=0.5T;): ¢=0 (antinodal direction
0.831 (0.833 at T=0.5T.): ¢=mn/16

0.555 (0.562 at T=0.5T;): ¢==/16 (other pair of nodes
1 (.00 at T=0.5T.): ¢=a/4 (nodal direction.

Vce=UEX (53

Interestingly we obtain that the CG mode disappears even 4€4), (C11), and(C7) in Eq. (44b) and the inverse imaginary
somewhat lower temperatures than in Ref. T2 0.1T,.. part of Eq.(449 in Eqg. (32). The dimensionless form of
This lowest value ofT when the CG mode still exists is, M, which is convenient for numerical evaluation, is given
however, more the result of a numerical solution of E52)  in Appendix D [Egs. (D2) and (D3)]. In our formalism
than a real threshold temperature, because the peaks of tiw,((),K) for a fixed value ob K depends on the following
structure factor considered below disappear rather graduallgimensionless  ratios: (i) ap=velvy, (i) Tlee
=TIT(T./€) [see Eq(C10 whereT. is expressed viag],
(i) vEK? wi=vEK? ef(efl w?), and the angle that char-
acterizes the direction a¢€ with respect to the Fermi surface
(see Appendix D The ratiOUEKZ/w,ZJ, which was absent in
Eq. (52) is now present because the full expressionNgy*

this factor contains information about the damping of the CG_contains the Coulomb potenti\aﬂc(K) [St_ae its represer_nation
dn terms ofv K andw;, in Eq. (D4)], which we chose in the

mode?® Furthermore, as we have already mentioned, this is '

the quantity that is measured in the Carlson-Goldmarpimplest 3D form. Itis indeed easy to see that sing&
experiment-2 <wp, the detailed form o¥/ is not important and here we

One of the main results of the present paper is that w&°MPUteS(€2,K) including the Coulomb potential only to
obtain a closedinalytical expression for the structure factor demonstrate this explicitly. o _
(32) for a cleand-wave superconductor, which is just a sub- _DesPite the gauge-dependent definition of the pair suscep-

- a - : tibility (5), the peaks of the structure fact®2) considered
stitution of I3, Igg and A given, respectively, by Egs. below, which are associated with the singularities of

My(Q,K) [zeros ofM ,1(Q,K)], can be regarded amuge

C. Structure factor

The knowledge of the structure fact&(),K) is even
more important than the value of the velocityg because

1 independenin the sense that the position of these singulari-
ties is gauge independent as was argued above. Furthermore,
o8t T — - — - — - — - as shown in Ref. 35, a more general expression fdy

derived from Eq.(29) does depenan the gauge-fixing pa-

-
—_———
——
-
~—
-
-
-

0.6 rameter\, but in such a way that the position of tpele of
v o T e M, andits residuearegauge invariant This justifies the use
0.4 of the structure factorS(€2,K) which is expressed via
ImM ,(Q,K).
0.2 In Figs. 3a)—3(c) we show the structure factor calculated

using the analytical expressions mentioned above for differ-

ent temperatures. The position of the peaks defined by the
0 o1 02 T*O-T3_1 04 05 06 ratio Q/veK is well fitted by Eq.(53). In particular, for¢

¢ = /16 two peaks are seen. This allows one to associate the

FIG. 2. Temperature dependence of the velocities of the BAQrigin of these peaks with the gap nodes. As expected, the

mode (dashed ling and, the CG mode fop=0 (full line) and ¢ peaks are getting less sharp and higher as the temperature

= 7/16 (dot-dashed linés We put ap=10 and the velocities are increases. The width of the peaks also depends on the direc-
expressed in units af . tion of K: for a larger value of¢(0<¢p<m/4) the corre-
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1.5

1.25

$0.75
0.5

0.25

0 0.2 0.4 0.6 0.8 1
QrvpK!

0 0.2 0.4 06 08 1
QrvpK!

FIG. 3. Structure factorS({),K) in arbitrary units:(a) T
=0.2T;, (b) T=0.4T;, and (c) T=0.6T.. We put w,=0.5¢¢,
veK=0.0lex (i.e., vgK=0.02w,), and ap=10, so that T
~0.063¢ .

sponding peak is wider. All these results are in agreement
with Fig. 3 from Ref. 12, but due to the analytical character
of the calculation the subtle peak features have a better reso-

lution.

To argue that these peaks in Fig. 3 are indeed due to the
density-current coupling in Fig. 4 we show for comparison

the structure factor, which was calculated settiig,=0.

The disappearance of the peaks confirms our claim that the

CG mode demands nonzero density-current coupling.

This procedure of settinbl g; equal to zero is in fact very
convenient in clarifying the origin of the peaks, because even

for I15;=0 some peaks can be seen, because bathand

PHYSICAL REVIEW B 65 134516

FIG. 4. Structure factorS(Q2,K) in arbitrary units for T
=0.4T.. The rest of the parameters is the same as in Fig. 3, except
for the fact that the density-current coupling is “switched off”
(ITgz=0.)

D. Manifestations of the CG mode
in the classical response functions

The structure factor considered above is very important
for the investigation of the CG mode because for supercon-
ductors there is no classical laboratory field that couples to,
and in the static limit is the thermodynamic conjugate of, the
order parameter. The reason why there is no laboratory con-
jugate field in the superconductor and superfluid cases is that
these order parameters are off-diagonal in number space.
Nevertheless it is interesting to investigate whether or not the

0 0.2 04 0.6 0.8 1
Q*V]:K_1

1% have the square-root singularities discussed in Sec. IV.

For example, forr/16< ¢< /4 (see Fig. 5 the lower peak
becomes even sharper, but in contrast to to Fig.0bés not
disappearwhen we sellg;=0.

FIG. 5. Structure factorS(Q,K) in arbitrary units for T
=04T.. (8 Ty3#0, (b) [Ty3=0. The rest of the parameters is the
same as in Fig. 3.
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CG mode can manifest itself in the “classical” correlators  Although the equationM(;l:O is gauge independent,
when one goes beyond the static limit. M ! itself as well asM ;' is gauge dependent. This time,
Let us first consider the for , for the electric potential. however, we can take instead o, truly gauge-

Substituting the elements of the mat(@7) in Eq. (31) we  independent correlator€39). Note that the definition39)

arrive at the following expressidrcompare with Eq(37)]:  with the source fieldsAy,A) clearly shows that the “clas-
“1i0. K sical laboratory field” is used to probe the corresponding
M, (100, K) response. Then repeating the calculation of H44) and
A K K o+ TTETTEK K (42 yv|th nonzerol‘[& we arrive at the gauge-independent
— 402 3\ KoK g Mool 13K oK g density-density correlator
— Q2T 33+ A“PK K =1 QK JT§— 1 QK 115
1 0. K- (Igl15,— MgA"P)K K g
Ve (K ] (54) e XaBKaKﬁ_ﬁssﬂﬁ_iQnKaﬁgs_iQnKaﬁgo
One can verify that both plasma and CG modes are present (59)
in the equationM ;1=0. and current-current correlator
|
i o s (1Q,IT5— A“*K ) (1Q, 15— AYPK )
x*PiQ, K)=e A == = — — . (56)
A KaK,B_HSSQn_|QnKaH03_|QnKaH30
|
In Fig. 6 we show the spectral density cels out from the transverse correlator. This shows that the

longitudinal CG mode cannot be seen in the transverse
current-current correlator and its presence does not have any

1
B(Q,K)= ;ImX(Q’K) (57) influence on the Meissner effect in the linkt— 0.

calculated for the density-density correla(6b). The plasma

mode [see Fig. 6b)] and the CG modg¢see Fig. 6a)], as VII. DISCUSSION

proven by Fig. &), are clearly seen in the density-density | the present paper we have shown that the 2D model of

correlator. We note that fap=7/16 the lower peak does not cjeand-wave superconductors predicts the existence of the

correlations and not the CG mode. , This is done using the analytical expression for the structure
As the value oK decreases, the relative weight of the CG factor, which has peaks associated with the CG mode, and

mode with respect to the plasma mode becomes smaller argying numerically the equation for the CG-mode velocity

smaller as shown in Fig. 7. Finally in the limit vee- All our results are in a good agreement with Ref. 12
LK K 0 where a s_imilar model has been studied numerically usi_ng

V(iQ, K)N_e _33A a™p = _const K—0 the formalism of Ref. 9. It was also shown in Ref. 12 that in

' AYPK K g ’ K ' ' contrast tos-wave superconductors, where the impurities su-

(59 pressing the Landau damping result in more favorable con-
ditions for the observation of the CG mode, dawvave su-

erconductors the CG mode disappears in the dirty system.

Thus the main physical question is whether our prediction

of the CG mode in a cleathtwave superconductor is relevant

for HTSC cuprates, which are very complex compounds. Re-

cent measurementsdone in high-purity YBaCu,O, crys-

tals show that the in-plane mean free patincreases to

) =1 um below T=20 K (=0.22T.). This suggests that

the CG mode disappears from the density-density correlato
This agrees with the statement of Ref. 23 that the density-
density correlator in the limiK—0 is dominated by the
plasma oscillation only.

Treating the current-current correlat@6) in the same
way one obtains

AHK ,APK,

_ these systems are deeply in the clean lirsitt~10 A (¢ is
A“PK K

the in-plane superconducting coherence lehgind the
model we considered can be applied to describe the CG
Q mode in these compounds. Using the value of the Fermi
K ~const, 1-0. (59 velocity vp~1.8x10° cm/s from Ref. 41 we predict that
B . the velocity of the CG mode is expected to be within the
Taking into account that the structure &“? is A®P range vcg=(1/V2-1g~(1.3-1.8)x 10° m/c depending
=Ad,5—Fvg,vgp One can check that the term wikhcan-  on the direction oK, which is one or two orders of magni-

xB(iQ, ,K)~e?| A*F—
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25 0.00025
— - =0 ===9=0
5 = 0.0002
I | —— ¢=t*16""
i — ¢=m*16 0.00015
B . ’ oooor [ ¢
1
0.00005 | _
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Q"*V]:K_l . . . .
FIG. 7. Spectral densit®({,K) in arbitrary but the same units
in Fig. 6 for T=0.5T;. We putw,=0.5¢, vgK=0.001 (i.e.,
60000 — . 40 b 0, =50 eK), and ap=10.
50000 T=0.5T
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‘| APPENDIX A: GENERAL EXPRESSIONS
i FOR POLARIZATIONS II;
2 1
! The general expressions for the polarization functidis
g I are(see, e.g., Refs. 11, 18, and)24

FIG. 6. Spectral densityB({2,K) in arbitrary units for T
=0.5T;. (8 0=Q/vgK=1 andllg;#0, (b) 49<Q/vK=<51 and
[Mg;#0, (0) 0=Q/veK=1 andllg=0. We putw,= 0.5, veK
=0.01e¢ (i.e., wp,=50¢K), and ap=10. To display thed-like
plasma peak seen i) a small imaginary part is added @, .

tude faster than the velocity of the CG mode observed in
conventional superconductors.

From the theoretical point of view there are many ques-
tions that deserve further theoretical investigation. First of
all, it would still be important to consider the influence of
impurities and inelastic scattering by antiferromagnetic spin
fluctuations within the proposed formalism. It is also inter-
esting to estimate the widening of the structure-factor peaks,
which is discussed above E(L8). This widening may be-
come important if temperaturés<T, are considered.

The discovery of the CG mode in conventional supercon-
ductors has led to much deeper understanding of supercon-
ductivity, so we hope that the investigation of the same prob-
lem in HTSC would also increase the understanding of these

mséiQ, K)
5410y ,K)

V. (k)

complex systems. and
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E.+E +i0, E.TE —i0,
X[1=ng(E-)—ne(E1)]

X

1 § 6, XA A,

+5 1+—E,E+

y 1 N 1
E.—-E +iQ, E,—E —iQ,

><[nF<E)—nF<E+>]]v+<k>. (A1)
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1
E,+E_+iQ,

. ok (& &
HOS(IQn,K):f(277)2[<2E+_2E_)

1
_EIIE?iTﬁﬂ[l—”ﬂE>—ndE+n

k)

1
E,—E +iQ,

&+
2E.

* 2E_

- E+_E,_iQn [nF(Ef)

_nF(E+)]]UFa(k)v (A2)

where £.=¢(k=K/2), E.=E(k=K/2), and A.=A(k
+K/2). One can also check thatllgyiQ,,K)
=154, K).

The first and second terms in Ed#&1) and(A2) have a

clear physical interpretatioff. The first term proportional to
1-ng(E_)—ng(E,) gives the contribution from “super-

fluid” electrons. The second term gives the contribution of

the thermally excited quasiparticleg.e., “normal” fluid
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APPENDIX B: NODAL APPROXIMATION

The key values that are necessary for evaluation of the
polarizations, Eqs(A3), (A4), and(A5), are the differences
E.—E_ andng(E,)—ng(E_). Expanding inK,

E(k+K/2)—E(k—K/2)=v4(K)K, (B1)
where the quasiparticle group velocity is given by
1
Vg(K)=WE(K) === [E(K)VE+A(K)V,]. (B2

E(K)

It is obvious that due to the gap dependence, EqB1)
differs from thes-wave cas#" by the second terf? To per-
form the calculation analytically it is useful to rewrite Egs.
(B1) and(B2) in terms of the nodal approximation described
in detail in Ref. 42(see also Sec. VIl of Ref. 18 where the
imaginary parts of these polarizations were calculatéa
particular, using this approximation one hagk)=p,
=vek;=pcoss, A(K)=p,=v k,=psind with E(k)=p
= \/pi+ p5= v ki +v4ks, where the quasiparticle momen-
tumk = (k,,k,) is written in the nodal coordinate systém,

component This is the term responsible for the appearanc&z associated with thgth node (=1, .. . ,4).(Note that the
of the Landau termsn the effective actior(see, e.g., Refs. angled was denoted in Refs. 18 and 42 @9 Then
18 and 24. The imaginary part of these terms is the only
source of damping of the phase excitations in the clean sys-
tem considered here. The physical origin of this damping is
due to the scattering of the thermally excited quasiparticles
from the phase excitations.

Since in what follows we are interested in the limit
Q,veK<A, we may safely neglecf) and K in the first
terms of Egqs(Al) and(A2) and write

VgK=vgK1€086+v,K;sin6=P coq 6— o),

E(k=K/2)<Ay, (B3)
where the momenturk = (K4,K,) of the 8 particle is also
expressed in the nodal coordinate system k,, so that
Pl=veK,=Pcosy, P?=v,K,=Psiny, and P
=J(PH%+(P?)?= uZKZ+v3iK35. (We denoted the compo-
nents ofP as P!,P? to make them different from the node
label Pj used in what follows.Finally, we can approximate
the differenceng(E,)—ng(E_) as

E(k)
T

d?k | A%(k
0,60~ | [()

(2m)?? [ E3(K)

N £(k) 2(E.-E.)
E2(k) (E,—E_)?>—0Q?

dn:(E)
Ne(EL)—Ne(E )~ gé VoK =

dne(E)
dE

P cogdo— o).

(B4)

X[nF(E—)_nF(E+)]]v (A3)

Recall also that in the nodal approximation the integral over
) the original Brillouin zone is replaced by the integration over
d<k 2(E,—-E.) four nodal subzones as

(2m)? (E, —E_)*-Q?

g0~ |

dk & [ dkdk,
X E_)— E. a k k), -
[Ne(E-) =Ne(E ) Jupa(K)veg(k) J(zﬂ-)z jzlf (2m)?
(A4)
4 de

szl j (27)%vFv,

4
Pmax pdp Zﬂd(p
(A5) =2 f

i1 Jo 2mvpvplo 27’

d?k  &(k) 20
(2m)2 E(K) (E, —E_)?-02
X[Ne(E-) =ne(EL) Jugq(K).

This approximation is in agreement with that used in Appen-
dix C of Ref. 11.

H&(Q,K)%—f

Pmax= VTUFv A/

(B5)
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It is necessary to underline that the nodal approximation

is designed for the low-temperature regime<A,. Thus

all polarizations derived in Appendix C are applicable for

T<A,.

APPENDIX C:
CALCULATION OF IIj; AND EQUATION FOR T,

After the substitution of EqgB3), and(B4) in Eq. (A3)
and integration ovep (see Ref. 181133 is expressed via the
integral

ng cog 5 co(5— i)
0 27 co(6— i) —b?

with b=|Q|/P;. (Note that we have omitted the subzone
indexj in ¢ andb.) This integral can be calculated using the
table integral(3.682 from Ref. 43 forb?>1 giving

(CD

| 3

|
b1

1
>+ b2cos 24—

cogy+ |b|Vb?—1 sirfy.
(C2

Then using the analytical continuation in the regln1,
we finally arrive at the result

‘n2 T
M3 Q,K)=—k(T)— 2, —
j=1 T URUA
1 02 |Q] 1
X | =+ —cos2pj——
2 pj2 P; 02
—2—1
P]
QZ 2 nz |Q|
X ;COSZl//j_ —2_1 Sl l[/j F—l
j i )
Q 1 2 2
+i— ———=| —co0sy,
Pj Q2 P]2
1__
P
0? ||
+{1-— sin2¢j Ol1-— , (C3
P’ P
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‘In2T

ﬁgs(Q,K): _7(_]21

ZEF

ap{---}, (C5)
where --- are the terms in the braces in E(C3), e
=mv§/2 is the Fermi energyyp=vg/v, (see Sec. )| and
we assume that~ 1. One can also check that the imaginary
part of I35 coincides with the expression calculated in Ref.
18 by integratings(P cog 6— ]— ().

In the same way we arrive at the expression for the
current-current polarization function, EGA4),

IG5 QKK K 5/K?

‘N2 T Plcogy, Q| 1
j=1 ™ vgvy K2 P; 02
;—1
]
| Q 1 ( IQI)
XO| ——1|+i— O 1-—.
P; j 02 P;
S
P]
(C6)

The zero-order superfluid stiffneggy”= Sqpn/m for the
continuum[ m, z(k) =mé,z] system aff =0, wheren is the
total carrier density which, of course, coincides with the den-
sity of the neutralizing background. Using the expression
ez=mn/m, which is, strictly speaking, valid only for the 2D
systems with the quadratic dispersion law, we can also re-
write the superfluid stiffnesa .4 in the dimensionless form

(C7)

As was already mentioned after E.3), the terms that con-
tain the averaging over the Fermi surfdsee, e.g., Eq$24)
and (25)] cannot be accurately calculated using the nodal

approximationt® Thus, in general} , as well as< should be
considered as a free parameter of the model. In particular,
decreasing the value df, it is possible to describe a low-
ering of the zero-temperature superfluid stiffness in HTSC.
Nevertheless, for the numerical computations we will as-

where «(T) denotes the term that originates from the firstsyme thafA ,~ 1. It is easy to obtailtsee, e.g., Refs. 18 and

term in the braces of EqA3), which cannot be accurately
calculated using the nodal approximatiénit is easy to
show, however, thakk=m/7 at T=0 for the continuum
s-wave pairing model. This can be used to wiilg; in the
dimensionless form,

Mo ©,K) = 050 K), (o

where

42) the static, zero-momentum bare superfluid stiffness
A=E[ R y=21n2ap~ cs
= | o nzap . (C9

and the velocity of the BA mode

A VE K0—2|n2aDT/6F
V=\m—r == = (C9
I13500) 2 K
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so that for A;=x=1 the BA-mode velocityv(T=0) - T2 (T1gK,/K)?
=ve/\/2. Using Eq.(C8) one can estimate the temperature A= o2 ha (D1)
of the Berezinskii-Kosterlitz-Thouless transition from the €F 33

equationT¢=m/2A(Tc), which gives The whole expressio4a for M, * can also be written

~ as
. o B (C10
¢ 2(1+In2ap)’ m ~
( @p) M, 1(Q,K)=—v2K2M, (Q,K), (D2)
We will use this definition ofl ; to express the temperatufe ™
in units of T, and e . where
Finally, we obtain that expression for EGA5),
M, LQ,K)= Qzﬁ QK Qfl“ QK Ka
M Q,K)K, /K g (€, )_v,%KZ 33(€2,K) v K 03, K) =
4
Q
=—2, — | apln2——cosy; 1. KKg
Z:l - D veK l/ll + E B—Kz ) (D3)

where the dimensionless polarization functiddg;, T1g;,
and A“? were made from the full polarization functions
) M3, 115, A®F [see Eqs(33) and(44b)] in the same way as
the polarizations Eq$C4), (C7), and(C11). The only differ-
—-1 ence is that these full polarizations include the Coulomb po-
P,—2 tential V¢ (K) (for simplicity we take the 3D potentigl
which for our purposes is convenient to rewrite as

(Cll) m U|2:K2

VoY K)= — ,
1- = ¢ ( 27 W2

(D4)

J wherew,, is the plasma frequency defined after E86).
where we put inside the braces the dimensionless part Although the local nodal coordinate systent (i) are
ﬁé’sK K. very convenient for calculating the polarization functions

“ (CH), (C7), and(C11), the final expressions for them and, for
example, Eq.(D2) have to be calculated in the global or
APPENDIX D: EQUATIONS FOR V¢g, STRUCTURE laboratory coordinate systerK (¢). It is convenient to mea-
FACTOR AND TRANSFORMATION TO THE GLOBAL ~
COORDINATE SYSTEM sure the anglep from the vectork,, so that¢=0 corre-
sponds to the corner of the Fermi surfdsee, e.g., Fig. 1 in
Substituting Eqs(C4), (C7), and (C1]) in Eq. (46), we  Ref. 18 and the first node is ap= w/4. Thus the transfor-
obtain the equation for CG mode in the dimensionless formmations from the global coordinate system into the local sys-
which is convenient for numerical investigation, tem related to thg¢th node are

ko

+u§sin2(¢— 2 +g(j—1)),

szK\/v§C0§<¢—%+g(j—1)

veK T T ) vaK | T T .
cos¢j=?jcos<¢—z+5(1—l)), S|n¢j=?sm(¢—z+5(1—1)), i=1...,4 (D5)
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