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Leggett-Rice effect in a finite geometry
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The problem of restricted diffusion in the presence of the spin rotation effect is investigated theoretically.
The concept of diffusion modes is applied to calculate the attenuation of the spin echo signal in au-180° NMR
sequence. First we study the diffusion modes in a one-dimensional geometry and show that there are in general
two types of modes: bulk modes and edge modes. Then we show that the spin rotation effect tends to delocalize
the modes and favor edge modes. An expression of the spin echo signal is given as a linear combination of
diffusion modes. We study the refocusing of the echo signal and show that the spin rotation effect causes a
phase shift. Approximate analytical expressions for the echo signal are given in the three limiting cases: free
diffusion, motional narrowing, and localization. Finally, we show that the results of some experiments on spin
diffusion anisotropy in spin-polarized3He24He mixtures are biased by restricted diffusion effects.

DOI: 10.1103/PhysRevB.65.134512 PACS number~s!: 67.65.1z, 76.60.Lz
al
te

on

th
ra
es
ly
o

e
na

a
s
ch
a
p

e
n
in
re
tin
ho

ic
or
th

se

e

,
er

y
he
ne-
ath
ar
or
r

xi-
e.

om-

of

za-

ion
e
sed
ity

r of

le
ar

-
the
I. INTRODUCTION

The problem of restricted diffusion in NMR of classic
fluids has been investigated thoroughly during the last
years, and there is a vast literature on this subject~see, for
example, Ref. 1!. In this paper, we calculate the attenuati
of the spin echo signal in au-180° NMR sequence in the
case of restricted diffusion in quantum systems where
spin rotation effect is present. This applies to degene
Fermi liquids2 and also to nondegenerate quantum gas3

The study of restricted diffusion in quantum fluids is not on
of general interest, but also relevant to NMR experiments
spin diffusion anisotropy in spin-polarized3He-4He
mixtures4,5 which are currently the subject of controversy.

Leggett2 derived the equations of motion for the magn
tization in a Fermi liquid, but he calculated the echo sig
for the case of unbounded diffusion only. Ragan6 has taken
into account boundary effects; however, the perturbative
proach that he uses restricts the applicability of his result
the case of fast diffusion. Here, we investigate the spin e
signal in the three limiting cases: free diffusion, motion
narrowing, and localization. The analysis follows the a
proach of Swiet and Sen:1 we start with a discussion of th
diffusion modes in a one-dimensional geometry then, we fi
an expression for the spin echo signal as a linear comb
tion of diffusion modes. We discuss the three different
gimes listed above and conclude with a comment on exis
experimental data. The numerical methods used throug
this article are described in the Appendix.

II. FORMULATION

In the following, thez axis is along the applied magnet
field. In a Fermi liquid, the linearized equation of motion f
the components of the magnetization perpendicular to
applied magnetic field is7

]m2

]t
5 igB~r !m21

D'

~11 imM0!
¹2m2 , ~1!
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wherem25mx2 imy are the components of the transver
magnetization grouped into a single complex number,B(r )
is thez component of the local internal magnetic field in th
sample,g is the gyromagnetic ratio,D' is the transverse
diffusion coefficient, M0 is the longitudinal magnetization
and mM0 is known as spin rotation parameter. For furth
reference, we noteDeff5D' /(11 imM0), the complex ef-
fective diffusion coefficient. The conditions of applicabilit
of Eq. ~1! are the following: the size of the sample and t
characteristic length scale of the magnetic field inhomoge
ity must be much larger than the quasiparticle mean free p
for Leggett’s hydrodynamic equations to be valid; the line
approximation we use throughout this article is valid f
uM0u@um2u, corresponding to a small NMR tipping pulse o
nonsaturating continuous-wave NMR. Within this appro
mation,uM0u is uniform in the sample and constant in tim
Finally, the secular approximation used in Eq.~1! implicitly
assumes that the applied magnetic field is very large c
pared to the local field variations.

In the rest of the article, we investigate the solutions
Eq. ~1! in a one-dimensional sample of length 2L. We as-
sume the walls to be perfectly reflecting for the magneti
tion, so the boundary condition is]m2 /]z50 atz56L. We
neglect the internal demagnetizing field, an approximat
which is valid for 3He-4He mixtures. We only consider th
case of a uniform field gradient, so the local field, expres
in the reference frame rotating at the Larmor angular veloc
corresponding to the applied magnetic field at the cente
coordinates, is simplyB(r )5Gz.

For any given initial condition, the magnetization profi
m2(z,t) determined by Eq.~1! can be expressed as a line
combination of eigenmodes:

m2~z,t !5(
n

cnFn~z!eGnt, ~2!

where Fn is the nth eigenmode with complex eigenfre
quencyGn . The weights of the modes are determined by
initial condition
©2002 The American Physical Society12-1
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cn5E
2L

1L

m2~z,0!Fn~z!dz. ~3!

Stoller et al.8 have shown that this expansion breaks do
for exceptional values of the coefficientb5L3gG/Deff . We
will ignore this complication and assume that we are alw
in the case where the Eq.~2! is correct. Thus the whole
problem reduces to finding the eigenmodes of Eq.~1! and the
corresponding eigenfrequencies. In the following section,
study the diffusion modes in some detail. Although the d
fusion modes have been studied by several authors,7–9 they
form the basis for understanding the spin echo signal, wh
we discuss in Sec. IV.

III. DIFFUSION MODES

The only intrinsic length scale in Eq.~1! is the so-called
‘‘dephasing length’’1 Lc5@ uDeffu/(gG)#1/3 which is the char-
acteristic distance over which a spin must travel to de-ph
by 2p. The ratioLc /L determines the boundary between t
fast diffusion regime (Lc /L@1) and the slow diffusion re-
gime (Lc /L!1) in classical liquids (mM050). To investi-
gate the eigenmodes with finitemM0, it is useful to draw on
the analogy between Eq.~1! and the Schro¨dinger equation:
the term2gB(r ) plays the role of a potential, and the com
plex coefficient (i 2mM0)/D' is the analog of the mass. Th
imaginary part of the mass analog gives a damping of
modes~i.e., finite real part of the eigenvalues! which physi-
cally comes from diffusion processes. In a quantum fluid,
spin rotation effect introduces a restoring force in the dyna
ics, and the diffusion modes become weakly damped s
wave modes whenumM0u@1. While Eq. ~1! is symmetric
with respect toz50 when mM050, the molecular field
mM0 breaks this symmetry in a quantum fluid, and the s
of the spin rotation parameter determines whether maxim
field-seeking (mM0,0) or minimum field-seeking (mM0
.0) modes are favored. In the following, we develop the
assertions in a more formal way. Our analysis relies on
detailed study of the diffusion modes carried out by Sto
et al.8

To derive the eigenvalue equation, one looks for a so
tion of Eq.~1! of the formm2(z,t)5Fn(z)eGnt. Multiplying
both sides of the equation byL3(11 imM0)/D' , one ob-
tains the dimensionless equation for the modeFn with the
eigenvaluegn :

H ]2

]z2
1 ibzJ Fn5gnFn , ~4!

with the boundary conditionsdFn /dz50 at z561. The
dimensionless quantities are defined as follows:

z5z/L, b5L3gG/Deff , gn5GnL2/Deff .

In the core of the article, we express time in units
(LugGu)21 and frequency in units ofLugGu. For the sake of
the discussion, we assume thatgG.0. So, in these units, the
complex eigenfrequency of thenth mode isvn5gn /b, the
real part of vn corresponding to the decay rate and t
imaginary part to the frequency. As one expects for a sta
13451
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system, the real part of the eigenfrequency is negative. T
can be seen by multiplying each side of Eq.~4! by Fn* and
integrating over the length. One obtains

vnE
z521

11

uFnu2dz5 i E
z521

11

zuFnu2dz2
1

bEz521

11 UdFn

dz U2

dz.

~5!

The real part of the right-hand side of Eq.~5! is
@2(D/(L3gG)(11m2M0

2)#*z521
11 udFn /dzu2dz<0. Note

that the real part ofvn vanishes whenumM0u→1` which
means that the eigenmodes are undamped in this limit.
further reference, we notêz&n[*21

11uFnu2zdz/*21
11uFnu2dz,

the average position of thenth eigenmode, which appears i
the first term of the right-hand side of Eq.~5!.

For b50, Eq. ~4! is the diffusion equation. In this case
the modes are

Fn~z!5cosS np

2
~z11! D , gn5S np

2 D 2

. ~6!

In the fast diffusion limit (ubu21/35Lc /L@1), the eigen-
value problem can be solved with perturbative methods fr
the eigenmodes of theb50 case. For further reference, th
eigenfrequency of the slowest mode is8

v052
2

15
b. ~7!

To investigate the slow diffusion limit (Lc /L!1) we note
that Eq.~4! is related to the Airy equation through the su
stitution u5( i z2vn)b1/3, the phase ofb1/3 being chosen in
the sector@2p/3,p/3#. Consequently, the solutionsFn(z)
can be formally written as linear combinations of the Ai
functions Ai(ei2p/3u) and Ai(e2 i2p/3u), the respective am-
plitudes of the two functions being determined by the bou
ary conditions. For the relevant modes, as we will s
shortly, the wave functionFn(z) can usually be approxi-
mated by only one Airy function.

Figure 1 shows a series of plots of eigenvalues in
complex plane calculated withubu5104 and different values
of mM0. Thex axis is the real parts ofvn which corresponds
to the damping, and they axis is the imaginary part which
corresponds to the frequency. Let us first comment on
spectrum calculated withmM050 @Fig. 1~a!#. The modes
with a real part Re(vn)&20.5 do not contribute to the NMR
signal since they are strongly damped and their weightcn is
negligible if the initial magnetization is uniform across th
cell. We shall not discuss these modes further. The relev
modes @Re(vn)*20.5# lie in the frequency range 1
.Im(vn).21. There are three branches in the spectr
corresponding to three sorts of modes: upper edge mo
lower edge modes, and bulk modes. The upper edge m
are confined near the upper wall (z511), so they are not
influenced by the lower wall. As a consequence, they can
approximated by solutions of Eq.~4! with the boundary con-
ditions (dFn /dz)z51150 and Fn(z)→0 for z→2`.
Those solutions are
2-2
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FIG. 1. Plots of the eigenfre-
quenciesvn in the complex plane.
Re(vn), on the horizontal axis, is
the damping rate of thenth mode.
Im(vn), on the vertical axis, is the
frequency. The spectrum of rel
evant NMR modes can be spl
into three branches: upper edg
modes, lower edge modes, an
bulk modes. The crosses are th
numerical results, calculated with
ubu5104 and different values of
mM0. The circles correspond to
the approximate Eqs.~8b! and
~9b!.
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Fn~z!5AnAi „eip/6b1/3~12z!1an…, ~8a!

vn5 i 2anb21/3e2 i2p/3, ~8b!

wherean is thenth zero of the derivative of the Airy func
tion Ai and An

215b21/6ei7p/12an
1/2Ai( an) is a normalization

constant such that*z521
11 Fn

2dz51. Similarly, the lower edge
modes are

Fn~z!5BnAi „e2 ip/6b1/3~11z!1an…, ~9a!

vn52 i 2anb21/3ei2p/3, ~9b!

with Bn
215b21/6ei7p/12an

1/2Ai( an).
Bulk modes are localized in the center of the cell, so th

are not influenced by either wall. Their eigenfrequenciesvn
can be obtained by perturbation theory1 from the edge modes
in the limit ubu1/3@1. For a given complexvn , one cannot
find solutions of Eq. ~4! with the boundary conditions
Fn(z)→0 at z→6`. However, the functions

Fn~z!}Ai ~ei2p/3u! for Im~vn!.0, ~10a!

Fn~z!}Ai ~e2 i2p/3u! for Im~vn!,0 ~10b!

are solutions of Eq.~4! and take small values forz→61.
They are found to be very good approximations to the ex
numerical solutions.

The spectrum in the case ofmM050 is symmetric with
respect to the real axis, reflecting the symmetry of the Eq.~4!
with respect toz50. On increasingumM0u, one sets a pre
ferred direction in the problem, and one sort of edge mo
is favored. Lower edge modes are favored if the phase ofb is
in the first or third quadrant in the complex plane„Arg(b)
P]0,p/2@ø#p,3p/2@…; upper edge modes are favored in t
13451
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remaining cases. At the same time, the amplitudes of the
parts of the eigenfrequencies decrease; i.e., the modes
come more weakly damped@see Fig. 1~b!#. Eventually, for
large values ofumM0u, the spectrum is entirely made up o
edge modes of one sort@Fig. 1~c!#. For umM0u51`, the
eigenfrequencies are purely imaginary, which correspond
undamped modes.

It is useful to visualize the eigenfunctions to understa
the difference between the ‘‘classical modes’’ (mM0'0) and
the ‘‘quantum modes’’ (umM0u@1). In the case of classica
diffusion @Fig. 2~a!#, the modes are localized about the po
tion corresponding to their eigenfrequency^z&n5Im(vn). In
the limit of a strong spin rotation effect, the diffusion pro
lem is analogous to a Hermitian quantum mechanical pr
lem. Hence, the modes are similar to delocalized quan
mechanical wave functions@Fig. 2~b!#. In the case of mini-
mum seeking modes, for example, the wave functio
change from oscillatory in the region between the lower w
and the confining potential@21,z,Im(vn)# to exponen-
tially decaying above@ Im(vn),z,1#. As usual, there is a
turning point at the crossover with the potenti
@(d2Fn /dz2)z5Im(vn)50#.

To understand how this difference in behavior arises fr
the same functional expressions@Eqs.~8!, ~9!, and~10!#, we
consider the contour map of the real part of the funct
Ai( X1 iY) in the complex plane (X,Y). As z varies from
21 to 11, the trajectory of the variablev(z)5e2 i2p/3( i z
2vn)b1/3 in the complex plane is a finite straight line. T
make the connection with the wave functions, the real par
Fn(z) would correspond to a plot of the altitude as a fun
tion of z along the trajectoryv(z). Let us first consider an
eigenmode in the casemM051`. This mode is a lower
edge mode of the form@Eq. ~9!#, so the linev(z) lies on the
2-3
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real axis, one end of the line being at the coordinate (an,0).
As can be seen in Fig. 3~a!, the line intercepts a region o
rugged landscape foran,X,0 and falls off as
;X21/4e22X3/2/3 in the regionX.0.10 The corresponding al
titude plot is one of the wavefunctions shown in Fig. 2~b!.
Let us now turn to the casemM050 and consider a bulk
mode of the form expressed by Eq.~10b!. Now, the linev(z)
lies off the real axis. As shown in the Fig. 3~b!, the line
crosses a region where the Airy function is oscillatory forz
'Im(vn), and extends to regions where the ‘‘landscape’
flat for z→61.

IV. SPIN ECHO

The technique of ‘‘spin echoes’’ is a standard NMR s
quence which consists of letting the magnetization evolve
a time te after a first excitation pulse and applying a seco
pulse to rotate the magnetization through 180°. During
first evolution period, the signal decays due to the depha
of the magnetization in different parts of the sample cau

FIG. 2. Real part of selected eigenfunctionsFn(z) calculated
with mM050 ~a! and mM051` ~b!. The wave functions have
been offset by the imaginary part of their eigenfrequency. The
figures clearly display the difference between the localized class
diffusion modes and the delocalized spin-wave modes.
13451
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by the field gradient and diffusion. After the reversing 18
pulse, the magnetization rephases, so an ‘‘echo’’ signa
observed at time.2te . The amplitude of the echo signa
depends on two intrinsic length scales: the dephasing len
Lc and the diffusion lengthLd5(uDeffute)

1/2. There are now
three different regimes to consider, depending on which
the length scales—Ld , Lc , or L—is the shortest: free diffu-
sion (Ld!Lc ,L), motional narrowing (L!Ld ,Lc), and lo-
calization (Lc!Ld ,L). In the linear approximation, the con
sequence of the spin rotation effect on the echo amplitud
simply to renormalize the spin diffusion coefficientD'

→Deff . The main difference with the classical case is th
the echo signal refocuses with a different phase. This ef
occurs because the refocusing takes place under a reve
molecular field2mM0, so the isochromats11 do not rotate at
the same velocity after and before the 180° pulse. In t
section, we give an expression for the echo signal as a fu
tion of the diffusion modes. From this expression, we disc
the three different regimes, giving in each case an appr
mate form for the echo amplitude and phase.

A. Formal expression for the spin echo signal

For the sake of simplicity, we assume the transverse
citation field to be uniform and directed along they axis.
Without loss of generality, we take thatmM0.0 at timet
50. The magnetization during the evolution period follow
ing the first excitation pulse is still given by Eq.~2!. The free
induction decay~FID! signal is given by

S~t!5E
21

11

m2~z,t!dz5(
n

cn
2evnt ~t,te!. ~11!

The weights are given bycn5*21
11Fn(z)dz. The 180° pulse

at time te causes the transformationM0→2M0 ;
m2(z,te

2)→2m2* (z,te
1), where the symbol * denotes th

complex conjugate. The magnetization evolution after
180° pulse can be described by an expression analogou
Eq. ~2!. However, due to the reversal of longitudinal magn
tization, the relevant eigenmodesFm8 with eigenfrequencies
vm8 are now maximum field seeking, and their amplitudes
determined by the nonuniform magnetization profi
m2* (z,te

1). The expression for the echo signal is

o
al
e
o
e-

t
d

int
FIG. 3. Gray scale maps of the real part of th
Airy function in the complex plane seen with tw
different vertical scales. The straight line repr
sents the trajectory of the variablev(z) in the
complex plane.~a! For an edge mode in the limi
mM051`, the line intercepts a region of rugge
‘‘landscape’’ for an,X,0 and falls off as

;X21/4e22X3/2/3 in the regionX.0. ~b! For a
bulk mode calculated withmM050, the line ex-
tremities lie in flat regions where Ai(X1 iY)
takes small values. The star indicates the po
wherez5Im(vn).
2-4
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S~t!52(
n,m

evn* tecn* Umncm8 evm8 (t2te) ~t.te!, ~12!

where the matrixUnm5*21
11Fn* (z)Fm8 (z)dz is the overlap

between the maximum field-seeking modes and the m
mum field-seeking modes.

We now use Eq.~12! to discuss the echo formation. Du
to the symmetry of the linear field profile with respect toz
50, the maximum field-seeking and the minimum fiel
seeking modes are related throughvm8 5vm* and Fm8 (z)

}Fm* (2z). Consequently, the factorsevn* tecn* Umncm8 evm8 te

are symmetric under the interchange ofm andn, so we can

rewrite the terms in the sum asOmne
iDmnevm8 dt, whereOmn

andDmn are two real symmetric matrices. Using the symm
try properties ofOmn andDmn , and notingdt5t22te , we
can express the amplitude of the echo signal as

uS~t!u25 (
n,m,m8,n8

OmnOm8n8cos@Dmn2Dm8n8

1 i ~vm2vm81vn2vn8!dt/2#

3cos@ i ~vm2vm82vn1vn8!dt/2#. ~13!

In Eq. ~13!, the factors cos@i(vm2vm82vn1vn8)dt/2# ensure
that all the terms in the sum come back into phase at
52te . This refocusing gives rise to the echo signalS(2te)
whose amplitudeh and phasef are usually measured i
experiments. Note that in the presence of higher-order te
in the field profile, which break the symmetry with respect
z50, the refocusing takes place attÞ2te . In particular,
numerical studies show that in the presence of a quad
field term 1

2 G2(2z22x22y2) with a cylindrical geometry,
the echo is delayed formM0G2L/G.0 and advanced fo
mM0G2L/G,0.

In classical NMR (mM050), the diffusion modes are lo
calized. As a consequence, the overlap matrix is quasidia
nal, so the only terms in Eq.~12! contributing to the echo
signal are of the formucnu2e2Re(vn)dt. Hence, the ‘‘classical’’
echo will refocus withf5p. The situation is different in the
presence of the spin rotation effect. As the diffusion mod
are delocalized, the overlap matrix is no longer diagonal,
the echo signal will generally refocus with a phase shift
finite mM0. There is also a difference in the echo attenuat
mechanism between the classical case and the pure qua
case. In the classical case, the Hahn echo completely r
cuses the decoherence due to inhomogeneous broade
and the echo attenuation is due to diffusion only. Indeed
this case, there are no crossed terms in Eq.~12! since the
overlap matrix is diagonal, and the echo decay depends
on the real part of the eigenfrequencies. In the pure quan
case (umM0u→1`), by contrast, the diffusion modes a
undamped; i.e., their eigenfrequencies are purely imagin
Therefore, the signal decay during the evolution period
reversible. Nonetheless, the magnetization is not totally re
cused at the echo because the evolution after the 180° p
takes place under a reversed molecular field.

Equation~12! is an exact formula which allows us to ca
culate the spin echo signal numerically. We can obtain
13451
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proximate analytical expressions in the limiting cases
scribed at the beginning of this section. We now proce
with the study of these limiting regimes.

B. Free diffusion

WhenLd!Lc ,L, the diffusion occurs on a time scale to
short for the spins to ‘‘see’’ the walls. The attenuation fac
of the echo signal is given by the Leggett’s expression
unbounded diffusion:2

h5expS 2
2

3

te
3

ubuA11m2M0
2D 5expS 2

2

3

~gG!2D'

11m2M0
2

te
3D .

~14!

As one expects, the decay rate does not depend on the si
the sample in this limit. IfmM050, one finds the familiar
expression for the echo attenuation of the Hahn echo in c
sical liquids.11 In quantum liquids, the phase of the ech
depends implicitly on the waiting time according to the re
tion:

f52mM0ln~h!. ~15!

In practice, free diffusion is observed for a short waitin
time te for any value of the parameterb. However, the time
scale over which the regime of free diffusion is observed c
be very short ifubu is small@see insets in Figs. 4~a! and 5~a!#.

FIG. 4. Echo signal calculated forubu50.01 andmM0510. The
solid lines are the exact numerical results.~a! Amplitude of the echo
as a function of the waiting time. For long waiting time, the dec
of the echo is well described by the approximate expression~16!,
valid in the motional narrowing regime~dashed line!. For the very
short waiting times, the echo amplitude decays according to
~14! for free diffusion~dashed line in the insert!. ~b! Phase of the
echo as a function of the waiting time. The dashed line correspo
to the approximate formula~17!. The dashed line has been offset b
20.5 rad for clarity.
2-5
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C. Motional narrowing

In the limit L!Lc ,Ld , the spins diffuse rapidly across th
cell, so the magnetization remains essentially uniform. In
presence of the spin rotation effect, the magnetization is
tated off the (x,z) plane by an angle proportional tomM0te .
In the language of diffusion modes, this so-called ‘‘motion
narrowing regime’’ corresponds to the limit ofubu1/3!1 and
long waiting time (te@ubu). The only long-lived mode is the
lowest eigenmode, which for smallubu is nearly uniform
across the cell, with a complex eigenfrequency given by
~7!. Accordingly, the magnetization profile during the evol
tion period can be written asm2(z,t).e22bt/15. The 180°
pulse transforms the magnetizationm2(z,te) into
m2* (z,te), whence the eigenmode evolves with the comp
frequency2 2

15 b* . Consequently, the echo signal attenuat
is twice the signal attenuation during the evolution period

h}expS 2
4

15
Re~b!teD5expS 2

4

15

L4~gG!2

D'

teD . ~16!

It is remarkable that the echo signal decays according to
classical rate,12 independent ofmM0. This result was ob-
tained by Ragan.6 The difference betweenmM050 and fi-
nite mM0 is in the phase shift of the echo signal, which
twice the phase built up fromt50 to t5te :

f5
4

15
Im~b!te5

4

15

L4~gG!2

D'

mM0te . ~17!

Figure 4 shows the amplitude and phase of the echo si
as a function of the waiting timete calculated withubu
50.01 andmM0510. For shortte , the signal attenuation
follows Eq. ~14!. For longerte , one enters the motiona
narrowing regime, and the phase and attenuation of the e
signal are given by formulas~16! and ~17!.

D. Localization

The third limiting caseLc!L,Ld has been called the lo
calization regime.1 It corresponds to the regime of long wai
ing time (te@ubu1/3) for ubu1/3@1. Again, in this case, the
signal originates mainly from the lowest eigenmode. Ho
ever, for strongb, the lowest eigenmode is an edge mod
which is localized near a wall. By the same argument as
the case of motional narrowing, and using Eqs.~9b! and~8b!
for the edge modes eigenfrequency, we obtain

h}exp$2a0ubu21/3@cos~w/3!2A3usin~w/3!u#te%

5expS 2a0

~gG!2/3D'
1/3

~11m2M0
2!1/6

3@cos~w/3!2A3usin~w/3!u#teD , ~18!

wherea0'21.0188 and the parameterw is determined by
cos(w)5(11m2M0

2)21/2 and sin(w)5mM0(11m2M0
2)21/2. The

phase shift, ignoring a constant term, is obtained similar
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f5$2e2a0ubu21/3@eA3cos~w/3!2sin~w/3!#%te

5S 2gGLe2a0

~gG!2/3D'
1/3

~11m2M0
2!1/6

3@eA3cos~w/3!2sin~w/3!# D te , ~19!

wheree511 if mM0.0, e521 if mM0,0, ande50 if
mM050. FormM050, there is no phase shift, and the dec
rate 2a0(gG)2/3(D')1/3 corresponds to the classical ca
treated by Swiet and Sen.1

Figure 5 shows that, for long waiting timeste , the phase
and amplitude of the echo signal are well described by E
~18! and~19!. However, as Swiet and Sen1 pointed out, there
is little hope of observing the pure localization regime e
perimentally, since it corresponds to long waiting times a
therefore to a vanishingly small NMR signal.

V. COMMENT ON EXISTING NMR DATA

During the last ten years, there has been a controve
about the temperature dependence of the transverse ma
tization relaxation time in degenerate Fermi liquids: Me
erovich and Musaelian13 predicted that this relaxation tim
should saturate at low temperature as}1/(Ta

21T2), where
Ta is the so-called anisotropy temperature. Fomin,14 on the
contrary, calculated that the transverse relaxation time ob
the usual 1/T2 dependence. As both the diffusion coefficie
and the spin rotation parameter are proportional to this tra
verse relaxation time, much of the experimental effort h

FIG. 5. Echo signal calculated forubu5104 andmM0510. The
solid lines are the exact numerical results.~a! Amplitude of the echo
as a function of the waiting time. For long waiting time, the dec
of the echo is well described by Eq.~18! valid in the localization
regime~dashed line!. Note that in this regime, the signal amplitud
is very small. For the very short waiting times, the echo amplitu
decays according to Eq.~14! for free diffusion~dashed line in the
insert!. ~b! Phase of the echo as a function of the waiting time. T
dashed line corresponds to the approximate formula~19!.
2-6
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been concentrated on measuringD' andmM0 as a function
of the temperature. Unfortunately, the experiments so
have given contradictory results.4,5,15,16As we shall show,
restricted diffusion effects may explain some of the discr
ancies between the experimental results.

Hitherto, the experiments employing the method of s
echo have been analyzed assuming that the walls of the
perimental cell had no effect on the echo signal. Con
quently, the parametermM0 for each temperature was dete
mined by linear fitting of the echo phase as a function of
echo amplitude, according to Eq.~15! valid in the regime of
free diffusion. Similarly,D' was determined by fitting the
echo amplitude as a function of2 2

3 (gG)2te
3/(11m2M0

2)
@Eq. ~14!#. In most of the experiments, the value of the p
rameterL/Lc is in the range 10–100. For these values
L/Lc , the deviation from the free diffusion regime is signi
cant at long timete . As we shall see, this deviation ha
important implications with regard to the analysis of expe
mental data.

In order to compare experiments to the numerical resu
it is convenient to define the temperature-independent
rameter bL5L3gGmM0 /D' . During an experiment the
field gradient is usually kept at a fixed value; thusbL is a
constant while the parameterumM0u increases~and possibly
saturates! with decreasing temperature. In Fig. 6~a!, we show
the relation between the phasef normalized bymM0 and
ln(h) plots computed numerically forbL5104 for different
values ofmM0. In the absence of restricted diffusion effec
the relationf/mM0 versus ln(h) should be linear with a
slope of 1@Eq. ~15!#. For finitebL , this relation is no longer
linear. The deviations from the linear behavior, however,

FIG. 6. ~a! The echo phasef normalized by the spin rotation
parameter as a function of ln(h) calculated withubLu5104 and
mM0510 (1), mM0530 (s), mM05100 (L), and mM0

5200(3). The dashed line of slope 1 is the case of the unboun
diffusion. In graph~a!, the slope gives an ‘‘apparent value’’ ofmM0

which saturates as the spin rotation parametermM0 becomes large.
~b! Echo heights, ln(h) as a function ofte

3ubu21(11m2M0
2)21/2 cal-

culated with mM0510 and ubLu5102 (1), ubLu533102 (s),
ubLu5103 (L), ubLu533103 (3), andubLu5104 (* ). The dashed
line of slope 2/3 represents the case of unbounded diffusion.
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not large and can be mistaken for the scatter of the d
points. More significantly, the average slope off versus
ln(h) is smaller than expected in the case of unbounded
fusion. This deviation from Leggett’s prediction leads to
underestimate ofmM0 at low temperature. A similar effec
can be seen in Fig. 6~b! for ln(h) versus @1
1(mM0)2#21/2ubu21te

3 . Consequently, restricted-diffusio
effects bias the apparent parametersD' andmM0 in such a
way as to mimic the saturation of the transverse relaxa
time at low temperature. Note that the deviations from
free diffusion regime become more severe for decreas
ubLu and increasingmM0, since the system gets closer to th
localization regime.

In order to illustrate this point, we have compared t
values ofmM0 that were used as inputs to the simulation a
the value obtained from a linear fit of the simulatedf versus
ln(h) in the range22, ln(h),0. As can be seen in Fig. 7~a!,
the fitted value deviates from the actualmM0 and eventually
saturates for largemM0. Numerically, the apparentmM0
saturation value was found to depend on the parameterbL as
}bL

1/2 @Fig. 7~b!#. We have also calculated a more realis
case, taking into account the effect of a second-order fi
gradient in a cylindrical geometry. As shown in Fig. 7~a!, for
a small second-order gradient, the saturation value of
apparent parametermM0 is altered, but the qualitative be
havior remains the same.

In the latest experiment in our group,5 the values for the
dimensionless parameters werebL.104 with a second-order
gradientG2L/G.0.2, leading to an apparent saturation
mM0 at a value of227.5. In terms of anisotropy tempera
ture, such a saturation value of the spin rotation param
would correspond to an apparentTa of 9 mK for 6.4%
3He-4He mixture at 11.3 T, based on the spin rotation p
rameter data of Ishimotoet al.17 Consequently, we infer tha
the value ofTa513 mK reported in our earlier publication5

d

FIG. 7. ~a! Slope of the relationf vs ln(h) as a function ofmM0

for ubLu5103 and 104. The dotted line is a calculation for a righ
cylinder with a quadratic field term of strengthG2L/G50.2. ~b!
Saturation value of the ‘‘apparent’’mM0 as a function of the pa-
rameterbL . The saturation value is approximately}bL

1/2.
2-7
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is largely due to finite-size effects. By contrast, for the e
periment of Weiet al.,16 the value of parameterbL was 7.4
3104, so we expect the effect of restricted diffusion to
relatively small. Using the data of Candelaet al.,7 the corre-
sponding apparent anisotropy temperature would be 3 m
pure 3He at 8 T, which is much smaller than the value of
mK reported in Ref. 16.

VI. CONCLUSIONS

We have studied the problem of restricted diffusion in t
presence of the spin rotation effect. In a one-dimensio
geometry, the diffusion modes fall into two categories: bu
modes, which are not influenced by the presence of
walls, and edge modes, which are confined against a w
We have shown that the spin rotation effect favors one sor
edge modes, the confinement position of which depends
the sign of the parametermM0. Moreover, the diffusion
modes are localized formM050 and become delocalize
when umM0u is large—that is, when the restoring force pr
vided by the spin rotation effect is important.

We have given an expression for the spin echo signa
terms of diffusion modes. We have shown that the refocus
of the echo at timet52te originates in the symmetry of th
linear field profile with respect with the center of the samp
In the presence of the spin rotation effect, the echo sig
acquires a phase shift due to the reversal of the molec
field mM0 following the 180° pulse. We have given explic
expressions for the echo amplitude and phase in the t
limiting cases. In the free diffusion regime, the echo dec
as exp@22

3(gG)2D'te
3/(11m2M0

2)# in agreement with the ex
pression given by Leggett.2 In the motional narrowing re-
gime, the echo decays exponentially according to the cla
cal decay rate}L4(gG)2/D' . In the localization regime
decay of the echo is also exponential, with a decay r
}(gG)2/3D'

1/3(11m2M0
2)21/6.

Finally, the numerical calculations with realistic param
eters show that the deviations from the free diffusion regi
are not negligible. This stands as a warning to experimen
ists since the deviations mimic the saturation of the tra
verse relaxation time at low temperature. We hope that
results will go some way to solving the current controve
on the spin diffusion anisotropy in degenerate Fermi liqui
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APPENDIX: NUMERICAL TECHNIQUES

We used two different methods to produce the results
scribed in this article. The first method, based on matrix
agonalization, allows the calculation of diffusion modes a
hence all quantities of interest~NMR spectrum, overlap ma
trix, echo signal! using formulas~2! and ~12!. This method
turns out to be limited by the computer precision for largeubu
and smallumM0u. To overcome this problem, we have us
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an operator-based method, which we describe in the last
of this appendix.

1. Matrix method

A standard method of solving eigenvalue problems of
Schrödinger type is to use a representation in terms of eig
functions of the Laplace operator obeying the boundary c
ditions ~see for example Candelaet al.7!. For a cylinder this
orthonormal set of functionscnlm is

cnlm~z,r,w!5QnJ lmcosS np

2
~z11! D Jm~k lmr!eimw,

where 0<r<1 is the radial coordinate in expressed reduc
units, w is the azimuthal coordinate,Jm is the mth Bessel
function, andk lm is thel th zero of the derivative ofJm . The
normalization factors are given by

Q051/A2, Qn51 n.0,

J l05
A2

uJ0~k l0!u
,

J lm5
A2

uJm11~k lm!u
m.0.

In the case of a linear field profile we treat in this article, t
problem is one dimensional, so we use the subset of fu
tions cn00, i.e., a Fourier expansion.

The ‘‘Hamiltonian’’ of the diffusion problem isĤ5]z
2

1 ibz. The matrix elements of the Hamiltonian in the cosi
representation can be calculated analytically straight
wardly. Practically, of course, we calculate only a finite nu
ber of matrix elements. Since the number of relevant mo
scales as}L/Lc5b1/3, we usedN3N matrices with N
.6b1

1/3 to avoid any aliasing effect. This matrix was the
diagonalized using the software packageMATLAB to obtain
the eigenfrequencies and the Fourier components of the
fusion modes.

We note V, the square matrix whose columns are t
eigenvectors ofH. By contrast with quantum mechanics, th
Hamiltonian is non-Hermitian, so its eigenvalues are co
plex and the matrixV is not unitary. However,H is symmet-
ric so the matrixV is orthogonal:

Vt
•V5I , ~A1!

Vt being the transpose of the matrixV ~not the Hermitian
adjoint! andI the identity matrix. If the initial magnetization
is uniform, the vector of the weights of the modes in the fr
induction decay@Eq. ~2!# is the first row of the matrixV ~i.e.,
cn5V0n).

To calculate the spin echo signal, we need to consider
two Hamiltonians Ĥ,5]z

21 ibz and Ĥ.5]z
21 ib* z. We

note V. and V, , the matrices of eigenvectors of, respe
tively, H. andH, . The overlap matrix is given by

U5V.
†
•V, , ~A2!
2-8
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LEGGETT-RICE EFFECT IN A FINITE GEOMETRY PHYSICAL REVIEW B65 134512
where † denotes the Hermitian adjoint. From Eq.~A2!, it is
easy to see thatU is also an orthogonal matrix, sinceV. and
V, are orthogonal matrices. In the case of a linear fi
profile, the expression forU can be simplified further:

U5I 22Veven
t

•Veven , ~A3!

where Veven is the N3N/2 matrix whose columns are th
even columns ofV. , so only one set of modes needs to
calculated. From the matricesU,V and the eigenvalues, th
echo signal is calculated using formula~12!.

2. Accuracy of the matrix method

Numerically, the matrix method fails whenubu is large
and umM0u is small. In such a case, the elements of
matrix V take very large values. This is not a problem f
calculating the FID signal, since the weighting coefficien
cn are always determined with sufficient accuracy. Howev
the small errors in the elements of the matrixV build up
when one calculates the matrix productVeven

t
•Veven . This

results in large errors in the overlap matrixU and thus pre-
vents us from computing the amplitude of the echo sign
accurately.

An indication that the computer accuracy is not sufficie
is that the orthogonality relation~A1! is violated numerically.
In Fig. 8, we show a contour line map of the norm of t
matrix (V• tV2I ) calculated with 1003100 elements~the
norm being defined as the largest column sum!. The region
where this norm is.1025 ~say! corresponds to the range o
parameters where the orthogonality relation~A1! is numeri-
cally not obeyed. In the example shown the region of para
eters where the method fails isubu*500 andumM0u&2. The
accuracy of the method can be enhanced by using la
matrices, but at a large cost in term of computation time.
example, the region of parameters where the method
recedes toubu*1000 andumM0u&1 if we use 3003300 el-
ements. Attempts to use alternative diagonalization meth

FIG. 8. Contour line map of the norm of the matrix (V• tV2I )
calculated with 1003100 elements. In this example, the region
parameters where the method fails isubu*500 andumM0u&2.
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failed to improve the accuracy of the matrixV. It is worth
noting that, in the case of a quadratic field profile with
cylindrical geometry, this numerical problem does not occ
for the radial eigenvalue problem.

3. Operator method

Although knowledge of the eigenmodes is useful for u
derstanding the underlying physics of the diffusion proble
it is not necessary to calculate the FID signal or the ec
signal. Using a method similar to that of Schneider a
Freed,18 we can obtain the magnetization evolutionum2(t)&
~here we use the usual Dirac’s notations! by iterating the
‘‘Schrödinger equation’’ from the given initial condition
um20)&:

um2~t1dt!&5~11Ĥdt!um2~t!&. ~A4!

The timet is now expressed in units ofL2/Deff to make the
formula dimensionally correct.

An alternative method consists in calculatingum2(t)& di-
rectly by application of the evolution operatoreĤt :

um2~t!&5eĤtum2~0!&. ~A5!

By writing out the ketum2(0)& as a linear combination o
eigenvectors ofĤ, it is easy to show the equivalence b
tween Eq.~A5! and Eqs.~2! and ~3!. From Eq. ~A5!, we
calculate the NMR signal:

S~t!5^m2~0!ueĤtum2~0!&. ~A6!

The calculation of the spin echo signal follows the sa
lines: the HamiltonianĤ, governs the magnetization durin
the evolution period. Thep pulse at time te changes
um2(te)& into 2^m2(te)u andb into b* . After thep pulse,
the evolution is determined by the HamiltonianĤ. . So the
equivalent of Eq.~12! for the echo signal is

S~t!52^m2~te!um2~t2te!&

52^m2~0!ueĤ,
† te* eĤ.(t2te)um2~0!&. ~A7!

Formulas~A6! and ~A7! do not lend themselves to ana
lytical calculations. However, we can use the geometric
terpretation of the kets as vectors in a Hilbert space to g
insight into the difference between the classical case and
quantum case. Let us consider the pure quantum c
(umM0u51`) first. Similarly to quantum mechanics, th
Hamiltonian is Hermitian, so the evolution operator is a r
tation in Hilbert space. This implies that, during the magn
tization evolution, the norm of the ketum2(t)& is constant:

^m2~t!um2~t!&5^m2~0!um2~0!&. ~A8!

This equality points to the fact that, in the pure quantu
case, the signal decay is reversible and entirely due to d
herence by inhomogeneous broadening. Despite the rev
ible nature of the signal decay, the magnetization is not
focused completely by the Hahn echo, because the rota
undergone byum2(0)& during the evolution is not cancele
2-9
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by the rotation undergone byum2(te)& between timete and
2te . Geometrically,um2(te)& and um2(0)& have the same
norm, but lie at different angles in the Hilbert space.

In the pure classical case (mM050), the norm of
um2(t)& decreases with increasingt because the evolution
operator is not unitary. Physically, it means that both reve
ible inhomogeneous broadening and irreversible diffus
processes contribute to the signal decay. In the pure clas
case, one hasĤ,5Ĥ. , so the expression of the spin ech
signal reduces to

uS~2te!u5^m2~te!um2~te!&<^m2~0!um2~0!&.
~A9!

Contrary to the pure quantum case,um2(te)& and um2(0)&
lie at the same angle in the Hilbert space, but have differ
norms. The physical interpretation is that the Hahn ec
completely refocuses the inhomogeneous broadening,
the echo attenuation is due to diffusion only.
A.

,

13451
-
n
cal

nt
o
nd

We have used the cosine representation defined abov
implement the iteration method and the evolution opera
method. The iteration was carried out with a fourth-ord
Runge-Kutta routine, and the evolution matrixeHt was cal-
culated using a numerical matrix exponential function, bo
provided byMATLAB . These two methods give accurate r
sults for all values of the parametersb andmM0. The itera-
tion method was found faster than the evolution opera
method, but care had to be taken when the iteration w
carried out backwards, since the system is unstable for n
tive times. One of the reasons why the operator metho
more accurate than the matrix diagonalization method is
no scalar product operation is actually required to calcu
the FID or spin echo signals if the initial condition
m2(z,0)5^zm2(0)&51: thanks to the cosine represent
tion, the vector of Fourier coefficients of the magnetizati
m2(z,t) is the first column of the matrixeHt, so the NMR
signal and the echo signal are simply the upper left elem

of the matriceseHt andeH,
† te* eH.(t2te), respectively.
.
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