PHYSICAL REVIEW B, VOLUME 65, 134512

Leggett-Rice effect in a finite geometry
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The problem of restricted diffusion in the presence of the spin rotation effect is investigated theoretically.
The concept of diffusion modes is applied to calculate the attenuation of the spin echo sigAal@aNMR
sequence. First we study the diffusion modes in a one-dimensional geometry and show that there are in general
two types of modes: bulk modes and edge modes. Then we show that the spin rotation effect tends to delocalize
the modes and favor edge modes. An expression of the spin echo signal is given as a linear combination of
diffusion modes. We study the refocusing of the echo signal and show that the spin rotation effect causes a
phase shift. Approximate analytical expressions for the echo signal are given in the three limiting cases: free
diffusion, motional narrowing, and localization. Finally, we show that the results of some experiments on spin
diffusion anisotropy in spin-polarizetHe—“*He mixtures are biased by restricted diffusion effects.
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I. INTRODUCTION wherem_=m,—im, are the components of the transverse
magnetization grouped into a single complex numBXr,)

The problem of restricted diffusion in NMR of classical is thez component of the local internal magnetic field in the
fluids has been investigated thoroughly during the last tesample,y is the gyromagnetic ratioD, is the transverse
years, and there is a vast literature on this subjsee, for  diffusion coefficient, M, is the longitudinal magnetization,
example, Ref. 1 In this paper, we calculate the attenuationand uM, is known as spin rotation parameter. For further
of the spin echo signal in & 180° NMR sequence in the reference, we not® =D, /(1+iuM,), the complex ef-
case of restricted diffusion in quantum systems where théective diffusion coefficient. The conditions of applicability
spin rotation effect is present. This applies to degeneratef Eq. (1) are the following: the size of the sample and the
Fermi liquid$ and also to nondegenerate quantum gasescharacteristic length scale of the magnetic field inhomogene-
The study of restricted diffusion in quantum fluids is not only ity must be much larger than the quasiparticle mean free path
of general interest, but also relevant to NMR experiments offior Leggett's hydrodynamic equations to be valid; the linear
spin diffusion anisotropy in spin-polarized®He-*He  approximation we use throughout this article is valid for
mixture$™> which are currently the subject of controversy. |Mg|>|m_|, corresponding to a small NMR tipping pulse or

Leggett derived the equations of motion for the magne-nonsaturating continuous-wave NMR. Within this approxi-
tization in a Fermi liquid, but he calculated the echo signalmation,|M;| is uniform in the sample and constant in time.
for the case of unbounded diffusion only. Rafj&as taken Finally, the secular approximation used in Efj) implicitly
into account boundary effects; however, the perturbative apassumes that the applied magnetic field is very large com-
proach that he uses restricts the applicability of his results tpared to the local field variations.
the case of fast diffusion. Here, we investigate the spin echo In the rest of the article, we investigate the solutions of
signal in the three limiting cases: free diffusion, motional Eg. (1) in a one-dimensional sample of length .2We as-
narrowing, and localization. The analysis follows the ap-sume the walls to be perfectly reflecting for the magnetiza-
proach of Swiet and Sehwe start with a discussion of the tion, so the boundary condition én_ /dz=0 atz=*L. We
diffusion modes in a one-dimensional geometry then, we fincheglect the internal demagnetizing field, an approximation
an expression for the spin echo signal as a linear combinawhich is valid for 3He-*He mixtures. We only consider the
tion of diffusion modes. We discuss the three different re-case of a uniform field gradient, so the local field, expressed
gimes listed above and conclude with a comment on existingn the reference frame rotating at the Larmor angular velocity
experimental data. The numerical methods used throughowbrresponding to the applied magnetic field at the center of
this article are described in the Appendix. coordinates, is simpl(r)=Gz.

For any given initial condition, the magnetization profile
m_(z,t) determined by Eq(l) can be expressed as a linear
Il. FORMULATION combination of eigenmodes:

In the following, thez axis is along the applied magnetic
field. In a Fermi liquid, the linearized equation of motion for
the components of the magnetization perpendicular to the m_(z,t)=2 cnd,(2)et, 2
applied magnetic field s n

where @, is the nth eigenmode with complex eigenfre-
2m_, (1) quencyl’,,. The weights of the modes are determined by the

Jom_
e iyB(ImM_+—— ¥
Y (1+iuMg) initial condition

ot
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+L system, the real part of the eigenfrequency is negative. This
Ch= J_L m_(z,00®x(z)dz ) can be seen by multiplying each side of E4) by ®} and
integrating over the length. One obtains
Stoller et al® have shown that this expansion breaks down

for exceptional values of the coefficient=L3yG/D¢. We +1 oo [ ) 1(+1 |[dd,|?
will ignore this complication and assume that we are alwayswnf _71|CDn| df=i _71§|q)n| d— Bj ra d¢.
in the case where the E@2) is correct. Thus the whole N - < (5)

problem reduces to finding the eigenmodes of @yand the

corresponding eigenfrequencies. In the following section, werhe real part of the right-hand side of Ed5) is
study the diffusion modes in some detail. Although the dif-[—(D/(L3yG)(1+,uZMS)]fzj_1|dfbn/d§|2dgs0. Note
fusion modes have been studied by several authShey  that the real part ofv, vanishes whehuM o|— + o which
form the basis for understanding the spin echo signal, whiclheans that the eigenmodes are undamped in this limit. For

we discuss in Sec. IV. further reference, we not@),=/*1|®,|?¢d/ [ 1| ®,|%d¢,
the average position of theth eigenmode, which appears in
lll. DIFFUSION MODES the first term of the right-hand side of E().

The only intrinsic length scale in Eql) is the so-called Forb=0, Eq.(4) is the diffusion equation. In this case,
“dephasing length® L.=[|Dg4/(yG)]*® which is the char- the modes are
acteristic distance over which a spin must travel to de-phase
by 27. The ratioL /L determines the boundary between the cbn(g):cos(n—w(ﬁ 1)
fast diffusion regime I(,/L>1) and the slow diffusion re- 2
gime (L./L<1) in classical liquids gMy=0). To investi-
gate the eigenmodes with finigeM, it is useful to draw on In the fast diffusion limit (b| =L /L>1), the eigen-
the analogy between Eql) and the Schrdinger equation: Vvalue problem can be solved with perturbative methods from
the term— yB(r) plays the role of a potential, and the com- the eigenmodes of the=0 case. For further reference, the
plex coefficient {(— uM)/D, is the analog of the mass. The €igenfrequency of the slowest modé is
imaginary part of the mass analog gives a damping of the
modes(i.e., finite real part of the eigenvalyeshich physi- 2
cally comes from diffusion processes. In a quantum fluid, the @o= 1_5b' (@)
spin rotation effect introduces a restoring force in the dynam-
ics, and the diffusion modes become weakly damped spin- Tq jnvestigate the slow diffusion limit(./L<1) we note
wave modes whemuMo|>1. While Eq.(1) is symmetric  that Eq.(4) is related to the Airy equation through the sub-
with respect toz=0 when uMy=0, the molecular field gtjtution u=(i{— w,)b3 the phase ob3 being chosen in
Mg breaks this symmetry in a quantum fluid, and the signthe sector] — 7/3,7/3]. Consequently, the solution®,(¢)
of the spin rotation parameter determines whether maximurgan pe formally written as linear combinations of the Airy
field-seeking fMo<<0) or minimum field-seeking 4Mo  functions Ai@e'?™u) and Ai(e”'2"u), the respective am-
>0) modes are favored. In the following, we develop thesgjitudes of the two functions being determined by the bound-
assertions in a more formal way. Our analysis relies on thgry conditions. For the relevant modes, as we will see
detailed study of the diffusion modes carried out by Stollershortly, the wave functionb,(Z) can usually be approxi-
etal’ mated by only one Airy function.
~To derive the eigenvalue equation, one Iooks_for_a solu-  Figure 1 shows a series of plots of eigenvalues in the
tion of Eq. (1) of the formm_(z,t) = ®,(z)e' »". Multiplying  complex plane calculated witlb|= 10* and different values
both sides of the equation Hy*(1+ixMg)/D,, one ob-  of ;,M,. Thex axis is the real parts ab, which corresponds
tc':.linS the dimensionless equation for the m@ireWIth the to the damping' and th¢ axis is the imaginary part which
eigenvaluey, corresponds to the frequency. Let us first comment on the
spectrum calculated witeM =0 [Fig. 1(a)]. The modes
B = y,d 4) with a real part Red,,) < — 0.5 do not contribute to the NMR
nosnene signal since they are strongly damped and their weighs
negligible if the initial magnetization is uniform across the
cell. We shall not discuss these modes further. The relevant
modes [Re(w,)=—0.5] lie in the frequency range 1
_ 3 _ 2 >Im(w,)>—1. There are three branches in the spectrum
¢=2lL, b=L"yG/Des,  yn=Tnl"/Derr corresponding to three sorts of modes: upper edge modes,
In the core of the article, we express time in units oflower edge modes, and bulk modes. The upper edge modes
(L]yG|)~* and frequency in units df| yG|. For the sake of are confined near the upper walj<€ + 1), so they are not
the discussion, we assume tha&s>0. So, in these units, the influenced by the lower wall. As a consequence, they can be
complex eigenfrequency of theth mode isw,= y,/b, the  approximated by solutions of E¢4) with the boundary con-
real part of w, corresponding to the decay rate and theditions (d®,/d{);-,,=0 and ®,({)—0 for [— —co.
imaginary part to the frequency. As one expects for a stabldhose solutions are

nw\?
) 7n:<7) . (6)

52

—+ib

ag? ‘
with the boundary conditionsl®,/d{=0 at {==*=1. The
dimensionless quantities are defined as follows:
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FIG. 1. Plots of the eigenfre-
05 | {1 o5 1 05} . guenciesw, in the complex plane.
Re(wy), on the horizontal axis, is
025 | 1 005 1 ossl | the damping rate of theth mode.
: : . Im(w,,), on the vertical axis, is the
- frequency. The spectrum of rel-
£ oo 1 o 1 o0 4 evant NMR modes can be split
E )
= into three branches: upper edge
modes, lower edge modes, and
025 025 025 bulk modes. The crosses are the
numerical results, calculated with
05| |°c\;ver {1 -05 { -05¢} . |b|=10* and different values of
edge wM,. The circles correspond to
o5k 1 o 1 _osk ] the approximate Eqs(8b) and
(% (9b).
|.I.M0=0 ®
-1 r 1 -1 1 -1 r .
a
-2 -1 0 -15 -1 -05 0 05 -0.05 0
Re(w) Re(w,) Re(w,)
D,(O)=AAI(™bY3(1— )+ ay), (83 remaining cases. At the same time, the amplitudes of the real
. parts of the eigenfrequencies decrease; i.e., the modes be-
w,=i—a,b Y1278 (8n)  come more weakly dampdgdee Fig. 1)]. Eventually, for

where a, is thenth zero of the derivative of the Airy func-
tion Ai and A, t=b~ Y8712, Y2Aj( ) is a normalization
constant such that/* ®>d{=1. Similarly, the lower edge
modes are

D) =BpAi(e” "D 1+ )+ ay), (9a)

(9b)

—ji— anbfl/3el2~rr/3,

wn=

with Br: 1_ b~ lleeiYﬂ/lza%/ZAi( a’n) )

large values of uMy|, the spectrum is entirely made up of
edge modes of one sofFig. 1(c)]. For |uMg|=+x, the
eigenfrequencies are purely imaginary, which corresponds to
undamped modes.

It is useful to visualize the eigenfunctions to understand
the difference between the “classical modeg/Nl ,~0) and
the “quantum modes” [uMg|>1). In the case of classical
diffusion [Fig. 2(@)], the modes are localized about the posi-
tion corresponding to their eigenfrequen@y,=Im(w,). In
the limit of a strong spin rotation effect, the diffusion prob-

Bulk modes are localized in the center of the cell, so theylem is analogous to a Hermitian quantum mechanical prob-

are not influenced by either wall. Their eigenfrequencigs

can be obtained by perturbation thebfyom the edge modes
in the limit |b|Y*>1. For a given complex,,, one cannot

find solutions of Eq.(4) with the boundary conditions
®,.(0)—0 at{— +. However, the functions

®(O)cAi(e?™u)  for Im(w,)>0,

(109
(10b)

are solutions of Eq(4) and take small values fof— *=1.

® () cAi(e2™3u)  for Im(w,)<0

lem. Hence, the modes are similar to delocalized quantum
mechanical wave functiong=ig. 2(b)]. In the case of mini-
mum seeking modes, for example, the wave functions
change from oscillatory in the region between the lower wall
and the confining potentidl—1<{<Im(w,)] to exponen-
tially decaying abové Im(w,)<{<1]. As usual, there is a
turning point at the crossover with the potential
[(d?®/dZ?) = m(ay =O]-

To understand how this difference in behavior arises from
the same functional expressiofisgs. (8), (9), and(10)], we

They are found to be very good approximations to the exactonsider the contour map of the real part of the function

numerical solutions.

The spectrum in the case pfMy=0 is symmetric with
respect to the real axis, reflecting the symmetry of the(&q.
with respect tof=0. On increasinguM,|, one sets a pre-
ferred direction in the problem, and one sort of edge mode
is favored. Lower edge modes are favored if the phadeief
in the first or third quadrant in the complex platwrg(b)
€10,7/2[ U] 7, 3m/2[); upper edge modes are favored in the

Ai(X+1Y) in the complex planeX,Y). As ¢ varies from

—1 to +1, the trajectory of the variable({)=e "2™3(i¢
—w,)b in the complex plane is a finite straight line. To
make the connection with the wave functions, the real part of
9,,(£) would correspond to a plot of the altitude as a func-
tion of ¢ along the trajectory (¢). Let us first consider an
eigenmode in the casgMy= +. This mode is a lower
edge mode of the forfEq. (9)], so the linev (¢) lies on the
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by the field gradient and diffusion. After the reversing 180°
pulse, the magnetization rephases, so an “echo” signal is
observed at time=2t,. The amplitude of the echo signal
depends on two intrinsic length scales: the dephasing length
L. and the diffusion length 4= (| D4lte) Y% There are now
three different regimes to consider, depending on which of
the length scalest, L., or L—is the shortest: free diffu-
sion (Ly<<L.,L), motional narrowing L<L4,L.), and lo-
calization (.<Lq,L). In the linear approximation, the con-
sequence of the spin rotation effect on the echo amplitude is
simply to renormalize the spin diffusion coefficiei;
—Dgs. The main difference with the classical case is that
the echo signal refocuses with a different phase. This effect
occurs because the refocusing takes place under a reversed
molecular field— xM,, so the isochromatsdo not rotate at
the same velocity after and before the 180° pulse. In this
section, we give an expression for the echo signal as a func-
FIG. 2. Real part of selected eigenfunctiobs(¢) calculated  tion of the diffusion modes. From this expression, we discuss
with uM=0 (a) and uM,=+ (b). The wave functions have the three different regimes, giving in each case an approxi-
been offset by the imaginary part of their eigenfrequency. The twdnate form for the echo amplitude and phase.
figures clearly display the difference between the localized classical
diffusion modes and the delocalized spin-wave modes. A. Formal expression for the spin echo signal

For the sake of simplicity, we assume the transverse ex-
citation field to be uniform and directed along theaxis.
Without loss of generality, we take thatM >0 at time r
=0. The magnetization during the evolution period follow-
ing the first excitation pulse is still given by E@). The free
induction decayFID) signal is given by

real axis, one end of the line being at the coordinaig@).
As can be seen in Fig.(8), the line intercepts a region of
rugged landscape fora,<X<0 and falls off as
~ X~ V4e=2¢3 iy the regionX>0 12 The corresponding al-
titude plot is one of the wavefunctions shown in Figb)2
Let us now turn to the caseMy=0 and consider a bulk
mode of the form expressed by EdOb). Now, the linev ({) N
lies off the real axis. As shown in the Fig(i83, the line S(T)=J
crosses a region where the Airy function is oscillatory for

~Im(w,), and extends to regions where the “landscape” is , . i .
flat for {— +1. The weights are given by,= [Z1P({)d{. The 180° pulse

at time 7, causes the transformatiorM,— —Myg;
m_(¢,75)——m*({,7¢), where the symbol * denotes the
IV. SPIN ECHO complex conjugate. The magnetization evolution after the
The technique of “spin echoes” is a standard NMR se-180° pulse can be described by an expression analogous to
guence which consists of letting the magnetization evolve foEd. (2). However, due to the reversal of longitudinal magne-
a timet,, after a first excitation pulse and applying a secondtization, the relevant eigenmodds;, with eigenfrequencies
pulse to rotate the magnetization through 180°. During thew,, are now maximum field seeking, and their amplitudes are
first evolution period, the signal decays due to the dephasingetermined by the nonuniform magnetization profile
of the magnetization in different parts of the sample causednh* ({,7.). The expression for the echo signal is

lm_(g,r)dg“:E clen”  (1<7). (11)

-30 -30

FIG. 3. Gray scale maps of the real part of the
-15 -15 Airy function in the complex plane seen with two
different vertical scales. The straight line repre-
sents the trajectory of the variablg¢) in the

>0 i >0 T L Cim() complex plane(a) For an edge mode in the limit
" uM o=+, the line intercepts a region of rugged
15 15 “landscape” for a,<X<0 and falls off as
~X~Y4e=2%%3 in the regionX>0. (b) For a
&=+ bulk mode calculated witleM =0, the line ex-
3_%0 _15 15 30 3_030 _15 0 15 30 tremities lie in flat regions where AX{+iY)
X X takes small values. The star indicates the point
E [ wheree=imten)
-1> -0.5 0 0.5 1< -100> -50 0 50 100<
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’ x10
S(r)=—2 e eCrUniCpen™ ™ (r>1o), (12) ° 0 :
n,m
. . -0.5k

where the matrixU,,= [ 1®* (£)®/ (£)d{ is the overlap =051 N

between the maximum field-seeking modes and the mini- | AN

mum field-seeking modes. i - \\

We now use Eq(12) to discuss the echo formation. Due N

to the symmetry of the linear field profile with respectto o -1.5¢

=0, the maximum field-seeking and the minimum field- -5 e '

seeking modes are related through,=wy, and @/ (¢) -2 .

x®r(—{¢). Consequently, the factors®n Tecﬁumncrge“’r'nfe -2r sl R

are symmetric under the interchangenefandn, so we can ' N

rewrite the terms in the sum &;,,€' *me®m®”, whereO,,, 25} al N

andA ,,, are two real symmetric matrices. Using the symme- )

try properties ofO,,, andA,,,,, and notingdt=r—27,, we s a5 , . .

can express the amplitude of the echo signal as h 0 o025 05 075 1
T T
e e

|S(7)|?= E OmOmn’COS A mn— A FIG 4. Echo signal calculat_ed foi| =0.01 an_dMM0=10. The
n,m,m’,n’ solid lines are the exact numerical resu(es.Amplitude of the echo

. as a function of the waiting time. For long waiting time, the deca
Hi(wn=wm+ oy wq) §7/2] of the echo is well descrit?ed by the appgroximatg expresgién Y
X oS i (@~ wpy — 0+ wy)87/2].  (13)  valid in the motional narrowing regimlashed ling For the very
short waiting times, the echo amplitude decays according to Eq.
In Eq. (13), the factors cd$(w,,— v,y — w,+ ) 5712] ensure  (14) for free diffusion(dashed line in the insert(b) Phase of the
that all the terms in the sum come back into phaser at echo as a function of the waiting time. The dashed line corresponds
=27,. This refocusing gives rise to the echo sigBé ) to the approximate formulél?7). The dashed line has been offset by
whose amplitudeh and phase¢ are usually measured in —0.5 rad for clarity.
experiments. Note that in the presence of higher-order terms
in the field profile, which break the symmetry with respect toproximate analytical expressions in the limiting cases de-
(=0, the refocusing takes place at27.. In particular, scribed at the beginning of this section. We now proceed
numerical studies show that in the presence of a quadratiwith the study of these limiting regimes.
field term $G,(2z°—x2—y?) with a cylindrical geometry,
the echo is delayed fouMyG,L/G>0 and advanced for
In classical NMR M ,=0), the diffusion modes are lo- WhenLy4<L.,L, the diffusion occurs on a time scale too
calized. As a consequence, the overlap matrix is quasidiag@hort for the spins to “see” the walls. The attenuation factor
nal, so the only terms in Eq12) contributing to the echo of the echo signal is given by the Leggett's expression for
signal are of the forniic,|2e2Re@n)%7, Hence, the “classical” unbounded diffusion:
echo will refocus with¢= 7. The situation is different in the
presence of the spin rotation effect. As the diffusion modes 3 2
. e : 2 Te 2 (yG)D,
are delocalized, the overlap matrix is no longer diagonal, and h=expg — = ——¢ | —exg — = —~ =43
the echo signal will generally refocus with a phase shift for p( 3 |b| 1+ M3 p( 3 1+uM2 ¢
finite uM. There is also a difference in the echo attenuation (14
mechanism between the classical case and the pure quantum
case. In the classical case, the Hahn echo completely refaxs one expects, the decay rate does not depend on the size of
cuses the decoherence due to inhomogeneous broadeninge sample in this limit. IfuM,=0, one finds the familiar
and the echo attenuation is due to diffusion only. Indeed, irexpression for the echo attenuation of the Hahn echo in clas-
this case, there are no crossed terms in @@) since the sical liquids!* In quantum liquids, the phase of the echo
overlap matrix is diagonal, and the echo decay depends onl§epends implicitly on the waiting time according to the rela-
on the real part of the eigenfrequencies. In the pure quantunion:
case (uMg|— +), by contrast, the diffusion modes are
undamped; i.e., their eigenfrequencies are purely imaginary.
Therefore, the signal decay during the evolution period is
reversible. Nonetheless, the magnetization is not totally refo-
cused at the echo because the evolution after the 180° pulse In practice, free diffusion is observed for a short waiting
takes place under a reversed molecular field. time 7, for any value of the parametér However, the time
Equation(12) is an exact formula which allows us to cal- scale over which the regime of free diffusion is observed can
culate the spin echo signal numerically. We can obtain apbe very short ifb| is small[see insets in Figs.(d) and 5a)].

B. Free diffusion

¢=—uMgln(h). (15
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C. Motional narrowing

In the limitL<L.,L4, the spins diffuse rapidly across the
cell, so the magnetization remains essentially uniform. In the
presence of the spin rotation effect, the magnetization is ro- -2
tated off the &,z) plane by an angle proportional oM ot .

In the language of diffusion modes, this so-called “motional
narrowing regime” corresponds to the limit (§|**<1 and a0}
long waiting time ¢.>|bl|). The only long-lived mode is the
lowest eigenmode, which for smalb| is nearly uniform
across the cell, with a complex eigenfrequency given by Eq. -60;
(7). Accordingly, the magnetization profile during the evolu-
tion period can be written am_({,7)=e "5 The 180°
pulse transforms the magnetizatioom_({,7,) into

m* (¢,7.), whence the eigenmode evolves with the complex  —gof
frequency— % b*. Consequently, the echo signal attenuation

In(h)

-100

is twice the signal attenuation during the evolution period: o o5 1 15 2 o 05 1 15 2
Te x10° Te x 10
4 2
hocexy{ - iRe(b)Te =ex;{ - i ﬂte) . (16) FIG. 5. Echo signal calculated fdio| =10* and uM,=10. The
15 15 D, solid lines are the exact numerical resu{eg.Amplitude of the echo

as a function of the waiting time. For long waiting time, the decay
&t the echo is well described by E@L8) valid in the localization
regime(dashed ling Note that in this regime, the signal amplitude

It is remarkable that the echo signal decays according to th
classical raté? independent ofuM,. This result was ob-

tained by .Rggaﬁ.The difference betweepMo=0 and fi-  ig yery small. For the very short waiting times, the echo amplitude
nite uMy is in the phase shift of the echo signal, which is gecays according to Eq14) for free diffusion(dashed line in the
twice the phase built up from=0 to 7= 7,: inserp. (b) Phase of the echo as a function of the waiting time. The
dashed line corresponds to the approximate fornmii@.
4 o 4 LY(yG)?
¢=gMb)7e=15 D, #Mote. (7 p=1{2e— ag|b| Y e\3cog ¢/3) —sin(¢/3)]} 7o

Figure 4 shows the amplitude and phase of the echo signal (yG)?*p1R
as a function of the waiting timer, calculated with|b| =| 27Gle— aom
=0.01 anduMy=10. For shortr,, the signal attenuation # Mo
follows Eg. (14). For longer 7., one enters the motional
narrowing regime, and the phase and attenuation of the echo X [ ey/3cog ¢/3) —sin(¢/3)] | te, (19
signal are given by formuladl6) and (17).

wheree=+1 if uMy>0, e=—1 if uMy<0, ande=0 if
D. Localization uMy=0. ForuM,=0, there is no phase shift, and the decay
The third limiting caseL<L,L4 has been called the lo- rate —ao(yG)?(D,)** corresponds to the classical case

calization regimé. It corresponds to the regime of long wait- treated by Swiet and Sén. o

ing time (r,>|b|Y3) for |b|3>1. Again, in this case, the Figure 5 shows that, for ang waiting times, tk_le phase
signal originates mainly from the lowest eigenmode. How-and amplitude of the echo S|gnal are well .descrlbed by Egs.
ever, for strongb, the lowest eigenmode is an edge mode,(18) and(19). However, as Swiet and Sepointed out, there
which is localized near a wall. By the same argument as folS little hope of observing the pure localization regime ex-
the case of motional narrowing, and using E@) and(8b) perimentally, since it corresponds to long waiting times and

for the edge modes eigenfrequency, we obtain therefore to a vanishingly small NMR signal.
hocexp{ — ao|b| = cod ¢/3) — /3| sin( ¢/3)|]7e} V. COMMENT ON EXISTING NMR DATA
(vG)23pL3 During the last ten years, there has been a controversy
=exX _aoﬁa about the temperature dependence of the transverse magne-
(1+ puMgp) tization relaxation time in degenerate Fermi liquids: Mey-
erovich and Musaelidn predicted that this relaxation time
2 2
x [cod ¢/3) — \3[sin(¢/3)|Tte |, (18) should saturate at low temperature @%/(T;+T<), where

T, is the so-called anisotropy temperature. Fofftion the

contrary, calculated that the transverse relaxation time obeys
where ap~—1.0188 and the parameteris determined by the usual IT? dependence. As both the diffusion coefficient
cosfp)=(1+u®M2) Y2 and sinf)=uMy(1+u>M3) Y2 The  and the spin rotation parameter are proportional to this trans-
phase shift, ignoring a constant term, is obtained similarly: verse relaxation time, much of the experimental effort has
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FIG. 6. (a) The echo phase normalized by the spin rotation
parameter as a function of m( calculated with|b,|=10* and
uMo=10 (+), wuMy=30(©O), uMy=100 (¢), and uM,
=200(X). The dashed line of slope 1 is the case of the unbounde
diffusion. In graph(a), the slope gives an “apparent value” pfM
which saturates as the spin rotation paramgtier, becomes large.

(b) Echo heights, Irt{) as a function ofrd[b| ~*(1+u*Mg) *?cal- 1ot arge and can be mistaken for the scatter of the data
C”'aiedogw'th #Mo=10 arg [b|=10° (+)_* |£’4L|:3X102 (©),  points. More significantly, the average slope &fversus
o] 1000, o510 (<) ol 40 ). Th e[ i smaller than expeed  h case ofuuncis i
' fusion. This deviation from Leggett's prediction leads to an
been concentrated on measuridg and uM, as a function ~underestimate oftM, at low temperature. A similar effect
of the temperature. Unfortunately, the experiments so faan be seen in Fig. (6) for In(h) versus [1
have given contradictory resuft$>®As we shall show, +(uMg)?] ¥3b| 173. Consequently, restricted-diffusion
restricted diffusion effects may explain some of the discrepeffects bias the apparent parameters and uM in such a
ancies between the experimental results. way as to mimic the saturation of the transverse relaxation
Hitherto, the experiments employing the method of spintime at low temperature. Note that the deviations from the
echo have been analyzed assuming that the walls of the efee diffusion regime become more severe for decreasing
perimental cell had no effect on the echo signal. Conselb, | and increasingcM,, since the system gets closer to the
quently, the parametgrM , for each temperature was deter- localization regime.
mined by linear fitting of the echo phase as a function of the In order to illustrate this point, we have compared the
echo amplitude, according to E@.5) valid in the regime of  values ofuM g that were used as inputs to the simulation and
free diffusion. Similarly,D, was determined by fitting the the value obtained from a linear fit of the simulaigdersus
echo amplitude as a function of %(yG)2t§/(1+,u2M§) In(h) in the range—2<In(h)<0. As can be seen in Fig(3),
[Eqg. (14)]. In most of the experiments, the value of the pa-the fitted value deviates from the actysall, and eventually
rameterL/L, is in the range 10-100. For these values ofsaturates for largetM,. Numerically, the apparentM,
L/L., the deviation from the free diffusion regime is signifi- saturation value was found to depend on the paranhgtes
cant at long timet,. As we shall see, this deviation has ocbﬁlz [Fig. 7(b)]. We have also calculated a more realistic
important implications with regard to the analysis of experi-case, taking into account the effect of a second-order field
mental data. gradient in a cylindrical geometry. As shown in Figa)/ for
In order to compare experiments to the numerical resultsa small second-order gradient, the saturation value of the
it is convenient to define the temperature-independent paapparent parameteeM,, is altered, but the qualitative be-
rameter b, =L3yGuM,/D, . During an experiment the havior remains the same.
field gradient is usually kept at a fixed value; tHysis a In the latest experiment in our grodghe values for the
constant while the paramethiM,| increasegand possibly ~ dimensionless parameters wdre=10* with a second-order
saturateswith decreasing temperature. In Figag we show gradientG,L/G=0.2, leading to an apparent saturation of
the relation between the phagenormalized byuMy and  wMj at a value of—27.5. In terms of anisotropy tempera-
In(h) plots computed numerically fop, =10* for different  ture, such a saturation value of the spin rotation parameter
values ofuM,. In the absence of restricted diffusion effects, would correspond to an apparet of 9 mK for 6.4%
the relation ¢/ M, versus Inf) should be linear with a 3He-*He mixture at 11.3 T, based on the spin rotation pa-
slope of 1[Eq. (15)]. For finiteb, , this relation is no longer rameter data of Ishimotet al!” Consequently, we infer that
linear. The deviations from the linear behavior, however, arghe value ofT,=13 mK reported in our earlier publication

FIG. 7. (a) Slope of the relatiom vs In(h) as a function ofuM,
for |b, |=10° and 10. The dotted line is a calculation for a right

ylinder with a quadratic field term of strengt,L/G=0.2. (b)
aturation value of the “apparenttM, as a function of the pa-

rameterb, . The saturation value is approximatehp;’?.
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is largely due to finite-size effects. By contrast, for the ex-an operator-based method, which we describe in the last part
periment of Weiet al,'® the value of parametds, was 7.4  of this appendix.
x 10%, so we expect the effect of restricted diffusion to be
relatively small. Using the data of Candeifal,’ the corre- 1. Matrix method
sponding apparent anisotropy temperature would be 3 mK in : .
pure 3He at 8 T, which is much smaller than the value of 16 A"s;tgndard mgthod of solving elgenvalug problems O.f the

; Schralinger type is to use a representation in terms of eigen-
mK reported in Ref. 16. . )

functions of the Laplace operator obeying the boundary con-

ditions (see for example Candeét al.’). For a cylinder this

VI. CONCLUSIONS orthonormal set of functiong,,, is

We have studied the problem of restricted diffusion in the
presence of the spin rotation effect. In a one-dimensional ¢n|m(§,p,¢)=®n5|mC05(n—7T(§+ 1))Jm(K|mp)eim¢’,
geometry, the diffusion modes fall into two categories: bulk 2

modes, which are not influenced by the presence of the

walls, and edge modes, which are confined against a Waly_vhere O<p=1 is the radial coordinate in expressed reduced

. . nits, ¢ is the azimuthal coordinaté,,, is the mth Bessel
We have shown that th in rotation effect favors on rt : ) m
© have sho a e spin rotation etiect favors one so O?:mctlon, andk, is thelth zero of the derivative ai,,. The

edge modes, the confinement position of which depends o o ;
the sign of the parametexM,. Moreover, the diffusion normalization factors are given by
modes are localized fouMy=0 and become delocalized _ _
when|uMy| is large—that is, when the restoring force pro- ©o=1/2, ©,=1 n>0,
vided by the spin rotation effect is important. 2

We have given an expression for the spin echo signal in 0=T 7
terms of diffusion modes. We have shown that the refocusing [Jo(xi0)]
of the echo at time=2t, originates in the symmetry of the
linear field profile with respect with the center of the sample. V2
In the presence of the spin rotation effect, the echo signal
acquires a phase shift due to the reversal of the molecular ) ) ) L )
field .M, following the 180° pulse. We have given explicit In the case of a I|r_1ear flgld profile we treat in this article, the
expressions for the echo amplitude and phase in the thre%rOblem is one d|men'S|onaI, SO we use the subset of func-
limiting cases. In the free diffusion regime, the echo decayd!oNS #noo, 1-€., @ Fourier expansion. A
as exp—2(yG)D, tY(1+u2M?)] in agreement with the ex- ~ The “Hamiltonian” of the diffusion problem isH= a2
pression given by Leggettin the motional narrowing re- +ibZ. The matrix elements of the Hamiltonian in the cosine
gime, the echo decays exponentially according to the classfepresentation can be calculated analytically straightfor-
cal decay ratexL*(yG)%D, . In the localization regime, Wardly. Practically, of course, we calculate only a finite num-
decay of the echo is also exponentiaL with a decay rat@er of matrix elements. Since the number of relevant modes
o (yG) 2DV 1+ p2M2) V6, scale§ asxL/L.=b'® we usedNXN matrices with N

Finally, the numerical calculations with realistic param- >6b1" to avoid any aliasing effect. This matrix was then
eters show that the deviations from the free diffusion regimeliagonalized using the software packagerLAg to obtain
are not negligible. This stands as a warning to experimentathe eigenfrequencies and the Fourier components of the dif-
ists since the deviations mimic the saturation of the transfusion modes.
verse relaxation time at low temperature. We hope that our We noteV, the square matrix whose columns are the
results will go some way to solving the current controversy€igenvectors of. By contrast with quantum mechanics, the

on the spin diffusion anisotropy in degenerate Fermi liquidsHamiltonian is non-Hermitian, so its eigenvalues are com-
plex and the matri¥ is not unitary. HoweverH is symmet-

ric so the matrixV is orthogonal:

I

m>0.

—
[ —
~m

|‘]m+l(KIm)|
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APPENDIX: NUMERICAL TECHNIQUES induction decayEq. (2)] is the first row of the matri¥ (i.e.,
=Von)-

. Cn
We used two different methods to produce the results de To calculate the spin echo signal, we need to consider the

scribed in this article. The first method, based on matrix di- S . . A 2 e
agonalization, allows the calculation of diffusion modes andW0 HamiltoniansH_=gd;+ib¢ and H. =d;+ib*{. We
hence all quantities of intere€MR spectrum, overlap ma- noteV. andV_, the matrices of eigenvectors of, respec-
trix, echo signal using formulas(2) and (12). This method  tively, H. andH_. The overlap matrix is given by

turns out to be limited by the computer precision for laige ;

and small| uM,|. To overcome this problem, we have used U=V.-V_, (A2)
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10° . ; . failed to improve the accuracy of the matnk It is worth
noting that, in the case of a quadratic field profile with a
cylindrical geometry, this numerical problem does not occur
for the radial eigenvalue problem.

3 3. Operator method

Although knowledge of the eigenmodes is useful for un-
derstanding the underlying physics of the diffusion problem,
it is not necessary to calculate the FID signal or the echo
2| signal. Using a method similar to that of Schneider and
Freed!® we can obtain the magnetization evolution_(7))
(here we use the usual Dirac’s notatiprigy iterating the
“Schrodinger equation” from the given initial condition
[m_0)):

[b]

"o o ' 0 10 Im_(r+dm))=(1+Hdn|m_(7). (A4)

M)

The timer is now expressed in units /D to make the
FIG. 8. Contour line map of the norm of the matriX (V—1) formula dimensionally correct.
calculated with 108100 elements. In this example, the region of  An alternative method consists in calculatimg_(7)) di-
parameters where the method failgi$=500 and|xM|=2. rectly by application of the evolution operate'%” :

where T denotes the Hermitian adjoint. From E&R), it is _AAr 0 AB
easy to see thal is also an orthogonal matrix, sind&. and Im_(7))=€"m_(0)). (AS)
V_ are orthogonal matrices. In the case of a linear fieldBy writing out the ketjm_(0)) as a linear combination of

profile, the expression fdd can be simplified further: eigenvectors oH, it is easy to show the equivalence be-
; tween EQ.(A5) and Egs.(2) and (3). From Eq.(A5), we
U=1—=2Ve,en Veven, (A3)  calculate the NMR signal:

where Vg, is the NXN/2 matrix whose columns are the
even columns o¥/~ , so only one set of modes needs to be
calculated. From the matricés$,V and the eigenvalues, the
echo signal is calculated using formylB2).

S(7)=(m_(0)|e""m_(0)). (A6)

The calculation of the spin echo signal follows the same

lines: the HamiltoniarH - governs the magnetization during
the evolution period. Ther pulse at time 7, changes
Im_(7g)) into —(m_(7.)| andb into b*. After the 7 pulse,
Numerically, the matrix method fails whejb| is large  the evolution is determined by the HamiltoniBh. . So the

and [#My| is small. In such a case, the elements of thegquivalent of Eq(12) for the echo signal is
matrix V take very large values. This is not a problem for

2. Accuracy of the matrix method

calculating the FID signal, since the weighting coefficients S(7)=—(m_(7e)|m_(7—7¢))

c, are always determined with sufficient accuracy. However, Cr o -

the small errors in the elements of the matxixbuild up =—(m_(0)|eM<7ee">""7|m_(0)). (A7)
when one calculates the matrix produciuen~veven. This

results in large errors in the overlap mattixand thus pre- Formulas(A6) and (A7) do not lend themselves to ana-

vents us from computing the amplitude of the echo signaldytical calculations. However, we can use the geometric in-
accurately. terpretation of the kets as vectors in a Hilbert space to gain

An indication that the computer accuracy is not sufficientinsight into the difference between the classical case and the

is that the orthogonality relatiofA1) is violated numerically. duantum case. Let us consider the pure quantum case
In Fig. 8, we show a contour line map of the norm of the (|4Mo|= +22) first. Similarly to quantum mechanics, the
matrix (V-'V—1) calculated with 108100 elements(the Ha_mllt_onla_n is Hermitian, so the_evolutlon operator is a ro-
norm being defined as the largest column sufthe region t.atloln in H|Ibert space. This implies that, dur|.ng the magne-
where this norm is> 1075 (say corresponds to the range of tization evolution, the norm of the kétn_(7)) is constant:
parameters where the orthogonality relati@) is numeri- _

cally not obeyed. In the example shown the region of param- (m_(nm_(n)=(m-_(0)[m_(0)). (A8)
eters where the method fails|is| =500 and uM,|=<2. The  This equality points to the fact that, in the pure quantum
accuracy of the method can be enhanced by using largease, the signal decay is reversible and entirely due to deco-
matrices, but at a large cost in term of computation time. Foherence by inhomogeneous broadening. Despite the revers-
example, the region of parameters where the method faible nature of the signal decay, the magnetization is not re-
recedes tdb|=1000 and uM =1 if we use 30&x 300 el-  focused completely by the Hahn echo, because the rotation
ements. Attempts to use alternative diagonalization methodsndergone bym_(0)) during the evolution is not canceled
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by the rotation undergone Byn_(7.)) between timer, and We have used the cosine representation defined above to
27,. Geometrically,/m_(7.)) and|m_(0)) have the same implement the iteration method and the evolution operator
norm, but lie at different angles in the Hilbert space. method. The iteration was carried out with a fourth-order

In the pure classical caseuMy=0), the norm of Runge-Kutta routine, and the evolution mateX” was cal-
Im_(7)) decreases with increasingbecause the evolution culated using a numerical matrix exponential function, both
operator is not unitary. Physically, it means that both reversprovided bymATLAB. These two methods give accurate re-
ible inhomogeneous broadening and irreversible diffusiorsults for all values of the parametedssand uM . The itera-
processes contribute to the signal decay. In the pure classicibn method was found faster than the evolution operator
case, one hal§|<=I:|>, so the expression of the spin echo method, but care had to be taken when the iteration was
signal reduces to carried out backwards, since the system is unstable for nega-

tive times. One of the reasons why the operator method is

more accurate than the matrix diagonalization method is that

|S(27¢)|={(mM_(7¢)|m_(7e))<(m_(0)|m_(0)). no scalar product operation is actually required to calculate
A the FID or spin echo signals if the initial condition is

Contrary to the pure quantum case_(7o)) and|m_(0)) ~ M-(£,0)=(fm_(0))=1: thanks to the cosine representa-
lie at the same angle in the Hilbert space, but have differerion; the vector of Fourier coefficients prthe magnetization
norms. The physical interpretation is that the Hahn echd?-(¢,7) is the first column of the matrie™, so the NMR
completely refocuses the inhomogeneous broadening, artignal and the echo signal are simply the upper left element

the echo attenuation is due to diffusion only. of the matrices"” and e eH=(7 7o), respectively.
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