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Stripes and superconducting pairing in thet-J model with Coulomb interactions
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We study the competition between long- and short-range interactions among charge carriers in strongly-
correlated electronic systems employing a method which combines the density-matrix renormalization-group
technique with a self-consistent treatment of the long-range interactions. We apply the method to an extended
t-J model which exhibits ‘‘stripe’’ order. The Coulomb interactions, while not destroying stripes, induce large
transverse stripe fluctuations with associated charge delocalization. This leads to a substantial Coulomb-
repulsion-inducedenhancementof long-range superconducting pair-field correlations.
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I. INTRODUCTION

Much of the interesting physics of the high-temperatu
superconductors, in particular that related to the ‘‘mec
nism’’ of high-temperature superconductivity, is moderate
local, involving physics on the length scale of the superc
ducting coherence length,j0. Since j0 is typically a few
lattice constants, this would seem to indicate that numer
solutions of model problems on clusters with as few as 5
100 sites should be able to provide considerable insight c
cerning these problems, even though results in this range
manifestly sensitive to the choice of boundary conditions a
other finite-size effects. Such studies can also serve as
portant tests of thepredictionsof analytic theories.

Studies oft-J systems have, indeed, provided strong e
dence of a universal and robustd-wave character of loca
pairing correlations,1 and of a strong clustering tendency
holes, which might either lead to ‘‘stripe’’~i.e., unidirectional
charge density order! formation,2 or phase separation.3 Both
of these features were in fact anticipated by analy
theories.4,5 However, these studies for thet-J and parent
Hubbard models have failed to find compelling evidence
the strong superconducting correlations6 needed to under
stand high-temperature superconductivity. Moreover, m
features of the results, especially with regards to stripes,
pear very sensitive to small changes in the model, e.g.,
shape and size of the cluster,7 whether or not a small secon
neighbor hoppingt8 is included or not,2 etc.

All these calculations omit the long-range part of the Co
lomb interaction because it is difficult to treat using any
the standard numerical methods. However, since in the h
Tc cuprates, where interactions are generally conceded t
strong, the~interband! screening is semiconductorlike an
not metalliclike, so there is noa priori justification for ne-
glecting the long-range part. In addition, in the case
stripes, charge inhomogeneities or phase separation, lon
range Coulomb interactions are clearly important, a po
which has previously been addressed with various mean-
approximations.5,8,9

In this paper, we present a computational method
studying the ground-state properties of electrons with str
0163-1829/2002/65~13!/134503~5!/$20.00 65 1345
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short- and long-range interactions on fairly large finite s
tems. The method, which may be termed a ‘‘densi
functional DMRG,’’ uses numerically very accurate DMR
methods to treat the short-range part of the interactions.
long-range piece is taken into account within the Hart
approximation, which becomes exact in the long-distan
limit, and, as we show below and in the Appendix, turns o
to work well already for short distances. An important po
to note is that, through the self-consistency requirement,
Hartree potential accounts for screening effects in a sim
spirit as density-functional theory.

We have studiedN34 t-J ladders and cylinders, with
hole densities per sitenh51/9, 1/8, and 1/7, andN527, 18,
16, and 14. Our principal findings, as summarized in
figures, are~1! charge stripe formation is robust to the incl
sion of Coulomb interactions of reasonable strength,
though the associated charge density modulations have
magnitude somewhat reduced. However, ‘‘spin stripe’’ cor
lations ~ i.e., spin density modulations which suffer ap
phase shift across the charge stripe resulting in a spatia
riod twice that of the charge modulations! are prominent on
cylinders, but very weak on ladders; they are slightly e
hanced by the Coulomb interactions.~2! The inclusion of
Coulomb interactions stronglyenhancesthe superconducting
pair-field correlations at the longest distances accessibl
these calculations. This is our most striking result.~3! We
present evidence that stripe formation does not suppreslo-
cal superconducting pairing. On the other hand, rigid str
ordering competes with long-range phase ordering.2,10 The
enhanced superconducting correlations at long distances
duced by Coulomb interactions are, thus, tentatively ass
ated with the enhanced pair tunneling between stripes
duced by the increased stripe fluctuations, in agreement
phenomenological arguments.11

This paper is organized as follows. In Sec. II we introdu
our model and the combined DMRG-Hartree technique
deal with it. In Sec. III we present our results for the char
and spin densities as well as for the pairing susceptibil
Section IV discusses our conclusions. For the sake of c
pleteness, a discussion of the validity of the Hartree appro
mation is given in the Appendix.
©2002 The American Physical Society03-1
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II. MODEL AND TECHNIQUE

The Hamiltonian of thet-J model with nearest-neighbo
hopping t and exchange interactionJ plus long-range Cou-
lomb interactions, which operates in the subspace of no d
bly occupied sites, is given by

H52t (
^r ,r8&s

~crs
† cr8s1H.c.!

1J (
^r ,r8&

S Sr•Sr82
nrnr8

4 D1(
r

VCoul~r !nr , ~1!

where^r ,r 8& are nearest-neighbor sites,s is the spin index,
c† is the electron creation operator,S is the spin operator
andnr5(scrs

† crs . The long-range part of the interaction12

VCoul~r !5V0 (
r8Þr

n~r 8!2n̄

ur2r 8u
~2!

is treated in the self-consistent Hartree approximati
whereby the density operatornr is replaced with its ground
state expectation valuen(r )[^nr& andn̄ is the uniform posi-
tive background charge density. The Coulomb prefactorV0 is
given byV05e2/@4p«0«a#, wherea is the lattice constant
and r is the coordinate of a lattice site in units ofa. This
long-range potential is screened by a background dielec
constant«, given both by electronic interband and phon
contributions, which we take to be«58.5, in reasonable ac
cordance with cluster calculations for Coulomb mat
elements10,13 and with quantum Monte Carlo simulations.14

Thus, for a'3.4 Å, the Coulomb prefactor in Eq.~2! is
V0't, being of the same order of magnitude as the kine
energy.

SinceVCoul and the densityn(r ) depend on each othe
one needs a self-consistent solution of Eqs.~1!–~2!. Our the-
oretical treatment is a combination of the DMR
technique,15 which accurately accounts for short-range int
actions, and a Hartree treatment of long-range interacti
In the spirit of ‘‘density-functional theory,’’ we iteratively
solve Eqs.~1! and ~2! as follows: in the first step we se
VCoul50 and perform a DMRG calculation. This gives ris
to a density profile$n(r )% and, via Eq.~2!, to a new potential
VCoul, which enters the next step DMRG calculation as
additional on-site potential. This procedure should be
peated iteratively up to convergence.16 The fact that the Har-
tree approximation is appropriate for the long-range C
lomb part is discussed in detail in the Appendix.

Within a given loop, the goal of the DMRG simulation
to find iteratively an eigenstate of the Hamiltonian~1!, using
only a fraction of all the possible states of the system.15 We
have typically kept around 800–1000 states in the last ite
tions of the calculation, which results in a maximum d
carded weight of the order 1024. We use systems with ope
~and cylindrical! boundary conditions chosen not to frustra
the domain walls.
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III. RESULTS

In the end, we are able to compute ground-state ener
for given quantum numbers and ground-state correla
functions. Because we do not have excited-state data,
are unable to compute dynamic susceptibilities. In the
ures, we present representative results for various grou
state correlation functions. So as to make our principal fi
ings clear, we have averaged these quantities over
transverse coordinate of the ladder. Thus, we define
average hole and spin density as a function of position al
the ladder 0,x<N as r(x)[(y51

4 @12n(x,y)#/4 and
Sz(x)[(y51

4 (21)x1y,Sz(x,y)./4. Note that translationa
~in the x direction! and spin rotational symmetry are explic
itly broken in these calculations by the ladder ends, the
selves, and@following White and Scalapino~WS!2# by an
applied staggered Zeeman field of magnitudeh50.1t on the
ladder ends.2,17

To probe superconductivity, we have computed t
ground-state pair-field correlation function

D~x!5 K DS N

2
1

x

2DD†S N

2
2

x

2D L . ~3!

HereD†(x) creates adx22y2-like pair around the (x,2) site.18

We have explored the dependence of our results on par
eters to some extent, but in all the figures have adopte
conventional valueJ/t50.35.

Consider first the results of the DMRG calculations wit
out the long-range Coulomb potential. Results for the s
and charge density are shown as the dashed lines in Fig
and 2 and for the pairing susceptibilityD(x) by the dashed
line in Fig. 3~a!.

In the low-doping case (nh51/9) depicted in Fig. 1,
charge stripe order is clearly seen. Stripes form in thet-J
model so as to satisfy the competing requirements of m
mizing the kinetic energy of the doped holes and minimizi
the disturbance of the background exchange interaction2,4

In order to distinguish between stripes and ordinary Frie
oscillations, we have compared the hole-density profile
different length ladders (1834 and 2734) at the same dop
ing. As one can see from Figs. 1~c! and Figs. 1~d! for the
cases with and without Coulomb interaction, respective
the amplitude in the center of the system is essentially in
pendent of the system size, while Friedel oscillations sho
decay as a function of the distance from the boundary.7,19As
seen in Fig. 1~b!, any p phase shift in the AF order~spin
stripes! is quite weak in the present calculation, although it
slightly enhanced by the Coulomb interaction. In accorda
with Ref. 2 for the baret-J model, spin stripe order is stron
ger in the case of cylindrical boundary conditions. There
roughly one hole per two stripe unit cells, which was tak
by WS ~Ref. 2! as evidence that thet-J model favors stripes
with a minimum energy for a linear charge density ofl
;0.5. This is in agreement with experiments,20–22which find
stripes with l'0.5 at hole dopings smaller tha
nh,c'1/8.23–26 For nh>1/8 the density-wave structure see
in Fig. 2 is less clear. Were the stripes to retain their integ
at these higher hole concentrations, they would be for
very closer together, at considerable cost in energy. Howe
3-2
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STRIPES AND SUPERCONDUCTING PAIRING IN THE . . . PHYSICAL REVIEW B 65 134503
the clustering tendency of holes is still apparent in
ground-state charge distribution, which is suggestive of t
hole-rich puddles, each with four holes.

As discussed by WS, the hole clusters locally shar
number of features with the two-hole pair state, which
counts for the fact that the energy per hole for a domain w
is close to the energy per hole for a pair.2 This is suggestive
of a competition between stripe stability an
superconductivity.10 Such a competition has already be
demonstrated in a model which includes next-near
neighbor hoppingst8 by WS. For large enoughut8u, the do-
main walls ‘‘evaporate’’ into quasiparticles (t8,0) without
significant pairing correlations or into pairs (t8.0).2 It has
long been clear that stripe formation suppresses long-ra

FIG. 1. ~a! Hole densityr(x) and ~b! staggered spin densit
Sz(x) as a function of positionx along a 1834 ladder~i.e., with
open boundary conditions in they direction! ~Ref. 12! with eight
holes (nh51/9). The results with nonvanishing Coulomb prefac
(V05t, solid lines! are compared with those without Coulomb i
teraction (V050, dashed lines!. A comparison ofr(x) in a longer
system (12 holes in 2734) with the samenh51/9 ~dashed-dotted
line in both cases! is shown in~c! and ~d! respectively with and
without Coulomb interactions.

FIG. 2. Hole densityr(x) for eight holes in a 1634 ~a! and a
1434 ~b! ladder. Conventions are as in Fig. 1.
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superconducting phase coherence,11 as is clear from the rapid
falloff with distance of the pair-field correlator in Fig. 3~a!
~dashed line!.

We now turn to our results in the presence of the Coulo
interactions. Unscreened Coulomb interactions («51, i.e.,
V0.8.5t) are so strong that they entirely dominate the ph
ics, destroying all clustering or pairing tendencies of the s
tem. However, for the physically relevant case,«;8.5, the
results are much more interesting.

In the lightly doped case,nh51/9, shown in Fig. 1, the
stripe structure is essentially unchanged by Coulomb in
actions, although the amplitude of the charge modulation
suppressed~by roughly a factor of 1.5), and the anti-pha
character of the spin correlations is slightly enhanced.
interpret this as meaning that the stripe order is robust,
that the Coulomb interactions enhance the transverse s
fluctuations. The most dramatic effect of the Coulomb int
actions is the strong enhancement of the pair-field corr
tions shown in Fig. 3. From Fig. 3~in which the short-
distance data is off scale! one might conclude that the
Coulomb interactions primarily increase theoverall magni-
tude of the pair correlations. On the other hand, from
ratio between the two functions, which is displayed in F
3~b! over the whole range ofx, one can see that it is only th
long-distancepart that is enhanced. In order to sort o
boundary effects, which are probably responsible for par
the strong increase of the ratio at the longest distances a
able, we have also treated a larger (2734) ladder. Although
the calculation ofD(x) is less accurate for this system,18 we
can still draw some conclusions. As one can see from
figure, the ratio ofD(x) shows oscillations with twice the
stripe periodicity, whose envelope is clearly increasing w
distance, even far away from the boundaries.

The dependence ofD(x) on distance, seen in Fig. 3~a!, is
altered from rapidly decreasing in the absence of Coulo

FIG. 3. ~a! The long-distance part of the pair-field correlatio
D(x) for 8 holes in a 1834 ladder withoutVCoul ~dashed line! and
with VCoul ~solid line!. ~b! The ratio betweenD(x) with VCoul and
without VCoul for N34 ladders with 8 holes andN518 ~dashed!
N516 ~dotted!, andN527 with 12 holes~solid! ~Ref. 18!.
3-3
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ARRIGONI, HARJU, HANKE, BRENDEL, AND KIVELSON PHYSICAL REVIEW B65 134503
interactions, to much slower distance dependence in the p
ence of Coulomb interactions. This result supports the i
that while the longer-range phase coherence~or, in other
words, pair delocalization! is inhibited by rigid stripe order,
as obtained in the puret-J model, stripe fluctuations, induce
by the Coulomb interaction, permit the pairs to tunnel fro
stripe to stripe. It should be pointed out that this conclus
may not be generic and may depend on the stripes stiffn
If stripes are intrinsically weak, we expect their fluctuatio
to be strongwithout the need of Coulomb interaction. In th
case, the pair-breaking effects of the Coulomb interact
would probably obtain the opposite effect and suppress p
ing correlations. It could also be the case that in our re
tively narrow systems stripes are particularly stiff, due to
fact that they cannot meander effectively.

To further corroborate this interpretation, we have co
puted the~finite-size! spin gap with and without Coulomb
interactions for theN514 system~with h50). This is Ds
;0.16t without Coulomb interaction, andDs;0.12t with
V05t. Since we know from the work of WS,2 that the local
stripe energetics is essentially dominated by the short-ra
pair binding ~which sets a scale for the spin gap as anS
51 excitation of the pair! and since we findDs only slightly
reduced in the presence of Coulomb interaction, it is reas
able to assume that the local pairing itself is still due to
short-ranget-J physics.

The effects of Coulomb interactions on the charge-den
profile are even stronger~and more complex! in the more
heavily doped systems as shown forN516 (nh51/8) and
N514 (nh51/7) in Fig. 2. In these systems, even the per
of the stripe array is altered by the Coulomb interactions
particular, the two hole puddles seen as minima in the e
tronic density in the absence of Coulomb interactions
broken apart into structures that look somewhat more sim
to the four-stripe pattern seen in theN518 ladder. This result
is an example of a period selection caused by a Coulo
frustrated tendency to clustering, or phase separation.5 In this
case, we expect particularly large fluctuations between
competing configurations to enhance the delocalization
pairs between stripes.

IV. CONCLUSIONS

In summary, in this paper we present a new appro
capable of bridging the gap between work5,10 arguing that
stripes are due to a delicate balance between kinetic
long-range Coulomb interaction energy, and work2 support-
ing the idea that short-range interactions alone can lea
stripe formation. Based on the ‘‘density-functional’’ DMRG
we present numerical results, supporting the view tha
while short-range ‘‘t-J-like’’ interactions locally bind holes
into pairs—it is the long-range Coulomb interaction whi
induces their delocalization accompanied with substan
enhancement of superconducting pairing correlations. Mo
over, the Coulomb-induced stripe fluctuations suppress
magnitude of charge-density wave order, but can actu
slightly enhance the~‘‘antiphase’’! spin-density wave corre
lations with twice the wavelength.
13450
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APPENDIX:

VALIDITY OF THE HARTREE APPROXIMATION

The Coulomb interaction part of the Hamiltonian reads

W5
1

2 (
rÞr8

V0

ur2r 8u
nrnr8 , ~A1!

wherenr is the density operator. This can be rewritten as

W5 (
rÞr8

V0

ur2r 8u
^nr&nr81

1

2 (
rÞr8

V0

ur2r 8u
~nr2^nr&!

3~nr82^nr8&!1const, ~A2!

where^nr& is the ground-state expectation value ofnr . Here,
the first term on the right hand side of Eq.~A2! ~let us us call
it WH! corresponds to the Hartree approximation, while t
second (Wc) gives its correction. Of course, when the expe
tation value ofWc vanishes, the Hartree approximation b
comes exact~for ground-state properties!. Since, by defini-
tion, g(r ,r 8)[^nrnr8&/^nr&^nr8&, ^Wc& can be also written
as

^Wc&5
1

2 (
rÞr8

V0

ur2r 8u
^nr&^nr8&@g~r ,r 8!21#, ~A3!

and, thus, the correction to Hartree vanishes wheng(r ,r 8)
51.

In order to measure the accuracy of a mean-field appr
mation for a generic operatorÔ(r )Ô(r 8) in the Hamiltonian,
one should evaluate its fluctuations

DO~r ,r 8![^@Ô~r !2^Ô~r !&#@Ô~r 8!2^Ô~r 8!&#&.
~A4!

Since these terms give the corrections to the mean-field
proximation@see Eq.~A3!#, a small value forDO means that
the mean-field approximation forO is accurate.

In our calculations, the density fluctuationsDn(r ,r 8) are
typically about 20230 times smaller than the spin fluctua
tions DS(r ,r 8), for nearest-neighborr and r 8, where both
fluctuations are largest~for rÞr 8). This is the reason for
using the Hartree approximation for the Coulomb part and
treat the ‘‘J’’ part exactly. Similarly, on the same lattice site
Dn(r ,r )'0.1, which is of the same order asDS(r ,r 8), which,
in turn, justifies an exact treatment of theon-siteinteraction.

Notice that the inhomogeneous state brought about by
3-4
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open boundary conditions is decisive in making the Hart
approximation work better. Indeed, in a homogeneous s
tem ~obtained by periodic b.c.! ^nr& would be constant, and
the oscillations in the charge will be all shifted to the flu
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the other hand, for open boundary conditions, part of
charge oscillations are taken care of by the mean values^nr&
makingnr2^nr& @and thusDn(r ,r 8)# smaller.
e

ly
ce-

-
e

ble

at

ore
-

pe-
ng
ave
ot

any

S.

Rev.
.

ys.

G.
t-

n,
ys.

ev.

nce
1D. Poilblanc, Phys. Rev. B49, 1477 ~1994!, and references
therein.

2S.R. White and D.J. Scalapino, Phys. Rev. B55, 6504~1997!; 60,
R753 ~1999!; Phys. Rev. Lett.81, 3227~1998!.

3 Hellberg and Manousakis, Phys. Rev. Lett.78, 4609~1997!; V.J.
Emery, S.A. Kivelson, and H.Q. Lin,ibid. 64, 475 ~1990!.

4J. Zaanen and O. Gunnarsson, Phys. Rev. B40, 7391~1989!; K.
Machida, Physica C158, 192 ~1989!; H.J. Schulz, Phys. Rev
Lett. 64, 1445~1990!; D. Poilblanc and T.M. Rice, Phys. Rev.
39, 9749~1989!.
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