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Dynamics of a Josephson array in a resonant cavity
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We derive dynamical equations for a Josephson array coupled to a resonant cavity by applying the Heisen-
berg equations of motion to a model Hamiltonian described by us egPligis. Rev. B53, 144522(2001); 64,
179902E) (2001 ]. By means of a canonical transformation, we also show that, in the absence of an applied
current and dissipation, our model reduces to one described by ShnetrariPhys. Rev. Lett79, 2371
(1997)] for coupled qubits, and that it corresponds to a capacitive coupling between the array and the cavity
mode. From extensive numerical solutions of the model in one dimension, we find that the array locks into a
coherent, periodic state above a critical number of active junctions; that the current-voltage characteristics of
the array have self-induced resonant st€jiRS’s; that whenN, active junctions are synchronized on a SIRS,
the energy emitted into the resonant cavity is quadratid jn and that when a fixed number of junctions is
biased on a SIRS, the energy is linear in the input power. All these results are in agreement with recent
experiments. By choosing the initial conditions carefully, we can drive the array into any of a variety of
different integer SIRS’s. We tentatively identify terms in the equations of motion which give rise to both the
SIRS’s and the coherence threshold. We also find higher-order integer SIRS’s and fractional SIRS’s in some
simulations. We conclude that a resonant cavity can produce threshold behavior and SIRS’s even in a one-
dimensional array with appropriate experimental parameters, and that the experimental data, including the
coherent emission, can be understood from classical equations of motion.
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[. INTRODUCTION some aspects of this behavior. In the original model, which
inspired the measurements, an analogy was drawn between
A long-standing goal of experimentaf and theoret- junctions in a voltage-biased series Josephson array and a
ical ®~'2 research on Josephson junction arrays has been tllection of two-level atoms where population inversion and
develop sources of coherent microwave radiation. The basiaser emission could be achievBdSeveral authors intro-
idea underlying this work is that a Josephson junction is aluced various kinds of impedance loads across groups of
simple way of converting a dc current into an ac voltage.junctions or a one-dimensional array, in order to achieve a
Thus an array oN Josephson junctions oscillating in phase global coupling and, hence, to investigate coherence among
should produce a signal witK times the voltage amplitude, the junctions in the array?'*~?'None of these models have
and henceN? times the emitted ac power, of a single junc- yet produced both self-induced resonant steps and the thresh-
tion. Arrays of overdamped junctions have seemed mosbld junction number seen in the experiments. The coupling
promising for coherent emission, since junctions of this typeof propagating modes in Josephson ladders and other struc-
have, at any given applied current, only a single voltagaures to electromagnetic radiation has also been studied
state, and thus have none of the multistability and chaotitheoretically?>?* A simple Hamiltonian to treat the equilib-
behavior which could inhibit coherent emission. However inrium properties of a one-dimensional, voltage-driven array in
practice, it has proved very difficult to achieve an efficient acthe weak-coupling regime was recently proposed and studied
to dc conversion in such systems; thus far the highest corwithin a mean-field approximation which should be very ac-
version efficiency is only about 19871°The low efficiency  curate in the limit of large numbers of junctioffsWithin
may result from the high degree of neutral stability whichthis approach, it was found that the array developed coher-
has been shown to exist in such overdamped arrays in thence only above a threshold number of junctions, in agree-
absence of an applied magnetic fiéfd. ment with experiment. In a recent paperthe present au-
Recently, a remarkably high conversion efficiency hasthors proposed a similar model to treat aridynamicsfor
been achieved in annderdampedosephson array, by cou- any strength of coupling; they also briefly described a few
pling the junctions in that array electromagnetically to anumerical results obtained from the model, including both a
mode in a resonant microwave cavifyThe high emission is threshold for coherence and self-induced resonant steps.
a manifestation of the so-called self-induced resonant steps In the present paper, we give a more complete derivation
(SIRS’y that appear on the current-voltage\() character- of the model equations of motion of Ref. 25 for a one-
istics of these arrays. It is thought such arrays emit stronglglimensional array of underdamped Josephson junctions
because every junction is coupled to the same electromagoupled to a single-mode electromagnetic cavity. Starting
netic mode, and hence, effectively to every other junctionfrom a suitable Hamiltonian, we obtain the Heisenberg equa-
This same coupling is presumed to lead to the observetions of motions for the phase differences and the photon
threshold effect, in which the strong emission occurs onlycreation and annihilation operators. We account for dissipa-
above a certain array length. tion in the junctions by the standard procedure of coupling
A number of models have been proposed which produceach junction to a reservoir of phonon variables with a den-
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sity of states constructed so as to produce Ohmic damping.

In the limit of large numbers of photons, the equations can be

treated classically and solved numerically. We also correct

the treatment of Ref. 25 of the junction damping and the —eo > el e > o<l el o C o ——
coupling of the array to an external current. Finally, we carry Yi Y2 Y3 ... W

out a canonical transformation of our Hamiltonian to show
that the interaction between the array and the cavity mode
has the form of aapacitivecoupling.

We also present much more extensive numerical results /< 1
than those of Ref. 25, based on solutions to the model equa- ®
tions. Our numerical results show all the principal features of
the measurements, including SIRS’s, a coherence threshold, FIG. 1. Sketch of the array geometry considered in our model.
and a quadratic dependence of the photon energy in the cavhere areN junctions (crossey labeled by their gauge-invariant
ity upon number of active junctions. Plots of th¢/ charac-  phase differencey;, andN+1 superconducting islands. A current
teristics and other calculated features closely resemble theis injected into one end of the array and extracted from the other.
corresponding experimental plots. This agreement is espdhe array is placed in an electromagnetic cavity which supports a
cially noticeable since the calculation is one dimensionalgingle resonant photon mode of frequerey
while most experiments have been conducted on two-
dimensional arrays. In addition, we find that by tuning thewhereE; is the Josephson energy of tjté junction, andy;,
initial conditions, we can cause the array to lock into a vari-is the gauge-invariant phase difference acrossjthgunc-
ety of different integer SIRS’s, again in agreement with ex-tion (defined more precisely belowe; is related td ;, the
periment. We conclude that these equations do indeed deritical current of thejth junction, byE;;=%1.;/q, where
scribe the experiment, and that a one-dimensional array ig=2|e| is the Cooper pair chargél: is the capacitive en-
sufficient to achieve this type of coherent behavior. ergy of the N junctions, which we approximate as

The remainder of this paper is organized as follows. In
Sec. I, we derive the Heisenberg equations of motion for the N 5
phase and photon variables, starting from a model Hamil- HCZZ Ecjnj . (4)
tonian. We also apply a canonical transformation which =
shows that the Hamiltonian involves a kind of distributed HereEcj:qZ/(ZCj) is the capacitive energy of thjéh junc-
capacitive coupling between the Josephson array and thgn, C; is the capacitance of that junction, ang is the
cavity mode. In Sec. Ill, we give a detailed description of ourdifference between the number of Cooper pairs onj]ﬂhe
numerical results. Section IV presents a comparison betweeshd (j + 1)th superconducting island.
our results and experiment, gives a qualitative discussion of The gauge-invariant phase differengeis the term which

the numerical results, and makes some concluding remarksuples the Josephson junctions to the cavity. It may be writ-
about the model. ten as

II. DERIVATION OF THE EQUATIONS OF MOTION
2 y=g-[@midg) [ Ads=g-A.  ©
A. Hamiltonian !

We consider a one-dimensional array WNf Josephson whered; is the phase difference across fite junction in a
junctions placed in a resonant cavity, which we assume sugparticular gaugeA is the vector potential in that same gauge,
ports only a single photon mode of frequer@y(the geom-  ®y=hc/q is the flux quantum, and the line integral is taken
etry is sketched in Fig.)1 The array is to be driven by an across the junction. We assume tiatrises from the elec-
applied current. We write the Hamiltonian in the form tromagnetic field of the normal mode of the cavity. In Gauss-

ian units, this vector potential takes the fSfrA’
H=Hphotont Hyt He+ Heyrr t Haiss (1) , ;
Here Hyo10n is the energy of the cavity mode, which we A =v(heH/(at)+a (HEX), ©

express as whereE(X) is a vector proportional to the local electric field
of the mode, normalized such thiyd3x|E(x)|?=1, where

1 V is the cavity volume. Given this representation forthe
= T —_— .
Hpnoton=fi}| a'a+ 7, @ phase factoA; can be written
with a" anda as the usual photon creation and annihilation Aj= \/g—j(a+ ah), 7)
operatorsHj is the Josephson Hamiltonian, and is assumed
to take the form whereg; takes the form
N _he? (2m)° 2
Hy=—>, E,jcOSY;, ©) 9= D2 LE(X)'dS ®
=1 0

134502-2



DYNAMICS OF A JOSEPHSON ARRAY IN A RESONAN. . . PHYSICAL REVIEW B 65 134502

Clearly, g; is an effective coupling constant describing the a=ag+ia,, (14)
interaction between thigh junction and the cavit?
The terms discussed so far need to be supplemented by a'=ag—ia,. (15

the effects of a driving current and of damping within the
junctions. A driving current is easily included within the
Hamiltonian formalism via a “washboard potentiati,,, ,

of the form Hphotor= Q. (a3 +a?), (16)

The free photon part of the Hamiltonian can be expressed in
terms ofag anda, as

Al where we have used the additional commutation relations
Heurr=— q Z:l Vi 9) [ag,a;]=i/2, which follows from the usual relatiofa,a’]
=1. The gauge-invariant phase differengeis related tog,
with | as the driving current. by
The inclusion of dissipation can be done in a standard
way**~32by coupling each gauge-invariant phase difference y,=¢;—2g;ax. (17)
y; to a separate collection of harmonic oscillators with a . . )
suitable spectral density. Thus we write the dissipative term 1n€ time dependence of the various operators appearing

in the Hamiltonian as in Hamiltonian (1) is now obtained from the Heisenberg
equations of motion. For a general operdpithese take the
N form
Hoiss= 2, Haissi (10 .
O=—[O,H]. 18
where 7 OH (18
2 These equations of motion can be evaluated for the various

H. :2 foopily+ Pa operators enteringH, using the commutation relation
diss] @larel T 2m, [A,F(B)]=[A,B]F'(B), whereF is any function of an op-

eratorB, andF'(B) is the derivative of that function. One

1 5 (fa,j)2 ) also needs the commutation relations for the various opera-
+ En"'a,J"”a,jua,jJr 2I’T1—w2-(yj) - 1) torsin Hamiltonian(1). Besides the relations already given,
@l these are as follows:
The variablesu, ; andp, ;, describing thexth oscillator in )
the jth junction, are canonically conjugate, ang,; and [y vid=—1 6k, (19
o, are the mass and frequency of that oscillator. The last o
term in Eq.(11) must be added in order to prevent the origi- [Paj Upil= ~1%30,59j - (20

nal potential from being shifted by the coupling to tjth Note thatyy, unlike ¢;, no longer commutes with, ; in-
phase degree of freedothThe spectral density of the har- stead, it satisfies

monic oscillators in thgth junction, denoted;(w), is de-

fined by [7j.ar]=0, (21)

[y.a]=—iVg;. (22)

Using all these relations, we find, after a little algebra, the
If J;(w) is linear in|w|, it can be shown that the dissipation following equations of motion for the operatoys, n;, ag,
in the junction is Ohmic®~3?We write such a linear spectral anda :

iy fo0)?
Jj(w)z(5>2( 2 Nw—w,). (12

a Myw,

density as £
. C
5 yjzzf’nj—ZQJg—ja., (23)
Jj(w)zﬁaj|w|(wc—w), (13
. . _ : Ejj I 1 (fa))?
where w, is a high-frequency cutoffat which the assump- nj=——=sin(y)+-—+ E foiUait —5 7],
tion of Ohmic dissipation begins to break dowr®(w, h q h'a a,jPa,j
— ) is the usual step function, ang; is a dimensionless (24)
constant, which we write asa;=R,/R;, where R, .
=h/(4e?) andR; is a constant with dimensions of resistance agr=Qa, (25)
(actually, the effective shunt resistance of the junction, as E |
discussed belo : Jj .
sl o alz_QaR+§j: Jg—;fsm(v;)—a; vy

B. Equations of motion

It is now convenient to introduce the operatagsanda, +2 %
j .

a,j@a,j

(fa)?
b 2 ( fa,jua,j + m—lz Yil- (26)
y a
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These are equations of motion for thperators &, a,, n;, tively and capacitively shunted junctitidriven by a current
and ¢; (or ;). Note that they do not depend on the particu-1, and Eq(32) reduces to that of a simple harmonic oscillator
lar choice of gauge, but only on the form of the Hamiltonianwhich represents the cavity mode. Note that we have not
and the commutation relations for the various operators. Wancluded any damping due to the cavity walls. While such
will study these general equations within the limit of large damping is undoubtedly present, we find that good agree-
number of photons in the cavity and large number of chargement with experiment can be obtained without including it.

in the junctions, and in this “classical” limit, we will regard
the operators as numbers??

We also have the equations of motion for the harmonic
oscillator variables. Since we have no explicit interest in.
these variables for themselves, we instead eliminate them i

order to incorporate the dissipative term into the equations o

motion. Such a replacement is possible provided that th

spectral density of each junction is linear in frequency, a
noted above. In this cas&, ¥ the oscillator variables can be
integrated out. The effect of carrying out this procedure is
that one should make the replacement

(fa,j)z RN
m. w2 Vi

a,

i Ro.

> 7 ﬁj')’j ; (27

a

fojUejt
a,]
wherever this sum appears in the equations of motion.

Making replacement27) in Eqgs.(24) and(26), we obtain
the equations of motion fan; anda, with damping:

. E;; I W,
nj=——sm(y,)+q 5o cQ >, (28)
Ej; [
a,=—QaR+; \/g_j%sin(yj)—a; \/g—]

Here we have introduced the paramete5§= Ecj/#, which

is a frequency associated with the capacitive energy of the

jth junction; w,= (1/N)E —1wp;, the average of the Joseph-
son plasma frequencmzfi,pJ V2E¢E;y/fi; andQy;, the di-
mensionless junction quality factdor damping parametgr
for the jth junction, which is related to the capacitanCe
and the shunt resistanég by

(30)

QJj:wajCj .

Equations(23), (25), (28), and (29) can be combined,

with a little algebra, into two coupled second-order differen-

tial equations

1 0, . I VJoi.
p : i
i+ i+wjisiny;=————ar (31
chjyl chjQijJ A q ogj R
and
1+Q, 9 ar+0%ag=— = >, —@yj, (32
T wcj 2 T wcj

where we have defined;;=E;;/A. Note that in the absence
of coupling between the junctions and the cavify= ¢,

C. Canonical transformation

The physics behind the coupling between the Josephson
nctions and the resonant cavity, and hence the physics of
s.(23)—(26), can be made clearer by a canonical transfor-

Enatmn For simplicity, we describe this transformation in-

luding only the term#i .o, H;, andH¢ from Hamiltonian
(1), and omittingH.,,;, andH4iss. The same transformation
was previously used for singlejunction coupled to a reso-
nhant cavity by Buisson and Hekkirf§and, for two voltage-
driven junctions coupled to a resonant cavity, by Shnirman
et al®
We begin by writing

N

1
H'=Hpnort Hy+ He=570(p7+ qf)+;l [Ecin?

—Ej; cod ¢;—29,9,)], (33)

where we have definep, = \2a, andq,=\2ag. With this
choice,p, and g, satisfy the commutation relatidrmp, ,q; ]
= —i. Next we make the canonical transformations

nj=n;, (34
=¢j—29;qr, (35)
N
P, = p,+;l V2g;n;, (36)
ar=a- (37)
The only nonvanishing commutators of the primed variables
are easily shown to ben/,¢;1=[py ,q;]=—i. Reexpress-

ing Hamiltonian(33) in terms of the primed variables, we
obtain

’ 2 1 \2
2g;n; +EﬁQ(q,)

1
H'=—m(p;—2
2 i
N
+]Z,1 [Ecj(n])?—Eyjcosg/ 1.

(38)

ThusH' is the sum of four terms: the sunkQ/2)[(p;)?
+(q/)?] describes the cavity resonator; the last sum de-
scribes theN independent junctions; and the remaining terms
represent the interaction between the junctions and the reso-
nator, and an indirect interaction between the junction vari-
ablesnj’ mediated by the cavity.

To interpret this interaction, we note that the junction-
cavity system has two places in which charge can be stored:

Eq. (31) reduces to the usual equation of motion for a resisthe variablesnj’ of the junctions and the variablgs of the
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cavity. The cavity behaves much like arC circuit, with 5 E,
capacitive energy #Q/2)(p/)?> and inductive energy g=g—, (39
(hQ/2)(q,)2. The dominant interaction is @pacitivecou- hwp

pling between the charge variablesof the junction and the  which is also independent gf Similarly, we introduce a

charge variablg, of the cavity®® scaled number variable; by
In further support of this interpretation, we now show that
H’, in the form of Eq.(38), is equivalent to that given by ~ 2Eg;
Shnirmanet al® in the case of zero applied voltage. Figure n;= P n, (40
p

1 of Ref. 35 depicts each junction contained between the
plates of a capacitor with capacitanCe The junction itself 5 gimensionless frequen€y by 1= Q/w., and scaled pho-
has a capacitancg;. The system of junction and capacitor ton variableSie anda b P

is then shunted by a parallel inductante,which acts to R 1 Y
couple all the junctions togeth&The equivalence is estab- Fr=1g 41
lished by noting the correspondence between the variables AR~ VO8R (41)
used in the present paper and the varialles), n;, and ¢; ~

of Ref. 35. The correspondence is as follof@ssuming that &= ‘/53' ' (42)

the coupling constantg;, Ecj, and E,; are indepen- Finally, we assume that the critical currerts are random

dent ofj): and uniformly distributed betweein(1—A) and !l (1+A),
) i where A is a measure of the degree of disorder. After
o < [L/(2CY ], some algebra, we eventually obtain the following equations
of motion:
pr—[L/(2C)]1¥q,
nj’<—>nj ,
; | no Q.-
¢j,<_’0j; n]—lc(1+Al) QJ Slr1(yj)+2QJa|, (44)
whereC,=CC,;/(C+2C;). In order to complete the corre- L
spondence, we also give the correspondence between the re- ag=0Qa,, (45
maining parameters and the quantitiesC, C,;, andC;: ~
- e o~ ~
L \¥c, a=—0ag—200-" > (1+A)+3> (1+4))sin(y,)
J2g= (—) — Qs g ]
2C,/ C;,
1 —NZ;'—+12 (1+A)N;. (46)
I QJ j 17
Q= ,
V2LC, In these equations, the dot refers to differentiation with re-
spect tor, and thejth critical current isl(1+4;).
E - 1 These equations can be combined into two more compact
¢ c+2cy equations, with the results
If we make the replacements and identifications given above, . 1. i ~
then our Hamiltonian, for the case of two junctions, is iden- Yit Q—7j+5”"( Yj))= m—zam (47)
tical to that considered in Ref. 35 in the absence of an ap- J ¢ !
plied voltage. The main differences between the two models , N
are the bour_‘ldary conditio_ns: ‘constant current bias in our §R+(Q')25R: ~g= E (1+Aj)5’j. (48)
model, and fixed voltage bias in that of Ref. 35. QO j=1

where we have defined((')?=02/[1+2g03(1+4A))].
Equations(47) and (48) are the analogs of Eq$31) and

In order to write these equations of motion in a simpler(32), expressed in terms of dimensionless reduced variables.
form, we now introduce the dimensionless time wt.
Also, although we allow disorder in the parameters of the Ill. NUMERICAL RESULTS
different Josephson junctions, we assume that the coupling _ ~
constants between the junctions and the cavity are all the We have solved Eq447) and (48) for the variablesn; ,
same, i.e., thag; =g for all j. In addition, for simplicity, we  v;, ag, anda, numerically using the same approach as in

D. Dimensionless form

assume that the produd®&C; andl;/C;, and hencew,;, Ref. 25, namely, by implementing the rapid and accurate
are independent gf ThenQ;; is alsoj independent, and we adaptive Bulrisch-Stoer methd8lWe initialize the simula-
may introduce the dimensionless coupling constant tions with all the phases randomized betwéé2s], and
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FIG. 2. Left-hand scale and solid line: current-voltageV(
characteristics of a one-dimensional arrayNsf 40 junctions, with FIG. 3. Power spectrumP(w) [Eq. (53)], of the ac voltage
disorder parameteA =0.05 and coupling constamt=0.001. The  across the array, plotted vs the frequefityat two driving currents
resonant frequency of the cavity ©=2.2, and the damping pa- (a) and(b), I/1.=0.58, corresponding to the first integer SIRS, and
rameter of the junctions i€;=+/20. Right-hand scale and stars: (c) and(d) I/1.=0.65, slightly off a SIRS. Other parameters are the
scaled total energf =gE/(4() carried by the resonant mode of Same as in Fig. 2. Panef) and (d) are the same a&) and (c),
the cavity, plotted as a function of decreasing currgit. The  except that the effective coupling to the resonant cagty0. In
vertical dashed lines are guides to the eye. The upper dashed hodiach panel, the left vertical dashed line shows the resonant fre-
zontal line indicate the expected position of the integer self-inducedjuency of the cavity, and the right vertical dashed line shows the
resonant stepéSIRS'S for the particular resonant frequen€y of ~ average resonant frequency of the junctions for the case of no cou-
the cavity (all junctions in then=1 SIRS. For the lower dashed Pling to the cavity.
horizontal line, 23 junctions are on thme=1/2 SIRS, and 17 junc- _
tions are in thgVj),=0 state. Branches corresponding to increas-ditions, we see these steps(&t) ./(NRI.)=nQ/Q;. These

ing and decreasing current are shown by arrows. Double-headesteps corresponds to voltages at which the condition
arrows in this figure and subsequent figures denote that the curve

can be obtained by sweeping the current in either direction. 2e<V]->t: na Q) (51

is satisfied for the individual junctions, with=1 (upper
horizontal dashed lineandn=1/2 (lower horizontal dashed
line). Thus the lower step is at 23/80 the voltage of the upper
step. For the latter case, the driving current is smaller than
the retrapping currents of 17 of the junctions; thus only 23
out of the 40 junctions are oscillating on this stéphe re-
trapping current is the minimum current for which an under-
damped junction is bistableThe steps occur at exactly the
voltages where the first integer and half-integer steps would
appear in these junctions, if the junctions were driven by an

ac current of frequency). Thus the radiated energy in the
cavity seems to behave like an ac drive which acts back to
induce these steps in the junctions of the array. Similar steps
were seen experimentally intavo-dimensionahrray of un-
derdamped Josephson junctions coupled to a resonant
cavity!’, and in more recent experiments in one-dimensional
arrays>®

Figure 2 also shows the time-averaged scaled total energy
E contained in the cavity(right-hand scale of the figureE
is defined as

usually ag=a,=n;=0. We then let the system equilibrate
for a time intervalA 7=10, after which we evaluate aver-
ages over a time intervah7=2x10% using 2° evenly
spaced sampling points.

A. Typical |-V characteristics, power spectrum, and coherence
transition

In Fig. 2, we show a representative current-voltag®/)
characteristic calculated for an arrayM# 40 junctions with

A=0.05 andg=0.001. The time-averaged voltag®/),
(left-hand scalgis obtained from

<V>T:j21 <Vj>ri (49)

where(:--) . denotes a time average a¥is obtained from
the Josephson relation

hody 1.

gRI; dt ~ Q,”]

RI

Vi
50
c 50 g

B~ (8 5),~g(ad+a) 7 B

(52

A striking feature of this plot is the SIRS'’s, at whi¢k) , _ _ o
remains approximately constant over a range of applied cuhereE=(Hpnoton - is the cavity energy; it is plotted as a
rent. For this particular choice of parameters and initial confunction of I/l for the same array. As is evideltt,increases
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dramatically when the array is on a SIRS, and is very small-0.00163,c,;=0.00125, ancc,=6.868< 10 °. This curve
otherwise. This sharp increase signals the onset of coherenteshown as a full line in Fig.@); the fit is clearly excellent.
within the array, and can be qualitatively understood fromAs a contrast, we also show the best linear fit to the same
the equations of motion. Specifically, when the array sits ordata setdashed ling the fit is plainly less good. The mag-

one of the integer SIRS, aII~the junctions are oscillating inpjtude of the jump irE atN,= N_ is nearly a factor of- 103,
phase. Hence the term drivirag [the right-hand side of Eq. as shown in the inset to Fig(&.
(48)], and thusay, itself, are both proportional to the number ~ To measure the degree of synchronization among the Jo-
N, of active junctions. sephson junctions, we have also calculated Keamoto
Before proceeding further, we briefly review the conceptorder parametef’ (r), for the same parameters, as a func-

of active junction numbeN,, as discussed in Refs. 12 and tion of number of active junctions\l,. (r) . is defined by
25. This concept has meaning only for underdamped junc-

> . (54)

tions. Such a junction is bistable and hysteretic in certain
(.=
The results are shown in Fig(k). Note that(r).=1 repre-

ranges of current—that is, it can have either zero or a finite
time-averaged voltage across it, depending on the initial con-

sents perfect synchronization among the active junctions,
while (r) =0 would correspond to no correlations between

ditions. In the present casH, denotes the number of junc-
tions (out of N total) which have a finite time-averaged volt-
ohe different phase differenceg; . Just as folE(N,), there

age drop. It is possible to turé, by suitably choosing the
is an abrupt increase i), at N,=N,, indicative of ady-

initial conditions, y; and y;, in simulations:>2®
Figure 3 shows the calculated voltage power spectrum
the ac component of the total voltage across the array, X - )
namical transitionfrom an unsynchronized to a synchro-
2 nized statgwith all active junctions locked to the same fre-

, (53 quency and having a common phgaseas N, is increased
keeping all other parameters fixed. As with similar transi-
and 3b)] and1/1.=0.65[Fig. 3(c) and 3d)]; all other pa- finite disorder in thd's. Instgad_(r)Tapproaghes_ unity, rep-
rameters are the same as in Fig. 2. In Fig)3all the junc- ~ resenting perfect synchronizatiofr.). remains finite even
tions are on the first SIRS, while in Fig(Q the array is for Na<N, because even in this regime there is still some
tuned off this step. In Fig.(®) and 3d), we show the same residual correlation among the phases in different active
case as in F|gs(a) and 30) respective'y' except that the junCtionS. This transition is the dynamic analog of that ana-

coupling constang is artificially set equal to zero. Note that Iyzgq bﬁ/ an ?:quilibrium mehan-field theor_y in I?‘Tf' IZAtL fth
in Fig. 3@, the power spectrum has peaks at the scaled inally, in Fig. 4c), we show an experimental plot of the

. ~ . . L . detected ac power as a function of the input dc power, as
cavity frequency() and its harmonics. This is evidence that measured by Barbart al ' for a 3x 36 array. These quan-

the junctions are all oscillating at frequen@y, In Fig. 3b), tities are, of course, not equivalent to the calculated results
the junctions are still coupled by the indirect interaction viawhich are plotted in Fig. @). The input dc power is equal to
the cavity, but the power spectrum shows that the array is nghe power dissipated in the active junctions; so it is propor-
synchronized in this case; instead, the individual junctiongjonal to N,. The detected ac power is that measured by a
oscillate approximately at their individual resonant frequenpickup junction in the cavity, and thus should be proportional
cies and their harmonics and subharmonics. Hence the powgr E(N,) in our notation. Despite the differences, our calcu-

spectrum has a spread of frequencies, all of which differIated . . o0

. . . ! plot (for a one-dimensional arrayappears strikingly
from t?at of the .C%V'ty' Ig F|gs.f(B) and 3d3{ the Judnc;:ons similar to their measured plot, especially as regards the dis-
are, ot course, indepen ent of one anpt er, an the pOW‘?:rontinuity at the threshold and the quadratic dependence on
spectrum is that of a disordered one-dimensional Josephsq .. apove the threshold
array with no coupling between the junctions. a & '

. In Fig. 5, we show the synchronization transition for an
We have also calculated the response of a disordered A%¥ray of N=80 junctions, keeping the other parameters the
(A=0.05) of fixed length =40 junctions, and a driving ;o o< in Fig. @). In this case, the critical threshold is
purrentl/lc=Q.58, when the ““"‘?bef of active junctiomé, N.= 20, somewhat larger than for tit¢=40 junction array.
is varied. This current not only lies well within the bistable 1. - <ot shows that the cavity energy still has a discontinu-

region, but also leads to a voltage on the first integer SIRSIty by a factor of ~1C°. However, the quadratic function

In Fig. 4(a), we plot the time-averaged scaled energy of the ° . L~ . .
_tg é(l\)l Ep 50 ¢ t_g N.. ForN gyﬂ which best fitsE(N,) for N,=N, is now described by the
cavity, E(Na) [Eq. (52)], as a function oN, . For N, ' different fitting parameterscy= —0.01576, c;=0.001149,

the active junctions are unsynchronized, didis corre-  gng c,=1.441x10°. Thus the total length of the array al-
;pondmgly s-,mall f’i“d only ."Yeak'y dependent.mg.- Thgre ters the details but not the qualitative featuresE6R,,).

is & sudden jump if at a critical number of active junctions  These calculations were carried out for an array tuned to
N.=17. Above this valu& increases as a quadratic function the first SIRS. If, instead, we carry out the same calculation
of N,, and we have fittedE(N,) to the formE=c,+c,;N,  When the array is tuned to the bistable regionruiituned to

+02N§. The constants which give the best fit arg= a SIRS, we find thaE doesnot increase quadratically with

Na

1 .
N, 21 exp(i ;)

j=

P(w)=2Ilim

T—w

17 i
Tfo V(r)e'dr

134502-7



E. ALMAAS AND D. STROUD PHYSICAL REVIEW B65 134502

| R T T T T T T T T T T T T
L 10" — ] I
* 4 ¥ _q ~
015 F 102 | T | 015 | 10 e 1
t 4 Foq92 L PRl
F10° | 1 04
012 e | ] . _ o 104 - 1 1
uzT L 10t Ta¥HExF* i qu | 10 i3 R E
o, 009 10 13 16 E 5, 009 1 qg° T . q
1<) F 1 o 10 14 18 22
ol L * Energy @ |
5 —— Linear fit ]
W 006 - " E W 0.06 - b
| | — Quadratic fit | ¥ Energy
L (a) J L —— Linear fit J
0.03 - 7 E 0.03 — Quadratic fit 4
I /
0.0o RS PRV EVPEN V2NVLY VAN EAV PR P2 ERN MRV VRN AN VAN Pt 1 n n 1 1 1 L 1 1 1 1 000 J/J/V\A/N/vw\l/u/ 1 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 0 10 20 30 40 50 60 70 80
Active junctions N, Active junctions N,
10F———=—————- OBOO0000 OO0 FIG. 5. Same as Fig.(d), except thaiN=280. In this case, the

! 1 synchronization threshold isl;=20, and the quadratic fit to the
08 L ! 4 energy above synchronization has different fitting parametgys:
=-0.01576,c,=0.001149, and,=1.441x 10 °.

j
06 - : ©- -0 Kuramoto <r> i
i

N,. Instead,E(N,) showsno threshold behavior, and, in-

Kuramoto order parameter <r>

04 - . deed, varies little withN,. A plot of E(N,) in this case is
g | (b) 1 shown in Fig. 6. The parameters are the same as for the
02 004, - calculation in Fig. 4a), except that the driving current in this
case id/1.=0.65, which is not on a SIR&f. Figs. 3c) and
0.0 ‘ ‘ ‘ ‘ 3(d)).
0 10 20 30 40

Active junctions N,
B. Effects of varying the number of active junctions

6051 In Fig. 7(a), we show a series dfV characteristics for a
0.044 ten-junction array Nl=10), calculated by varying the num-
— ber N, of active junctions from 1 to 10. Each solid vertical
%0-03' 14 rows line segment corresponds to th&/ characteristic for alif-
E’o,ozu ferent N,, and representdl, junctions sitting on the first
o. integer SIRS. The width of each segment represent the cur-
0.01+ (C) rent height for that step, as found in our calculation. The
1 dashed vertical lines show the expected voltages for the in-
0.004.0 p 0.0 : ;
0.0 0.1 0.2 03
Py (W) ' ' '
107 gt el
FIG. 4. (a) Asterisks: scaled photon enerfiy=gE/(#Q) in the = + '
resonant cavity when the array is current driven on a SIRS, plotted % *ﬁj *
vs the number of active junctiond|,. The array parameters are 5 *
N=40, 1=2.2, Q,= /20, A=0.05,9=0.001, and /I .= 0.58]cf. LT
Fig. 3@]. The full curve shows the best fit & to the function A
02N§+clNa+co for N;>17, the threshold for synchronization.
The fitting parameters arey=—0.00163, c;=0.00125, andc, 107° : L : ! : ; :
=6.868 10" °. We contrast this fit to the best linear fitashed ling 0 " petivejunctions N, “0
Inset: E(N,) nearN.=17, showing a jump near the synchroniza-
tion threshold.(b) Open circles: Kuramoto order parametes FIG. 6. Total scaled cavity enerdyas a function of the number

[Eq. (54)] for the same array. Dots connecting circles are guides ta\,, of active junctions, for the same array parameters as in Fiy. 4
the eye. The sharp increase(in), and the quadratic increase except that the current is tunedf any self-induced resonant step:
both begin atN.=17. (c) Measured ac power as a function of the /| ,=0.65[cf. Fig. 3c)]. In this caseE does not increase quadrati-
input dc power, as obtained in Ref. 17 for &«36 array. The dc  cally with N, above a critical threshold; instead, it shows no thresh-
power is proportional to the number of active rows in their array,old behavior, is only weakly dependent by, and is much smaller

while the ac power is proportional to the eneff§yin the cavity. than in Fig. 4a).
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FIG. 8. (a) Calculated total energ within the cavity, plotted
vs dc powerPy., for N, active junctions synchronized on time
=1 SIRS, for an array of ten junctiondNE& 10), using the same
FIG. 7. (@ Current I/l versus time-averaged voltage parameters as in Fig. 7. Each curve segment corresponds to a dif-
(V).I(NRI;) for an array containind\=10 junctions, and with  ferent value ofN, between 1(leftmost curvé and 10(rightmost
damping paramete,= 120, disorderA = 0.05, cavity couplingg ~ curve. Py.=(IV)/(NRI) represents the power per junction fed
=0.003, and a cavity resonance frequencylof 1.8. By properly into the array by the dc current. For ealdl, the curve s_,egr_nent_
choosing the initial conditions, one can select the nurigrof fands when the array I_eaves the SIRS. Note that _the active junctions
active junctions to be any integer between 0 and 10. Each verticdl! the array synchronize on the SIRS whiég=4, i.e.,N =4 for
line segment corresponds to a portion of thé characteristic for a  tis array. Inset: an enlargement of the calculated curvefor 6
particular choice ofN,, as obtained with increasing currefa- (filled c_|rcles). (b) Experimental r_esults for aX436 array as re-
though the same result would be obtained with decreasing currentPorted in Ref. 43. From left to right, these results correspond to
The Ohmic(straight diagonal linesegment is found folN,=10 N?= 16, 21, and 23 active row@ll in the coherently radiating state
with decreasingcurrent. The dashed vertical lines indicate the volt- with Na>Nc).
ages of the expected integer SIRS’s. The dashed, nearly horizontal
line corresponds to increasing the voltage onihe=101-V char-  teger SIRS’s, and are good matches for the calculated volt-
acteristic; the dots and very short vertical line segments within thi%ges for the variou®N,’s. The long straight diagonal line
dashed line corresponds to currents at which several of the acm@egment, which is common to all the differeMy’s, repre-

junctions jump to then=2 SIRS. The short, nearly horizontal . - . . i
dashed line in the lower left-hand corner occurs on the decreasin ents th(—;‘ Ohmic part of tHe.V characteristic .Wlth. all junc
ons active. The nearly horizontal dashed line in the upper

current branch with ten active junctions. The very short vertical line’. . L
segments within this dashed region correspond to several acti\[éght hand comer of Fig. (&) shows the -V characteristic for

junctions synchronizing on the=1/2 SIRS, while the remainder INCréasing voltage wittN,=10. The very short vertical seg-
are in the state ofV;),=0. (b). Measured -V characteristics for a ments within this dashed line correspond to several junctions
10x10 array (Ref. 17. The open circles represent self-induced Which have been excited taigher steps, specifically the
resonant steps corresponding to different numbers of active rows=2 (second integer stg¢pvhile the remaining junctions are
Full squares are believed to be examples of resistance ste® then=1 step. The horizontal dashed line on the lower
(Ref. 42. left represents the low-voltage end of tNg=10 |-V char-
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FIG. 9. This figure illustrates the effects of changing the damping para®gtehile holding other array parameters fixed. Note ffobt
and (e) correspond tamverdampedunctions. Panel¢a)—(e) show results f0|Q§=100, 20, 2, 0.1, and 0.05 for an array of ten junctions
(N=10), with a coupling strength=4x 10"* and a disorder parametar=0.05. In all cases, the cavity resonant frequency is chosen such
that the expected voltage for the SIRSﬁi&QJ:O.g. The top panels show the time-averaged voliage /(NRI.) across the array as a
function of driving current/l ;. Note the absence of clear hysteresigdhand(e), which correspond to overdamped junctions. The arrows
indicate whether the voltage trace is calculated for increasing or decreasing current. Lower panels show the time-averaged t&tal energy
=(a&+a?), in the cavity, calculated as a function décreasingcurrent only.

acteristic(on decreasing currentThe short vertical segment example of our results is shown in Fig(aB whereE is
W|th|n'th|s dashed line cprregponds fntactpnal SIRS's—  plotted versudy.= (I/1)[(V),/(NRI.)] for an array of ten
specifically, three of the Junctlons have sllpped from the junctions, using the same parameters as in Fig) @nd
=1 to then=1/2 step, while the rest are in th&/;),=0  varying the values oN,. Each curve corresponds to a dif-
state(the driving current is smaller than their individual re- ferent numbeiN, of active junctions, and, for eadd,, we
trapping currents Thus we see both the higher integer andsyeep current across tme=1 SIRS (leftmost curve corre-
the fractional SIRS’s in these one-dimensional arrays. sponds toN,=1, and rightmost tdN,= 10). The curves end

In Fig. 7(a), although we show the full hysteresis loop when the SIRS’s become unstable. Each curve is quadratic at
only for Na= 10, thel-V curves for other values dfl, are oy P, and approximately linear at high&,.. For com-
also hysteretic. In all cases for whith<N,< 10, the num-  parison we also show the correspondagerimentaplots®
ber of active junctions increases when the SIRS becomegy g 4x 36 array forN,=16, 21, and 23 active rowgig.
unstable, and individual junctions jump into the=2 SIRS  g(p)]. In all cases the experimental array is abdvg, the
state; Ohmic behavior is not attained until;>1. ForN,  coherence threshold. The similarity between the experimen-

<N, the array behaves somewhat differently: when th&a| and calculated curves is strikingly apparent.
SIRS becomes unstabld, is unchanged, and tHeV curve

immediately becomes Ohmic. Wheéf .~ 1 in this regime,
the remaining junctions become active and tR¢ charac-
teristic also becomes Ohmic. For this particular arrsy, Finally, we have studied how our numerical results de-
=4. pend on the parameters of our model. There are several pa-
As a comparison, we also show, in Fig(by, the I-V rameters of interest: the number of junctidisthe disorder
characteristics as measured for & 36 underdamped array, parameter\, the damping paramet&,, the coupling con-
by Barbaraet all’ The open circles correspond to the stepsstant g, and the normalized cavity mode frequen€y.
observed for different numbers of active ro@om 1 to 10  Clearly, a thorough numerical investigation of all these pa-
in this instancg which are produced when an in-plane mag-rameters is out of the question. We have therefore varied
netic field reduces the critical current of the individual junc- only two parameters in the present pap@s:andg.

tions. The more widely spaced dark rows are believed to be Figyre 9 shows the total time-average voltdy@, across

examples of resistance stefisThe stepgopen circles very . ~
much resemble those of Fig(&j, even including the low- the array, and the total time-averaged endiigin the array

current falloff (though the shapes of the curves are slightlyas a function of driving currErit/IC, for Q;=/100, 20,
different. V2, 0.1, and/0.05, all forg=4x10"*, N=10, andA
We have also calculate, the energy in the cavity, as a =0.05. In each case, the resonant frequency of the c&vity

function of injected dc poweP,., when the array is biased is chosen such that the scaled voltaB¢Q,=0.9. This
on a SIRS, for several choices of array parameters. A typicathoice insures that the voltage lies within the bistable region

C. Effects of changing model parameters
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FIG. 10. This figure illustrates the effects of changing the coupling parametéile holding the other parameters fixed. Parfa)s-(d)
correspond t@=1.5x10"%, 4x107°, 4x 1073, and 4x 10" %, all with Q;=+/20, N=10, andA=0.05. Top panels: time-averaged total
voltage across the arra§y),/(NRI.), vs current /I . Arrows indicate the direction of current sweep. Bottom panels: total time-averaged
energyE in the cavity as a function df/1, all calculated forecreasingcurrent bias.

of the |-V characteristic for the underdamped junctions. Thedownward sweepshow no indication of a SIRSThis en-
arrows in the upper panel indicate the direction in which thehancement is also visible on the upward sweep, which we
current is swept. We show only the energy in the cavity forhave not shown.In panel (a), E shows a resonance at a
the decreasing current branch. current corresponding to a half-integer SIRS, but thé
Several features of these curves are apparent. First, thgharacteristics themselves show no clear evidence of such a
SIRS's are wider on the increasing than the decreasinGIRS. In casefb) and(c), we find that at these currents some
branches. For the most underdamped dasethere are no fraction of the junctions have phase-locked onto tirel/2
visible SIRS’s on decreasing the current. Second, the cavitgtep while the others are in tif¥,;), =0 state. Another note-

energy shows clear signs of a resonant interaction betwegforthy feature is that ag increases, the integer steps in Figs.
the array and the cavity in casés—(c). Finally, there are 105 ~10(d) acquire a noticeable nonzero slope, and also be-
strong indications of an integer SIRS even for the over-gme more and more rounded near their lower edge.

damped caséd), where there is no bistable region in the |, order to shed some light on theV characteristics of
uncoupled -V characteristics.We find an even clearer inte- Fig. 10d), we have looked at théV;).’s across the indi-
ger SIRS in Fig. &) if we increaseg by a factor of 10. In  vidual junctions. Depending o1, all the(V;),’s may be
this case, a SIRS also develops in cesenot shown in Fig.  different, they may all be equal, or they fall into two or three

9)]. 5 groups. For certaif's, some of th&V,)’'s are nonzero while
In Figs. 1Ga)—10(d), we plot{V). and cavity energ\e  others vanish. This last behavior presumably arises from the
versusl /1, for several values of the coupling constaptall  disorder in the critical currents.

for Q;= 120, N=10, A=0.05, and}/Q;=0.9. Once again,
the arrows in the upper panels denote direction of current
sweep. As discussed in Sec. IV, we believe that experiments A. Comparison between calculated results and experiment

have been carried out f@someWhere in the range of paneIS We now compare the present results to experirﬁé _43

(a) and(b). For(a), there is a very wide first integer SIRS on Most of the published experiments thus far have been carried
the upward sweep but none visible the downward directiongyt on two-dimensional arrays. Their main features include
In (b) and(c), there are SIRS’s in both directions, but wider the following.

on the upward sweep. In cagd), which we show for com- () When the array is driven by a current, th&/ charac-
pleteness but believe to correspond to an unattainable larggristics show self-induced resonant steps.

coupling, there are no detectable steps but several disconti- (b) These steps are reported for any number of active
nuities in thel -V characteristic which are discussed below.jynctionsN, .

The cavity energ is calculated on thdecreasingsweep. It (c) Above a critical threshold numbét. of active junc-
shows a resonant enhancement even when-¥e (on this  tions, the ac power outpui. e., the energy in the cavity

IV. DISCUSSION
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increases quadratically wittN,. When N, is increased the input dc power. The different curves correspond to a
through the threshold, the detected ac power in the cavitglistinct number of active junctions, for this particular ar-
jumps by several orders of magnitude at the threshold. ray. All the curves show a gradual, nearly parabolic onset but
(d) The array can be experimentally tuned so that differenbecome nearly linear at higher input pow#rat is, near the
numbers of rowsi.e., different numbers of active junctions high-current edge of the steprhe main difference between
are on then=1 SIRS. the case®N,>N; andN, <N, is the behavior of the energy
(e) WhenN, junctions are on a SIRS and the current drivein the cavity after the SIRS becomes unstalite increasing
is varied, theP, versusPy. curve is quadratic for lowP,,  1/1c). WhenN,<N,, we find thatE~10"° at such input
and linear for highP .. powers, while in the opposite cake-0.1. (This behavior is
Our numerical results show all five of these features for anot shown in the Fig. 8 Very similar behavior to that shown
one dimensiona{1D) array. Thus, they suggest that the be-in Fig. 8@) has recently been reported experimentally in Ref.
havior seen in the 2D experiments should be visible even fo#3, and is shown in Fig. (8). The similarity between the
a 1D system. Indeed, a recent reposuggested that all the results of Ref. 43 and the present work is apparent. A related
features(a)—(e) are indeed experimentally observable in one€xperiment has also been reported in which a 30% dc to ac

dimension. conversion rate was achievéd.
We now elaborate on some of these points. The SIRS’s - _ _ _
emerge naturally from our equations of motifgs. (47) B. Qualitative discussion of underlying physics

and (48)]. Another notable point is that we can numerically  We now briefly discuss the physics behind the present
control the number of active junctiomé, by tuning the ini-  numerical results. First, the existence of a transition from
tial conditions. This tuning is possible because the junctionsncoherence to coherence, as a functiomNgf results from
are underdamped and have an applied current regime withihe “mean-field-like” nature of the interaction between the
which they are bistable. The chosbiy determines whether junctions and the cavity. Specifically, because each junction
the array is above or below the coherence threshlld If s effectively coupled to every other junction via the cavity,
N.>N., then we usually find that, when the junction_s lock the strength of the effective coupling increases whth.
onto a SIRS, they all lock onto the same;=1 step(first  rps for anyg, a transition to coherence is to be expected
integer step The voltage drop across the array is thenfo, gyfficiently largeN,. A similar argument was made in
(V),(NRI)=N,Q/Q. Thus, the same array can producethe equilibrium case in Ref. 24.
an -V characteristic with multiple branches, each corre- Apove the coherence transition, the self-induced resonant
sponding to a different number of SIRS’s. This behavior is insteps can also be qualitatively understood by referring to the
agreement with the behavior seen in Ref. 17. underlying equation$47) and (48). When a current is ap-

If Na<N., then our calculations still produce integer plied, it sets all they;’s into motion, according to Ed47). If
SIRS’s, but these steps are not coherent with one anothehesey;’s all oscillate at the same fundamental frequency,

That is, although each junction is individually locked onto they act as a driving term which causas, and hencaR, to

the same fundamental frequency, which is close to the freéscillate at the same frequency, according to @&). This

quencyQ) of the cavity, the active junctions are out of phase« hen beh lik drive i h
with one another, and hence do not generate an energy in tAR tbgn d% avez ! ed"’?” ac current r|(\j/e n E417)-’ T. €
cavity which varies quadratically witN, . Also, even above C¢0MPIN€d dC and ac drives in E@7) produce SIRS's, just

the coherence thresholdN{>N,), if the junctions are not asa cor_nbined dc and ac _curre_nt prod_uce Shapir_o steps in a
. gonvent|onal Josephson junction. This same picture also

locked on the steps, the array is not coherent at the couplin . ) . _
constant which produces the steps—that is, the power spe __akes it clear why the cawty_ene.rgy Increases q_uadrancally
with N, above the threshold: in this regime, the “inhomoge-

trum is reminiscent of that of an array of independent junc- a ; ) ;
tions, and does not show a series of multiples of a singlé?eous term on the right-hand §|de of E@8) is propor-
fundamental frequency. Under these off-step conditions, thIalonal to N, and,_therefore, S0 iag. The whole process
array can be made coherent, but only if the coupling constarfiCUrs self-consistently because the two equations are
is increased by several orders of magnitude above thatoupled. The effective “ac driving currentlg in Eq. (47) is
needed to produce the SIRS’s. also proportional td\N, . Since the height of the first integer
Under some conditions, our calculations yield not onlyShapiro step in a conventional junction is proportional to
the first integer SIRS’s but also overtone stépigher inte-  J;(al,.) Wherel . is the amplitude of the ac driving current
ger steps and fractional steps. The widths of our fractional and « is a constant related to the frequency, one might ex-
steps are extremely small, and the steps are obtainable onpect that the width of the SIRS’s would have an oscillatory
by a delicate tuning of the current, initial conditions, anddependence oll,. There are some slight hints of this be-
current sweep rate. This sensitivity may explain why theséavior in our numerical resul{ef. Fig. 7(a)].
fractional steps have not, as yet, been detected experimen- This description also suggests why the steps occur even in
tally, though the overtone steps have been fotfnd. one-dimensional arrays. Their occurrence depends, not on
Not only the general features but even some of the detailthe dimensionality of the array, but only on the existence of
of our calculations seem to agree well with experiment. Fora suitable induced ac drive. Indeed, such steps were recently
example, the results in Fig.(® show the variation of ac reported in 1D array®’ consistent with the present model.
power(that is, the electromagnetic energy in the cavitith ~ The in-plane magnetic field used in the earlier experiments is
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apparently needed only to lower the Josephson critical curtive junctions is increased while other parameters are held
rents sufficiently that the resonant frequerizyoccurs in the  fixed; and(iii) when the array is biased on the first integer
bistable region of thé-V characteristics. SIRS, the total energy increases quadratically with number

All the numerical results in the present paper are obtainedf active junctions. Our results are in quite detailed agree-
in the “semi-classical” regime, where the various operatorsment with experiment, even though the experiments are
are regarded as-numbers. It would be of interest to study |argely carried out in two dimensions. Thus, the present
the array dynamics of the array in the quantum regimemodel strongly suggests that a 2D array is not necessary in
where the number of photons is small. A recent numericaprder to obtain the observed SIRS'’s. The results also strongly
study of this kind(but only for the equilibrium properti¢s  suggest that the experimental data considered here can be
was carried out for a superconducting quantum interferenc@nderstood in terms of a model involvirgrictly classical
device in a resonant cavitywithout resistively-shunted equations of motion, without the necessity of introducing
damping.*® new, non-classical physics.

In summary, we have derived the Heisenberg equations of
motion for a model Hamiltonian which describes a one-
dimensional array of underdamped Josephson junctions
coupled to a resonant cavity. We have numerically solved
these equations in the classical limit, valid in the limit of = We are most grateful for support from the NSF through
large numbers of photons in the cavity. In the presence of &rant Nos. DMR97-31511 and DMR01-04987. Computa-
dc current drive, we find numerically tha) the array exhib- tional support was provided by the Ohio Supercomputer
its self-induced resonant steps, similar to Shapiro steps i€enter and the Norwegian University of Science and Tech-
conventional arrayg(i) there is a transition between an un- nology (NTNU). We thank C. J. Lobb, P. Barbara, and B.
synchronized and a synchronized state as the number of a¥asilic for useful conversations.
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