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Dynamics of a Josephson array in a resonant cavity

E. Almaas* and D. Stroud†

Department of Physics, The Ohio State University, Columbus, Ohio 43210
~Received 20 April 2001; revised manuscript received 20 July 2001; published 19 March 2002!

We derive dynamical equations for a Josephson array coupled to a resonant cavity by applying the Heisen-
berg equations of motion to a model Hamiltonian described by us earlier@Phys. Rev. B63, 144522~2001!; 64,
179902~E! ~2001!#. By means of a canonical transformation, we also show that, in the absence of an applied
current and dissipation, our model reduces to one described by Shnirmanet al @Phys. Rev. Lett.79, 2371
~1997!# for coupled qubits, and that it corresponds to a capacitive coupling between the array and the cavity
mode. From extensive numerical solutions of the model in one dimension, we find that the array locks into a
coherent, periodic state above a critical number of active junctions; that the current-voltage characteristics of
the array have self-induced resonant steps~SIRS’s!; that whenNa active junctions are synchronized on a SIRS,
the energy emitted into the resonant cavity is quadratic inNa ; and that when a fixed number of junctions is
biased on a SIRS, the energy is linear in the input power. All these results are in agreement with recent
experiments. By choosing the initial conditions carefully, we can drive the array into any of a variety of
different integer SIRS’s. We tentatively identify terms in the equations of motion which give rise to both the
SIRS’s and the coherence threshold. We also find higher-order integer SIRS’s and fractional SIRS’s in some
simulations. We conclude that a resonant cavity can produce threshold behavior and SIRS’s even in a one-
dimensional array with appropriate experimental parameters, and that the experimental data, including the
coherent emission, can be understood from classical equations of motion.

DOI: 10.1103/PhysRevB.65.134502 PACS number~s!: 74.40.1k, 02.40.Xx, 05.45.Xt
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I. INTRODUCTION

A long-standing goal of experimental1–4 and theoret-
ical 5–12 research on Josephson junction arrays has bee
develop sources of coherent microwave radiation. The b
idea underlying this work is that a Josephson junction i
simple way of converting a dc current into an ac voltag
Thus an array ofN Josephson junctions oscillating in pha
should produce a signal withN times the voltage amplitude
and henceN2 times the emitted ac power, of a single jun
tion. Arrays of overdamped junctions have seemed m
promising for coherent emission, since junctions of this ty
have, at any given applied current, only a single volta
state, and thus have none of the multistability and cha
behavior which could inhibit coherent emission. However
practice, it has proved very difficult to achieve an efficient
to dc conversion in such systems; thus far the highest c
version efficiency is only about 1%.13–15The low efficiency
may result from the high degree of neutral stability whi
has been shown to exist in such overdamped arrays in
absence of an applied magnetic field.16

Recently, a remarkably high conversion efficiency h
been achieved in anunderdampedJosephson array, by cou
pling the junctions in that array electromagnetically to
mode in a resonant microwave cavity.17 The high emission is
a manifestation of the so-called self-induced resonant s
~SIRS’s! that appear on the current-voltage (I -V) character-
istics of these arrays. It is thought such arrays emit stron
because every junction is coupled to the same electrom
netic mode, and hence, effectively to every other juncti
This same coupling is presumed to lead to the obser
threshold effect, in which the strong emission occurs o
above a certain array length.

A number of models have been proposed which prod
0163-1829/2002/65~13!/134502~14!/$20.00 65 1345
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some aspects of this behavior. In the original model, wh
inspired the measurements, an analogy was drawn betw
junctions in a voltage-biased series Josephson array a
collection of two-level atoms where population inversion a
laser emission could be achieved.18 Several authors intro-
duced various kinds of impedance loads across group
junctions or a one-dimensional array, in order to achiev
global coupling and, hence, to investigate coherence am
the junctions in the array.12,19–21None of these models hav
yet produced both self-induced resonant steps and the thr
old junction number seen in the experiments. The coupl
of propagating modes in Josephson ladders and other s
tures to electromagnetic radiation has also been stu
theoretically.22,23 A simple Hamiltonian to treat the equilib
rium properties of a one-dimensional, voltage-driven array
the weak-coupling regime was recently proposed and stu
within a mean-field approximation which should be very a
curate in the limit of large numbers of junctions.24 Within
this approach, it was found that the array developed co
ence only above a threshold number of junctions, in agr
ment with experiment. In a recent paper,25 the present au-
thors proposed a similar model to treat arraydynamicsfor
any strength of coupling; they also briefly described a f
numerical results obtained from the model, including both
threshold for coherence and self-induced resonant steps

In the present paper, we give a more complete deriva
of the model equations of motion of Ref. 25 for a on
dimensional array of underdamped Josephson junct
coupled to a single-mode electromagnetic cavity. Start
from a suitable Hamiltonian, we obtain the Heisenberg eq
tions of motions for the phase differences and the pho
creation and annihilation operators. We account for dissi
tion in the junctions by the standard procedure of coupl
each junction to a reservoir of phonon variables with a d
©2002 The American Physical Society02-1
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E. ALMAAS AND D. STROUD PHYSICAL REVIEW B65 134502
sity of states constructed so as to produce Ohmic damp
In the limit of large numbers of photons, the equations can
treated classically and solved numerically. We also corr
the treatment of Ref. 25 of the junction damping and
coupling of the array to an external current. Finally, we ca
out a canonical transformation of our Hamiltonian to sh
that the interaction between the array and the cavity m
has the form of acapacitivecoupling.

We also present much more extensive numerical res
than those of Ref. 25, based on solutions to the model e
tions. Our numerical results show all the principal features
the measurements, including SIRS’s, a coherence thresh
and a quadratic dependence of the photon energy in the
ity upon number of active junctions. Plots of theI -V charac-
teristics and other calculated features closely resemble
corresponding experimental plots. This agreement is e
cially noticeable since the calculation is one dimension
while most experiments have been conducted on t
dimensional arrays. In addition, we find that by tuning t
initial conditions, we can cause the array to lock into a va
ety of different integer SIRS’s, again in agreement with e
periment. We conclude that these equations do indeed
scribe the experiment, and that a one-dimensional arra
sufficient to achieve this type of coherent behavior.

The remainder of this paper is organized as follows.
Sec. II, we derive the Heisenberg equations of motion for
phase and photon variables, starting from a model Ham
tonian. We also apply a canonical transformation wh
shows that the Hamiltonian involves a kind of distribut
capacitive coupling between the Josephson array and
cavity mode. In Sec. III, we give a detailed description of o
numerical results. Section IV presents a comparison betw
our results and experiment, gives a qualitative discussio
the numerical results, and makes some concluding rem
about the model.

II. DERIVATION OF THE EQUATIONS OF MOTION

A. Hamiltonian

We consider a one-dimensional array ofN Josephson
junctions placed in a resonant cavity, which we assume s
ports only a single photon mode of frequencyV ~the geom-
etry is sketched in Fig. 1!. The array is to be driven by a
applied currentI. We write the Hamiltonian in the form

H5Hphoton1HJ1HC1Hcurr1Hdiss. ~1!

Here Hphoton is the energy of the cavity mode, which w
express as

Hphoton5\VS a†a1
1

2D , ~2!

with a† anda as the usual photon creation and annihilati
operators.HJ is the Josephson Hamiltonian, and is assum
to take the form

HJ52(
j 51

N

EJ j cosg j , ~3!
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whereEJ j is the Josephson energy of thej th junction, andg j
is the gauge-invariant phase difference across thej th junc-
tion ~defined more precisely below!. EJ j is related toI c j , the
critical current of thej th junction, byEJ j5\I c j /q, where
q52ueu is the Cooper pair charge.HC is the capacitive en-
ergy of the N junctions, which we approximate as

HC5(
j 51

N

EC jnj
2 . ~4!

HereEC j5q2/(2Cj ) is the capacitive energy of thej th junc-
tion, Cj is the capacitance of that junction, andnj is the
difference between the number of Cooper pairs on thej th
and (j 11)th superconducting island.

The gauge-invariant phase differenceg j is the term which
couples the Josephson junctions to the cavity. It may be w
ten as

g j5f j2@~2p!/F0#E
j
A•ds[f j2Aj , ~5!

wheref j is the phase difference across thej th junction in a
particular gauge,A is the vector potential in that same gaug
F05hc/q is the flux quantum, and the line integral is take
across the junction. We assume thatA arises from the elec-
tromagnetic field of the normal mode of the cavity. In Gau
ian units, this vector potential takes the form26,27

A~x,t !5A~hc2!/~V!@a~ t !1a†~ t !#E~x!, ~6!

whereE(x) is a vector proportional to the local electric fie
of the mode, normalized such that*Vd3xuE(x)u251, where
V is the cavity volume. Given this representation forA, the
phase factorAj can be written

Aj5Agj~a1a†!, ~7!

wheregj takes the form

gj5
\c2

V

~2p!3

F0
2 F E

j
E~x!•dsG2

. ~8!

FIG. 1. Sketch of the array geometry considered in our mod
There areN junctions ~crosses!, labeled by their gauge-invarian
phase differencesg j , andN11 superconducting islands. A curren
I is injected into one end of the array and extracted from the ot
The array is placed in an electromagnetic cavity which suppor
single resonant photon mode of frequencyV.
2-2
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Clearly, gj is an effective coupling constant describing t
interaction between thej th junction and the cavity.28

The terms discussed so far need to be supplemente
the effects of a driving current and of damping within t
junctions. A driving current is easily included within th
Hamiltonian formalism via a ‘‘washboard potential’’Hcurr ,
of the form

Hcurr52
\I

q (
i 51

N

g j , ~9!

with I as the driving current.
The inclusion of dissipation can be done in a stand

way30–32 by coupling each gauge-invariant phase differen
g j to a separate collection of harmonic oscillators with
suitable spectral density. Thus we write the dissipative te
in the Hamiltonian as

Hdiss5(
j 51

N

Hdiss, j , ~10!

where

Hdiss, j5(
a

F f a, jg jua, j1
pa, j

2

2ma, j

1
1

2
ma, jva, j

2 ua, j
2 1

~ f a, j !
2

2ma, jva, j
2 ~g j !

2G . ~11!

The variablesua, j andpa, j , describing theath oscillator in
the j th junction, are canonically conjugate, andma, j and
va, j are the mass and frequency of that oscillator. The
term in Eq.~11! must be added in order to prevent the orig
nal potential from being shifted by the coupling to thej th
phase degree of freedom.31 The spectral density of the ha
monic oscillators in thej th junction, denotedJj (v), is de-
fined by

Jj~v![S p

2 D(
a

~ f a, j !
2

mava
d~v2va!. ~12!

If Jj (v) is linear inuvu, it can be shown that the dissipatio
in the junction is Ohmic.30–32We write such a linear spectra
density as

Jj~v!5
\

2p
a j uvuQ~vc2v!, ~13!

wherevc is a high-frequency cutoff~at which the assump
tion of Ohmic dissipation begins to break down!, Q(vc
2v) is the usual step function, anda j is a dimensionless
constant, which we write asa j5R0 /Rj , where R0
5h/(4e2) andRj is a constant with dimensions of resistan
~actually, the effective shunt resistance of the junction,
discussed below!.

B. Equations of motion

It is now convenient to introduce the operatorsaR andaI
by
13450
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a5aR1 iaI , ~14!

a†5aR2 iaI . ~15!

The free photon part of the Hamiltonian can be expresse
terms ofaR andaI as

Hphoton5\V~aR
21aI

2!, ~16!

where we have used the additional commutation relati
@aR ,aI #5 i /2, which follows from the usual relation@a,a†#
51. The gauge-invariant phase differenceg j is related tof j
by

g j5f j22AgjaR . ~17!

The time dependence of the various operators appea
in Hamiltonian ~1! is now obtained from the Heisenber
equations of motion. For a general operatorO, these take the
form

Ȯ5
1

i\
@O,H#. ~18!

These equations of motion can be evaluated for the var
operators enteringH, using the commutation relation
@A,F(B)#5@A,B#F8(B), whereF is any function of an op-
eratorB, andF8(B) is the derivative of that function. One
also needs the commutation relations for the various op
tors in Hamiltonian~1!. Besides the relations already give
these are as follows:

@nj ,gk#52 id jk , ~19!

@pa, j ,ub,k#52 i\da,bd j ,k . ~20!

Note thatgk , unlike f j , no longer commutes withaI ; in-
stead, it satisfies

@g j ,aR#50, ~21!

@g j ,aI #52 iAgj . ~22!

Using all these relations, we find, after a little algebra, t
following equations of motion for the operatorsg j , nj , aR ,
andaI :

ġ j52
EC j

\
nj22VAgjaI , ~23!

ṅ j52
EJ j

\
sin~g j !1

I

q
2

1

\ (
a

S f a, jua, j1
~ f a, j !

2

ma, jva, j
2

g j D ,

~24!

ȧR5VaI , ~25!

ȧI52VaR1(
j

Agj

EJ j

\
sin~g j !2

I

q (
j

Agj

1(
j

Agj

\ (
a

S f a, jua, j1
~ f a, j !

2

ma, jva, j
2

g j D . ~26!
2-3
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E. ALMAAS AND D. STROUD PHYSICAL REVIEW B65 134502
These are equations of motion for theoperators aR , aI , nj ,
andf j ~or g j ). Note that they do not depend on the partic
lar choice of gauge, but only on the form of the Hamiltoni
and the commutation relations for the various operators.
will study these general equations within the limit of lar
number of photons in the cavity and large number of char
in the junctions, and in this ‘‘classical’’ limit, we will regard
the operators asc numbers.29

We also have the equations of motion for the harmo
oscillator variables. Since we have no explicit interest
these variables for themselves, we instead eliminate the
order to incorporate the dissipative term into the equation
motion. Such a replacement is possible provided that
spectral density of each junction is linear in frequency,
noted above. In this case,30–32 the oscillator variables can b
integrated out. The effect of carrying out this procedure
that one should make the replacement

(
a

S f a, jua, j1
~ f a, j !

2

ma, jva, j
2

g j D→ \

2p

R0

Rj
ġ j , ~27!

wherever this sum appears in the equations of motion.
Making replacement~27! in Eqs.~24! and~26!, we obtain

the equations of motion fornj andaI with damping:

ṅ j52
EJ j

\
sin~g j !1

I

q
2

v̄p

2vC jQJ j
ġ j , ~28!

ȧI52VaR1(
j

Agj

EJ j

\
sin~g j !2

I

q (
j

Agj

1(
j

Agj

v̄p

2vC jQJ j
ġ j . ~29!

Here we have introduced the parametersvC j5EC j /\, which
is a frequency associated with the capacitive energy of
j th junction;v̄p5(1/N)( j 51

N vp j , the average of the Joseph
son plasma frequenciesvp j5A2EC jEJ j/\; andQJ j , the di-
mensionless junction quality factor~or damping parameter!
for the j th junction, which is related to the capacitanceCj
and the shunt resistanceRj by

QJ j5v̄pRjCj . ~30!

Equations~23!, ~25!, ~28!, and ~29! can be combined
with a little algebra, into two coupled second-order differe
tial equations

1

2vC j
g̈ j1

v̄p

2vC jQJ j
ġ j1vJ j sing j5

I

q
2

Agj

vC j
äR ~31!

and

S 11V(
j

gj

vC j
D äR1V2aR52

V

2 (
j

Agj

vC j
g̈ j , ~32!

where we have definedvJ j5EJ j /\. Note that in the absenc
of coupling between the junctions and the cavity,g j5f j ,
Eq. ~31! reduces to the usual equation of motion for a res
13450
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tively and capacitively shunted junction33 driven by a current
I, and Eq.~32! reduces to that of a simple harmonic oscillat
which represents the cavity mode. Note that we have
included any damping due to the cavity walls. While su
damping is undoubtedly present, we find that good agr
ment with experiment can be obtained without including

C. Canonical transformation

The physics behind the coupling between the Joseph
junctions and the resonant cavity, and hence the physic
Eqs.~23!–~26!, can be made clearer by a canonical transf
mation. For simplicity, we describe this transformation i
cluding only the termsHphot , HJ , andHC from Hamiltonian
~1!, and omittingHcurr andHdiss. The same transformation
was previously used for asingle junction coupled to a reso
nant cavity by Buisson and Hekking,34 and, for two voltage-
driven junctions coupled to a resonant cavity, by Shnirm
et al.35

We begin by writing

H8[Hphot1HJ1HC5
1

2
\V~pr

21qr
2!1(

j 51

N

@EC jnj
2

2EJ j cos~f j2A2gjqr !#, ~33!

where we have definedpr5A2aI andqr5A2aR . With this
choice,pr and qr satisfy the commutation relation@pr ,qr #
52 i . Next we make the canonical transformations

nj85nj , ~34!

f j85f j2A2gjqr , ~35!

pr85pr1(
j 51

N

A2gjnj , ~36!

qr85qr . ~37!

The only nonvanishing commutators of the primed variab
are easily shown to be@nj8 ,f j8#5@pr8 ,qr8#52 i . Reexpress-
ing Hamiltonian~33! in terms of the primed variables, w
obtain

H85
1

2
\VS pr82(

j
A2gjnj8D 2

1
1

2
\V~qr8!2

1(
j 51

N

@EC j~nj8!22EJ j cosf j8#. ~38!

Thus H8 is the sum of four terms: the sum (\V/2)@(pr8)
2

1(qr8)
2# describes the cavity resonator; the last sum

scribes theN independent junctions; and the remaining ter
represent the interaction between the junctions and the r
nator, and an indirect interaction between the junction va
ablesnj8 mediated by the cavity.

To interpret this interaction, we note that the junctio
cavity system has two places in which charge can be sto
the variablesnj8 of the junctions and the variablespr8 of the
2-4
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DYNAMICS OF A JOSEPHSON ARRAY IN A RESONANT . . . PHYSICAL REVIEW B 65 134502
cavity. The cavity behaves much like anLC circuit, with
capacitive energy (\V/2)(pr8)

2 and inductive energy
(\V/2)(qr8)

2. The dominant interaction is acapacitivecou-
pling between the charge variablesnj8 of the junction and the
charge variablepr8 of the cavity.36

In further support of this interpretation, we now show th
H8, in the form of Eq.~38!, is equivalent to that given by
Shnirmanet al.35 in the case of zero applied voltage. Figu
1 of Ref. 35 depicts each junction contained between
plates of a capacitor with capacitanceC. The junction itself
has a capacitanceCJ . The system of junction and capacito
is then shunted by a parallel inductance,L, which acts to
couple all the junctions together.37 The equivalence is estab
lished by noting the correspondence between the varia
used in the present paper and the variablesf, q, nj , andu j
of Ref. 35. The correspondence is as follows~assuming that
the coupling constantsgj , EC j , and EJ j are indepen-
dent of j ):

qr8↔@L/~2Ct!#
21/4f,

pr8↔@L/~2Ct!#
1/4q,

nj8↔nj ,

f j8↔u j ,

whereCt5CCJ /(C12CJ). In order to complete the corre
spondence, we also give the correspondence between th
maining parameters and the quantitiesL, C, Ct , andCJ :

A2g5S L

2Ct
D 1/4 Ct

CJ
,

V5
1

A2LCt

,

EC5
1

C12CJ
.

If we make the replacements and identifications given abo
then our Hamiltonian, for the case of two junctions, is ide
tical to that considered in Ref. 35 in the absence of an
plied voltage. The main differences between the two mod
are the boundary conditions: constant current bias in
model, and fixed voltage bias in that of Ref. 35.

D. Dimensionless form

In order to write these equations of motion in a simp
form, we now introduce the dimensionless timet5v̄pt.
Also, although we allow disorder in the parameters of
different Josephson junctions, we assume that the coup
constants between the junctions and the cavity are all
same, i.e., thatgj5g for all j. In addition, for simplicity, we
assume that the productsRjCj and I c j /Cj , and hencevp j ,
are independent ofj. ThenQJ j is alsoj independent, and we
may introduce the dimensionless coupling constant
13450
t
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g̃5g
EJ

\v̄p

, ~39!

which is also independent ofj. Similarly, we introduce a
scaled number variableñ j by

ñ j5
2EC j

\v̄p

nj , ~40!

a dimensionless frequencyṼ by Ṽ5V/v̄p , and scaled pho-
ton variablesãR and ãI by

ãR5AgaR , ~41!

ãI5AgaI . ~42!

Finally, we assume that the critical currentsI c j are random
and uniformly distributed betweenI c(12D) and I c(11D),
where D is a measure of the degree of disorder. Aft
some algebra, we eventually obtain the following equatio
of motion:

ġ j5ñ j22ṼãI , ~43!

n8 j5
I

I c~11D j !
2

ñ j

QJ
2sin~g j !12

Ṽ

QJ
ãI , ~44!

ȧ̃R5ṼãI , ~45!

ȧ̃I52ṼãR22Ṽg̃
ãI

QJ
(

j
~11D j !1g̃(

j
~11D j !sin~g j !

2Ng̃
I

I c
1

g̃

QJ
(

j
~11D j !ñ j . ~46!

In these equations, the dot refers to differentiation with
spect tot, and thej th critical current isI c(11D j ).

These equations can be combined into two more comp
equations, with the results

g̈ j1
1

QJ
ġ j1sin~g j !5

I

I c~11D j !
22ä̃R , ~47!

ä̃R1~V8!2ãR52g̃
V8

Ṽ
(
j 51

N

~11D j !g̈ j , ~48!

where we have defined (V8)25Ṽ2/@112g̃Ṽ( j (11D j )#.
Equations~47! and ~48! are the analogs of Eqs.~31! and
~32!, expressed in terms of dimensionless reduced variab

III. NUMERICAL RESULTS

We have solved Eqs.~47! and ~48! for the variablesñ j ,
g j , ãR, and ãI numerically using the same approach as
Ref. 25, namely, by implementing the rapid and accur
adaptive Bulrisch-Stoer method.38 We initialize the simula-
tions with all the phases randomized between@0,2p#, and
2-5
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E. ALMAAS AND D. STROUD PHYSICAL REVIEW B65 134502
usually ãR5ãI5ñ j50. We then let the system equilibra
for a time intervalDt5104, after which we evaluate aver
ages over a time intervalDt523103, using 216 evenly
spaced sampling points.

A. Typical I -V characteristics, power spectrum, and coherence
transition

In Fig. 2, we show a representative current-voltage (I -V)
characteristic calculated for an array ofN540 junctions with
D50.05 and g̃50.001. The time-averaged voltagêV&t
~left-hand scale! is obtained from

^V&t5(
j 51

N

^Vj&t , ~49!

where^¯&t denotes a time average andVj is obtained from
the Josephson relation

Vj

RIc
5

\

qRIc

dg j

dt
5

1

QJ
ġ j ~50!

A striking feature of this plot is the SIRS’s, at which^V&t
remains approximately constant over a range of applied
rent. For this particular choice of parameters and initial c

FIG. 2. Left-hand scale and solid line: current-voltage (I -V)
characteristics of a one-dimensional array ofN540 junctions, with

disorder parameterD50.05 and coupling constantg̃50.001. The

resonant frequency of the cavity isṼ52.2, and the damping pa
rameter of the junctions isQJ5A20. Right-hand scale and star

scaled total energyẼ5gE/(\V) carried by the resonant mode o
the cavity, plotted as a function of decreasing currentI /I c . The
vertical dashed lines are guides to the eye. The upper dashed
zontal line indicate the expected position of the integer self-indu

resonant steps~SIRS’s! for the particular resonant frequencyṼ of
the cavity ~all junctions in then51 SIRS!. For the lower dashed
horizontal line, 23 junctions are on then51/2 SIRS, and 17 junc-
tions are in thê Vj&t50 state. Branches corresponding to incre
ing and decreasing current are shown by arrows. Double-hea
arrows in this figure and subsequent figures denote that the c
can be obtained by sweeping the current in either direction.
13450
r-
-

ditions, we see these steps at^V&t /(NRIc)5nṼ/QJ . These
steps corresponds to voltages at which the condition

2e^Vj& t5n\V ~51!

is satisfied for the individual junctions, withn51 ~upper
horizontal dashed line! andn51/2 ~lower horizontal dashed
line!. Thus the lower step is at 23/80 the voltage of the up
step. For the latter case, the driving current is smaller t
the retrapping currents of 17 of the junctions; thus only
out of the 40 junctions are oscillating on this step.~The re-
trapping current is the minimum current for which an und
damped junction is bistable.! The steps occur at exactly th
voltages where the first integer and half-integer steps wo
appear in these junctions, if the junctions were driven by
ac current of frequencyṼ. Thus the radiated energy in th
cavity seems to behave like an ac drive which acts back
induce these steps in the junctions of the array. Similar st
were seen experimentally in atwo-dimensionalarray of un-
derdamped Josephson junctions coupled to a reso
cavity17, and in more recent experiments in one-dimensio
arrays.39

Figure 2 also shows the time-averaged scaled total en
Ẽ contained in the cavity,~right-hand scale of the figure!. Ẽ
is defined as

Ẽ5^ãR
21ãI

2&t5g^aR
21aI

2&t5
g

\V
E, ~52!

whereE5^Hphoton&t is the cavity energy; it is plotted as
function of I /I c for the same array. As is evident,Ẽ increases

ori-
d

-
ed
ve

FIG. 3. Power spectrum,P(v) @Eq. ~53!#, of the ac voltage

across the array, plotted vs the frequencyṼ at two driving currents
~a! and~b!, I /I c50.58, corresponding to the first integer SIRS, a
~c! and~d! I /I c50.65, slightly off a SIRS. Other parameters are t
same as in Fig. 2. Panels~b! and ~d! are the same as~a! and ~c!,

except that the effective coupling to the resonant cavity,g̃50. In
each panel, the left vertical dashed line shows the resonant
quency of the cavity, and the right vertical dashed line shows
average resonant frequency of the junctions for the case of no
pling to the cavity.
2-6
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DYNAMICS OF A JOSEPHSON ARRAY IN A RESONANT . . . PHYSICAL REVIEW B 65 134502
dramatically when the array is on a SIRS, and is very sm
otherwise. This sharp increase signals the onset of coher
within the array, and can be qualitatively understood fro
the equations of motion. Specifically, when the array sits
one of the integer SIRS, all the junctions are oscillating
phase. Hence the term drivingãR @the right-hand side of Eq
~48!#, and thusãR itself, are both proportional to the numbe
Na of active junctions.

Before proceeding further, we briefly review the conce
of active junction numberNa , as discussed in Refs. 12 an
25. This concept has meaning only for underdamped ju
tions. Such a junction is bistable and hysteretic in cert
ranges of current—that is, it can have either zero or a fin
time-averaged voltage across it, depending on the initial c
ditions. In the present case,Na denotes the number of junc
tions ~out of N total! which have a finite time-averaged vol
age drop. It is possible to tuneNa by suitably choosing the
initial conditions,g i and ġ i , in simulations.12,25

Figure 3 shows the calculated voltage power spectrum
the ac component of the total voltage across the array,

P~v!52 lim
T→`

U1TE0

T

V~t!eivtdtU2

, ~53!

for two values of the driving current:I /I c50.58 @Figs. 3~a!
and 3~b!# and I /I c50.65 @Fig. 3~c! and 3~d!#; all other pa-
rameters are the same as in Fig. 2. In Fig. 3~a!, all the junc-
tions are on the first SIRS, while in Fig. 3~c! the array is
tuned off this step. In Fig. 3~b! and 3~d!, we show the same
case as in Figs. 3~a! and 3~c! respectively, except that th
coupling constantg̃ is artificially set equal to zero. Note tha
in Fig. 3~a!, the power spectrum has peaks at the sca
cavity frequencyṼ and its harmonics. This is evidence th
the junctions are all oscillating at frequencyṼ. In Fig. 3~b!,
the junctions are still coupled by the indirect interaction v
the cavity, but the power spectrum shows that the array is
synchronized in this case; instead, the individual junctio
oscillate approximately at their individual resonant freque
cies and their harmonics and subharmonics. Hence the po
spectrum has a spread of frequencies, all of which di
from that of the cavity. In Figs. 3~b! and 3~d!, the junctions
are, of course, independent of one another, and the po
spectrum is that of a disordered one-dimensional Josep
array with no coupling between the junctions.

We have also calculated the response of a disordered a
(D50.05) of fixed length (N540 junctions!, and a driving
currentI /I c50.58, when the number of active junctions,Na
is varied. This current not only lies well within the bistab
region, but also leads to a voltage on the first integer SI
In Fig. 4~a!, we plot the time-averaged scaled energy of
cavity, Ẽ(Na) @Eq. ~52!#, as a function ofNa . For Na,17,
the active junctions are unsynchronized, andẼ is corre-
spondingly small and only weakly dependent onNa . There
is a sudden jump inẼ at a critical number of active junction
Nc517. Above this valueẼ increases as a quadratic functio
of Na , and we have fittedẼ(Na) to the formẼ5c01c1Na

1c2Na
2 . The constants which give the best fit arec05
13450
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20.00163,c150.00125, andc256.86831025. This curve
is shown as a full line in Fig. 4~a!; the fit is clearly excellent.
As a contrast, we also show the best linear fit to the sa
data set~dashed line!; the fit is plainly less good. The mag
nitude of the jump inẼ at Na5Nc is nearly a factor of;103,
as shown in the inset to Fig. 4~a!.

To measure the degree of synchronization among the
sephson junctions, we have also calculated theKuramoto
order parameter40 ^r &t for the same parameters, as a fun
tion of number of active junctions,Na . ^r &t is defined by

^r &t5K U 1

Na
(
j 51

Na

exp~ ig j !U L
t

. ~54!

The results are shown in Fig. 4~b!. Note that^r &t51 repre-
sents perfect synchronization among the active junctio
while ^r &t50 would correspond to no correlations betwe
the different phase differences,f i . Just as forẼ(Na), there
is an abrupt increase in̂r &t at Na5Nc , indicative of ady-
namical transition from an unsynchronized to a synchro
nized state~with all active junctions locked to the same fre
quency and having a common phase!, as Na is increased
keeping all other parameters fixed. As with similar tran
tions in other models,41 this transition is not inhibited by the
finite disorder in theI c’s. Instead,̂ r &t approaches unity, rep
resenting perfect synchronization.^r &t remains finite even
for Na,Nc , because even in this regime there is still som
residual correlation among the phases in different ac
junctions. This transition is the dynamic analog of that an
lyzed by an equilibrium mean-field theory in Ref. 24.

Finally, in Fig. 4~c!, we show an experimental plot of th
detected ac power as a function of the input dc power,
measured by Barbaraet al.17 for a 3336 array. These quan
tities are, of course, not equivalent to the calculated res
which are plotted in Fig. 4~a!. The input dc power is equal to
the power dissipated in the active junctions; so it is prop
tional to Na . The detected ac power is that measured b
pickup junction in the cavity, and thus should be proportion
to Ẽ(Na) in our notation. Despite the differences, our calc
lated plot ~for a one-dimensional array! appears strikingly
similar to their measured plot, especially as regards the
continuity at the threshold and the quadratic dependence
Na for Na above the threshold.

In Fig. 5, we show the synchronization transition for
array of N580 junctions, keeping the other parameters
same as in Fig. 4~a!. In this case, the critical threshold i
Nc520, somewhat larger than for theN540 junction array.
The inset shows that the cavity energy still has a disconti
ity by a factor of ;103. However, the quadratic function
which best fitsẼ(Na) for Na>Nc is now described by the
different fitting parameters:c0520.01576, c150.001149,
andc251.44131025. Thus the total length of the array a
ters the details but not the qualitative features ofẼ(Na).

These calculations were carried out for an array tuned
the first SIRS. If, instead, we carry out the same calculat
when the array is tuned to the bistable region butnot tuned to
a SIRS, we find thatẼ doesnot increase quadratically with
2-7
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FIG. 4. ~a! Asterisks: scaled photon energyẼ5gE/(\V) in the
resonant cavity when the array is current driven on a SIRS, plo
vs the number of active junctions,Na . The array parameters ar

N540, Ṽ52.2, QJ5A20, D50.05, g̃50.001, andI /I c50.58 @cf.

Fig. 3~a!#. The full curve shows the best fit ofẼ to the function
c2Na

21c1Na1c0 for Na.17, the threshold for synchronization
The fitting parameters arec0520.00163, c150.00125, andc2

56.868•1025. We contrast this fit to the best linear fit~dashed line!.

Inset: Ẽ(Na) nearNc517, showing a jump near the synchroniz
tion threshold.~b! Open circles: Kuramoto order parameter^r &t

@Eq. ~54!# for the same array. Dots connecting circles are guide

the eye. The sharp increase in^r &t and the quadratic increase inẼ,
both begin atNc517. ~c! Measured ac power as a function of th
input dc power, as obtained in Ref. 17 for a 3336 array. The dc
power is proportional to the number of active rows in their arr

while the ac power is proportional to the energyẼ in the cavity.
13450
Na . Instead,Ẽ(Na) showsno threshold behavior, and, in
deed, varies little withNa . A plot of E(Na) in this case is
shown in Fig. 6. The parameters are the same as for
calculation in Fig. 4~a!, except that the driving current in thi
case isI /I c50.65, which is not on a SIRS~cf. Figs. 3~c! and
3~d!!.

B. Effects of varying the number of active junctions

In Fig. 7~a!, we show a series ofI -V characteristics for a
ten-junction array (N510), calculated by varying the num
ber Na of active junctions from 1 to 10. Each solid vertic
line segment corresponds to theI -V characteristic for adif-
ferent Na , and representsNa junctions sitting on the first
integer SIRS. The width of each segment represent the
rent height for that step, as found in our calculation. T
dashed vertical lines show the expected voltages for the

d

o

,

FIG. 5. Same as Fig. 4~a!, except thatN580. In this case, the
synchronization threshold isNc520, and the quadratic fit to the
energy above synchronization has different fitting parametersc0

520.01576,c150.001149, andc251.44131025.

FIG. 6. Total scaled cavity energyẼ as a function of the numbe
Na of active junctions, for the same array parameters as in Fig.~a!
except that the current is tunedoff any self-induced resonant step

I /I c50.65@cf. Fig. 3~c!#. In this case,Ẽ does not increase quadrat
cally with Na above a critical threshold; instead, it shows no thre
old behavior, is only weakly dependent onNa , and is much smaller
than in Fig. 4~a!.
2-8
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DYNAMICS OF A JOSEPHSON ARRAY IN A RESONANT . . . PHYSICAL REVIEW B 65 134502
FIG. 7. ~a! Current I /I c versus time-averaged voltag
^V&t /(NRIc) for an array containingN510 junctions, and with

damping parameterQJ5A20, disorderD50.05, cavity couplingg̃

50.003, and a cavity resonance frequency ofṼ51.8. By properly
choosing the initial conditions, one can select the numberNa of
active junctions to be any integer between 0 and 10. Each ver
line segment corresponds to a portion of theI -V characteristic for a
particular choice ofNa , as obtained with increasing current~al-
though the same result would be obtained with decreasing curr!.
The Ohmic~straight diagonal line! segment is found forNa510
with decreasingcurrent. The dashed vertical lines indicate the vo
ages of the expected integer SIRS’s. The dashed, nearly horiz
line corresponds to increasing the voltage on theNa510 I -V char-
acteristic; the dots and very short vertical line segments within
dashed line corresponds to currents at which several of the a
junctions jump to then52 SIRS. The short, nearly horizonta
dashed line in the lower left-hand corner occurs on the decrea
current branch with ten active junctions. The very short vertical l
segments within this dashed region correspond to several a
junctions synchronizing on then51/2 SIRS, while the remainde
are in the state of̂Vj&t50. ~b!. MeasuredI -V characteristics for a
10310 array ~Ref. 17!. The open circles represent self-induc
resonant steps corresponding to different numbers of active ro
Full squares are believed to be examples of resistance s
~Ref. 42!.
13450
teger SIRS’s, and are good matches for the calculated v
ages for the variousNa’s. The long straight diagonal line
segment, which is common to all the differentNa’s, repre-
sents the Ohmic part of theI -V characteristic with all junc-
tions active. The nearly horizontal dashed line in the up
right hand corner of Fig. 7~a! shows theI -V characteristic for
increasing voltage withNa510. The very short vertical seg
ments within this dashed line correspond to several juncti
which have been excited tohigher steps, specifically then
52 ~second integer step! while the remaining junctions are
on then51 step. The horizontal dashed line on the low
left represents the low-voltage end of theNa510 I -V char-

al

t

tal

is
ve

ng
e
ve

s.
ps

FIG. 8. ~a! Calculated total energyẼ within the cavity, plotted
vs dc powerPdc , for Na active junctions synchronized on then
51 SIRS, for an array of ten junctions (N510), using the same
parameters as in Fig. 7. Each curve segment corresponds to a
ferent value ofNa between 1~leftmost curve! and 10~rightmost
curve!. Pdc5(IV)/(NRIc

2) represents the power per junction fe
into the array by the dc current. For eachNa , the curve segmen
ends when the array leaves the SIRS. Note that the active junc
in the array synchronize on the SIRS whenNa>4, i.e.,Nc54 for
this array. Inset: an enlargement of the calculated curve forNa56
~filled circles!. ~b! Experimental results for a 4336 array as re-
ported in Ref. 43. From left to right, these results correspond
Na516, 21, and 23 active rows~all in the coherently radiating stat
with Na.Nc).
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FIG. 9. This figure illustrates the effects of changing the damping parameterQJ while holding other array parameters fixed. Note that~d!
and ~e! correspond tooverdampedjunctions. Panels~a!–~e! show results forQJ

25100, 20, 2, 0.1, and 0.05 for an array of ten junctio

(N510), with a coupling strengthg̃5431024 and a disorder parameterD50.05. In all cases, the cavity resonant frequency is chosen s

that the expected voltage for the SIRS isṼ/QJ50.9. The top panels show the time-averaged voltage^V&t /(NRIc) across the array as
function of driving currentI /I c . Note the absence of clear hysteresis in~d! and~e!, which correspond to overdamped junctions. The arro

indicate whether the voltage trace is calculated for increasing or decreasing current. Lower panels show the time-averaged totaẼ
5^aR

21aI
2&t in the cavity, calculated as a function ofdecreasingcurrent only.
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acteristic~on decreasing current!. The short vertical segmen
within this dashed line corresponds tofractional SIRS’s—
specifically, three of the junctions have slipped from then
51 to the n51/2 step, while the rest are in the^Vj&t50
state~the driving current is smaller than their individual re
trapping currents!. Thus we see both the higher integer an
the fractional SIRS’s in these one-dimensional arrays.

In Fig. 7~a!, although we show the full hysteresis loo
only for Na510, theI -V curves for other values ofNa are
also hysteretic. In all cases for whichNc<Na,10, the num-
ber of active junctions increases when the SIRS becom
unstable, and individual junctions jump into then52 SIRS
state; Ohmic behavior is not attained untilI /I c.1. For Na
,Nc , the array behaves somewhat differently: when t
SIRS becomes unstable,Na is unchanged, and theI -V curve
immediately becomes Ohmic. WhenI /I c;1 in this regime,
the remaining junctions become active and theI -V charac-
teristic also becomes Ohmic. For this particular array,Nc
54.

As a comparison, we also show, in Fig. 7~b!, the I -V
characteristics as measured for a 3336 underdamped array
by Barbaraet al.17 The open circles correspond to the step
observed for different numbers of active rows~from 1 to 10
in this instance!, which are produced when an in-plane ma
netic field reduces the critical current of the individual jun
tions. The more widely spaced dark rows are believed to
examples of resistance steps.42 The steps~open circles! very
much resemble those of Fig. 7~a!, even including the low-
current falloff ~though the shapes of the curves are slight
different!.

We have also calculatedẼ, the energy in the cavity, as a
function of injected dc power,Pdc , when the array is biased
on a SIRS, for several choices of array parameters. A typi
13450
s

e

e

al

example of our results is shown in Fig. 8~a!, where Ẽ is
plotted versusPdc[(I /I c)@^V&t /(NRIc)# for an array of ten
junctions, using the same parameters as in Fig. 7~a! and
varying the values ofNa . Each curve corresponds to a di
ferent numberNa of active junctions, and, for eachNa , we
sweep current across then51 SIRS ~leftmost curve corre-
sponds toNa51, and rightmost toNa510). The curves end
when the SIRS’s become unstable. Each curve is quadrat
low Pdc and approximately linear at higherPdc . For com-
parison we also show the correspondingexperimentalplots43

for a 4336 array forNa516, 21, and 23 active rows@Fig.
8~b!#. In all cases the experimental array is aboveNc , the
coherence threshold. The similarity between the experim
tal and calculated curves is strikingly apparent.

C. Effects of changing model parameters

Finally, we have studied how our numerical results d
pend on the parameters of our model. There are severa
rameters of interest: the number of junctionsN, the disorder
parameterD, the damping parameterQJ , the coupling con-
stant g̃, and the normalized cavity mode frequencyṼ.
Clearly, a thorough numerical investigation of all these p
rameters is out of the question. We have therefore var
only two parameters in the present paper:QJ and g̃.

Figure 9 shows the total time-average voltage^V&t across
the array, and the total time-averaged energyẼ in the array
as a function of driving currentI /I c , for QJ5A100, A20,
A2, A0.1, andA0.05, all for g̃5431024, N510, andD

50.05. In each case, the resonant frequency of the cavitṼ

is chosen such that the scaled voltageṼ/QJ50.9. This
choice insures that the voltage lies within the bistable reg
2-10
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FIG. 10. This figure illustrates the effects of changing the coupling parameterg̃ while holding the other parameters fixed. Panels~a!–~d!

correspond tog̃51.531026, 431025, 431023, and 431021, all with QJ5A20, N510, andD50.05. Top panels: time-averaged tot
voltage across the array,^V&t /(NRIc), vs currentI /I c . Arrows indicate the direction of current sweep. Bottom panels: total time-aver

energyẼ in the cavity as a function ofI /I c , all calculated fordecreasingcurrent bias.
h
th
fo

, t
in

vi
e

er
e
-

e
en
ls
n
on
er

ar
on
w

we
a

ch a
e

s.
be-

e

the

ried
de

tive
of the I -V characteristic for the underdamped junctions. T
arrows in the upper panel indicate the direction in which
current is swept. We show only the energy in the cavity
the decreasing current branch.

Several features of these curves are apparent. First
SIRS’s are wider on the increasing than the decreas
branches. For the most underdamped case~a!, there are no
visible SIRS’s on decreasing the current. Second, the ca
energy shows clear signs of a resonant interaction betw
the array and the cavity in cases~a!–~c!. Finally, there are
strong indications of an integer SIRS even for the ov
damped case~d!, where there is no bistable region in th
uncoupledI -V characteristics.@We find an even clearer inte
ger SIRS in Fig. 9~d! if we increaseg̃ by a factor of 10. In
this case, a SIRS also develops in case~e! ~not shown in Fig.
9!#.

In Figs. 10~a!–10~d!, we plot ^V&t and cavity energyẼ
versusI /I c for several values of the coupling constantg̃, all
for QJ5A20, N510, D50.05, andṼ/QJ50.9. Once again,
the arrows in the upper panels denote direction of curr
sweep. As discussed in Sec. IV, we believe that experim
have been carried out forg̃ somewhere in the range of pane
~a! and~b!. For ~a!, there is a very wide first integer SIRS o
the upward sweep but none visible the downward directi
In ~b! and~c!, there are SIRS’s in both directions, but wid
on the upward sweep. In case~d!, which we show for com-
pleteness but believe to correspond to an unattainable l
coupling, there are no detectable steps but several disc
nuities in theI -V characteristic which are discussed belo
The cavity energyẼ is calculated on thedecreasingsweep. It
shows a resonant enhancement even when theI -V’s ~on this
13450
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downward sweep! show no indication of a SIRS.~This en-
hancement is also visible on the upward sweep, which
have not shown.! In panel ~a!, Ẽ shows a resonance at
current corresponding to a half-integer SIRS, but theI -V
characteristics themselves show no clear evidence of su
SIRS. In cases~b! and~c!, we find that at these currents som
fraction of the junctions have phase-locked onto then51/2
step while the others are in the^Vj&t50 state. Another note-
worthy feature is that asg̃ increases, the integer steps in Fig
10~a!–10~d! acquire a noticeable nonzero slope, and also
come more and more rounded near their lower edge.

In order to shed some light on theI -V characteristics of
Fig. 10~d!, we have looked at thêVi&t’s across the indi-
vidual junctions. Depending onI /I c , all the ^Vi&t’s may be
different, they may all be equal, or they fall into two or thre
groups. For certainI ’s, some of thêVi&t’s are nonzero while
others vanish. This last behavior presumably arises from
disorder in the critical currents.

IV. DISCUSSION

A. Comparison between calculated results and experiment

We now compare the present results to experiment.17,39,43

Most of the published experiments thus far have been car
out on two-dimensional arrays. Their main features inclu
the following.

~a! When the array is driven by a current, theI -V charac-
teristics show self-induced resonant steps.

~b! These steps are reported for any number of ac
junctionsNa .

~c! Above a critical threshold numberNc of active junc-
tions, the ac power output~i. e., the energy in the cavity!
2-11
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increases quadratically withNa . When Na is increased
through the threshold, the detected ac power in the ca
jumps by several orders of magnitude at the threshold.

~d! The array can be experimentally tuned so that differ
numbers of rows~i.e., different numbers of active junctions!
are on then51 SIRS.

~e! WhenNa junctions are on a SIRS and the current dri
is varied, thePac versusPdc curve is quadratic for lowPac

and linear for highPdc .
Our numerical results show all five of these features fo

one dimensional~1D! array. Thus, they suggest that the b
havior seen in the 2D experiments should be visible even
a 1D system. Indeed, a recent report39 suggested that all the
features~a!–~e! are indeed experimentally observable in o
dimension.

We now elaborate on some of these points. The SIR
emerge naturally from our equations of motion@Eqs. ~47!
and ~48!#. Another notable point is that we can numerica
control the number of active junctionsNa by tuning the ini-
tial conditions. This tuning is possible because the juncti
are underdamped and have an applied current regime w
which they are bistable. The chosenNa determines whethe
the array is above or below the coherence thresholdNc . If
Na.Nc , then we usually find that, when the junctions lo
onto a SIRS, they all lock onto the same, n5 1 step~first
integer step!. The voltage drop across the array is th

^V&t /(NRIc)5NaṼ/QJ . Thus, the same array can produ
an I -V characteristic with multiple branches, each cor
sponding to a different number of SIRS’s. This behavior is
agreement with the behavior seen in Ref. 17.

If Na,Nc , then our calculations still produce integ
SIRS’s, but these steps are not coherent with one ano
That is, although each junction is individually locked on
the same fundamental frequency, which is close to the
quencyṼ of the cavity, the active junctions are out of pha
with one another, and hence do not generate an energy in
cavity which varies quadratically withNa . Also, even above
the coherence threshold (Na.Nc), if the junctions are not
locked on the steps, the array is not coherent at the coup
constant which produces the steps—that is, the power s
trum is reminiscent of that of an array of independent ju
tions, and does not show a series of multiples of a sin
fundamental frequency. Under these off-step conditions,
array can be made coherent, but only if the coupling cons
is increased by several orders of magnitude above
needed to produce the SIRS’s.

Under some conditions, our calculations yield not on
the first integer SIRS’s but also overtone steps~higher inte-
ger steps!, and fractional steps. The widths of our fraction
steps are extremely small, and the steps are obtainable
by a delicate tuning of the current, initial conditions, a
current sweep rate. This sensitivity may explain why the
fractional steps have not, as yet, been detected experim
tally, though the overtone steps have been found.44

Not only the general features but even some of the de
of our calculations seem to agree well with experiment. F
example, the results in Fig. 8~a! show the variation of ac
power~that is, the electromagnetic energy in the cavity! with
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the input dc power. The different curves correspond to
distinct number of active junctionsNa for this particular ar-
ray. All the curves show a gradual, nearly parabolic onset
become nearly linear at higher input power~that is, near the
high-current edge of the step!. The main difference betwee
the casesNa.Nc andNa,Nc , is the behavior of the energ
in the cavity after the SIRS becomes unstable~for increasing
I /I c!. When Na,Nc , we find thatẼ;1025 at such input
powers, while in the opposite caseẼ;0.1. ~This behavior is
not shown in the Fig. 8.! Very similar behavior to that shown
in Fig. 8~a! has recently been reported experimentally in R
43, and is shown in Fig. 8~b!. The similarity between the
results of Ref. 43 and the present work is apparent. A rela
experiment has also been reported in which a 30% dc to
conversion rate was achieved.45

B. Qualitative discussion of underlying physics

We now briefly discuss the physics behind the pres
numerical results. First, the existence of a transition fr
incoherence to coherence, as a function ofNa , results from
the ‘‘mean-field-like’’ nature of the interaction between th
junctions and the cavity. Specifically, because each junc
is effectively coupled to every other junction via the cavi
the strength of the effective coupling increases withNa .
Thus, for anyg̃, a transition to coherence is to be expect
for sufficiently largeNa . A similar argument was made in
the equilibrium case in Ref. 24.

Above the coherence transition, the self-induced reson
steps can also be qualitatively understood by referring to
underlying equations~47! and ~48!. When a current is ap-
plied, it sets all theg i ’s into motion, according to Eq.~47!. If
theseg i ’s all oscillate at the same fundamental frequen

they act as a driving term which causesãR , and henceä̃R , to
oscillate at the same frequency, according to Eq.~48!. This

ä̃R then behaves like an ac current drive in Eq.~47!. The
combined dc and ac drives in Eq.~47! produce SIRS’s, just
as a combined dc and ac current produce Shapiro steps
conventional Josephson junction. This same picture a
makes it clear why the cavity energy increases quadratic
with Na above the threshold: in this regime, the ‘‘inhomog
neous’’ term on the right-hand side of Eq.~48! is propor-
tional to Na and, therefore, so isaR . The whole process
occurs self-consistently because the two equations

coupled. The effective ‘‘ac driving current’’ä̃R in Eq. ~47! is
also proportional toNa . Since the height of the first intege
Shapiro step in a conventional junction is proportional
J1(aI ac) whereI ac is the amplitude of the ac driving curren
and a is a constant related to the frequency, one might
pect that the width of the SIRS’s would have an oscillato
dependence onNa . There are some slight hints of this be
havior in our numerical results@cf. Fig. 7~a!#.

This description also suggests why the steps occur eve
one-dimensional arrays. Their occurrence depends, no
the dimensionality of the array, but only on the existence
a suitable induced ac drive. Indeed, such steps were rece
reported in 1D arrays,39 consistent with the present mode
The in-plane magnetic field used in the earlier experiment
2-12
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apparently needed only to lower the Josephson critical c
rents sufficiently that the resonant frequencyV occurs in the
bistable region of theI -V characteristics.

All the numerical results in the present paper are obtain
in the ‘‘semi-classical’’ regime, where the various operato
are regarded asc-numbers. It would be of interest to stud
the array dynamics of the array in the quantum regim
where the number of photons is small. A recent numeri
study of this kind~but only for the equilibrium properties!
was carried out for a superconducting quantum interfere
device in a resonant cavity~without resistively-shunted
damping!.46

In summary, we have derived the Heisenberg equation
motion for a model Hamiltonian which describes a on
dimensional array of underdamped Josephson juncti
coupled to a resonant cavity. We have numerically solv
these equations in the classical limit, valid in the limit o
large numbers of photons in the cavity. In the presence o
dc current drive, we find numerically that~i! the array exhib-
its self-induced resonant steps, similar to Shapiro steps
conventional arrays;~ii ! there is a transition between an un
synchronized and a synchronized state as the number o
ov

s

e

e

a

p
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tive junctions is increased while other parameters are h
fixed; and~iii ! when the array is biased on the first integ
SIRS, the total energy increases quadratically with num
of active junctions. Our results are in quite detailed agr
ment with experiment, even though the experiments
largely carried out in two dimensions. Thus, the pres
model strongly suggests that a 2D array is not necessar
order to obtain the observed SIRS’s. The results also stro
suggest that the experimental data considered here ca
understood in terms of a model involvingstrictly classical
equations of motion, without the necessity of introduci
new, non-classical physics.
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