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Magnon modes for a circular two-dimensional easy-plane ferromagnet in the cone state
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We calculate the magnon modes in the presence of a vortex in a circular easy-plane ferromagnet with a
magnetic field perpendicular to the plane of the magnet. We also determine the range of anisotropy and
magnetic field for which the two vortex branches, known as light and heavy cone-state vortices, are stable. The
analysis was done by combining analytical calculations in the continuum limit with numerical simulations of
small discrete systems. For large enough systems the magnon modes are expresse® hatitve for
magnon-vortex scattering. For small systems the vortex structure and consequently the magnon scattering are
affected by the finite size, for which a theory designed for isotropic magnets is extended here. The presence of
magnetic field in combination with easy-plane anisotropy leads to a splitting of doublets both near a small
magnetic field and when the magnetic field is comparable to the anisotropy field. Similar doublets with
splitting determined by the magnetic field may be expected in the mode spectra of small magnetic particles.
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[. INTRODUCTION vorticity g, which has the sense of#, topological charge,
where q is an integer which determines the change of a
In condensed matter physics vortices appear in many sygphaselike variablep (the condensate phase or, for EP mag-
tems with continuously degenerate ground states, whoseets, the azimuthal angl@long a closed contour surround-
properties are determined by some phaselike varigbl®-  ing the vortex centerd ¢=2mq. At zero magnetic field, the
cluding superfluidsand superconductors, conventional dnes vortices withp=+ 1 are energetically degenerate. Under the
as well as high-temperature orfeglilute Bose-Einstein presence oH>0, the two possible states of a cone-state
condensate$; and some models of magnets; see Refs. 6-8yortex with different polarizationp= +1 are nonequivalent

At low temperatures vortices are bound into pairs, forming a nd separated by a finite-energy barrier. Those “\ﬁ(@)

Berezinskii phase with the absence of long-range order, bt I .
with the pregence of quasi-long-range or?jghe u?]binding parallel to the magnetic field have a lower eneflight vor-

Of the vortex pairs at h|gh enough temperatu“’e‘sTBKT tiCGQ Compared to those WIth’\(O) antipara”el to the f|e|d
leads to the Berezinskii-Kosterlitz-Thouless phase transition{heavy vortices'® We show that the heavy vortices lose their
see Refs. 9—11. Vortices, free as well as bound into pairsstability for large enough fields and the magnetic model be-
also play an essential role in the thermal and dynamicatomes equivalent to the GP one. The presence of a gyro-
properties of two-dimension&2D) magnet¥*®and helium  scopical(Magnus force is also a common feature for differ-
1.2 In particular, translational motion of vortices leads to aent vortices—in superfluids and superconductofs,for
central peak in dynamic correlation functioffs-which has  optical vortices- for vortices in ferromagnetésee Refs. 18
been observed experimentally; see Refs. 14 and referencaad 12, and for vortices in EP antiferromagnets with a mag-
therein. netic field*® For magnetic vortices the gyroforce effects are
In this article we analyze the vortices in an easy-planeproportional to the core out-of-plane magnetizatiog(0);
(EP) ferromagnet(FM) with a magnetic fieldH directed thus, it can be expected that light and heavy vortices may
along the hard axi§, also referred to as theone-state exhibit different gyroscopic effects.
model. There are many reasons for this interest. The initial The cone-state model also can be considered as interme-
Xy symmetry is not broken by the magnetic field, but for adiate between different models supporting vortices. Consider
magnetic field smaller than an anisotropy fiéld, the mag- the deviation of the amplitude-type variablamplitude of
netization in the ground state is directed along one of theondensate or out-of-plane magnetization for EP magnets
directions on the cone with the polar andglg# 7/2, and the  from its equilibrium value far from the vortex core. The ra-
FM is in so-called cone state; see Ref. 15.lAs>H,, the  dial dependence of this deviation is different for vortices in
cone angle close%),— 0, and the Landau-Lifshitz equation EP magnets and in media described by equations of GP type.
for magnetization becomes equivalent to a repulsive nonlinThe latter type(vortices in superfluidity and optitshave
ear Schrdinger equatiofl;’ which is in fact the Gross- power law decay of this deviation far from the vortex core, in
Pitaevsky(GP) equation used in the theory of superfluiis. contrast with the characteristic exponential decay for vortices
The so-called out-of-plane vortices for the cone-state modeh EP magnet§-8 The cone-state model is intermediate be-
have two possible directions of magnetization at the origintween these cases, ranging from pure EPiat0 to GP as
with the “polarization” p=m,(0)= *1 considered as a, H—H,. Itis natural to expect that this important difference
topological charge. This charge is in addition to the usuatould produce differences in dynamical properties, especially
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in the scattering of linear excitations on a vortex and in thetices is investigated numerically and through a variational
properties of local and quasilocal modes. calculation. In Sec. Il we describe the numerical calculation
During recent years the problem of magnetic vortices forof modes on a vortex and also give the basic theory for
finite-size magnetic particles, especially their dynamics, haghagnon modes on a vortex, as derived from the Landau-
become very important in connection with novel compositeLifshitz dynamical equations. In Sec. IV we focus on the
magnetic materials—such as magnetic dot arrays; see Refdnalysis and presentation of results fivite-radiuscircular
20. These magnetic dots are submicron-sized islands madaagnetic particles in the cone state, where finite-size effects
from soft magnetic materials on a nonmagnetic substrat?l2y @ strong role. The main conclusions of our work are
They are important from a practical standpdinigh-density ~Summarized in Sec. V.
magnetic storageand are interesting as fundamentally new
objects in the basic physics of magnetism. The distribution of ~ Il. MODEL, GROUND STATE, AND EXCITATIONS
magnetization in such a dot is quite nontrivial: when the dot
size R is above the critical valu&r,, an inhomogeneous
state with an out-of plane magnetic vortex occurs, stable du
to competition between exchange and dipole interactibns.
This vortex state has been experimentally observed for disk- R
shaped magnetic dots with the diamet&=2200-800 nm H=—3 2 {SiSy—(1-N)SESE—gusHY, SE.
and thicknesd. =20-60 nn?? It it is expected that these (A " D
nonuniform states will drastically change the dynamic and
static properties of a dot in comparison with a uniformly HereJ>0 is the exchange integral, and<Q. <1 describes
magnetized magnetic disk. The cone-state vortices are alsasy-plane anisotropy witkx{) as the easy plane. The spins

important for the description of real systems of submicrons are classical vectors on a square lattice with the lattice
magnetic dots, because the magnetic dipole interaction Qfonstanta. Here (i,ii’) denotes nearest-neighbor lattice
dots in the lattice produces a magnetic field perpendicular tgjtes, counting each bound only once. The magnetic field
the dots’ plane. This field could be either parallel or antipar-s directed along the hard axis, because only in this case is
allel to the magnet|zat|0n of the core of the vortex of the dot,the initial Xy Symmetry not broken by the magnetic f|egj|s
implying the presence of both light and heavy cone-statg ande factor, angig is the Bohr magneton. Our main inter-
vortices, respectively. o est lies in the small-anisotropy case, which corresponds to
To construct an adequate description of the vortex en1— )\ <1, for which a continuum limit analysis is valid.

semble and vortex contributions to the dynamical response A continuum limit for the EM model can be derived from

functions, it is necessary to investigate the dynamical propgq. (1) in the usual way, defining the unit vector of magne-
erties of single vortices, including the translational motion asjzation as a function of continuous variablés and t:

well as the properties of local and quasilocal mo@eternal
modes on the vortex. The investigation of vortex dynamics
(translational and internghas been carried out using differ-
ent methods—numerically, for discrete models, mainly for
circular samples cut from large lattice systetese Refs. 23
and 24 and for continuum models as well, both analytically
(see Refs. 25—27and numerically(see Refs. 28 and 29A ip OE 90 SE
better understanding of this problem of vortex dynamics in Ssin—=—, Ssinf—=——.. (2
the finite-size circular magnets was developed in Refs. 30 ot 29 at

and 29. These problems are deeply connected with the prolFor the model(1), in the lowest approximation with small
lem of the scattering of linear excitations by a vortex, whichparameter +\ and small gradients of magnetization, the

we investigate in detail here. For example, knowledge of thenergy functional can be presented in the form
Smatrix for vortex-magnon scattering gives the possibility to

We consider the classical two-dimensional model of a
Heisenberg ferromagnet in the presence of an external mag-
fietic fieldH, with the Hamiltonian

m(F,t)=Ss(t)/S. The dynamical equation for has the
form of the well-known Landau-Lifshitz equation; see Refs.
6 and 7. In usual angular variabledmy+im,
=sinfexp(¢),m,=cosd], its form is dictated by the con-
tinuum energy functionak|[ 6, ¢], according to

describe the results of numerical simulations of the motion of
the magnetic vortex and to verify a non-Newtonian dynami- E[0.¢]=352f d?r| (V) +(V ¢)sir?g
cal equation for the vortex center coordinate; see Ref. 30.
Due to the above reasons, in this article we concentrate on 1
developing the theory for the scattering of magnons by a + _z(cosg_h)2l. (3)
cone-state vortex, determining scattering data for both light re

and heavy vortices. We find particularly interesting features
including a strongly magnetic-field-dependent splitting of . . . ) .
doubly degenerate modes. As part of our calculations, wd!Ves t?e ]\c{olréix core s;;e de_ Ot,hand 'Fhetdlme?s:;nless
determined the stable light- and heavy-vortex structures a@ﬁgﬂe IC clief' ,dngrma|ze y the anisotropy TielH,,
functions of magnetic field. The main body of the article is Which are defined by

organized as follows. In Sec. Il we present the model and a X H

discuss its ground state, free magnon excitations, and the  =_+/——  h=—, gugH,=4JS1-\). (4
cone-phase out-of-plane vortices. The stability of these vor- 2 V1-x Ha

Here we introduced the characteristic length scalewhich
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For a material with a typical exchange interactidh \wherek=|k| andk is the magnon wave vector, and the pa-
~10 K, g=2, and 1% anisotropyh~0.99, this gives an rameters are

anisotropy field ofH,~0.3 T and a vortex core size,

~ba, wherea is the lattice constant. c(h)=c0m 8a)

A. Ground state

For small fieldsh<1 (valid for small laboratory fields o2 h2(1-M+N o, @b
and real materia)sthe minimization of the energ§8) shows ro(h)= 2 V (1)) (1- hg)_ 1-h2
that the ground state is the so-callsahe statein which the

asymptotic value of#=6,,# 7/2 is determined by the nor-
malized magnetic field strength,

These have the same physical sense for a FM in the presence
of the magnetic field as Eq$4) and (6) for H=0. It is
important to note that the presence of the magnetic field
increases the value of and makes the region of applicabil-
and the value of is arbitrary; see Refs. 6 and 7 for details. ity of the continuum model wider. For example, even for the
In this state the symmetry of the ground state is lower tharX'Y model, which has extremely high anisotropy, the value of
that of the model. For zero magnetic fieldl,= =/2, and we I, (h) for nonzero fields is finite and becomes more than the
have a usual easy-plane ferromagnet. For large enough fieldgftice constant foH=H,. On the other hand, for some type
h=1, the collinear phase with the magnetization parallel toof vortices(so-called heavy ones, discussed bglte sim-
the magnetic field §=0) is realized. plest continuum modeB) fails, and the next powers of gra-
The dynamical equations for this model can be written aglients of magnetization have to be taken into account.

cosf..=h, 5

V26— (V ¢)?sin6 coso+ isin f(cosf—h)=+ sin % C. Cone-phase out-of-plane vortices
2 Cof, Ot

My For the weak anisotropy considered heke=(1) or for
(6a) large enough magnetic field, the stable vortex excitations
. have a nonzero out-of-plan&{) component. These out-of-
sing 96 plane(OP) vortices are described by the formulas

V(sinZHVqs):—WE, (6b)

0=20 , =qx+ ¢, 9
wherecy=2JSa/1—\ is the magnon speed bt=0. o), ¢#=0Ax+ o ©

Note thataEqs(3) and(6) arise in the long-wave apprpxr wherer and y are polar coordinates in the FM’s easy plane,
matlon @/ Vm|<1) not only for the model we are consider- andq=+1,%2, ... is them,— topological chargévortic-
ing here, but for a set of discrete models, for example, ory) The functiond,(r) is the solution of a nonlinear ordi-
different uniaxial Igttmes, like tnangular and hexagonal.nary differential equatiof’ with the natural boundary con-
Merely the expressions far andr,, defined through the itions sing,—0 atr—0 giving the absence of a singularity
microscopic parameter3 and A, change. We should point 4t the origin and coé,=h far from the vortex. The value of
out, however, that the terms describing the inhomogeneoug,sg,(0)=+1 determines two possible states of the vortex
exchange Interaction for the moddll) read (si’d given q. For the caseH=0, the vortices withp
+cog6)(V6)*+(V¢)?sirt6. We work with the more symmet-  _ co54 0)=+1 correspond to the mapping of the FM's

ric form of the energy displayed in EB), for the following  yjane onto the upper and lower half-spheres of the sphere

reasons. First, fqr _small an'SOtrZOPW%.l)’ the ¢ depen- m?=1. Thus, the value ob = cos6y(0) can be considered as
dence of the multiplier beforéV(#)“ is unimportant. Second, X o
a mr,-topological charge, the so-called polarization. For zero

and more essential, Eq3) holds for various models, for field the vortices withp= =1 have the same energies, but

example, for FM's on different kinds of lattices and FM's can be transformed into each other only by the creation of
with additional single-ion anisotropy. For all of these models, -. L - 'y by
discontinuities of the magnetization fielD analog of

with small enough anisotropy {>a), the energy3) is uni- hedgehoglike singular points, which is common to in-plane

yersa! in the Iong—wavelength approxmatlpn, mgtead of haVVorticeQ; see Ref. 31. The energy barrier that has to be over-
ing different nonsymmetrical generalizations like the one

presented above come to reverse the vortex polarization is finite, in contrast

with the infinite energy barrier to change theg-topological

charge vorticity. For the cade# 0, the vortices withm(0)
parallel to the magnetic field have a lower ene(tght vor-
For the homogeneous ground sté&dl spins are parallel ticeg compared to the vortices witm(0) antiparallel to the
and confined to one of the directions on the conetca)  field (heavy vortices Alternatively, we find it is more con-
the 2D model has well-known magnon excitations with theyenjent to always put cag(0)=+1, and then allow both

B. Free magnons

gapless dispersion law positive and negative values of the magnetic field. Then the
- " caseh>0 corresponds to light vortices anu<<O corre-
w=Kk-c(h)[1+krj(h)]7 (7)  sponds to heavy ones.
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1. Light and heavy vortices: Theory T vortioos. A0.9%5
ight vortices, A=0.

Both light and heavy vortices can be described in con-
tinuum theory. For the simplest mod@), their structure can
easily be found by numerical integration of the second-order
differential equation fory(r), which for this model reads

R=158, Ah=0.1

h=1

d?6, 1d6, q° . _ B
W X ax —;sm 0oC0Shy+ Sin fy(coshy—h)=0,
(10)
wherex=r/r,, with the boundary conditions
c0shy(0)=1, coshy(>)=h. (11 %00 20 o0 20

4.0

¥ : 100
1/,(0)

Only the cas&?=1 will be discussed here. Numerical inte-
gration (also see following sectigngives solutions for all
values of the magnetic fields 1<h<1, whereh>0 corre-
sponds to the light vortices afd< 0 to the heavy ones.Let
us discuss briefly the vortex structure. Xt 0 the value of
0—Cx, just as for the casb=0, but with the constanC ) _ _ ) )
depending strongly oh. Far from the vortex, the asymptot- 2. Light and heavy vortices: Numerical relaxation and discussion

ics change drastically and follow the power law, égsh An alternative way to construct the vortex states is the
+h/x?, instead of the exponential one, a@s-exp(-X) for  direct energy minimization of the discrete modd); see
h=0. This power law dependence is valid for both signs ofRef. 28. Starting from a very rough approximation for the
the magnetic field, e.g., for both light and heavy vortices, alortex spin directions on a circular square lattice system,
the valuesx>max{1,h/\/1—h?}. The power law decay is a with cone-phase boundary conditions &R)=h, we re-
typical property of vortices for different media, like those in laxed the configuration with a method that directly seeks the
hydrodynamics and superfluidity, whereas the exponentiaénergy minimum for the given field. We started from zero
dependence can be considered an exception. As we will sdield, relaxed the configuration, then used that configuration
later, the appearance of power law asymptotics producess the initial state for the relaxation at the next field strength,
very important differences in the dynamical properties of theand so on, thereby determining the vortex structure for a
magnetic vortices at=0 andh+0. sequence of positive- or negative-field strengths.

For light vortices, with growing magnetic field the ampli-  Results for the spin configuration cagr) for light vorti-
tude of the function cogy(r) decreases and the region of its ces are shown in Fig. 1. The vortex core widtifh) in-
localization Ar~r,(h) increases. On the other hand, evencreases with applied field; the vortex becomes smoother with
for values of (1)) significantly different from zero, in- increasing field strength. For close to 1, the results are
cluding up tox=0 (XY mode), the continuum approxima- universal functions of/r,(0), asexpected where the con-
tion can be valid at large positive values lo&=1. For ex-  tinuum limit applies. As\ is allowed to deviate more from 1,
ample, forn=0, we haver, (h)=3.5a at H=0.99H, and  minor differences from the continuum results appear, espe-
r,(h)=11.2a at H=0.99H,. For finite systems, even for cially in the core region of the vortex. In general, however,
large system radiR>r,, the light-vortex core widthr,(h) discreteness of the lattice has a minimal effect on the struc-
can become larger than the system radRust large enough ture of the light vortices.
fields, (1—h)<(r,/R)2. In this case some special approxi-  For heavy vortices, the lattice plays a stronger role, espe-
mations based on an isotropic model must be considered aruiblly as N deviates from 1. First, foln=0.999, where
are presented below. r,(0)=15.8, discreteness effects are weak. In Fig. 2, the

For heavy vortices the situation is oppositehat —1 the  resulting spin configurations are shown, where it is seen that
function cosfy(r) becomes very sharp near the origin and thethe vortex core widthw(h) decreases strongly at negative
region of the vortex core becomes very narrow, even lesfields. Whenw(h) gets sufficiently small, the heavy vortex
than a lattice constant; see Ref. 15. Thus, if one starts withecomes unstable towards conversion to a light vortex, as

FIG. 1. The OP-vortex profiles for light vorticee¥0) calcu-
lated usingh =0.999 on a lattice system with radié&s=158. The
different curves correspond to different valueshafith increment
Ah=0.1.

small values of the anisotropy parameter—(A), the con-
tinuum approximation fails at values bfnear— 1. Note that
this behavior is not connected with the valuer pfh), which

seen ath=—0.9, where co#y(0)=—1 resulted(the core
spins reversed during the relaxation, because there is no to-
pological constraint on them in a discrete systemhis dis-

becomes large for positive and negative fields. As was showarete effect is stronger at=0.96, as seen in Fig. 3, where
numerically in Ref. 15, for large negative fields there are twothe conversion to light vortices occurs arouns —0.4. Cer-

different scales in the vortex structure: the large valy)

tainly this is because the valug(0)=2.45 is much smaller

determines the asymptotics far from the vortex core, whilan this case, so the heavy vortex destabilizes at a much
the vortex core width can be much smaller. This featureweaker field. Generally, the conversion to light vortices oc-
manifests itself in the properties of the vortices in the finite-curs when the field-dependent vortex core width becomes
sized discrete model. smaller tharr ,(0), but isstill larger than the lattice constant.
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FIG. 4. The OP-vortex energies with the ground-state energy of
the cone statek., subtracted out, for various values of the anisot-
ropy parameter). Forh>0 these are light vortices, and forx 0
they are the heavy vortices. All were calculated on a lattice system
with radiusR=50a.

FIG. 2. The OP-vortex profiles for heavy vortices<(0) cal-
culated usingh =0.999 on a lattice system with radif®=158a.
The different curves correspond to different values afith incre-
mentAh=—0.1.

We explain this heavy-vortex instability effect below. found that to describe this interesting feature, it is necessary
In Fig. 4 we also show the total vortex eneifgyninus the o go beyond the simplest continuum mo¢®l and take into
ground-state energy per site in the cone state,which has  account the higher-space-derivative terms. In principle, there
cosé(r)=h everywhere. By this definition, there is a logarith- s no problem to write down equations to include such terms,
mic dependence of the vortex energy on the system rdlius put it is not customary to do so for the 3D case. The reason
In Fig. 4 the curves at different were all calculated using s as follows: these terms have the next higher powers of the

the same system radiu8=50a. The curves are of finite smallest scale of the problem, the lattice consenif the
extent on the negativa axis, due to the instability of the characteristic width of the soliton is much larger than
heavy vortices there at some critical value of the magneti¢hese terms are small and unimportant corrections. If this
field, h=h.<0. This instability never appears in a con- width becomes comparable withit seems senseless to limit
tinuum model. oneself to accounting for only one more term; all the terms

Thus, for heavy vortices, we have a qualitative discrepmight give comparable contributions. As we will see, for 2D
ancy between the results of continuum and discrete modelshis is not the case, and the contributions from derivatives
For the continuum model, heavy vortices are present for alhigher than 4 are negligible. This feature has the same origin
fields —1<h<0; for the discrete model, some critical field as the observation mentioned above: that the vortex core
appears. Note that the instability field is not too close to  width at the instability pointw.=w(h,), lies between two
—1 even for small anisotropies, like=0.999. We have characteristic values,(0) anda.

1.0 . : : , 3. Heavy vortices: Discrete lattice instability

08 1 heavy vortices 1 To investigate the vortex structure and stability with
06 fourth derivative terms, it is enough to expand the Hamil-
04 tonian of discrete modell) up to higher powers o¥ m, so
02 that an additional termAE appears in the energy,

€ oo} . h=0
-02 1 4 =
2
04T pooss
06 | ] 9 (aé) 7 (aé)
L ~ ] - 2— - 2— . (12

-0.8 | Z o2\ ox ay2\ oy
) 20 40 6.0 80 100

Note that in this expression, valid for a square lattice, we
kept the full derivative terms. They could be important if the

FIG. 3. The OP-vortex profiles for heavy vorticeds<(0) cal- ~ functions with jumps of derivativeflike Eqs. (17) below]
culated using\ = 0.96 on a lattice system with radif&="50a. The ~ are used. In principle, one could rewrite this term in angular
different curves correspond to different valueshafith increment ~ variables and construct the corresponding Lagrange equation
Ah=—0.05. There are no stable heavy vorticesHatronger than ~ for this energy functional and find the solution describing the
approximately 0.35; instead they converted to light vortices by revortex. But realization of this program is a much more com-
versal of spins in the core. plicated task than the vortex description for the simplest

11 (0)
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model (3) with AE=0. This is because, first and foremost, (1—h§)2=4(1—>\)A(hC)B(hC), (15)
the terms with higher derivatives produce fourth-order an-

isotropy in coordinate space, and the simple an@jtbe-
comes invalid. Then a general solution like=6(r,x), ¢

= ¢(r,x) must be considered. Unfortunately, there are n .
general methods to solve such problems, and an analysf?n be written as
may be carried out only numerically with the use of different

the minimum is absent and the heavy vortex is unstable. At
0the point of instability the value of the vortex core widt¥,

variational method? 2 14
Thus, an exact solution of the set of two partial differen- W= a 17he =a[ Alhe) } . (18
tial equations for these functions cannot be found. In order to V2B(hy) V1—\ (1=N)B(he)

simplify the problem, suppose that the fourth-order anisot-

ropy is weak andp(r,x) can be approximated by the more . . .

sy?%lmetrical forn%(). Lj(ging this ap?)ﬁoximation, w):e arriveat  1hus, the vortex core widttW(h) near the instability

some functional involving the anglé(r). Minimization of ~ POINt h has the order of magnitudéar,, and a<W(h)

this functional gives us a fourth-order ordinary differential <fv- Here W(hc) is smaller than the characteristic length

equation for6(r). But even with this approximation the v byt at the same time much Ia.rger than the Iatyce constant

problem is still challenging. Note that the solutions for the® This means thati) the generalized macroscopic approxi-

second-order equatiofl0), as for any dynamical problem Mmation including fourth-denvaﬂve terms is valld_down to the

with one degree of freedom, can easily be presented on tHgitical value of magnetic fieldh.<0; (i) terms in the en-

phase plane. The separatrix solution can easily be corf9y W|_th space derlvatlvgs higher th_an4are unimportant. So

structed numerically by use of a usual one-parameter shootl® estimate given here is self-consistent.

ing method. The fourth-order equation, however, is equiva- WO more results are clearly seen from EMLS):

lent to a much more complicated dynamical problem with(i) the critical value *h is proportional toy1—\ for

two degrees of freedom. Its solutions are trajectories in fourextremely  small _ anisotropies, ~ namely, —ih|

dimensional phase space, which could manifest strange at=V(1—X\)A(—1)B(—1) asA—1, and(ii) heavy vortices

tractors, quasistochastic behavior, and other complex fesould be absent for high enough anisotropy. If the value of

tures. To find the separatrix solutidibis just an approximate 4A(0)B(0) is larger than l(as we will see, it is the cage

solution of the original partial differential equatipnone  for A=X\., where 1-\.=1[4A(0)B(0)], the value ofh,

needs to use a three-parameter shooting scheme, and we ligcomes equal to zero, and fox A\, the concept of heavy

not know any examples of its numerical realization. vortices loses sense. These features are in good agreement
In this situation we have used a simpler qualitative analywith our numerical simulation data; see Figs. 2—4.

sis. Let the vortex structure be described by some universal To make concrete estimates bf and A, and test the

function = f (r/W), with a characteristic vortex core siy¢ above predictions, we choose a specific one-parameter varia-

This immediately gives the vortex energy as a functiombf tional function for the heavy vortex,

in the form

r
2 H(r)zeov—v, r<w, (179

1 a)2 1 (W)
— A(h)+§(1—)\) = B(h)

) R
=sirffyln— — _(W

_ra w2

+C(h), (13 0(r)=46y, r>W, (17b

whereA(h), B(h), andC(h) are determined by the function
f(x) and depend only on the magnetic field or, equivalently,
on the ground-state value of the polar an@jeMinimization

of this energy with respect %/ gives a biquadratic equation
for the vortex core width, whose solution

where the variational parametéf can be considered as the
vortex core size.

Due to general properties of variational methods, if the
solutions of such equations are known with the accurécy
<1, the energy calculated using this approximate solution
gives the vortex energy with the accuraé¥. In particular,

; v} the corrections linear and quadratic in these small corrections
[sif? 6o+ Vsirt' 6= 4(1—M)AB] (14 have the same order of qmagnitude. Thus we believe that

using even the simple functiofi7) could explain, at least

depends primarily on the functions(h) and B(h), which  semiqualitatively, the features mentioned abdie., un-
are smooth and nonzero for al1<h<0, in the region of stable heavy vorticesand absent for the simplest continuum
interest, m/2< §,<ar. Then the features mentioned above model(3).
(heavy-vortex instabilityimmediately become obvious. It is Inserting this trial function into the enerdincluding Eq.
found that the equation fol has a solution only foh above  (3) and the fourth-order terms of E¢l2)], after long but
a (negative critical value,h,<0. If h<h., where the criti-  simple algebra we arrive at a concrete form for the coeffi-
cal value of magnetic fieltl; is the solution of the transcen- cientsA,B,C. It is convenient to write them in terms @,
dental equation related toh via Eq. (11), as

2

_ a
~2B(1—2\)

WZ
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1.0 . - - whereas the numerical data give a slightly different power
‘ ' and prefactor, as mentioned above. The discrepancy probably
can be attributed to the fact that in the numerical simulations,
the lowest anisotropy values used{1)~10"3, are not far
enough into the asymptotic regime; see the inset of Fig. 5.
Similarly, using the limiting values as— 0, we estimated
the limiting value of the anisotropy constank,eor~0.8,
below which heavy vortices should be absent. In the numeri-
cal solution, we found stable heavy vortices down Mo
~0.72 and perhaps slightly lower, which is actually out to
the anisotropy limit where all vortices become in plane
(where no heavy-light vortex distinction is possibl€rom
00 Leassees®t’ - . these results using the linearized ansatz for the vortex struc-
07 0.8 0.9 1.0 ture, we can conclude that both stability limits are essentially
A caused by discreteness effects due to the lattice, which are

taken into account to leading order by the fourth-order de-
FIG. 5. The heavy-vortex critical fields, below which heavy rivative terms g y

vortices become unstable, as a function of the anisotropy parameter,

\. The solid curve is the result of the variational calculatjéy.

(15)]. Data points are results of numerical energy minimization for IlI. MAGNON-VORTEX SCATTERING
lattice systems with radiusR=100a. The inset shows the AND NORMAL MODES
asymptotic behavior at—1 more clearly.

08 r

 simulation

06 -

ansatz
I} e 22(1-)
a4l - 1.7701-0)"

0.70

02 r

Once the static cone-phase vortex structure has been

. found, we are interested in the presence of magnons on to
sito, 6% 362 6, P 9 P

A(fp) = —— — 2+ —2sing,cosb, of that structure. As mentioned in the Introduction, the pres-
3 16 8 4 ence of theH field leads to interesting new features in the

562 oodx magnon spectrum; in particular, it induces a large splitting of

+ -0 O—sinzx, (183 states that are barely split at zero field. In this section we first

8 Jo X present the numerical calculation of the vortex-magnon

modes, followed by a theoretical analysis of the doublet
splitting and the other new features.

2
B(6p) = ?[(14- 2 cog ) 63— 6 6,5in H,c0S0, A. Numerical calculation of the modes

0 We consider a semiclassical calculation of the magnon

—7 cog6,+ 8 cosby,—1], (18b) modes on top of a vortex in a finite circular system of radius
R, with the spins on an underlying square Iatticecz)ﬁ and

R2h? ) fodX 6° represent the vortex structure on lattice siteghen we
C(6o)=— ?H@o) 12+ J;) 73'”2X- (189  assume a perturbation to this structure in the form
v
HereA is presented fok =1; there are minor corrections as o= dnt on, 0= 09+, (19

\ deviates from 1C(#6,) is useful for absolute comparison

of the variational theory with simulations. The first termGn  where the equations of motion need to be linearized in terms

is the ground-state energy of the cone state; the other terng¥ the small fluctuationsp, and ¥, .

are due to the presence of the vortex. In Ref. 24, a formalism and set of coordinates were de-
Calculation of the integrals iA and then solving Eq.15) scribed for finding magnon-vortex scattering on lattice sys-

can only be done numerically, and gives us the possibility tdems. For determination of the modes numerically, local Car-

describe the dependenbg()\). This theoretical dependence tesian coordinates for the spins are more convenient than

is plotted and compared with estimateshgffrom numerical ~ spherical coordinates. The unperturbed spins of the static

simulation of heavy vortices in Fig. 5. The theory is in good vortex structuresﬁ, are considered to defidecal quantiza-

agreement with the critical field as found for vortices on ation axesz,, different at every site, specifically,

lattice, which is rather surprising when we consider that we

used a rather rough trial function. The simulation data do not §=SZ- (20)

fit any simple power law over the range of anisotropy stud-

ied, but as\n—1, follow approximately the form (% |h|) Then the perturbation of this structure involves fluctuations

~22(1-\)°%70 orthogonal to thé&,, axis, along two other local Cartesian
For extremely small anisotropy (I\)<1, then 1-|h axesX,, andy, . TheX, axis is taken to be along the direction

<1, and one can use the limiting values(h— —1)  defined by the cross produkt=z,xZ,, which is within the

~9.9053 andB(h— —1)~2.7577. These result in the esti- original xy (easy plane. The last axis of the local coordi-

mated asymptotic dependence{h¢|)imeon~=5.231—\,  nates for a site i§,=7Z,XX,. Then the perturbation of the

134434-7
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static vortex structure can be expressed in terms of its spin Cliiiiiiiiin o

components along the new local axes:

S=S0+ S¥nt St (D)

A short calculation shows that these are related to the angular
perturbation coordinates by

-
PR T T O T

S=Sesind?, F=Sv,. (22)

The variablesS?1 and ¢, relate to purely in-plane spin mo- o
tions, while SX and ¥,, measure the change in out-of-easy- ,
plane tilting, relative to the local spin direction in the unper- m= 1, h=0.95 «/J5=0.01255
turbed vortex. (@
For circular systems of radiuR, we used a Gauss-Seidel
relaxation schenié to calculate some of the lowest magnon
modes with either a single light or heavy vortex present in
the system. We considered different values\oflose to 1,
and the applied fieldh was allowed to vary between some
(negative lower critical limit h, and 1. Although the con-
tinuum limit would be better represented by usingvery
close to 1, this would result in the vortex radiyg0) easily
exceeding the system size that can be solved numerically.
Therefore, we show some results with=0.96, where
r,(0)=2.4mm, so even for “very light” vortices withh
=0.99, the field dependent core radilisq. (4)] is r,(h
=0.99)=17.4a, well less than the system size chosen, and
we avoid finite-size effects. Other data are presentech for
=0.99, for whichr ,(0)~4.97a andr ,(h=0.99)=35.2. In m=-—1
this latter case, some finite-size effects might be expected in (b)
moderate-sized systems las>1.
In general, a given mode hagd'¥ spatial dependence on
the azimuthal coordinatg, wheremis some integer. In fact,
in the continuum theorySec. Il B) mis a good quantum
number, due to rotational invariance. This symmetry is
weakly broken on a lattice, but for long-wavelength modes, SEREE:
m can be considered a good quantum number even on a g:ffffiii%%ii:::::;:
lattice. At zero magnetic field, the modesm are degenerate e
when the anisotropy is strong enough to produce only stable
in-plane vortices. For the weak easy-plane anisotropy con-
sidered here, theem modes on the stable out-of-platend
cone statgvortices are nondegenerate. All modes can also be
labeled by a radial quantum numberwhich is the number
of nodes in the radial direction,_ inqluding a node at the sys- m=—1, h=—06, «/JS=0.0009728
tem boundary, due to our application of Dirichlet boundary (©
conditions there.
In Figs. 6, 7, and 8 we show some of the lowest-mode FIG. 6. Wave functions foR=20a, A =0.99, for the mode with
wave functions, with a single vortex present at the center oft=—1, at the indicated magnetic fields The S* (or ¢,,) ampli-
the system, and how these wave functions vary with thdudes(certain magnitude and phasare shown as arrows with tri-
magnetic field. The system ha&&=20a and A=0.99. In angular heads, an®@ (or 6,) amplitudes are shown as arrows with
these diagrams th& (or ¢,)) amplitudes(certain magnitude V-neads(Ref. 34.
and phasgare shown as arrows with triangular heads, 8hd
(or 6,) amplitudes are shown as arrows with v-he&tishe In Fig. 9 we show the field dependence of some of the
number of rotations of the arrows as one moves along aode frequencies, calculated fler=30a, whereh<<O corre-
contour around the vortetat center of the systenis used to  sponds to heavy vortices amd>0 corresponds to light vor-
determinem. In most modes th&* (in-plane fluctuations tices. Ash increases above 0, we see that the lowesp
dominate, except wheln approaches closer to 1. grows while the lowest»_, diminishes; the magnetic field
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0.99, for the mode with
(hc,~—0.6), its wave

0.05602
unction is very localized on the core of the vortex. Thus it

c

20a, A

= —1 mode becomes more spread out with increas-

m=-+2,

(©
FIG. 8. Wave functions foR
+2, at the indicated magnetic fieltis

sider whether some of these features can be explained on

8ppears that this mode could be associated with the instabil-

+2 becomes more spread out with ity of the heavy vortices at large negatite Next we con-

increasingh, while the wave function fom=—2 becomes

ng h, and more importantly, as—h

m
. - . lowestm
induces a large splitting of this doublet compared to that aj
134434-9

0.99, for the mode with

20a, A

h=-0.6, »/JS=0.09119

0. For large enough negativethe splitting is reversed in ¢
sign. There are corresponding changes in the wave function

FIG. 7. Wave functions foR
m=—2, at the indicated magnetic fielths
the wave function fom

more centralized with increasing On the other hand, the theoretical grounds.

h
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FM R=30, 2=0.99

0.08

0.06

0.02 ¢

-1 o]
0.00 T 1 1 1

-06 -04 -02 0.0 0.2 04 0.6 0.8 1.0

FIG. 9. Numerical results for frequencies of the lowest spin-

wave modes in the presence of a light>0) or heavy H<0)
vortex in a circular system with radit®=30a and anisotropy pa-
rameter\ =0.99 vs the magnetic field. Numbers by the curves
indicate the assignments of azimuthal quantum numbenshich
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+

9=2 2 fur)cosmy—w.t+dy), (263

+ oo

p=2 2 gur)sinmy—w.t+dy). (26D

a=(n,m) is a full set of numbers labeling the magnon
eigenstates, with principle quantum numinegind azimuthal
quantum numbem, and theéd,, are arbitrary phases. Substi-
tuting this ansatz gives an eigenvalue probl&x'P) having
the form of coupled equations for the functiohandg,

were based on the associated wave functions. Note the double de-

generacies of modes, — (m+2), in the limith— 1, and the strong
splitting of modes+m ash deviates away from 0.

B. Theoretical analysis of magnon-vortex scattering

For the continuum description we consider small devia-

tions 9, ., from the static vortex solutions in the form

e=qx+(sinfy) 1w, 6=0y(r)+9. (23)

The additional factor (sifiy) "* in Egs.(23) is introduced for
convenience, making. and ¢ equivalent to the variables

SY/S andSY/S, respectively, introduced above for the analy-
sis of modes in a lattice system.

Substituting Eqs(23) in the Landau-Lifshitz equations
(6) and linearizing ind and u gives the following set of
coupled partial differential equations, symmetriciirand .,
with Schralinger-type differential operators:

20 cosfy dp r, du

—_vy? L i
[—ViHVao0lo+ =5 ==

(243

2qcosfy 99 r, dv
———— —=+——. (24b

2
_ + — = .
[—ViHVatolu= = o=+

Herex=r/r, and V,=r,V, and the potential¥(x),V,(X)
are

2
Vl(x)=(%—1)cos 204+ h coséy, (253

2

q dbo)?
V,(x)= ;—1 cog0y— x| Hhcosto. (25b)

In order to solve Eqs24) the following ansatz fod and
w is appropriaté®

orl, 2qmcosé,
o e R ] (27a
Co X2
d> 1d 2 v
e XX 2 2(x) |9
r, 2gqmcosé
=(—w”+u>f, (27h
Co X2

where the indexx is omitted. Without loss of generality, at
this point we choose the sign of the topological chaige,
=+ 1. Heref andg cannot be determined analytically from
Egs.(27), but some useful results can be obtained without a
full solution. Comparing Eq(26a with the definition of the

variablesS;, S}, above, we see that the and ¢ fields are

90° out of phase, which implies that ti8 and S’ arrows in

the wave function plots must be orthogonal. A related impor-
tant result is that for pure modes with a well-defined value of
m, a plot of the wave function corresponds to a vortexlike

structure of theS*, S¥ arrows with an apparent “vorticity” or
winding number equal ton, as we saw above. This feature is
useful for identification ofn in the different modes obtained
numerically for lattice systems.

The asymptotic behavior dfandg can be calculated also.
For r—0 we obtain the same result as far=0, namely,
f,g~rla*m which describes the presence of a “hole” in the
functionsu and 9 at the vortex core for large values of
For large radius, in contrast with the case of zero fiithe
asymptotics are more complicated, because the term with
cosb, in the right-hand sidéRHS) of Eqgs.(27) does not fall
exponentially, but only a$1/x?. We show below that this
produces a crucial difference in the magnon modes of these
cases, namely, “giant doublet splitting,” which is a giant
field dependence of the splitting, observed in the numerical
calculations of the modes.

Consider Eqs(27) far from the vortex. Using the asymp-
totics cosfy=h+h/x?+ (h/x*)(5—h?)/(1—h?) and keeping the
terms with the lowest powers of the small function?énly,
the potentials in these equations can be presented in the form

134434-10
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1+h? h?

2 ! o4

Vlzl—hz— 2= 1
X X

(28)

The potentiaV, having a term finite ak— oo, an expression
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magnons the solution is a combination of plane waves in a
form g%« exp(k-r) and gn=g%xJn(kr). If a vortex is
present, we can use the scattering approximation; then the
function g,,, at kr—o could be rewritten as

for f in terms ofg can be constructed as an expansion in

powers of 1%%. To do this, rewrite Eq(27a in lowest order
in 1/x?,

d> 1d 12 m2—1—h2f

Tae xdx T X2
_[or, 2mh 29
AR 2

Now letg«Z,(z), whereZ is one of the cylindrica(Besse)
functionsJ, or Y, and z=kr, wherek is a magnon wave
number whose value is determined bythrough the disper-
sion relation (7). The index v will be allowed to differ
slightly from the integer valuen (we check this beloyv
Then, in this lowest approximatiohis also proportional to
Z,(2), specifically, f©©=(wr, /c)(k’r2+1—h?)~1g. Con-
tinuing this way, we can find in the form f=f(©)(1+a/x?
+b/x*+---). Also, assuming smakl, with kr,<1, we ar-
rive at

1 wr, 2mh
f=—( ——)g. (30)

1-h2+kxr2| Co X2

The expansion of in the small quantitie&r, and 1k could

Im*Im(Kr) + oY m(kr), (33

whereJ,(z) andY(z) are the Bessel and Neumann func-
tions, respectively, withinteger index m, and the quantity
om=omn(k) (scattering amplitudedetermines the intensity
of the magnon scattering due to the presence of the vortex. If
one writeso,= —tand,,, in standard notation for scattering
problems, theS matrix can be written aS,,=exp(d45,).

On the other hand, the solution of E@®1) without the
terms«?/z* atr—o could be written as

99=3,(2) + oK) Y,(2), (34

where the index of the Bessel and Neumann functions deter-
mined by EQq.(32) is noninteger Then, at large but finite
distances, some corrections caused by the term proportional
to x?/z* in Eq. (31) must be taken into account. In the long-
wave approximatiork<1, these corrections are small, and
they decay faster than the cylindrical functions, but they are
also important for the soliton-magnon scattering by the
Belavin-Polyakov solitons in isotropic ferromagnets, as was
shown in Ref. 26. Therefore, for nonzero field, the solution
can be written in the form

Im=Ju(2) + om(kr,)Y,(2) + Agm(k,2), (35

be constructed with arbitrary accuracy, but for our case it isvhere the noninteger value/|~|m| is determined by Eq.
enough to use this expression. Note that only the term wit32), and Agy,(k,z) represents the contribution of the term
2mh/x? is kept here, because it can be as large as or largevith (1/z%) in Eq. (31).

than the first term whew is small. Using this formula and
Eq. (27b), far from the vortex we get an EVP fg(z) only.
It can be written as

d’g 1dg »? . k% 4h?(1+m?) +g=0, (31
a2 zdz 29 2 (1-h? 9Tems
wherex=kr,(0) and the index is given by
4dmhor (0
v2= e 2Mers(0) (32

Co(1—h?)

The functionAg,(k,z) can be considered as a small cor-
rection; see Ref. 26 for details. The role of the term
Agm(k,z) could be important at sma#i and this correction
must be taken into account in the regipfi<r <1/, which
is used for calculation of the scattering amplituglg(«) in
the long-wavelength approximation; see Refs. 30, 27, and
26. For example, this term gives the dominant contribution to
o for all [m+1|>1, for Belavin-Polyakov solitons in iso-
tropic ferromagnet$® But we have shown that for the cone-
state vortex case their accounting gives higher powers of the
small parametekr, to the scattering amplitude and these
corrections could be omitted. These terms are important for

Thus, two unusual features are present for cone state voRnalysis of magnon modes for a finite-size magnet Wth

tices at nonzero magnetic field. First, nonintegeappear,

<r,; see the last section. Thus, in contrast with the Belavin-

and second, terms like @ appear, caused by nonexponen- Polyakov case, these corrections are unimportant in the scat-
tial decay of the out-of-plane spin components in the vortex!€fing approximatior{far from the vortex and they can be

As was shown in Ref. 26, the terms wittxi/are very im-

portant for a description of magnon scattering by Belavin-
Polyakov solitons present in isotropic magnets. Accountin
for these modifications changes not only the coefficients buff?

even the dependence of the scattering amplitudie dio our

omitted.
Now we are in a position to analyze the functigiEq.

9(35)] describing magnon mode and magnon-vortex scatter-

g. The most important thing for our problem is that the
value of o.,(x) [see Eq.(34)] could differ from the real

knowledge, equations with nonintegerhave not appeared scattering amplitudery(«). In the long-wave approxima-
before in the description of soliton-magnon scattering. Nextion, this can be seen if we take into account that the terms

we discuss the role of these terms in detail.
Obviously, at large distances>r,, the solution should

with o (kr,) andr?k?, as well as the differender— m|, are
small. Then, the Bessel functiah,(z) can be expanded in

describe the free magnons scattered by the vortex. For frggowers of the small quantity —m| and represented through
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Jm(2). Using the formuladJ,/dv),~ 7Y /2 atz—x (see  <x<kry, where both are valid, and using the asymptotics of
Ref. 35 and the concrete value of—m from Eq.(32), the the cylindrical functions forz<1, specifically,J;~2z/2, Y,
desired relation between tfae,(«) and the scattering ampli- ~ —2/(wrz), we arrive at the formular= — (Kool w)
tude oy() can be written as X(1+h)sgn(m). The logarithm in Eq.(40) gives higher
powers of the small quantity, and the corresponding terms

_~ mhor, in o are omitted. Using Eq(36), we can present the scatter-
Tm( 1) = Tm(K) Co(l_hz)sgr(m). (36) ing amplitudeo(x) in the form
The value ofo,(k) is determined by the region near the Tl 1-3h
vortex coré® and could be calculated using the same method Tlm-1=~ 720 sgn(m) 2 (42
o _

as in this article. Note that for all the modes E8p) predicts
a linear dependence af,,(x) on the wave vectok. The ] ) o
same dependence occurs k=0 only for translational For the mode withm=0 the term linear in is absent,
modes, withm==1. For the rest of the modes, witm  and the dependence,>w?In w found for h=0 (Ref. 27

# =1, the scattering is smaller than that for the translationaflill holds forh=0. Thus, for all the modes withm[>1, the

mode withm= = 1. As we show below, the same regularities Présence of the magnetic field changes the scattering ampli-
. . ~ tude drastically: terms linear im appear and the scattering
are still valid foro,(x) ath#0.

~ _ _ ) amplitude ath#0 becomes much larger than that for zero
The value ofo(«) is determined by the region near the fig|q. we find that this produces a large splitiing of the dou-

vortex core. Ath=0 it was calculated analytically, fom  pjets +m  which has been verified by our numerical calcu-

==1inRef. 30 and fom=0 in Ref. 27. For other modes it |5tions. A more detailed investigation of these regularities,

was only mvesngated numerically. The important point ISimportant for the description of magnon modes for small

that the value ofo\(x) for m==1 is largest at the long- particles in the so-called vortex st&fewill be carried out in

wave limit (linear ink), the values ofr,(x) are smaller for ~ the next section.

m=+2 andm=0 [the last one is proportional tk’In(1/k)

(Ref 23], and the Scattering amplitudes for the other modes IV. MAGNON MODES FOR CIRCULAR MAGNETIC

are negligibly small. Using this, we can omit the teory for PARTICLES IN THE VORTEX CONE STATE

all the modes withm+#0,+ 1. The scattering amplitude of

these modes, in the lowest approximation en,/c, be-

comes

As was shown in Ref. 30, the scattering amplitude is a
very convenient tool for calculation of frequencies of mag-
non modes for finite-sized circular magnets. This amplitude
can be calculated analytically or numerically with the use of
sgr(m), |m|>1. (37)  ashooting methat?42>%for an infinite-system size, or ex-
Co(1—h?) tracted from numerical diagonalization for discrete finite-size
) ) ) _systems with particular boundary conditions. If the function

For the most |nte£est|ng case, the translational modes Wltla.m(K) is known, it is easy to calculate magnon frequencies
Im|=1, the value ofr=« and we need to calculate it. It can for arbitrary system sizes and boundary conditions. For ex-
be done in the same way as far=0 (see Ref. 3)) we  ample, in Ref. 30 the values of,(«) taken from numerical
discuss these calculations only briefly. We pred¢r}, g(x)  data for the magnet with fixe@irichlet) boundary condition

mhor,

om(k)=

in the form (b.c) and sizesR=20a—10( were brought together and
0 _© used to describe the computer simulation of the vortex oscil-
fO)=F00[1+a(x)], g(x)=g™(X)[1+B(X)], lations for theR=72a system with free b.c.

(39 During recent years the problem of magnon modes for

Wheref(o)(x) and g(o)(x) are known Zeroth So|utions de_ finite-Size magnetic partiCleS haS become Very important in
scribing the soliton displacement, connection with novel magnetic materials—granular mag-
nets or magnetic dot arrays. These magnetic dots are micron-

) dé, ) sinfq sized islands on a nonmagnetic substrate, made from differ-
FR0=5 9 (x)=sgnim) ——, (39 ent soft magnetic materials and having different shapes—

circular, elliptical, or rectangular. They are interesting both
and the functionsr and 8 are proportional to the small pa- from the practicalhigh-density magnetic storage medznd
rameterwr,/c. Then, in an approximation linear ia, j, fundamental points of view; see Refs. 20. Resonance experi-

andwr,/c, for x>1 one can get ments for such dot arrays show the presence of discrete mag-
non mode¥ caused by space quantization due to the finite
(11?7 ro mar 2hor} ( r ) dot size.
- =—+ - nf—|. -
r ' coml(1+h) rco(1+h)2 \To The theory of such modes was constructed Homoge

(40) neousin-plane magnetizatio. On the other hand, it is
known that small particles can be in different inhomoge-

This equation ath=0 coincides with one from Ref. 30. neous states, namely, vortex statbsnd so-called leaf or

Comparing this expression with E¢33), in the region 1  flower states? In this section, we apply our vortex-magnon
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scattering theory to a finite-sized circular magnet in the cone g5 modes withm=0 +

. Ak 1, the values ofr (or o) are
vortex state. Note that we do not intend a quantitative dehegligibly small, and the b.c. immediately gives us the equa-

scription of the magnon modes in a real circular or cylindri- 4,1 for the frequencies of the modes with givenn, in the
cal particle in the vortex state. The vortex state is formed by, =i, .c(h)/R, wherej, , is thenth zero o;‘J (2)
m,n v,n ’ v,n v .

the_ Ion_g-range magne_tic dipole interactfdrand this in'ger- Thus, for smallv—|m| and c(h)~c,, the frequency fom
action is not included in our model, but does play an impor-

. ) #0,=1 takes the form
tant role in forming the magnon mode spectrum; see Ref. 37.
On the other hand, the main features of the model investi- 0@ 45 (43)

o Omn=Omn Omn»

gated below, such as the doublet splitting and the presence of
anomalous low frequencies, must be model independent arwhere wfr?,)n determines the frequency in the main approxi-
present for real particles in vortex states. mation ona/R and depends ofm|,

We discuss the magnon modes for a two-dimensional cir-
cular magnet with radiu® (or a thin cylindey and some
boundary condition at=R. For definiteness, we apply fixed
boundary conditionsp= 6, at r=R. For h=0 and large o o )
by the scattering amplitud,but for the cone state the situ- Mation, doubly degenerate modes., doubletsappear. The

CoJ
w(o)n: 0 m,n.

="z (44

ation is more complicated. next correctiondw,, , can be written as

As was shown in the previous section, due to the slow 5 _
(powel decay of the out-of-plane magnetization in the vor- Sw =2hJS(E) sgn(m)] dJV,n) (45)
tex, the correctio\g,(k,z) proportional tok>h? appears in mn R ™M dy V=m.

the solution [See Eg. (35]. Moreover, the equation _ o

(dJ,/dv),- = (m/2)Y,,, used for the derivation of the scat- This term produces the characterlsnc feature .o_f magnon

tering approximation, is only valid at argumekits1. modes for vortex-state pamcles, namely, the sp[|tt|ng of the
But for the more interesting low-frequency magnon doublt_ats. Thls_ splltt_ln_g is clearly seen in num_erlcal results;

modes, with small principal quantum numbexsthe values ~S€e€ Flg: 9._ This splitting fom+ 0,1 is proportional to the

of kR are not large; in the lowest approximation the bound-magnetic field,

ary conditions forc&kR to be zeros of Bessel functiolisee

below). Thus, the universal connection betweefk) and A Wm0 = Ojm|,n = @~ |m|n

magnon frequencies &t#0 can be established only for a\2 dj,n
>1. To investigate the cases of interest1,2, ..., one =4h35<§) J'm,n(d_,,') (46)
needs to use the exact formula fatJX,/dv),-,, and take v=|m|

into account the corrections caused by the terra$ ity Eq. The values of ], /dv) - |y can be expressed through some
(3D. . . ) . long, but finite combinations of Bessel functiofsee Ref.

_ This is a complicated problem, the full solution of which 35" found numerically. Atn>1, the simple expression
is far from the aim of this article. Two interesting limiting 1,100 = = (712 N )31 imn) ] CanN be used.

cz?]ses ar:e considgr(;j herke. The ﬁ:jSt is. thehcase gf sma]l field, Formula(46) is in good agreement with our numerics for
where the correctiotg,(k,2), quadratic inh, can be omit- m=2,3,4 (only n=1 was consideredFor comparison of the

ted. For small fields the vortex core size is equalgoand it ; : - : ;
analytical and numerical results the dimensionless quantit
could be much less than the system $dhe second case n g y

deals with the limitH~H,. There the vortex core siZé/ AQ=Aw(RIQ)2(1S) =4N[j, o(dj, n/dV)],—m (47)

grows asH—H,, and for arbitrarily large values &¥/a, the ’ ’

values of W and R become comparable for sonté nearly  is most convenient. Some doublet splitting results from nu-

equal toH, . Obviously, the scattering approximation fails in merical simulations foim|>1 on anR=30a system are

this limit, and to describe it a special technique is presenteghown in Fig. 10. Fom=1 the theory givesAQ_,/h

below. =26.09 [with (dj,/dv),=1.27], while the slope of the

Q,—»(h) data is approximately 29.2; theory gives

A. Large system size and small field AQ—3/h=31.39 [with (dj,/dv)3=1.23], whereas the

To calculate the magnon modes for small but nonzergOP€ from numerical results fd2,—s(h) is approximately
field, the correctiom\g,(k,z) can be omittted, and it is more 34-9; theory form=4 gives AQ,_,/h=36.4, while the
convenient to present the solutiéd3) throughJ, andJ_, slope from the data is 39.1. Similar calculations of these

instead of].. andY slopes by numerical simulation on & 25a system gave
m m’ values of 32.6, 35.2, and 39.1, far=2,3, and 4, respec-
9n=J,(2)+ o ,(k)I_(2), (42)  tively. Note that the numerical data do not go exactly through

) ) - ) AQ =0 ath=0, due to the breaking of the degeneracy there
where v is considered apositive nonintegral numbery  ca,sed by the lattice. However, the trends of slopes increas-
=[m[+(2hwro/c)sgn(m), for h<1, h#0. The function jng with m are consistent with the theory, and the linear

(k) can easily be written through,,(«); it is zero in the  dependence oh is verified, providedh is not too close to
absence of scattering. +1.

134434-13



B. A. IVANOV AND G. M. WYSIN PHYSICAL REVIEW B 65 134434

% ‘ ‘ - a\? |= Ni(j1n)
doublet splittings e | Awpn=—2J R J1n E(l+ h) —
20 R=30, 2=0.99 - J1(i1n)
p |
d'y
o 107 A ] —Zh( : ’n) ] (49
&8 4 dv | _
(Q o v=1
a0 ot
&~ ok
2 s o olm=2 For h=0, this coincides with results in Ref. 30. For these
-0 v £ 4 mi=3 ] modes,o(m= —1) in the same doublet is higher thar{m
e *oomimi=4 =1). Forn=1 and using §j,,/dv),_;~1.34, the splitting
-20 o 1 of the lowest doublet can be written
-1.0 -05 0.0 05 1.0
h

FIG. 10. Numerical results froR=30a system, for the split-
tings Aw, , of the lowest doubletsn=1) for |m|=2,3,4, as func-
tions of the magnetic fielth. Dashed curves are guides to the eye.
The slopes of the data nehr=0 are 29.2, 34.8, and 39.1 fom| a result that is found to be in reasonable agreement with our
=2, 3, and 4, respectively. numerical data, as shown in Fig. 11.

a 2
Aw1,1=35(§> (6.157-14.38), (50

For modes withm= *1 it is necessary to calculate the

value of o,,. For the lowest[the translational Goldstone

mode(TGM)], it is enough to use the expansitt0), which In the previous subsection we have shown for the finite
gives system that as the field increases the translational mode fre-

quency growswrgn™(1+h)/R?, but the other mode fre-
quencies decreasa;m,noc\/l—hzlrvR. It is clear that the
a\? frequencies of these modes become comparable at some
w_11=oren=JIY1+ h)(ﬁ) : (48)  value of the magnetic field. Comparing the formulas for
wtgw andwp, , one can see that they are comparable when
(1—h)~(1+h)(r,/R)?, i.e., whenR~r,/\1—h%=r (h).
The appearance of a mode with extremely low frequencyThus, it happens at fields such that the vortex corersjge)
w1eu< wgr?)noc(a/R), is a specific feature of large enough becomes comparable with the system dizdt is seen that
systems in the vortex state. The theoretical prediction, E¢frequency of the lowest mode witm=—1 (the mode of
(48), agrees very well with the numerical simulations for ~Vortex translational motiorhas the same order of magnitude

B. Small system size and large field

near zero; see Fig. 11. as other_m.o.des. .
For other modes withm| =1, the splitting of the doublets ~ This limiting case,R<r,(h), is unrelated to the vortex
is dynamic problem in the infinite FM. However, it precisely

appears to be most fascinating for another actual problem,
namely, the problem of the eigenmodes for small ferromag-
netic particles in a nonuniform vortex state. Therefore, let us
R=30, 2=0.99 go into details.

In the limiting caseR<r ,(h), one can expect that char-
acteristic gradient values diy(r) are considerably higher
than that for a vortex in an infinite FM at the same field.
Then, within the main approximation in a small parameter
R/r,(h), Eqg. (10) only has terms containing derivatives
o(r) or the term with 172, This means that anisotropy and
., magnetic field energies can be disregarded here; i.e., the case

. _.:'"b. of the isotropic model is in fact realized. For the isotropic
o FM, in this approximation Eq.10) might be integrated once,

o which givesd#é,/dr=(1/r)sin6,. Then the analysis is sim-
-1.0 =05 0.0 05 10 plified, and the soliton structure can be found exattiak-
h ing into account the boundary conditiortg(0)=0,04(R)

FIG. 11. Numerical results for the splitting of the lowest doublet = -, the soliton structure is determined by the formula
(n=1) for |m|=1 and for the frequency of the translational Gold- tan(¢/2)=(r/R)tan(6../2). The calculation of the small cor-
stone modgTGM), as functions of the magnetic fiell Dashed  rections caused by the anisotropy energy and the magnetic
curves are guides to the eye, while solid curves show the theoreticéield gives the solution in the form of a series expansion in
predictions described in the text, Eq48) and (50). powers of small parametersr,(h)<R/r,(h),

15.0

_
14
=}

®R’/(JS")

R
=)
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TABLE I. Magnetic field dependence nehr-1 for modes of
an FM system with radiuR=30a and\ =0.99. The mode frequen-

1+ (r¥24r’R)(1—h)[(r?/R?)— 3]
' cies were fit to the formoy, \R%/(IS&) =A%) + A, 1(1—h), with

1-R%(1-h)/1r?

(51 simulation and theory resulf&q. (56)] compared.

An analysis of the normal modes on the background of, m,n A (sim./th) A n (sim./th)
this soliton in the isotropic case is also considerably simpler ’
than for the anisotropic magnets. In particular, one can ex0 -11 5.6412/5.7832 —21.1/-225
actly construct the normal-mode wave functionseat-0 1 01 14.312/ 14.682 —14.5/-16.1
(Ref. 25 and reveal their structure for small.?® On the 1 -21 14.312 / 14.682 —-10.9/~12.1
basis of these solutions one can solve the problem even fér 11 25.677 1 26.375 —10.5/-12.6
nonsmallé.., which corresponds to-th~h andR~r, . 2 -3,1 25.664 / 26.375 —1.42/-4.61

But we are only interested in the caBe<r,(h), which 0 -12 29.671/30.471 —14.3/-15.7
requires -h<1. Then a further analysis will be carried out 3 2,1 39.608 / 40.706 —8.93/-10.6
for this limiting case. Therewith we restrict ourselves to a3 -4,1 39.608 / 40.706 +3.50/+1.41
linear approximation in *h. In this case it is convenientto 1 0,2 47.863 / 49.219 -14.9/~16.1
write Egs.(24) as the set of equations for the functions 1 -2,2 47.863 / 49.219 -10.6/-12.1
=(f+g)/2 andv=(f—Qg)/2, which atd<1 are easily pre- 4 3,1 55.768 / 57.583 —3.15/-9.49
sented in the form 4 -51 56.159 / 57.583 +3.67/+6.51

du 1du (m+1)>? 1 wr,
~ 2 xdx Tu+U(x)u+§V(x)v—C—0u, r 2
(529 UX)~—1{1+2 E) [(m+2)—x2]](1—h). (55
2 2

— d_v — E d_v + MU +U(X)v + EV(X)UZ _ % v Calculating the contribution of the potentld(x) within per-

dx? xdx x2 2 Co turbation theory, the eigenfrequencies can be presented as

(52b

where bothU(x) and V(x) are small(linear in 1-h) at
h—1,

h m+2
U(x)= 2—5— W

5 1
03—(1-h)-ZV(x), (533

2

de
o+

V(X)= (W

(53b)

1
1—;) 03.

a\?| ,
wm,n:Js(ﬁ) Jim+1n— 2(m+2)
L 1_4(”2_‘1)> 1—h (56)
3r5 j|2m+1\,n ( |

Thus, this degeneracy disappears if one takes into account
the terms linear in (% h). Both the presence of the doublets

In the limit of h—1 this system transforms to two uncoupled containing the modes witm=—1=» and the splitting of

equations, which go over into each other by substituting
for —m andw for — w. It is clear that for the solutions with
>0 we are interested in, for small {1h), the functionv
~(1—h)u<u. Then, the contribution of the term with is

these doublets linear in (1h) are in good agreement with
the numerical data &t~ 1. For modes which do not manifest
discreteness effects and have well-defingedEq. (56) gives

a fairly good quantitative agreement with the numerical data.

of the order (+h)? and it can be omitted. Consequently, the These data can be fit by the functian, ,R%Js?a?=A{")
eigenmodes of the system are determined by a causal-Schrg Am.n(1—h) with good accuracy, comparing results of nu-

dinger EVP foru(x) derived from Eq.(529. In a zeroth

merical simulations foR=30a with the theoretical expres-

approximation its solution can be written in terms of Bessekjon (56); see Table I. The values &) are consistently

function J (kr) with integer indexv?=(m-+1)2. Using the

boundary conditionsi(R) =0 one obtains a zeroth solution

U(I’)ZJV(j,,YnI'/R), wm,n:JS(ajlerl\,n/R)za (54

within a few percent of the theoretical vaILjﬁﬂﬂ"n. The
coefficientA, , does not depend amfor »=|m+1|=1, and
it can be presented as2(m+2)—12.1, which describes
well the observed values @, ;,Aq,andA_,,;,A_,,. Gen-

wherev=|m+1| andj, , is thenth zero of the Bessel func- erally, the trends of thé,, , coefficients asn,n increase are
tion J,(x). It is easy to see that within the zeroth approxi- correctly predicted, such as the reversals of sign seemfor

mation in (1-h) (i.e.,, h=1), the modes withm=—1+v

=—4,—-5, although the actual numerical values are less ac-

andm=—1- v, wherev is a positive integer, have the same curately described. Also, formul@®6) shows that the split-
frequencies and ah# — 1 form doublets. For small enough ting Aw,=w_;_,—w_1,, of the doublets can be written,

values of (-h), we have a linear vortex profil@s in Fig.
1): 6(r)~(r/R)6.,, with 62~2(1—h). Then the potential
U(x) is proportional to (1 h):

for fixed n, asA w,R?/JS"a?=4v(1—h). So the slope of the
splitting versus (1 h) is predicted to be 4, independent of
n; the data of Table | give slopes of 3.6, 9.1, and 12.4 for
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n=1 andv=1,2,3, respectively, and a slope of 4.3 for of-plane structure. This theory also gave a reasonable de-

=2,v=1, consistent with the theory. scription of the dependence ofi., on the easy-plane
For those doublets in which the mix of the states withanisotropy strength (£ \), as presented in Fig. 5.
variousm (for instancem=1 and —3) occurs due to dis- The presence of a cone-state vortex modifies the spectrum

creteness effects, the limiting value of the frequencyhat of magnons, which we analyzed through a numerical relax-
=1 is reasonably well described by the expression. The termation procedure and through analysis of the dynamical oscil-
depending on (% h) in Eq. (56), however, deduced under lations about the vortex structure. The most significant effect
the assumption of an individuah in the mode, does not of the magnetic field on this spectrum is its influence on
describe the observetfield dependences for these partially doubly degenerate modes. For small fie]ts<1, pairs of
superposed modes. For example, for modes withl and modesw. ,, ,, with [m|>1, which are nearly degenerate at
m=—3 (v=2), there are notable differences between theh=0, obtain a splitting proportional to the magnetic field.
simulation and theory results for tife, , coefficients(Table ~ The frequency of the mode witm>0 increases withh,

I); see also ther=4 doublet. However, for the field depen- while the frequency of the mode wittn<<O decreases with
dence of the mean doublet frequency,w_(—,, h. Lack of exactdegeneracyht=0 is attributed to the scat-

+®_11,,)/2, the simulation and theory results have some+ering amplitudeo,,(«) [see Eq.(34)], which is small but
what better agreement. However, the doubletya, v nonzero even ah=0, as well as to lattice effects. For the
=4 are split even a=1, due to discreteness effects of the modes withjm|=1, there is also a linear dependence of the
lattice, and it is clear that this makes application of E5§),  frequency onh at small fields, although a finite splitting is
derived from continuum theory, problematical for thesepresent in these doublets everhat0.
cases. With this exception, however, the theory given here In the limit h_>]_, a different set of doublets is present,
enables us to describe eigenfrequencies with a giventhe  those with equal values ¢fn+ 1| or, equivalently, pairs with
caser,<R<r,(h). m=—1+v, wherev is a positive integer. This clearly ap-
pears in Fig. 9. For these doublets, the mode with the more
V. CONCLUSIONS negativem is higher in frequency, and their splitting is pro-
dportional to (1-h), with the pairs being very close to de-

erpendicular to the easy plane leads to interesting new feg_enerate ah=1 (except for small effects due to the lattice
Itoureps in the vortex pro e};ti?es and their effect on thge scatter- This latter limit also is relevant for consideration of
) prop > . .~ modes in small magnetic particles: when the particle size is
ing of magnons. This combination of anisotropy and field : .
L smaller than the vortex core size for that magnetic flétd
leads to the so-called cone state, where the spins tilt at arn . .
. e . . <r,(h)], this leads to the presence of the weakly split dou-
angle determined by the magnetic field relative to anisotrop

_ : . Ylets nearh—1. Also, such particles will be expected to
strength, cogp=h, at an arbitrary in-plane angle. In the pres- o "1 malously low-frequenc mo(dee translational
ence of weak anisotropy(1—\)<0.28 for square lattide y d Y

the stable out-of-plane vortices are modified by the magneti((:scildStﬁne mor(?)eonce th(lafmagnetlcf: field IS aﬁJUSted tlo small
field into light and heavy branches, depending on whethe) & 4€s <1. The general features found in the model system

the magnetic field is aligned withh(0) or contrary to b considered here are expected to appear in real particles, al-

though the details due to influence of different geometry and
<0) the out-of-plane componen&y) of the vortex. In the dimensionality may be different. Thus it may be interesting

I|r_n|t h—1, the Ilght-vort_ex energy goes o zero, as seen "Ny ook for either type of weakly split doublets, either near
Fig. 4, and the vortex width becomes larger than the syste —0 or nearh=1, in resonance experiments on small par-

size. On the other hand, at large negative mag.netlc.:.fleld,_ th icles supporting vortex states.
heavy-vortex width decreases, and at a certain critical fiel

h.<0, the vortex becomes unstable. Beyond this limit there
are no heavy vortices; the centrgl core region spins reverse ACKNOWLEDGMENTS
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