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Magnon modes for a circular two-dimensional easy-plane ferromagnet in the cone state

B. A. Ivanov
Institute of Magnetism, Ukrainian Academy of Science, Kiev, 254071, Ukraine

G. M. Wysin
Department of Physics, Kansas State University, Manhattan, Kansas 66506-2601
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We calculate the magnon modes in the presence of a vortex in a circular easy-plane ferromagnet with a
magnetic field perpendicular to the plane of the magnet. We also determine the range of anisotropy and
magnetic field for which the two vortex branches, known as light and heavy cone-state vortices, are stable. The
analysis was done by combining analytical calculations in the continuum limit with numerical simulations of
small discrete systems. For large enough systems the magnon modes are expressed by theS matrix for
magnon-vortex scattering. For small systems the vortex structure and consequently the magnon scattering are
affected by the finite size, for which a theory designed for isotropic magnets is extended here. The presence of
magnetic field in combination with easy-plane anisotropy leads to a splitting of doublets both near a small
magnetic field and when the magnetic field is comparable to the anisotropy field. Similar doublets with
splitting determined by the magnetic field may be expected in the mode spectra of small magnetic particles.
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I. INTRODUCTION

In condensed matter physics vortices appear in many
tems with continuously degenerate ground states, wh
properties are determined by some phaselike variablef, in-
cluding superfluids1 and superconductors, conventional one2

as well as high-temperature ones,3 dilute Bose-Einstein
condensates,4,5 and some models of magnets; see Refs. 6
At low temperatures vortices are bound into pairs, formin
Berezinskii phase with the absence of long-range order,
with the presence of quasi-long-range order.9 The unbinding
of the vortex pairs at high enough temperaturesT.TBKT
leads to the Berezinskii-Kosterlitz-Thouless phase transit
see Refs. 9–11. Vortices, free as well as bound into pa
also play an essential role in the thermal and dynam
properties of two-dimensional~2D! magnets12,13 and helium
II.2 In particular, translational motion of vortices leads to
central peak in dynamic correlation functions,12,13 which has
been observed experimentally; see Refs. 14 and refere
therein.

In this article we analyze the vortices in an easy-pla
~EP! ferromagnet~FM! with a magnetic fieldH directed
along the hard axis,15 also referred to as thecone-state
model. There are many reasons for this interest. The in
xy symmetry is not broken by the magnetic field, but for
magnetic field smaller than an anisotropy fieldHa , the mag-
netization in the ground state is directed along one of
directions on the cone with the polar angleu0Þp/2, and the
FM is in so-called cone state; see Ref. 15. AsH→Ha , the
cone angle closes,u0→0, and the Landau-Lifshitz equatio
for magnetization becomes equivalent to a repulsive non
ear Schro¨dinger equation,6,7 which is in fact the Gross-
Pitaevsky~GP! equation used in the theory of superfluids16

The so-called out-of-plane vortices for the cone-state mo
have two possible directions of magnetization at the orig
with the ‘‘polarization’’ p5mz(0)561 considered as ap2
topological charge. This charge is in addition to the us
0163-1829/2002/65~13!/134434~17!/$20.00 65 1344
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vorticity q, which has the sense of ap1 topological charge,
where q is an integer which determines the change o
phaselike variablef ~the condensate phase or, for EP ma
nets, the azimuthal angle! along a closed contour surround
ing the vortex center,Df52pq. At zero magnetic field, the
vortices withp561 are energetically degenerate. Under t
presence ofH.0, the two possible states of a cone-sta
vortex with different polarizationsp561 are nonequivalen

and separated by a finite-energy barrier. Those withmW (0)
parallel to the magnetic field have a lower energy~light vor-

tices! compared to those withmW (0) antiparallel to the field
~heavy vortices!.15 We show that the heavy vortices lose the
stability for large enough fields and the magnetic model
comes equivalent to the GP one. The presence of a g
scopical~Magnus! force is also a common feature for diffe
ent vortices—in superfluids1 and superconductors,2 for
optical vortices,17 for vortices in ferromagnets~see Refs. 18
and 12!, and for vortices in EP antiferromagnets with a ma
netic field.19 For magnetic vortices the gyroforce effects a
proportional to the core out-of-plane magnetizationmz(0);
thus, it can be expected that light and heavy vortices m
exhibit different gyroscopic effects.

The cone-state model also can be considered as inte
diate between different models supporting vortices. Cons
the deviation of the amplitude-type variable~amplitude of
condensate or out-of-plane magnetization for EP magn!
from its equilibrium value far from the vortex core. The r
dial dependence of this deviation is different for vortices
EP magnets and in media described by equations of GP t
The latter type~vortices in superfluidity and optics! have
power law decay of this deviation far from the vortex core,
contrast with the characteristic exponential decay for vorti
in EP magnets.6–8 The cone-state model is intermediate b
tween these cases, ranging from pure EP atH50 to GP as
H→Ha . It is natural to expect that this important differenc
could produce differences in dynamical properties, especi
©2002 The American Physical Society34-1
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in the scattering of linear excitations on a vortex and in
properties of local and quasilocal modes.

During recent years the problem of magnetic vortices
finite-size magnetic particles, especially their dynamics,
become very important in connection with novel compos
magnetic materials—such as magnetic dot arrays; see R
20. These magnetic dots are submicron-sized islands m
from soft magnetic materials on a nonmagnetic substr
They are important from a practical standpoint~high-density
magnetic storage! and are interesting as fundamentally ne
objects in the basic physics of magnetism. The distribution
magnetization in such a dot is quite nontrivial: when the
size R is above the critical valueRcr , an inhomogeneous
state with an out-of plane magnetic vortex occurs, stable
to competition between exchange and dipole interaction21

This vortex state has been experimentally observed for d
shaped magnetic dots with the diameter 2R5200–800 nm
and thicknessL520–60 nm.22 It it is expected that these
nonuniform states will drastically change the dynamic a
static properties of a dot in comparison with a uniform
magnetized magnetic disk. The cone-state vortices are
important for the description of real systems of submicr
magnetic dots, because the magnetic dipole interaction
dots in the lattice produces a magnetic field perpendicula
the dots’ plane. This field could be either parallel or antip
allel to the magnetization of the core of the vortex of the d
implying the presence of both light and heavy cone-st
vortices, respectively.

To construct an adequate description of the vortex
semble and vortex contributions to the dynamical respo
functions, it is necessary to investigate the dynamical pr
erties of single vortices, including the translational motion
well as the properties of local and quasilocal modes~internal
modes! on the vortex. The investigation of vortex dynami
~translational and internal! has been carried out using diffe
ent methods—numerically, for discrete models, mainly
circular samples cut from large lattice systems~see Refs. 23
and 24! and for continuum models as well, both analytica
~see Refs. 25–27! and numerically~see Refs. 28 and 29!. A
better understanding of this problem of vortex dynamics
the finite-size circular magnets was developed in Refs.
and 29. These problems are deeply connected with the p
lem of the scattering of linear excitations by a vortex, whi
we investigate in detail here. For example, knowledge of
Smatrix for vortex-magnon scattering gives the possibility
describe the results of numerical simulations of the motion
the magnetic vortex and to verify a non-Newtonian dynam
cal equation for the vortex center coordinate; see Ref. 3

Due to the above reasons, in this article we concentrat
developing the theory for the scattering of magnons b
cone-state vortex, determining scattering data for both li
and heavy vortices. We find particularly interesting featur
including a strongly magnetic-field-dependent splitting
doubly degenerate modes. As part of our calculations,
determined the stable light- and heavy-vortex structures
functions of magnetic field. The main body of the article
organized as follows. In Sec. II we present the model a
discuss its ground state, free magnon excitations, and
cone-phase out-of-plane vortices. The stability of these v
13443
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tices is investigated numerically and through a variatio
calculation. In Sec. III we describe the numerical calculat
of modes on a vortex and also give the basic theory
magnon modes on a vortex, as derived from the Land
Lifshitz dynamical equations. In Sec. IV we focus on t
analysis and presentation of results forfinite-radiuscircular
magnetic particles in the cone state, where finite-size effe
play a strong role. The main conclusions of our work a
summarized in Sec. V.

II. MODEL, GROUND STATE, AND EXCITATIONS

We consider the classical two-dimensional model o
Heisenberg ferromagnet in the presence of an external m
netic fieldH, with the Hamiltonian

H52J (
(nW ,nW 8)

$SW nW•SW nW 82~12l!SnW
zSnW 8

z %2gmBH(
nW

SnW
z .

~1!

HereJ.0 is the exchange integral, and 0<l,1 describes
easy-plane anisotropy with (xy) as the easy plane. The spin
SW are classical vectors on a square lattice with the lat
constant a. Here (nW ,nW 8) denotes nearest-neighbor lattic
sites, counting each bound only once. The magnetic fielH
is directed along the hard axis, because only in this cas
the initial xy symmetry not broken by the magnetic field;g is
Lande factor, andmB is the Bohr magneton. Our main inte
est lies in the small-anisotropy case, which correspond
12l!1, for which a continuum limit analysis is valid.

A continuum limit for the FM model can be derived from
Eq. ~1! in the usual way, defining the unit vector of magn
tization as a function of continuous variablesrW and t:
mW (rW,t)5SW nW(t)/S. The dynamical equation formW has the
form of the well-known Landau-Lifshitz equation; see Re
6 and 7. In usual angular variables@mx1 imy
5sinu exp(if),mz5cosu#, its form is dictated by the con
tinuum energy functionalE@u,f#, according to

Ssinu
]f

]t
5

dE

du
, Ssinu

]u

]t
52

dE

df
. ~2!

For the model~1!, in the lowest approximation with sma
parameter 12l and small gradients of magnetization, th
energy functional can be presented in the form

E@u,f#5JS2E d2r F ~¹u!21~¹f!2sin2u

1
1

r v
2 ~cosu2h!2G . ~3!

Here we introduced the characteristic length scaler v , which
gives the vortex core size atH50, and the dimensionles
magnetic fieldh, normalized by the anisotropy fieldHa ,
which are defined by

r v5
a

2
A l

12l
, h5

H

Ha
, gmBHa54JS~12l!. ~4!
4-2
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MAGNON MODES FOR A CIRCULAR TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 65 134434
For a material with a typical exchange interactionJ
'10 K, g52, and 1% anisotropy,l'0.99, this gives an
anisotropy field ofHa'0.3 T and a vortex core sizer v
'5a, wherea is the lattice constant.

A. Ground state

For small fieldsh,1 ~valid for small laboratory fields
and real materials!, the minimization of the energy~3! shows
that the ground state is the so-calledcone state, in which the
asymptotic value ofu5u`Þp/2 is determined by the nor
malized magnetic field strength,

cosu`5h, ~5!

and the value off is arbitrary; see Refs. 6 and 7 for detai
In this state the symmetry of the ground state is lower th
that of the model. For zero magnetic field,u`5p/2, and we
have a usual easy-plane ferromagnet. For large enough fi
h>1, the collinear phase with the magnetization paralle
the magnetic field (u50) is realized.

The dynamical equations for this model can be written

¹2u2~¹f!2sinu cosu1
1

r v
2
sinu~cosu2h!51

sinu

c0r v

]f

]t
,

~6a!

¹~sin2u¹f!52
sinu

c0r v

]u

]t
, ~6b!

wherec052JSaA12l is the magnon speed atH50.
Note that Eqs.~3! and~6! arise in the long-wave approxi

mation (au¹mW u!1) not only for the model we are conside
ing here, but for a set of discrete models, for example,
different uniaxial lattices, like triangular and hexagon
Merely the expressions forc and r v , defined through the
microscopic parametersJ and l, change. We should poin
out, however, that the terms describing the inhomogene
exchange interaction for the model~1! read (l sin2u
1cos2u)(¹u)21(¹f)2sin2u. We work with the more symmet
ric form of the energy displayed in Eq.~3!, for the following
reasons. First, for small anisotropy (l.1), the u depen-
dence of the multiplier before (¹u)2 is unimportant. Second
and more essential, Eq.~3! holds for various models, fo
example, for FM’s on different kinds of lattices and FM
with additional single-ion anisotropy. For all of these mode
with small enough anisotropy (r v@a), the energy~3! is uni-
versal in the long-wavelength approximation, instead of h
ing different nonsymmetrical generalizations like the o
presented above.

B. Free magnons

For the homogeneous ground state~all spins are paralle
and confined to one of the directions on the cone cosu5h)
the 2D model has well-known magnon excitations with t
gapless dispersion law

v5k•c~h!@11k2r v
2~h!#1/2, ~7!
13443
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wherek5ukW u andkW is the magnon wave vector, and the p
rameters are

c~h!5c0A12h2, ~8a!

r v~h!5
a

2
A h2~12l!1l

~12l!~12h2!
>

r v

A12h2
. ~8b!

These have the same physical sense for a FM in the pres
of the magnetic field as Eqs.~4! and ~6! for H50. It is
important to note that the presence of the magnetic fi
increases the value ofr v and makes the region of applicabi
ity of the continuum model wider. For example, even for t
XY model, which has extremely high anisotropy, the value
r v(h) for nonzero fields is finite and becomes more than
lattice constant forH>Ha . On the other hand, for some typ
of vortices~so-called heavy ones, discussed below! the sim-
plest continuum model~3! fails, and the next powers of gra
dients of magnetization have to be taken into account.

C. Cone-phase out-of-plane vortices

For the weak anisotropy considered here (l.1) or for
large enough magnetic field, the stable vortex excitatio
have a nonzero out-of-plane (Sz) component. These out-of
plane~OP! vortices are described by the formulas

u5u0~r !, f5qx1f0 , ~9!

wherer andx are polar coordinates in the FM’s easy plan
andq561,62, . . . is thep12 topological charge~vortic-
ity!. The functionu0(r ) is the solution of a nonlinear ordi
nary differential equation,6,7 with the natural boundary con
ditions sinu0→0 at r→0 giving the absence of a singularit
at the origin and cosu`5h far from the vortex. The value o
cosu0(0)561 determines two possible states of the vort
with given q. For the caseH50, the vortices withp
5cosu0(0)561 correspond to the mapping of the FM
plane onto the upper and lower half-spheres of the sph
mW 251. Thus, the value ofp5cosu0(0) can be considered a
a p2-topological charge, the so-called polarization. For ze
field the vortices withp561 have the same energies, b
can be transformed into each other only by the creation
discontinuities of the magnetization field~2D analog of
hedgehoglike singular points, which is common to in-pla
vortices!; see Ref. 31. The energy barrier that has to be ov
come to reverse the vortex polarization is finite, in contr
with the infinite energy barrier to change thep1-topological
charge vorticity. For the casehÞ0, the vortices withmW (0)
parallel to the magnetic field have a lower energy~light vor-
tices! compared to the vortices withmW (0) antiparallel to the
field ~heavy vortices!. Alternatively, we find it is more con-
venient to always put cosu0(0)511, and then allow both
positive and negative values of the magnetic field. Then
case h.0 corresponds to light vortices andh,0 corre-
sponds to heavy ones.
4-3
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B. A. IVANOV AND G. M. WYSIN PHYSICAL REVIEW B 65 134434
1. Light and heavy vortices: Theory

Both light and heavy vortices can be described in c
tinuum theory. For the simplest model~3!, their structure can
easily be found by numerical integration of the second-or
differential equation foru0(r ), which for this model reads15

d2u0

dx2
1

1

x

du0

dx
2

q2

x2
sinu0cosu01sinu0~cosu02h!50,

~10!

wherex5r /r v , with the boundary conditions

cosu0~0!51, cosu0~`!5h. ~11!

Only the caseq251 will be discussed here. Numerical inte
gration ~also see following section! gives solutions for all
values of the magnetic fields21,h,1, whereh.0 corre-
sponds to the light vortices andh,0 to the heavy ones.15 Let
us discuss briefly the vortex structure. Atx→0 the value of
u→Cx, just as for the caseh50, but with the constantC
depending strongly onh. Far from the vortex, the asympto
ics change drastically and follow the power law, cosu05h
1h/x2, instead of the exponential one, cosu0;exp(2x) for
h50. This power law dependence is valid for both signs
the magnetic field, e.g., for both light and heavy vortices
the valuesx@max$1,h/A12h2%. The power law decay is a
typical property of vortices for different media, like those
hydrodynamics and superfluidity, whereas the exponen
dependence can be considered an exception. As we will
later, the appearance of power law asymptotics produ
very important differences in the dynamical properties of
magnetic vortices ath50 andhÞ0.

For light vortices, with growing magnetic field the amp
tude of the function cosu0(r) decreases and the region of i
localization Dr;r v(h) increases. On the other hand, ev
for values of (12l) significantly different from zero, in-
cluding up tol50 (XY model!, the continuum approxima
tion can be valid at large positive values ofh.1. For ex-
ample, forl50, we haver v(h)53.5a at H50.99Ha and
r v(h)511.2a at H50.999Ha . For finite systems, even fo
large system radiiR@r v , the light-vortex core widthr v(h)
can become larger than the system radiusR at large enough
fields, (12h),(r v /R)2. In this case some special approx
mations based on an isotropic model must be considered
are presented below.

For heavy vortices the situation is opposite: ath→21 the
function cosu0(r) becomes very sharp near the origin and
region of the vortex core becomes very narrow, even l
than a lattice constant; see Ref. 15. Thus, if one starts w
small values of the anisotropy parameter (12l), the con-
tinuum approximation fails at values ofh near21. Note that
this behavior is not connected with the value ofr v(h), which
becomes large for positive and negative fields. As was sh
numerically in Ref. 15, for large negative fields there are t
different scales in the vortex structure: the large valuer v(h)
determines the asymptotics far from the vortex core, wh
the vortex core width can be much smaller. This feat
manifests itself in the properties of the vortices in the fini
sized discrete model.
13443
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2. Light and heavy vortices: Numerical relaxation and discussio

An alternative way to construct the vortex states is
direct energy minimization of the discrete model~1!; see
Ref. 28. Starting from a very rough approximation for t
vortex spin directions on a circular square lattice syste
with cone-phase boundary conditions cosu(R)5h, we re-
laxed the configuration with a method that directly seeks
energy minimum for the given fieldh. We started from zero
field, relaxed the configuration, then used that configurat
as the initial state for the relaxation at the next field streng
and so on, thereby determining the vortex structure fo
sequence of positive- or negative-field strengths.

Results for the spin configuration cosu0(r) for light vorti-
ces are shown in Fig. 1. The vortex core widthw(h) in-
creases with applied field; the vortex becomes smoother w
increasing field strength. Forl close to 1, the results ar
universal functions ofr /r v(0), asexpected where the con
tinuum limit applies. Asl is allowed to deviate more from 1
minor differences from the continuum results appear, es
cially in the core region of the vortex. In general, howev
discreteness of the lattice has a minimal effect on the st
ture of the light vortices.

For heavy vortices, the lattice plays a stronger role, es
cially as l deviates from 1. First, forl50.999, where
r v(0)515.8a, discreteness effects are weak. In Fig. 2, t
resulting spin configurations are shown, where it is seen
the vortex core widthw(h) decreases strongly at negativ
fields. Whenw(h) gets sufficiently small, the heavy vorte
becomes unstable towards conversion to a light vortex
seen ath520.9, where cosu0(0)521 resulted~the core
spins reversed during the relaxation, because there is no
pological constraint on them in a discrete system!. This dis-
crete effect is stronger atl50.96, as seen in Fig. 3, wher
the conversion to light vortices occurs aroundh'20.4. Cer-
tainly this is because the valuer v(0)52.45a is much smaller
in this case, so the heavy vortex destabilizes at a m
weaker field. Generally, the conversion to light vortices o
curs when the field-dependent vortex core width becom
smaller thanr v(0), but isstill larger than the lattice constan

FIG. 1. The OP-vortex profiles for light vortices (h.0) calcu-
lated usingl50.999 on a lattice system with radiusR5158a. The
different curves correspond to different values ofh with increment
Dh50.1.
4-4
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We explain this heavy-vortex instability effect below.
In Fig. 4 we also show the total vortex energyE minus the

ground-state energy per site in the cone state,Ec , which has
cosu(r)5h everywhere. By this definition, there is a logarit
mic dependence of the vortex energy on the system radiuR.
In Fig. 4 the curves at differentl were all calculated using
the same system radiusR550a. The curves are of finite
extent on the negativeh axis, due to the instability of the
heavy vortices there at some critical value of the magn
field, h5hc,0. This instability never appears in a co
tinuum model.

Thus, for heavy vortices, we have a qualitative discr
ancy between the results of continuum and discrete mod
For the continuum model, heavy vortices are present for
fields 21,h,0; for the discrete model, some critical fie
appears. Note that the instability fieldhc is not too close to
21 even for small anisotropies, likel50.999. We have

FIG. 2. The OP-vortex profiles for heavy vortices (h,0) cal-
culated usingl50.999 on a lattice system with radiusR5158a.
The different curves correspond to different values ofh with incre-
mentDh520.1.

FIG. 3. The OP-vortex profiles for heavy vortices (h,0) cal-
culated usingl50.96 on a lattice system with radiusR550a. The
different curves correspond to different values ofh with increment
Dh520.05. There are no stable heavy vortices forh stronger than
approximately 0.35; instead they converted to light vortices by
versal of spins in the core.
13443
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found that to describe this interesting feature, it is necess
to go beyond the simplest continuum model~3! and take into
account the higher-space-derivative terms. In principle, th
is no problem to write down equations to include such term
but it is not customary to do so for the 3D case. The rea
is as follows: these terms have the next higher powers of
smallest scale of the problem, the lattice constanta. If the
characteristic width of the soliton is much larger thana,
these terms are small and unimportant corrections. If
width becomes comparable witha, it seems senseless to lim
oneself to accounting for only one more term; all the ter
might give comparable contributions. As we will see, for 2
this is not the case, and the contributions from derivativ
higher than 4 are negligible. This feature has the same or
as the observation mentioned above: that the vortex c
width at the instability point,wc[w(hc), lies between two
characteristic valuesr v(0) anda.

3. Heavy vortices: Discrete lattice instability

To investigate the vortex structure and stability wi
fourth derivative terms, it is enough to expand the Ham
tonian of discrete model~1! up to higher powers of¹mW , so
that an additional termDE appears in the energy,

DE52
Ja2

24 E dx dyH S ]2SW

]x2D 2

1S ]2SW

]y2D 2

22
]2

]x2 S ]SW

]x
D 2

22
]2

]y2 S ]SW

]y
D 2J . ~12!

Note that in this expression, valid for a square lattice,
kept the full derivative terms. They could be important if th
functions with jumps of derivatives@like Eqs. ~17! below#
are used. In principle, one could rewrite this term in angu
variables and construct the corresponding Lagrange equa
for this energy functional and find the solution describing t
vortex. But realization of this program is a much more co
plicated task than the vortex description for the simpl
-

FIG. 4. The OP-vortex energies with the ground-state energ
the cone state,Ec , subtracted out, for various values of the anis
ropy parameter,l. For h.0 these are light vortices, and forh,0
they are the heavy vortices. All were calculated on a lattice sys
with radiusR550a.
4-5
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model ~3! with DE50. This is because, first and foremos
the terms with higher derivatives produce fourth-order
isotropy in coordinate space, and the simple ansatz~9! be-
comes invalid. Then a general solution likeu5u(r ,x),f
5f(r ,x) must be considered. Unfortunately, there are
general methods to solve such problems, and an ana
may be carried out only numerically with the use of differe
variational methods.32

Thus, an exact solution of the set of two partial differe
tial equations for these functions cannot be found. In orde
simplify the problem, suppose that the fourth-order anis
ropy is weak andf(r ,x) can be approximated by the mo
symmetrical form~9!. Using this approximation, we arrive a
some functional involving the angleu(r ). Minimization of
this functional gives us a fourth-order ordinary different
equation foru(r ). But even with this approximation th
problem is still challenging. Note that the solutions for t
second-order equation~10!, as for any dynamical problem
with one degree of freedom, can easily be presented on
phase plane. The separatrix solution can easily be c
structed numerically by use of a usual one-parameter sh
ing method. The fourth-order equation, however, is equi
lent to a much more complicated dynamical problem w
two degrees of freedom. Its solutions are trajectories in fo
dimensional phase space, which could manifest strange
tractors, quasistochastic behavior, and other complex
tures. To find the separatrix solution~it is just an approximate
solution of the original partial differential equation!, one
needs to use a three-parameter shooting scheme, and w
not know any examples of its numerical realization.

In this situation we have used a simpler qualitative ana
sis. Let the vortex structure be described by some unive
functionu5 f (r /W), with a characteristic vortex core sizeW.
This immediately gives the vortex energy as a function ofW
in the form

E

pJS2
5sin2u0ln

R

W
2

1

2 S a

WD 2

A~h!1
1

2
~12l!S W

a D 2

B~h!

1C~h!, ~13!

whereA(h), B(h), andC(h) are determined by the functio
f (x) and depend only on the magnetic field or, equivalen
on the ground-state value of the polar angleu0. Minimization
of this energy with respect toW gives a biquadratic equatio
for the vortex core widthW, whose solution

W25
a2

2B~12l!
@sin2u01Asin4u024~12l!AB# ~14!

depends primarily on the functionsA(h) and B(h), which
are smooth and nonzero for all21,h,0, in the region of
interest, p/2,u0,p. Then the features mentioned abo
~heavy-vortex instability! immediately become obvious. It i
found that the equation forW has a solution only forh above
a ~negative! critical value,hc,0. If h,hc , where the criti-
cal value of magnetic fieldhc is the solution of the transcen
dental equation
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~12hc
2!254~12l!A~hc!B~hc!, ~15!

the minimum is absent and the heavy vortex is unstable
the point of instability the value of the vortex core widthWc
can be written as

Wc5
a

A2B~hc!

A12hc
2

A12l
5aF A~hc!

~12l!B~hc!
G1/4

. ~16!

Thus, the vortex core widthW(h) near the instability
point hc has the order of magnitudeAarv, and a!W(hc)
!r v . Here W(hc) is smaller than the characteristic leng
r v , but at the same time much larger than the lattice cons
a, This means that~i! the generalized macroscopic approx
mation including fourth-derivative terms is valid down to th
critical value of magnetic field,hc,0; ~ii ! terms in the en-
ergy with space derivatives higher than 4 are unimportant
the estimate given here is self-consistent.

Two more results are clearly seen from Eq.~15!:
~i! the critical value 12hc is proportional toA12l for
extremely small anisotropies, namely, 12uhcu
→A(12l)A(21)B(21) asl→1, and~ii ! heavy vortices
could be absent for high enough anisotropy. If the value
4A(0)B(0) is larger than 1~as we will see, it is the case!,
for l5lc , where 12lc51/@4A(0)B(0)#, the value ofhc
becomes equal to zero, and forl,lc , the concept of heavy
vortices loses sense. These features are in good agree
with our numerical simulation data; see Figs. 2–4.

To make concrete estimates ofhc and lc , and test the
above predictions, we choose a specific one-parameter v
tional function for the heavy vortex,

u~r !5u0

r

W
, r<W, ~17a!

u~r !5u0 , r .W, ~17b!

where the variational parameterW can be considered as th
vortex core size.

Due to general properties of variational methods, if t
solutions of such equations are known with the accuracd
!1, the energy calculated using this approximate solut
gives the vortex energy with the accuracyd2. In particular,
the corrections linear and quadratic in these small correct
have the same order of magnitude. Thus we believe
using even the simple function~17! could explain, at least
semiqualitatively, the features mentioned above~i.e., un-
stable heavy vortices! and absent for the simplest continuu
model ~3!.

Inserting this trial function into the energy@including Eq.
~3! and the fourth-order terms of Eq.~12!#, after long but
simple algebra we arrive at a concrete form for the coe
cientsA,B,C. It is convenient to write them in terms ofu0,
related toh via Eq. ~11!, as
4-6
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A~u0!5
sin2u0

3
1

u0
4

16
2

3u0
2

8
1

u0

4
sinu0cosu0

1
5u0

2

8 E
0

u0dx

x
sin2x, ~18a!

.

B~u0!5
2

u0
2 @~112 cos2u0!u0

226u0sinu0cosu0

27 cos2u018 cosu021#, ~18b!

C~u0!52
R2h2

2r v
2

1~u0!2/21E
0

u0dx

x
sin2x. ~18c!

HereA is presented forl51; there are minor corrections a
l deviates from 1.C(u0) is useful for absolute compariso
of the variational theory with simulations. The first term inC
is the ground-state energy of the cone state; the other te
are due to the presence of the vortex.

Calculation of the integrals inA and then solving Eq.~15!
can only be done numerically, and gives us the possibility
describe the dependencehc(l). This theoretical dependenc
is plotted and compared with estimates ofhc from numerical
simulation of heavy vortices in Fig. 5. The theory is in go
agreement with the critical field as found for vortices on
lattice, which is rather surprising when we consider that
used a rather rough trial function. The simulation data do
fit any simple power law over the range of anisotropy stu
ied, but asl→1, follow approximately the form (12uhcu)
'22(12l)0.70.

For extremely small anisotropy (12l)!1, then 12uhcu
!1, and one can use the limiting valuesA(h→21)
'9.9053 andB(h→21)'2.7577. These result in the est
mated asymptotic dependence (12uhcu) theory'55.23A12l,

FIG. 5. The heavy-vortex critical fields, below which hea
vortices become unstable, as a function of the anisotropy param
l. The solid curve is the result of the variational calculation@Eq.
~15!#. Data points are results of numerical energy minimization
lattice systems with radiusR5100a. The inset shows the
asymptotic behavior atl→1 more clearly.
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whereas the numerical data give a slightly different pow
and prefactor, as mentioned above. The discrepancy prob
can be attributed to the fact that in the numerical simulatio
the lowest anisotropy values used, (12l)'1023, are not far
enough into the asymptotic regime; see the inset of Fig
Similarly, using the limiting values ash→0, we estimated
the limiting value of the anisotropy constant, (lc) theory'0.8,
below which heavy vortices should be absent. In the num
cal solution, we found stable heavy vortices down tol
'0.72 and perhaps slightly lower, which is actually out
the anisotropy limit where all vortices become in pla
~where no heavy-light vortex distinction is possible!. From
these results using the linearized ansatz for the vortex st
ture, we can conclude that both stability limits are essentia
caused by discreteness effects due to the lattice, which
taken into account to leading order by the fourth-order
rivative terms.

III. MAGNON-VORTEX SCATTERING
AND NORMAL MODES

Once the static cone-phase vortex structure has b
found, we are interested in the presence of magnons on
of that structure. As mentioned in the Introduction, the pr
ence of theH field leads to interesting new features in th
magnon spectrum; in particular, it induces a large splitting
states that are barely split at zero field. In this section we fi
present the numerical calculation of the vortex-magn
modes, followed by a theoretical analysis of the doub
splitting and the other new features.

A. Numerical calculation of the modes

We consider a semiclassical calculation of the magn
modes on top of a vortex in a finite circular system of rad
R, with the spins on an underlying square lattice. Iffn

0 and
un

0 represent the vortex structure on lattice sitesn, then we
assume a perturbation to this structure in the form

fn5fn
01wn , un5un

01qn , ~19!

where the equations of motion need to be linearized in te
of the small fluctuationswn andqn .

In Ref. 24, a formalism and set of coordinates were
scribed for finding magnon-vortex scattering on lattice s
tems. For determination of the modes numerically, local C
tesian coordinates for the spins are more convenient t
spherical coordinates. The unperturbed spins of the st
vortex structure,Sn

0 , are considered to definelocal quantiza-
tion axesz̃n , different at every site, specifically,

Sn
05Sz̃n . ~20!

Then the perturbation of this structure involves fluctuatio
orthogonal to thez̃n axis, along two other local Cartesia
axesx̃n andỹn . Thex̃n axis is taken to be along the directio
defined by the cross productx̃n5zn3 z̃n , which is within the
original xy ~easy! plane. The last axis of the local coord
nates for a site isỹn5 z̃n3 x̃n . Then the perturbation of the

ter,

r
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static vortex structure can be expressed in terms of its
components along the new local axes:

Sn5Sn
01Sn

x̃x̃n1Sn
ỹỹn . ~21!

A short calculation shows that these are related to the ang
perturbation coordinates by

Sn
x̃5Swnsinun

0 , Sn
ỹ5Sqn . ~22!

The variablesSn
x̃ and wn relate to purely in-plane spin mo

tions, while Sn
ỹ and qn measure the change in out-of-eas

plane tilting, relative to the local spin direction in the unpe
turbed vortex.

For circular systems of radiusR, we used a Gauss-Seid
relaxation scheme33 to calculate some of the lowest magno
modes with either a single light or heavy vortex present
the system. We considered different values ofl close to 1,
and the applied fieldh was allowed to vary between som
~negative! lower critical limit hc and 1. Although the con-
tinuum limit would be better represented by usingl very
close to 1, this would result in the vortex radiusr v(0) easily
exceeding the system size that can be solved numeric
Therefore, we show some results withl50.96, where
r v(0)'2.45a, so even for ‘‘very light’’ vortices with h
50.99, the field dependent core radius@Eq. ~4!# is r v(h
50.99)517.4a, well less than the system size chosen, a
we avoid finite-size effects. Other data are presented fol
50.99, for whichr v(0)'4.97a andr v(h50.99)535.2a. In
this latter case, some finite-size effects might be expecte
moderate-sized systems ash→1.

In general, a given mode has aeimx spatial dependence o
the azimuthal coordinatex, wherem is some integer. In fact
in the continuum theory~Sec. III B! m is a good quantum
number, due to rotational invariance. This symmetry
weakly broken on a lattice, but for long-wavelength mod
m can be considered a good quantum number even o
lattice. At zero magnetic field, the modes6m are degenerate
when the anisotropy is strong enough to produce only sta
in-plane vortices. For the weak easy-plane anisotropy c
sidered here, the6m modes on the stable out-of-plane~and
cone state! vortices are nondegenerate. All modes can also
labeled by a radial quantum numbern, which is the number
of nodes in the radial direction, including a node at the s
tem boundary, due to our application of Dirichlet bounda
conditions there.

In Figs. 6, 7, and 8 we show some of the lowest-mo
wave functions, with a single vortex present at the cente
the system, and how these wave functions vary with
magnetic field. The system hasR520a and l50.99. In
these diagrams theSx̃ ~or wn) amplitudes~certain magnitude
and phase! are shown as arrows with triangular heads, andSỹ

~or un) amplitudes are shown as arrows with v-heads.34 The
number of rotations of the arrows as one moves alon
contour around the vortex~at center of the system! is used to
determinem. In most modes theSx̃ ~in-plane! fluctuations
dominate, except whenh approaches closer to 1.
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In Fig. 9 we show the field dependence of some of

mode frequencies, calculated forR530a, whereh,0 corre-
sponds to heavy vortices andh.0 corresponds to light vor-
tices. Ash increases above 0, we see that the lowestv12
grows while the lowestv22 diminishes; the magnetic field

FIG. 6. Wave functions forR520a, l50.99, for the mode with
m521, at the indicated magnetic fieldsh. The Sx̃ ~or wn) ampli-
tudes~certain magnitude and phase! are shown as arrows with tri
angular heads, andSỹ ~or un) amplitudes are shown as arrows wi
v-heads~Ref. 34!.
4-8
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induces a large splitting of this doublet compared to tha
h50. For large enough negativeh the splitting is reversed in
sign. There are corresponding changes in the wave functi
the wave function form512 becomes more spread out wi
increasingh, while the wave function form522 becomes
more centralized with increasingh. On the other hand, the

FIG. 7. Wave functions forR520a, l50.99, for the mode with
m522, at the indicated magnetic fieldsh.
13443
t

s:

lowestm521 mode becomes more spread out with incre
ing h, and more importantly, ash→hc (hc'20.6), its wave
function is very localized on the core of the vortex. Thus
appears that this mode could be associated with the inst
ity of the heavy vortices at large negativeh. Next we con-
sider whether some of these features can be explained
theoretical grounds.

FIG. 8. Wave functions forR520a, l50.99, for the mode with
m512, at the indicated magnetic fieldsh.
4-9
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B. Theoretical analysis of magnon-vortex scattering

For the continuum description we consider small dev
tions q,m, from the static vortex solutions in the form

w5qx1~sinu0!21m, u5u0~r !1q. ~23!

The additional factor (sinu0)
21 in Eqs.~23! is introduced for

convenience, makingm and q equivalent to the variable
Sx̃/S andSỹ/S, respectively, introduced above for the ana
sis of modes in a lattice system.

Substituting Eqs.~23! in the Landau-Lifshitz equation
~6! and linearizing inq and m gives the following set of
coupled partial differential equations, symmetric inq andm,
with Schrödinger-type differential operators:

@2¹x
21V1~x!#q1

2q cosu0

x2

]m

]x
52

r v

c0

]m

]t
, ~24a!

@2¹x
21V2~x!#m2

2q cosu0

x2

]q

]x
51

r v

c0

]q

]t
. ~24b!

Here x5r /r v and ¹x5r v¹, and the potentialsV1(x),V2(x)
are

V1~x!5S q2

x2
21D cos 2u01h cosu0 , ~25a!

V2~x!5S q2

x2
21D cos2u02S du0

dx D 2

1h cosu0 . ~25b!

In order to solve Eqs.~24! the following ansatz forq and
m is appropriate:30

FIG. 9. Numerical results for frequencies of the lowest sp
wave modes in the presence of a light (h.0) or heavy (h,0)
vortex in a circular system with radiusR530a and anisotropy pa-
rameterl50.99 vs the magnetic fieldh. Numbers by the curves
indicate the assignments of azimuthal quantum numbersm, which
were based on the associated wave functions. Note the doubl
generacies of modesm,2(m12), in the limith→1, and the strong
splitting of modes6m ash deviates away from 0.
13443
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q5(
n

(
m52`

1`

f a~r !cos~mx2vat1dm!, ~26a!

m5(
n

(
m52`

1`

ga~r !sin~mx2vat1dm!. ~26b!

a5(n,m) is a full set of numbers labeling the magno
eigenstates, with principle quantum numbern and azimuthal
quantum numberm, and thedm are arbitrary phases. Subst
tuting this ansatz gives an eigenvalue problem~EVP! having
the form of coupled equations for the functionsf andg,

F S d2

dx2
1

1

x

d

dx
2

m2

x2 D 2V1~x!G f

5S 2
vr v

c0
1

2qmcosu0

x2 D g, ~27a!

F S d2

dx2
1

1

x

d

dx
2

m2

x2 D 2V2~x!Gg

5S 2
vr v

c0
1

2qmcosu0

x2 D f , ~27b!

where the indexa is omitted. Without loss of generality, a
this point we choose the sign of the topological chargeq
511. Heref andg cannot be determined analytically from
Eqs.~27!, but some useful results can be obtained withou
full solution. Comparing Eq.~26a! with the definition of the

variablesSn
x̃ ,Sn

ỹ above, we see that them and q fields are

90° out of phase, which implies that theSx̃ andSỹ arrows in
the wave function plots must be orthogonal. A related imp
tant result is that for pure modes with a well-defined value
m, a plot of the wave function corresponds to a vortexli
structure of theSx̃, Sỹ arrows with an apparent ‘‘vorticity’’ or
winding number equal tom, as we saw above. This feature
useful for identification ofm in the different modes obtaine
numerically for lattice systems.

The asymptotic behavior off andg can be calculated also
For r→0 we obtain the same result as forH50, namely,
f ,g;r uq1mu, which describes the presence of a ‘‘hole’’ in th
functionsm andq at the vortex core for large values ofm.
For large radius, in contrast with the case of zero field,30 the
asymptotics are more complicated, because the term
cosu0 in the right-hand side~RHS! of Eqs.~27! does not fall
exponentially, but only ash/x2. We show below that this
produces a crucial difference in the magnon modes of th
cases, namely, ‘‘giant doublet splitting,’’ which is a gia
field dependence of the splitting, observed in the numer
calculations of the modes.

Consider Eqs.~27! far from the vortex. Using the asymp
totics cosu0'h1h/x21(h/x4)(52h2)/(12h2) and keeping the
terms with the lowest powers of the small function 1/x2 only,
the potentials in these equations can be presented in the

-

de-
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V1512h22
11h2

x2
, V25

h2

x4
. ~28!

The potentialV1 having a term finite atx→`, an expression
for f in terms of g can be constructed as an expansion
powers of 1/x2. To do this, rewrite Eq.~27a! in lowest order
in 1/x2,

F2
d2

dx2
2

1

x

d

dx
112h21

m2212h2

x2 G f

5S vr v

c0
2

2mh

x2 D g. ~29!

Now let g}Zn(z), whereZ is one of the cylindrical~Bessel!
functions Jn or Yn and z5kr, wherek is a magnon wave
number whose value is determined byv through the disper-
sion relation ~7!. The index n will be allowed to differ
slightly from the integer valuem ~we check this below!.
Then, in this lowest approximationf is also proportional to
Zn(z), specifically, f (0)5(vr v /c)(k2r v

2112h2)21g. Con-
tinuing this way, we can findf in the form f 5 f (0)(11a/x2

1b/x41•••). Also, assuming smallk, with krv!1, we ar-
rive at

f 5
1

12h21k2r v
2 S vr v

c0
2

2mh

x2 D g. ~30!

The expansion off in the small quantitieskrv and 1/x2 could
be constructed with arbitrary accuracy, but for our case i
enough to use this expression. Note that only the term w
2mh/x2 is kept here, because it can be as large as or la
than the first term whenv is small. Using this formula and
Eq. ~27b!, far from the vortex we get an EVP forg(z) only.
It can be written as

d2g

dz2
1

1

z

dg

dz
2

n2

z2
g1

k2

z4

4h2~11m2!

~12h2!
g1g50, ~31!

wherek5krv(0) and the index is given by

n25m21
4mhvr v~0!

c0~12h2!
. ~32!

Thus, two unusual features are present for cone state
tices at nonzero magnetic field. First, nonintegern appear,
and second, terms like 1/x4 appear, caused by nonexpone
tial decay of the out-of-plane spin components in the vort
As was shown in Ref. 26, the terms with 1/x4 are very im-
portant for a description of magnon scattering by Belav
Polyakov solitons present in isotropic magnets. Account
for these modifications changes not only the coefficients
even the dependence of the scattering amplitude onk. To our
knowledge, equations with nonintegern have not appeared
before in the description of soliton-magnon scattering. N
we discuss the role of these terms in detail.

Obviously, at large distancesr @r v , the solution should
describe the free magnons scattered by the vortex. For
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magnons the solution is a combination of plane waves i
form g0} exp(ikW•rW) and gm5gm

0 }Jm(kr). If a vortex is
present, we can use the scattering approximation; then
function gm at kr→` could be rewritten as

gm}Jm~kr !1smYm~kr !, ~33!

whereJm(z) and Ym(z) are the Bessel and Neumann fun
tions, respectively, withinteger index m, and the quantity
sm5sm(k) ~scattering amplitude! determines the intensity
of the magnon scattering due to the presence of the vorte
one writessm52tandm , in standard notation for scatterin
problems, theS matrix can be written asSm5exp(2idm).

On the other hand, the solution of Eq.~31! without the
termsk2/z4 at r→` could be written as

g(0)5Jn~z!1s̃m~k!Yn~z!, ~34!

where the index of the Bessel and Neumann functions de
mined by Eq.~32! is noninteger. Then, at large but finite
distances, some corrections caused by the term proporti
to k2/z4 in Eq. ~31! must be taken into account. In the long
wave approximationk!1, these corrections are small, an
they decay faster than the cylindrical functions, but they
also important for the soliton-magnon scattering by t
Belavin-Polyakov solitons in isotropic ferromagnets, as w
shown in Ref. 26. Therefore, for nonzero field, the soluti
can be written in the form

gm5Jn~z!1sm~krv!Yn~z!1Dgm~k,z!, ~35!

where the noninteger valueunu'umu is determined by Eq.
~32!, and Dgm(k,z) represents the contribution of the ter
with (1/z4) in Eq. ~31!.

The functionDgm(k,z) can be considered as a small co
rection; see Ref. 26 for details. The role of the te
Dgm(k,z) could be important at smallz, and this correction
must be taken into account in the regionr 0!r !1/k, which
is used for calculation of the scattering amplitudesm(k) in
the long-wavelength approximation; see Refs. 30, 27,
26. For example, this term gives the dominant contribution
sm for all um11u.1, for Belavin-Polyakov solitons in iso
tropic ferromagnets.26 But we have shown that for the cone
state vortex case their accounting gives higher powers of
small parameterkrv to the scattering amplitude and the
corrections could be omitted. These terms are important
analysis of magnon modes for a finite-size magnet withR
<r v ; see the last section. Thus, in contrast with the Belav
Polyakov case, these corrections are unimportant in the s
tering approximation~far from the vortex! and they can be
omitted.

Now we are in a position to analyze the functiong @Eq.
~35!# describing magnon mode and magnon-vortex scat
ing. The most important thing for our problem is that th
value of s̃m(k) @see Eq.~34!# could differ from the real
scattering amplitudesm(k). In the long-wave approxima
tion, this can be seen if we take into account that the te
with sm(krv) andr v

2k2, as well as the differenceun2mu, are
small. Then, the Bessel functionJn(z) can be expanded in
powers of the small quantityun2mu and represented throug
4-11
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B. A. IVANOV AND G. M. WYSIN PHYSICAL REVIEW B 65 134434
Jm(z). Using the formula (dJn /dn)m'pYm/2 at z→` ~see
Ref. 35! and the concrete value ofn2m from Eq. ~32!, the
desired relation between thes̃m(k) and the scattering ampli
tudesm(k) can be written as

sm~k!5s̃m~k!1
phvr v

c0~12h2!
sgn~m!. ~36!

The value ofs̃m(k) is determined by the region near th
vortex core30 and could be calculated using the same meth
as in this article. Note that for all the modes Eq.~36! predicts
a linear dependence ofsm(k) on the wave vectork. The
same dependence occurs ath50 only for translational
modes, withm561. For the rest of the modes, withm
Þ61, the scattering is smaller than that for the translatio
mode withm561. As we show below, the same regulariti
are still valid for s̃m(k) at hÞ0.

The value ofs̃m(k) is determined by the region near th
vortex core. Ath50 it was calculated analytically, form
561 in Ref. 30 and form50 in Ref. 27. For other modes
was only investigated numerically. The important point
that the value ofs̃m(k) for m561 is largest at the long
wave limit ~linear ink), the values ofs̃m(k) are smaller for
m562 andm50 @the last one is proportional tok2ln(1/k)
~Ref. 27!#, and the scattering amplitudes for the other mod
are negligibly small. Using this, we can omit the terms̃m for
all the modes withmÞ0,61. The scattering amplitude o
these modes, in the lowest approximation onvr v /c, be-
comes

sm~k!5
phvr v

c0~12h2!
sgn~m!, umu.1. ~37!

For the most interesting case, the translational modes
umu51, the value ofs̃}k and we need to calculate it. It ca
be done in the same way as forh50 ~see Ref. 30!; we
discuss these calculations only briefly. We presentf (x), g(x)
in the form

f ~x!5 f (0)~x!@11a~x!#, g~x!5g(0)~x!@11b~x!#,
~38!

where f (0)(x) and g(0)(x) are known zeroth solutions de
scribing the soliton displacement,

f (0)~x!5
du0

dx
, g(0)~x!5sgn~m!

sinu0

x
, ~39!

and the functionsa andb are proportional to the small pa
rametervr v /c. Then, in an approximation linear ina, b,
andvr v /c, for x@1 one can get

~12h2!21/2g5
r 0

r
1

mvr

c0umu~11h!
2

2hvr 0
2

rc0~11h!2
lnS r

r 0
D .

~40!

This equation ath50 coincides with one from Ref. 30
Comparing this expression with Eq.~33!, in the region 1
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!x!kr0, where both are valid, and using the asymptotics
the cylindrical functions forz!1, specifically,J1'z/2, Y1

'22/(pz), we arrive at the formulas̃52(pk2c0r 0 /v)
3(11h)sgn(m). The logarithm in Eq.~40! gives higher
powers of the small quantityk, and the corresponding term
in s̃ are omitted. Using Eq.~36!, we can present the scatte
ing amplitudes(k) in the form

s umu5152
pvr 0

4c0
sgn~m!

123h

12h2
. ~41!

For the mode withm50 the term linear inv is absent,
and the dependences0}v2ln v found for h50 ~Ref. 27!
still holds forhÞ0. Thus, for all the modes withumu.1, the
presence of the magnetic field changes the scattering am
tude drastically: terms linear inv appear and the scatterin
amplitude athÞ0 becomes much larger than that for ze
field. We find that this produces a large splitting of the do
blets 6m, which has been verified by our numerical calc
lations. A more detailed investigation of these regulariti
important for the description of magnon modes for sm
particles in the so-called vortex state,21 will be carried out in
the next section.

IV. MAGNON MODES FOR CIRCULAR MAGNETIC
PARTICLES IN THE VORTEX CONE STATE

As was shown in Ref. 30, the scattering amplitude is
very convenient tool for calculation of frequencies of ma
non modes for finite-sized circular magnets. This amplitu
can be calculated analytically or numerically with the use
a shooting method30,28,26,27for an infinite-system size, or ex
tracted from numerical diagonalization for discrete finite-s
systems with particular boundary conditions. If the functi
sm(k) is known, it is easy to calculate magnon frequenc
for arbitrary system sizes and boundary conditions. For e
ample, in Ref. 30 the values ofsm(k) taken from numerical
data for the magnet with fixed~Dirichlet! boundary condition
~b.c.! and sizesR520a–100a were brought together an
used to describe the computer simulation of the vortex os
lations for theR572a system with free b.c.

During recent years the problem of magnon modes
finite-size magnetic particles has become very importan
connection with novel magnetic materials—granular ma
nets or magnetic dot arrays. These magnetic dots are mic
sized islands on a nonmagnetic substrate, made from di
ent soft magnetic materials and having different shape
circular, elliptical, or rectangular. They are interesting bo
from the practical~high-density magnetic storage media! and
fundamental points of view; see Refs. 20. Resonance exp
ments for such dot arrays show the presence of discrete m
non modes36 caused by space quantization due to the fin
dot size.

The theory of such modes was constructed forhomoge-
neous in-plane magnetization.37 On the other hand, it is
known that small particles can be in different inhomog
neous states, namely, vortex states,21 and so-called leaf or
flower states.38 In this section, we apply our vortex-magno
4-12
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scattering theory to a finite-sized circular magnet in the c
vortex state. Note that we do not intend a quantitative
scription of the magnon modes in a real circular or cylind
cal particle in the vortex state. The vortex state is formed
the long-range magnetic dipole interaction,21 and this inter-
action is not included in our model, but does play an imp
tant role in forming the magnon mode spectrum; see Ref.
On the other hand, the main features of the model inve
gated below, such as the doublet splitting and the presenc
anomalous low frequencies, must be model independent
present for real particles in vortex states.

We discuss the magnon modes for a two-dimensional
cular magnet with radiusR ~or a thin cylinder! and some
boundary condition atr 5R. For definiteness, we apply fixe
boundary conditions,u5u0 at r 5R. For h50 and large
enoughR@r v , the frequencies are completely determin
by the scattering amplitude,30 but for the cone state the situ
ation is more complicated.

As was shown in the previous section, due to the sl
~power! decay of the out-of-plane magnetization in the vo
tex, the correctionDgm(k,z) proportional tok2h2 appears in
the solution @See Eq. ~35!#. Moreover, the equation
(dJn /dn)n5m5(p/2)Ym , used for the derivation of the sca
tering approximation, is only valid at argumentkr@1.

But for the more interesting low-frequency magn
modes, with small principal quantum numbersn, the values
of kR are not large; in the lowest approximation the boun
ary conditions forcekR to be zeros of Bessel functions~see
below!. Thus, the universal connection betweens(k) and
magnon frequencies athÞ0 can be established only forn
@1. To investigate the cases of interest,n51,2, . . . , one
needs to use the exact formula for (dJn /dn)n5m and take
into account the corrections caused by the terms 1/z4 in Eq.
~31!.

This is a complicated problem, the full solution of whic
is far from the aim of this article. Two interesting limitin
cases are considered here. The first is the case of small
where the correctionDgm(k,z), quadratic inh, can be omit-
ted. For small fields the vortex core size is equal tor 0, and it
could be much less than the system sizeR. The second case
deals with the limitH'Ha . There the vortex core sizeW
grows asH→Ha , and for arbitrarily large values ofR/a, the
values ofW and R become comparable for someH nearly
equal toHa . Obviously, the scattering approximation fails
this limit, and to describe it a special technique is presen
below.

A. Large system size and small field

To calculate the magnon modes for small but nonz
field, the correctionDgm(k,z) can be omittted, and it is mor
convenient to present the solution~33! throughJn and J2n

instead ofJm andYm ,

gm5Jn~z!1 s̃̃n~k!J2n~z!, ~42!

where n is considered apositive nonintegral number,n
5umu1(2hvr 0 /c)sgn(m), for h!1, hÞ0. The function

s̃̃n(k) can easily be written throughs̃m(k); it is zero in the
absence of scattering.
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For modes withmÞ0,61, the values ofs̃ ~or s̃̃) are
negligibly small, and the b.c. immediately gives us the eq
tion for the frequencies of the modes with givenm, n, in the
form vm,n5 j n,nc(h)/R, where j n,n is thenth zero ofJn(z).
Thus, for smalln2umu and c(h)'c0, the frequency form
Þ0,61 takes the form

vm,n5vm,n
(0) 1dvm,n , ~43!

wherevm,n
(0) determines the frequency in the main appro

mation ona/R and depends onumu,

vm,n
(0) 5

c0 j m,n

R
. ~44!

As for the homogeneous case, it is seen that in this appr
mation, doubly degenerate modes~i.e., doublets! appear. The
next correctiondvm,n can be written as

dvm,n52hJSS a

RD 2

sgn~m! j m,nS d jn,n

dn D
n5m

. ~45!

This term produces the characteristic feature of mag
modes for vortex-state particles, namely, the splitting of
doublets. This splitting is clearly seen in numerical resu
see Fig. 9. This splitting formÞ0,61 is proportional to the
magnetic field,

Dv umu,n[v umu,n2v2umu,n

54hJSS a

RD 2

j m,nS d jn,n

dn D
n5umu

. ~46!

The values of (d jn /dn)n5umu can be expressed through som
long, but finite combinations of Bessel functions~see Ref.
35! or found numerically. Atn@1, the simple expression
(d jn /dn)n5umu5(p/2)@Nm( j m,n)/Jm8 ( j m,n)# can be used.

Formula~46! is in good agreement with our numerics fo
m52,3,4 ~only n51 was considered!. For comparison of the
analytical and numerical results the dimensionless quant

DV[Dv~R/a!2~1/JS!54h@ j n,n~d jn,n /dn!#n5m ~47!

is most convenient. Some doublet splitting results from n
merical simulations forumu.1 on anR530a system are
shown in Fig. 10. Forn51 the theory givesDVm52 /h
526.09 @with (d jn /dn)251.27#, while the slope of the
Vm52(h) data is approximately 29.2; theory give
DVm53 /h531.39 @with (d jn /dn)351.23#, whereas the
slope from numerical results forVm53(h) is approximately
34.5; theory form54 gives DVm54 /h536.4, while the
slope from the data is 39.1. Similar calculations of the
slopes by numerical simulation on anR525a system gave
values of 32.6, 35.2, and 39.1, form52,3, and 4, respec
tively. Note that the numerical data do not go exactly throu
DV50 ath50, due to the breaking of the degeneracy the
caused by the lattice. However, the trends of slopes incr
ing with m are consistent with the theory, and the line
dependence onh is verified, providedh is not too close to
11.
4-13



e
e

c
h
E

se

our

ite
fre-

ome
or
en

e

ly
em,
ag-
us

r-
r
ld.
ter
s
d
case
ic
,
-

la
-
etic
in

e

le
d-

tic

B. A. IVANOV AND G. M. WYSIN PHYSICAL REVIEW B 65 134434
For modes withm561 it is necessary to calculate th
value of s̃m . For the lowest@the translational Goldston
mode~TGM!#, it is enough to use the expansion~40!, which
gives

v21,1[vTGM5JS~11h!S a

RD 2

. ~48!

The appearance of a mode with extremely low frequen
vTGM!vm,n

(0) }(a/R), is a specific feature of large enoug
systems in the vortex state. The theoretical prediction,
~48!, agrees very well with the numerical simulations forh
near zero; see Fig. 11.

For other modes withumu51, the splitting of the doublets
is

FIG. 10. Numerical results fromR530a system, for the split-
tingsDvm,n of the lowest doublets (n51) for umu52,3,4, as func-
tions of the magnetic fieldh. Dashed curves are guides to the ey
The slopes of the data nearh50 are 29.2, 34.8, and 39.1 forumu
52, 3, and 4, respectively.

FIG. 11. Numerical results for the splitting of the lowest doub
(n51) for umu51 and for the frequency of the translational Gol
stone mode~TGM!, as functions of the magnetic fieldh. Dashed
curves are guides to the eye, while solid curves show the theore
predictions described in the text, Eqs.~48! and ~50!.
13443
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Dvm,n522JSS a

RD 2

j 1,nH p

2
~11h!

N1~ j 1,n!

J18~ j 1,n!

22hS d jn,n

dn D
n51

J . ~49!

For h50, this coincides with results in Ref. 30. For the
modes,v(m521) in the same doublet is higher thanv(m
51). Forn51 and using (d jn,1 /dn)n51'1.34, the splitting
of the lowest doublet can be written

Dv1,15JSS a

RD 2

~6.157214.38h!, ~50!

a result that is found to be in reasonable agreement with
numerical data, as shown in Fig. 11.

B. Small system size and large field

In the previous subsection we have shown for the fin
system that as the field increases the translational mode
quency grows,vTGM}(11h)/R2, but the other mode fre-
quencies decrease,vm,n}A12h2/r vR. It is clear that the
frequencies of these modes become comparable at s
value of the magnetic field. Comparing the formulas f
vTGM andvm,n one can see that they are comparable wh
(12h);(11h)(r v /R)2, i.e., whenR;r v /A12h2.r v(h).
Thus, it happens at fields such that the vortex core sizer v(h)
becomes comparable with the system sizeR. It is seen that
frequency of the lowest mode withm521 ~the mode of
vortex translational motion! has the same order of magnitud
as other modes.

This limiting case,R!r v(h), is unrelated to the vortex
dynamic problem in the infinite FM. However, it precise
appears to be most fascinating for another actual probl
namely, the problem of the eigenmodes for small ferrom
netic particles in a nonuniform vortex state. Therefore, let
go into details.

In the limiting caseR!r v(h), one can expect that cha
acteristic gradient values ofu0(r ) are considerably highe
than that for a vortex in an infinite FM at the same fie
Then, within the main approximation in a small parame
R/r v(h), Eq. ~10! only has terms containing derivative
u0(r ) or the term with 1/r 2. This means that anisotropy an
magnetic field energies can be disregarded here; i.e., the
of the isotropic model is in fact realized. For the isotrop
FM, in this approximation Eq.~10! might be integrated once
which givesdu0 /dr5(1/r )sinu0. Then the analysis is sim
plified, and the soliton structure can be found exactly.39 Tak-
ing into account the boundary conditionsu0(0)50,u0(R)
5u` , the soliton structure is determined by the formu
tan(u/2)5(r /R)tan(u`/2). The calculation of the small cor
rections caused by the anisotropy energy and the magn
field gives the solution in the form of a series expansion
powers of small parametersr /r v(h)<R/r v(h),

.
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tanS u

2D5S r

RD tanS u`

2 D11~r 3/24r v
2R!~12h!@~r 2/R2!23#

12R2~12h!/12r v
2

.

~51!

An analysis of the normal modes on the background
this soliton in the isotropic case is also considerably simp
than for the anisotropic magnets. In particular, one can
actly construct the normal-mode wave functions atv→0
~Ref. 25! and reveal their structure for smallv.26 On the
basis of these solutions one can solve the problem even
nonsmallu` , which corresponds to 12h;h andR;r v .

But we are only interested in the caseR!r v(h), which
requires 12h!1. Then a further analysis will be carried o
for this limiting case. Therewith we restrict ourselves to
linear approximation in 12h. In this case it is convenient to
write Eqs. ~24! as the set of equations for the functionsu
5( f 1g)/2 andv5( f 2g)/2, which atu!1 are easily pre-
sented in the form

2
d2u

dx2
2

1

x

du

dx
1

~m11!2

x2
u1U~x!u1

1

2
V~x!v5

vr v

c0
u,

~52a!

2
d2v

dx2
2

1

x

dv
dx

1
~m21!2

x2
v1U~x!v1

1

2
V~x!u52

vr v

c0
v,

~52b!

where bothU(x) and V(x) are small~linear in 12h) at
h→1,

U~x!5S 22
h

2
2

m12

x2 D u0
22~12h!2

1

2
V~x!, ~53a!

V~x!5S du0

dx D 2

1S 12
1

x2D u0
2 . ~53b!

In the limit of h→1 this system transforms to two uncouple
equations, which go over into each other by substitutingm
for 2m andv for 2v. It is clear that for the solutions with
v.0 we are interested in, for small (12h), the functionv
;(12h)u!u. Then, the contribution of the term withv is
of the order (12h)2 and it can be omitted. Consequently, t
eigenmodes of the system are determined by a causal S¨-
dinger EVP foru(x) derived from Eq.~52a!. In a zeroth
approximation its solution can be written in terms of Bes
function Jn(kr) with integer indexn25(m11)2. Using the
boundary conditionsu(R)50 one obtains a zeroth solution

u~r !5Jn~ j n,nr /R!, vm,n5JS~a j um11u,n /R!2, ~54!

wheren5um11u and j n,n is thenth zero of the Bessel func
tion Jn(x). It is easy to see that within the zeroth appro
mation in (12h) ~i.e., h51), the modes withm5211n
andm5212n, wheren is a positive integer, have the sam
frequencies and atmÞ21 form doublets. For small enoug
values of (12h), we have a linear vortex profile~as in Fig.
1!: u(r )'(r /R)u` , with u`

2 '2(12h). Then the potential
U(x) is proportional to (12h):
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U~x!'2H 112S r v

R D 2

@~m12!2x2#J ~12h!. ~55!

Calculating the contribution of the potentialU(x) within per-
turbation theory, the eigenfrequencies can be presented

vm,n5JSS a

RD 2H j um11u,n
2 2F2~m12!

1
R2

3r v
2 S 12

4~n221!

j um11u,n
2 D G ~12h!J . ~56!

Thus, this degeneracy disappears if one takes into acc
the terms linear in (12h). Both the presence of the double
containing the modes withm5216n and the splitting of
these doublets linear in (12h) are in good agreement with
the numerical data ath'1. For modes which do not manifes
discreteness effects and have well-definedm, Eq. ~56! gives
a fairly good quantitative agreement with the numerical da
These data can be fit by the functionvm,nR2/Js2a25Am,n

(0)

1Am,n(12h) with good accuracy, comparing results of n
merical simulations forR530a with the theoretical expres
sion ~56!; see Table I. The values ofAm,n

(0) are consistently
within a few percent of the theoretical valuej um11u,n

2 . The
coefficientAm,n does not depend onn for n5um11u51, and
it can be presented as22(m12)212.1, which describes
well the observed values ofA0,1,A0,2 andA22,1,A22,2. Gen-
erally, the trends of theAm,n coefficients asm,n increase are
correctly predicted, such as the reversals of sign seen fom
524,25, although the actual numerical values are less
curately described. Also, formula~56! shows that the split-
ting Dvn5v212n2v211n of the doublets can be written
for fixed n, asDvnR2/JS2a254n(12h). So the slope of the
splitting versus (12h) is predicted to be 4n, independent of
n; the data of Table I give slopes of 3.6, 9.1, and 12.4

TABLE I. Magnetic field dependence nearh→1 for modes of
an FM system with radiusR530a andl50.99. The mode frequen
cies were fit to the formvm,nR2/(JSa2)5Am,n

(0) 1Am,n(12h), with
simulation and theory results@Eq. ~56!# compared.

n m,n Am,n
(0) ~sim./th.! Am,n ~sim./th.!

0 21,1 5.6412 / 5.7832 221.1/222.5
1 0,1 14.312 / 14.682 214.5/216.1
1 22,1 14.312 / 14.682 210.9/212.1
2 1,1 25.677 / 26.375 210.5/212.6
2 23,1 25.664 / 26.375 21.42/24.61
0 21,2 29.671 / 30.471 214.3/215.7
3 2,1 39.608 / 40.706 28.93/210.6
3 24,1 39.608 / 40.706 13.50/11.41
1 0,2 47.863 / 49.219 214.9/216.1
1 22,2 47.863 / 49.219 210.6/212.1
4 3,1 55.768 / 57.583 23.15/29.49
4 25,1 56.159 / 57.583 13.67/16.51
4-15
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n51 and n51,2,3, respectively, and a slope of 4.3 forn
52,n51, consistent with the theory.

For those doublets in which the mix of the states w
variousm ~for instance,m51 and23) occurs due to dis-
creteness effects, the limiting value of the frequency ah
51 is reasonably well described by the expression. The t
depending on (12h) in Eq. ~56!, however, deduced unde
the assumption of an individualm in the mode, does no
describe the observedh-field dependences for these partia
superposed modes. For example, for modes withm51 and
m523 (n52), there are notable differences between
simulation and theory results for theAm,n coefficients~Table
I!; see also then54 doublet. However, for the field depen
dence of the mean doublet frequency, (v212n,n
1v211n,n)/2, the simulation and theory results have som
what better agreement. However, the doublets atn52, n
54 are split even ath51, due to discreteness effects of th
lattice, and it is clear that this makes application of Eq.~56!,
derived from continuum theory, problematical for the
cases. With this exception, however, the theory given h
enables us to describe eigenfrequencies with a givenm in the
caser v!R!r v(h).

V. CONCLUSIONS

Easy-plane anisotropy combined with a magnetic fi
perpendicular to the easy plane leads to interesting new
tures in the vortex properties and their effect on the scat
ing of magnons. This combination of anisotropy and fie
leads to the so-called cone state, where the spins tilt a
angle determined by the magnetic field relative to anisotr
strength, cosu05h, at an arbitrary in-plane angle. In the pre
ence of weak anisotropy@(12l),0.28 for square lattice#,
the stable out-of-plane vortices are modified by the magn
field into light and heavy branches, depending on whet
the magnetic field is aligned with (h.0) or contrary to (h
,0) the out-of-plane component (Sz) of the vortex. In the
limit h→1, the light-vortex energy goes to zero, as seen
Fig. 4, and the vortex width becomes larger than the sys
size. On the other hand, at large negative magnetic field,
heavy-vortex width decreases, and at a certain critical fi
hc,0, the vortex becomes unstable. Beyond this limit th
are no heavy vortices; the central core region spins rev
and the vortex transforms to a light vortex. This instabil
can be explained as due to discreteness effects of the la
which can be accounted for, to leading order, by includ
fourth-order derivative terms in the continuum limit Ham
tonian, together with a variational ansatz for the vortex o
M

d
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of-plane structure. This theory also gave a reasonable
scription of the dependence ofhc on the easy-plane
anisotropy strength (12l), as presented in Fig. 5.

The presence of a cone-state vortex modifies the spec
of magnons, which we analyzed through a numerical rel
ation procedure and through analysis of the dynamical os
lations about the vortex structure. The most significant eff
of the magnetic field on this spectrum is its influence
doubly degenerate modes. For small fieldsuhu!1, pairs of
modesv6m,n , with umu.1, which are nearly degenerate
h50, obtain a splitting proportional to the magnetic fiel
The frequency of the mode withm.0 increases withh,
while the frequency of the mode withm,0 decreases with
h. Lack of exact degeneracy ath50 is attributed to the scat
tering amplitudes̃m(k) @see Eq.~34!#, which is small but
nonzero even ath50, as well as to lattice effects. For th
modes withumu51, there is also a linear dependence of t
frequency onh at small fields, although a finite splitting i
present in these doublets even ath50.

In the limit h→1, a different set of doublets is presen
those with equal values ofum11u or, equivalently, pairs with
m5216n, wheren is a positive integer. This clearly ap
pears in Fig. 9. For these doublets, the mode with the m
negativem is higher in frequency, and their splitting is pro
portional to (12h), with the pairs being very close to de
generate ath51 ~except for small effects due to the lattice!.

This latter limit also is relevant for consideration o
modes in small magnetic particles: when the particle siz
smaller than the vortex core size for that magnetic field@R
!r v(h)#, this leads to the presence of the weakly split do
blets nearh→1. Also, such particles will be expected t
have an anomalously low-frequency mode~the translational
Goldstone mode! once the magnetic field is adjusted to sm
valuesh!1. The general features found in the model syst
considered here are expected to appear in real particles
though the details due to influence of different geometry a
dimensionality may be different. Thus it may be interesti
to look for either type of weakly split doublets, either ne
h50 or nearh51, in resonance experiments on small p
ticles supporting vortex states.
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