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Derivation of the Curie-Weiss law in dynamical mean-field theory
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We present an analytic derivation of the linear temperature dependence of the inverse static susceptibility
x21(T,U);T2Tc(U) near the transition from a paramagnetic-to-ferromagnetic correlated metal within the
dynamical mean-field theory for the Hubbard model. The equations for the critical temperature and interaction
strength of the transition are also determined.
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I. INTRODUCTION

The dynamical mean-field theory~DMFT! is a nonpertur-
bative and thermodynamically consistent approximat
scheme for quantum-mechanical many-body problems o
lattice ~for reviews, see Refs. 1–3! which becomes exact in
the limit of large coordination numbers.4 In contrast to the
static Hartree-Fock mean-field theory the dynamics of
quantum-mechanical correlation problem is fully included
the DMFT. In the last few years the DMFT proved to be
powerful tool for the investigation of fermionic lattice mod
els with local Coulomb interaction such as the Hubba
model and the periodic Anderson model.1,2 It is particularly
useful in the case of intermediate-coupling problems suc
the Mott-Hubbard metal-insulator transition or itinerant fe
romagnetism where perturbative techniques fail~for reviews,
see Refs. 1, 5 and 6!. In the DMFT the lattice problem is
mapped onto an effective single-site problem whose s
energyS(v) and Green functionG(v) have to be calculated
self-consistently with thek-integrated Dyson equation. Th
theory is therefore purely local, i.e., the self-energyS(v) is
k independent and the propagatorGk(v)5Gk

0@v2S(v)#
may be represented by the noninteracting propagatorGk

0 at
shifted frequency, at least in the paramagnetic case. Here
mean-field character of the theory becomes particularly
dent. The local nature of the theory implies that short-ran
order in position space is missing.

Numerical solutions of the DMFT equations, in particul
by quantum Monte Carlo simulations, revealed that in
case of continuous phase transitions~e.g., from a paramag
netic metal to an antiferromagnetic insulator,7 or to a ferro-
magnetic metal8! the static susceptibilityx(T) shows a
Curie-Weiss behavior aboveTc , i.e.,x21}T2Tc , implying
that x}(T2Tc)

2g diverges with a critical exponentg51.
Furthermore, the order parameter was found to vanish w
an exponentb51/2.8,9 In view of the mean-field nature o
the DMFT these numerical findings did not come as a s
prise. However, considering the dynamics of the quantu
mechanical problem the situation is not as self-evident a
may seem. At a continuous phase transition between
phases in high dimensions, a mean-field behavior is natur
expected if the low-energy excitation spectrum of bo
phases has a gap. In this case, the fermions may be integ
0163-1829/2002/65~13!/134433~4!/$20.00 65 1344
n
a

e

d

as

f-

he
i-
e

e

th

r-
-
it
o

lly

ted

out, leading to an effective Ginzburg-Landau-Wilson fie
theory.10 This applies to transitions in the Heisenberg sp
model. By contrast, if the transition occurs between twome-
tallic phases, e.g., from a paramagnetic-to-ferromagn
metal, or between a metallic and an insulating phase,
result is far from trivial since the low-lying excitations in th
metallic phases may couple to the order parameter
thereby lead to divergences in the effective field theory
T50 or even at very low temperatures.11 At present, the
consequences of this feedback are still not entirely und
stood. It is therefore worthwhile to further investigate t
transition between two metallic phases, also within t
DMFT, usinganalytical methods.

Curie-Weiss behavior of the magnetic susceptibility is t
ditionally associated withlocalizedmagnetic moments, and
indeed, is readily obtained for Heisenberg-type spin mod
in mean-field approximations. Nevertheless, it is also a ch
acteristic of interacting itinerant electrons as described,
example, by the Hubbard model. In particular, a Curie-We
behavior may be obtained within the Hartree-Fock appro
mation which yieldsxHF

21(T);T22Tc
2 aboveTc .5,12 How-

ever, since this result is derived for interaction streng
where the Hartree-Fock approximation is not controlled
perturbation theory, its qualitative and quantitative validity
questionable.13 The same criticism applies to the Stoner c
terion for the onset of ferromagnetism.14

To calculate the static magnetic susceptibility in the vic
ity of a continuous phase transition from the paramagne
to-ferromagnetic metallic state where electronic correlatio
are explicitly included we will use the one-band Hubba
model

H5(
i j ,s

t i j cis
† cj s1U(

i
ni↑ni↓ ~1!

on an arbitrary lattice and employ the DMFT. In particula
we will show that the critical exponent is indeedg51.

II. DERIVATION OF THE SUSCEPTIBILITY

We wish to calculate the magnetization density

m5~1/2b!(
n

sGsn , ~2!
©2002 The American Physical Society33-1
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where the local Green functionGsn in DMFT is given by the
bare density of statesN0(e) and the local self-energySsn as

Gsn5E de
N0~e!

ivn1m1sh2Ssn2e
. ~3!

Here the subscriptn refers to the Matsubara frequencyivn
5 i (2n11)p/b for the temperatureT, with b51/kBT, andh
is the external magnetic field in energy units. Within t
DMFT the local Green functionGsn is determined self-
consistently through Eq.~3! and

Gsn52

E D@cs ,cs* #csncsn* eA$cs ,cs* ,G s
21%

E D@cs ,cs* #eA$cs ,cs* ,G s
21%

, ~4!

by thek-integrated Dyson equation

G sn
215Gsn

211Ssn . ~5!

The single-site actionA has the form

A$cs ,cs* ,G s
21%5(

n,s
csn* G sn

21csn

2UE
0

b

dtcs* ~t!cs~t!c2s* ~t!c2s~t!,

~6!

where we used a mixed time/frequency convention
Grassman variablescs , cs* .

We first separate the self-energySsn into its static~i.e.,
Hartree-Fock! part and its explicitly dynamical contributio

S̃sn as

Ssn5U
n0

2
2sUm1S̃sn . ~7!

Here n0 is the density of particles. The Hartree-Fock a

proximation corresponds to neglectingS̃sn . Since we are
interested in the behavior of the susceptibility close to a c
tinuous transition, i.e., in the limitsT→Tc , h→0, andm
→0, whereTc is the, yet unknown, Curie temperature, w
write

Gsn5Gn1dGsn ,

Gsn5Gn1dGsn ,

S̃sn5S̃n1dS̃sn , ~8!

where dGsn , dGsn , and dS̃sn are spin-dependent correc
tions to the respective paramagnetic~i.e., spin-independent!
parts. In the next step we expand Eqs.~3! and~5! up to first
order in these corrections. Using Eqs.~3! and ~7! we find

dGsn52@sh1sUm2dS̃sn#Fn , ~9!

where we introduced the function
13443
r

-

-

Fn5E de
N0~e!

F ivn1m2U
n0

2
2S̃n2eG2 . ~10!

As in the Weiss molecular-field theory, the particles may
interpreted as moving in aneffectivemagnetic field

he f f[h1Um2sdS̃sn . ~11!

However, in the case of interacting electrons considered h
this effective field is, in general, found to be dynamic, i.e.
fluctuates in time due to the local correlations which lead
an exchange of energy between the particles. Neglecting

dynamical termdS̃sn we recover the usual static mean-fie
expression for the effective magnetic field. Similarly, e
panding Eq.~5! and using Eq.~7! we obtain

G n
215Gn

211S̃n1U
n0

2
, ~12!

and

dGsn

G n
2

5
dGsn

Gn
2

1sUm2dS̃sn . ~13!

Our goal is to finddS̃sn and then, with the help of Eq
~9!, to calculate the magnetizationm. Since Eq.~13! still

contains the two unknown functionsdS̃sn and dGsn , an
additional condition is required to close the set of equatio
This condition is provided by the fact that the self-energy

a functional of Gsn in perturbation theory, i.e.,S̃sn

5S̃s@Gsn#, to infinite order. Hence, we can formally expan
as

S̃s@Gsn#5S̃s@Gn1dGsn#'S̃@Gn#1(
n8

dS̃@Gn#

dG n8

dG sn8 .

~14!

Using Eq.~12! relatingG and G we find the functional de-
rivative

dS̃

dG 5
dS̃

dG
•

dG

dG 5
1

F

dG

dG , ~15!

whereF[Fn is given by Eq.~10!. Employing Eq.~4! in the
paramagnetic phase and using Eq.~13!, we obtain the spin-

dependent correction to the self-energyS̃sn as

dS̃sn5sh(
n8

Mnn8
21 (

n9

Gn8n9Fn9

Fn8Gn9
2

1sUm(
n8

Mnn8
21 (

n9

Gn8n9

Fn8
S Fn9

Gn9
2 21D , ~16!

whereMnn8
21 is the inverse of the matrixMnn8 defined as
3-2
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Mnn8[dnn81
Gnn8
Fn

S Fn8

Gn8
2 21D , ~17!

and

Gnn8[
1

2 (
ss8

@^csncsn* cs8n8cs8n8
* &2^csncsn* &^cs8n8cs8n8

* &#

~18!

is the two-particle density-density correlation function calc
lated in the paramagnetic phase. We note that in the Hart
Fock approximation the two-particle correlations are n

glected, i.e.,Gnn8
HF

50, and thereforeS̃sn50.
The spin-dependent correction to the local Green func

Gsn can now be expressed as

dGsn52s@hHn1Um~Hn1DHn!#Fn , ~19!

where

Hn[12(
n8

Mnn8
21 (

n9

Gn8n9Fn9

Fn8Gn9
2 , ~20!

and

DHn[(
n8

Mnn8
21 (

n9

Gn8n9

Fn8

. ~21!

We see that the effective magnetic field~11! acting on an
electron is given by

he f f5hHn1Um~Hn1DHn!. ~22!

It is interesting to observe that the dynamics of the two ter
is different, i.e., the correlation problem leads to an asymm
try between the external~h! and the induced (Um) effective
magnetic fields. The origin of this asymmetry lies in t
self-consistency Eq.~5!, where h enters throughdGsn ,
while Um enters both throughdGsn and Ssn . In the
Hartree-Fock approximation, the frequency-dependent
torsHn andDHn reduce to unity and zero, respectively, su
that he f f5h1Um becomes astatic effective magnetic field.

We are now able to calculate the magnetic susceptib
xDMFT(T,U). Noting that the magnetizationm, Eq. ~2!, has
nonvanishing contributions only fromdGns , and using Eq.
~19! one finds

m52
1

b (
n

HnFnh2
1

b (
n

~Hn1DHn!FnUm. ~23!

The linear magnetic susceptibility is then obtained fromm
5xDMFT(T,U)h as

xDMFT~T,U !5
x0~T,U !

12U@x0~T,U !1Dx0~T,U !#
, ~24!

where

x0~T,U !52
1

b (
n

HnFn , ~25!
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Dx0~T,U !52
1

b (
n

DHnFn . ~26!

Equation ~24! with Eqs. ~25! and ~26! is one of the main
results of our paper. We note that the expression for the s
susceptibilityxDMFT(T,U) in Eq. ~24! is deceptively simple.
Indeed, it has theform of the corresponding random phas
approximation~RPA! expression, with the Pauli susceptibi
ity x0(T) of the noninteracting system replaced by the s
ceptibilitiesx0(T,U) andDx0(T,U) of the interacting sys-

tem. If bothS̃n andGnn8 were neglected we would recove
the well-known Hartree-Fock result. The result for the sta
susceptibility can be expressed in the RPA-like form

xDMFT~T,U !5
x~T,U !

12Ux~T,U !
~27!

with

x~T,U ![
x0~T,U !

12UDx0~T,U !
. ~28!

This equation suggests that, as in RPA, the susceptib
can be written as an infinite series of bubble diagrams w
~three-leg! vertex corrections. So far it was not possible
deconvolute the corresponding Bethe-Salpeter equation
the vertex corrections, since the scattering function~four-leg
vertex!, althoughk independent in the infinite dimensiona
theory, is still a complicated function of frequency. It shou
be noted, however, that our algebraic derivation of the st
susceptibility is nonperturbative anyway since it is not bas
on direct diagrammatic resummations.

III. DISCUSSION

The transition point between the paramagnetic and fe
magnetic phases is determined by the divergence of the s
susceptibilityxDMFT(T,U) in Eq. ~24!,

12U@x0~Tc ,U !1Dx0~Tc ,U !#50. ~29!

Using the spectral representation for the summation over
Matsubara frequencies one can write Eq.~29! in a closed
form as

12E
2`

`

deS 1

ebce11
D H 2

1

p
Im@„H~e1 i01!

1DH~e1 i01!…F~e1 i01!#J 50, ~30!

where H(e1 i01) and DH(e1 i01) are obtained by ana
lytic continuation: Hn[H( ivn)→H(e1 i01) and DHn
[DH( ivn)→DH(e1 i01). It should be noted thatH(e)
andDH(e) are still functions of temperature because of t
internal summations over Matsubara frequencies in Eqs.~20!
and ~21!. For givenU Eq. ~30! determines the Curie tem
peratureTc(U). Similarly, one may fix the temperature t
determine the critical interaction strengthUc(T). In this re-
3-3
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spect Eqs.~29! and ~30! are generalizations of the Stone
criterion15 Uc

Stoner51/N0(eF) obtained in Hartee-Fock
theory. In general Eq.~30! implies that, due to the inclusion
of genuine correlations, the transition point to the ferroma
netic phase is not merely determined by the density of st
~DOS! at the Fermi level but, rather, by the density of stat
at all energies. Due to the increase in the kinetic energy
value ofUc is reduced by an asymmetric DOS, especially
the DOS has a singularity at the lower band edge. This
already been found in the numerical solution of the DMF
equations for a model DOS using Monte Car
simulations8,14 and in the approximate treatment of DMF
within the modified perturbation theory.16 Equation~30! con-
firms these numerical findings analytically and explains
origin as a correlation effect.

Expanding the static susceptibility~24! aroundTc(U) ~for
T.Tc.0) we find a Curie-Weiss law

xDMFT~T,U !5
CDMFT@Tc~U !,U#

T2Tc~U !
, ~31!

with

CDMFT@Tc~U !,U#52
x0@Tc~U !,U#

UH d@x0~T,U !1Dx0~T,U !#

dT J
Tc(U)

,

~32!
v

m
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which is hence seen to be a genuine property of the DM
The critical exponentg51 is in accordance with the mean
field nature of the DMFT, which neglects short-range spa
correlations between the electrons.

In the similar manner one can show that atT50, where
the transition becomes a quantum phase transition, the s
spin susceptibility diverges as the control parameterU ap-
proachesUc(T50) from below,

xDMFT~T50,U !;
1

Uc~T50!2U
, ~33!

with the mean-field exponentg51.
While the dynamics, i.e., the effect of temporal corre

tions, is found to be very important in determining nonu
versal quantities such as the critical temperature or the C
constant, we conclude that it apparently does not affect
universal scaling properties of the paramagnetic-
ferromagnetic phase transition within the DMFT.
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