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Derivation of the Curie-Weiss law in dynamical mean-field theory
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We present an analytic derivation of the linear temperature dependence of the inverse static susceptibility
x HT,U)~T—T,(U) near the transition from a paramagnetic-to-ferromagnetic correlated metal within the
dynamical mean-field theory for the Hubbard model. The equations for the critical temperature and interaction
strength of the transition are also determined.
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[. INTRODUCTION out, leading to an effective Ginzburg-Landau-Wilson field
theory?® This applies to transitions in the Heisenberg spin
The dynamical mean-field theoffPMFT) is a nonpertur- model. By contrast, if the transition occurs between tme-
bative and thermodynamically consistent approximationtallic phases, e.g., from a paramagnetic-to-ferromagnetic
scheme for quantum-mechanical many-body problems on &etal, or between a metallic and an insulating phase, the
lattice (for reviews, see Refs. 1}3vhich becomes exact in result is far from trivial since the low-lying excitations in the
the limit of large coordination numbefsin contrast to the Metallic phases may couple to the order parameter and
static Hartree-Fock mean-field theory the dynamics of thdhereby lead to divergences in the effective field theory at
quantum-mechanical correlation problem is fully included in T =0 OF even at very low temperaturgsAt present, the

the DMFT. In the last few years the DMFT proved to be aconséduences of this feedback are still not entirely under-
powerful tool for the investigation of fermionic lattice mod- stood. It is therefore worthwhile to further investigate the

els with local Coulomb interaction such as the HubbardtranSItlon _between_ two metzliic phases, also within the
o . . DMFT, usinganalytical methods.
model and the periodic Anderson modéllt is particularly curi iss behavior of th . ibility i
useful in the case of intermediate-coupling problems such agii urie-Weiss penavior o t © magnetic §uscept| ity 1S tra-
. . " itionally associated witlocalizedmagnetic moments, and,

the Mott—Hubbard metal-msulgtor tran§|t|on or_mnerant fer'indeed, is readily obtained for Heisenberg-type spin models

romagnetism where perturbative techniques(fait reviews,  ;, mean-field approximations. Nevertheless, it is also a char-

see Refs. 1, 5 and)6In the DMFT the lattice problem is cteristic of interacting itinerant electrons as described, for

mapped onto an effective single-site problem whose selfayxample, by the Hubbard model. In particular, a Curie-Weiss

energy () and Green functio(w) have to be calculated  pehavior may be obtained within the Hartree-Fock approxi-

self—copsstently with thek—mtegrgted Dyson equation. .The mation which yieldsX,]é(T)~T2—T§ aboveT,.>*? How-

theory is therefore purely local, i.e., the self-eneBfw) is  ever, since this result is derived for interaction strengths

k independent and the propagatGi(w)=Ggw—3(w)]  where the Hartree-Fock approximation is not controlled by

may be represented by the noninteracting propagéﬁoat perturbation theory, its qualitative and quantitative validity is

shifted frequency, at least in the paramagnetic case. Here tlipiestionablé® The same criticism applies to the Stoner cri-

mean-field character of the theory becomes particularly eviterion for the onset of ferromagnetisth.

dent. The local nature of the theory implies that short-range To calculate the static magnetic susceptibility in the vicin-

order in position space is missing. ity of a continuous phase transition from the paramagnetic-
Numerical solutions of the DMFT equations, in particular to-ferromagnetic metallic state where electronic correlations

by quantum Monte Carlo simulations, revealed that in theare explicitly included we will use the one-band Hubbard

case of continuous phase transitidiesg., from a paramag- model

netic metal to gn antiferromagnetic insulatar to a ferro-

magnetic metd) the static susceptibilityy(T) shows a _ ¥

Curie-Weiss behavior abovk,, i.e., y 1«T—T., implying H _”EU GjCioCio* Uzi MitMiy @

that yo<(T—T.) ™7 diverges with a critical exponent=1.

Furthermore, the order parameter was found to vanish witln an arbitrary lattice and employ the DMFT. In particular,

an exponeniB=1/228° In view of the mean-field nature of Wwe will show that the critical exponent is indegc- 1.

the DMFT these numerical findings did not come as a sur-

prise. However, considering the dynamics of the quantum- Il. DERIVATION OF THE SUSCEPTIBILITY

mechanical problem the situation is not as self-evident as it

may seem. At a continuous phase transition between two

phases in high dimensions, a mean-field behavior is naturally

expected if the low-energy excitation spectrum of both _

phases has a gap. In this case, the fermions may be integrated m (1/2@; 7Gon. @

We wish to calculate the magnetization density
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where the local Green functidd,,, in DMFT is given by the
bare density of stateN¥®(€) and the local self-energy,, as
Gon= f d NXe) 3
on— eiwn+/_1,+0'h—2,m—€' ©

Here the subscripth refers to the Matsubara frequeniy,,
=i(2n+1)w/ B for the temperatur@&, with 3= 1/kgT, andh

is the external magnetic field in energy units. Within the

DMFT the local Green functiorG,, is determined self-
consistently through Eq3) and

f D[Ca' vC;]ConC;nGA{C” ’C:' 'g;l}
Go.n: - 1 ’ (4)

by thek-integrated Dyson equation

Gon =G +3 gn. (5)

on

The single-site actiomd has the form

Afe, €59, 1= 2 o nCon

B
— Uj drci(7)c,(T)c* (1)Cc_4(7),
0

(6)
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N(e)

Fn:f de . (10

. No <
Iwn-f-,LL—U?_En_é

As in the Weiss molecular-field theory, the particles may be
interpreted as moving in agffectivemagnetic field

hepi=h+Um—a83 . (11)

However, in the case of interacting electrons considered here
this effective field is, in general, found to be dynamic, i.e., it
fluctuates in time due to the local correlations which lead to
an exchange of energy between the particles. Neglecting the

dynamical term&i,,n we recover the usual static mean-field
expression for the effective magnetic field. Similarly, ex-
panding Eq(5) and using Eq(7) we obtain

~ n
g;1=6;1+2n+u7°, (12)
and
5G,, oG, 9
=t oUm—53,,. (13
gn Gn

Our goal is to findss,,, and then, with the help of Eq.
(9), to calculate the magnetizatiam. Since Eq.(13) still

where we used a mixed time/frequency convention forcontains the two unknown functionsX ., and 6G,,, an

Grassman variables, , c¥ .
We first separate the self-energy,, into its static(i.e.,

Hartree-Fock part and its explicitly dynamical contribution

3 0 as

n ~
Sn=U7 —oUm+S,,. (7)

Here ng is the density of particles. The Hartree-Fock ap-

proximation corresponds to neglectig,,. Since we are

additional condition is required to close the set of equations.
This condition is provided by the fact that the self-energy is

a functional of G,, in perturbation theory, i.e.,i,,n

=§(,[g(m], to infinite order. Hence, we can formally expand
as

83[Go]

n’

8G yuv -
(14)

S o[Gonl =2 [ Gn+ 8Gon] ~S[Gal + 2

interested in the behavior of the susceptibility close to a conysing Eq.(12) relating G and G we find the functional de-

tinuous transition, i.e., in the limit¥—T., h—0, andm

—0, whereT, is the, yet unknown, Curie temperature, we

write

Gon=Gut G,
Gon=Gn* 9Gsn,

ilfnzin—’_(si(fn’ (8)

where 6G,,, 8G,,, and 5§Un are spin-dependent correc-

tions to the respective paramagne(ie., spin-independent
parts. In the next step we expand E@.and(5) up to first
order in these corrections. Using E@3) and (7) we find

8G = —[oh+aoUm—383,,]F,, (9)

where we introduced the function

rivative

85 538G 168G
3G 3G oG F 50" 19

whereF=F,, is given by Eq.(10). Employing Eq.(4) in the
paramagnetic phase and using ELB), we obtain the spin-

dependent correction to the self-ene%yn as

~ I nF e
S oa=ch>, M_2> T
" n' nn n” Fn’Gﬁu
_ 'y Fon
foUmY M LS o ( " —1), (16)
n’ n” n’ n”

whereM % is the inverse of the matrid,, defined as
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o [ Fo and
IVlnn’Eénn""% _2_ )1 (17) 1
n !
n Axo(T,U)=—= >, AH,F,. (26)
and B
1 Equation(24) with Egs. (25 and (26) is one of the main
r.,== ConC¥Corn ) V= (CunCX MCyrniCh, results of our paper. We note that the expression for the static
"2 (,2,,: [{CanConCornCorn) = (ConCon)(CornCorrr)] susceptibilityy®™FT(T,U) in Eq. (24) is deceptively simple.

(19 Indeed, it has théorm of the corresponding random phase

is the two-particle density-density correlation function Calcu_f’approximation(RPA) .expres.sion, with the Pauli susceptibil-
vy xo(T) of the noninteracting system replaced by the sus-

lated in the paramagnetic phase. We note that in the Hartre AT . :

Fock approximation the two-particle correlations are ne-Cept'b'I't'eS{O(T’U) andA xo(T,U) of the interacting sys-

glected, i.e.T"F =0 and thereforéar,:O. tem. If bothX,, andI",,, were neglected we would recover
rghe well-known Hartree-Fock result. The result for the static

nn’
The spin-dependent correction to the local Green functio L isceptibility can be expressed in the RPA-like form

G,n can now be expressed as

(T,U)
8G o= —o[hH,+Um(H,+AH,)]F,, (19) DMFT __ XY
n [ n n n ] n X (T,U) 1—U)((T,U) (27)
where .
with
_ Fn/n//an
Hi=1-2 M > ———, (20) _ Xo(T.U)
n/ nn n// Fn’Gn” X(TIU)_ 1_UAXO(T,U) . (28)
and This equation suggests that, as in RPA, the susceptibility
can be written as an infinite series of bubble diagrams with
AH EE M1 Lo (21) (three-leg vertex corrections. So far it was not possible to
SRR —E deconvolute the corresponding Bethe-Salpeter equation for

) o ) the vertex corrections, since the scattering functionr-leg
We see that the effective magnetic fiefifl) acting on an  yertey, althoughk independent in the infinite dimensional
electron is given by theory, is still a complicated function of frequency. It should
_ be noted, however, that our algebraic derivation of the static

hetr=hHqy+UM(H,+AH,). (22) susceptibility is nonperturbative anyway since it is not based
It is interesting to observe that the dynamics of the two term®n direct diagrammatic resummations.
is different i.e., the correlation problem leads to an asymme-
try between the externgh) and the inducedm) effective Ill. DISCUSSION
magnetic fields. The origin of this asymmetry lies in the

self-consistency Eq(5), where h enters throughdG.,, The transition point between the paramagnetic and ferro-

while Um enters both throughsG,, and S In the magnetic phases is determined by the divergence of the static
on on:-

Hartree-Fock approximation, the frequency-dependent facguscepublhtyXD’V'FT(T,U) in Eq. (24),
torsH, andAH,, reduce to unity _and zero, respecti\_/ely, such 1—U[xo(Te,U) +Axo(Te,U)]=0. 29)
thathg¢s=h+Um becomes atatic effective magnetic field.

We are now able to calculate the magnetic susceptibilitydSing the spectral representation for the summation over the
¥PMFT(T,U). Noting that the magnetizatiom, Eq. (2), has Matsubara frequencies one can write E9) in a closed
nonvanishing contributions only fromG,,,, and using Eq. form as
(19) one finds

1
~ —Im[(H(e+i0")

1 1 €| ohece
m==-2 3 HFoh= 5 3 (Hyt AHFUm. (29 efect 1
n n

The linear magnetic susceptibility is then obtained from +AH(6+i0+))F(€+i0+)]] =0, (30)
=xPMFT(T,U)h as

where H(e+i0") and AH(e+i0") are obtained by ana-
xo(T,U) lytic continuation: H,=H(iw,)—H(e+i0%) and AH,

xPMFT(T,U) = 28 Liuc n
' 1—U[xo(T,U)+Axo(T,U)]’ =AH(|wn)—>AH(_e+|O _). It should be noted thaH(e)
andAH(e) are still functions of temperature because of the
where internal summations over Matsubara frequencies in Eaf.
and (21). For givenU Eq. (30) determines the Curie tem-
Yo(T,U)=— i E H.F,, (25) peraturch(U). S-i.mila_rly, one may fix the tempergture to
B “n determine the critical interaction strendth,(T). In this re-
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spect Egs.(29) and (30) are generalizations of the Stoner which is hence seen to be a genuine property of the DMFT.
criteriont®> US'™"®'=1/N%(er) obtained in Hartee-Fock The critical exponenty=1 is in accordance with the mean-
theory. In general Eq:30) implies that, due to the inclusion field nature of the DMFT, which neglects short-range spatial
of genuine correlations, the transition point to the ferromag-<orrelations between the electrons.
netic phase is not merely determined by the density of states In the similar manner one can show thatTat 0, where
(DOS) at the Fermi level but, rather, by the density of statesthe transition becomes a quantum phase transition, the static
at all energies. Due to the increase in the kinetic energy thepin susceptibility diverges as the control paraméteap-
value ofU, is reduced by an asymmetric DOS, especially if proachedJ (T=0) from below,
the DOS has a singularity at the lower band edge. This had
already been found in the numerical solution of the DMFT
equations for a model DOS wusing Monte Carlo
simulation§!* and in the approximate treatment of DMFT
within the modified perturbation theot§Equation(30) con-
firms these numerical findings analytically and explains the[io
origin as a correlation effect.

Expanding the static susceptibili¢@4) aroundT.(U) (for
T>T.>0) we find a Curie-Weiss law

xPMFT(T=0U)~ (33)

UJ(T=0)—-U"’
with the mean-field exponent=1.

While the dynamics, i.e., the effect of temporal correla-
ns, is found to be very important in determining nonuni-
versal quantities such as the critical temperature or the Curie
constant, we conclude that it apparently does not affect the
universal scaling properties of the paramagnetic-to-

COMFT[T(U),U] ferromagnetic phase transition within the DMFT.
XU = =gy (31
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