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Phase diagrams of the quantum transverse spig-Ising system with bimodal random field
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The bimodal random field quantum spinsing system is investigated by combining the pair approximation
with the discretized path-integral representation. The second-order phase transition lines, and tricritical points
are obtained for the bimodal random field distribution. Reentrant phase transitions, which may be caused by the
competition between quantum effects and randomness, are observed. The phase diagrams with respect to the
random field and the second-order phase transition temperaturéHi.g), plane, are studied extensively for
given values of the transverse figBland the coordination number
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I. INTRODUCTION biquadratic, and with a crystal-field interaction, were studied
within the MFA and the Monte Carlo simulatidh,and by

Phase transitions and the tricritical behaviors of the ranthe renormalization-group methdOn the other hand, the
dom field Ising model were studied extensively some year§uantum sping Ising model in the presence of both trans-
ago’~3For the spinj Ising model, Aharon{showed that the Vverse field and random fields was not studied with the
bimodal random field distribution leads to a tricritical behav-present formalism; therefore, it should also be studied exten-
ior, while the Gaussian distribution always exhibits a secondsively, since many cooperative phenomena could only be ex-
order phase transition. Fas and Kaneyoshistudied the plained by spin; Ising models.
spin2 Ising model in a bimodal random field within the  In this paper, the bimodal random-field quantum spin-
framework of the effective-field approximation based on ex-Ising model is investigated by combining the pair approxi-
act spin identities and the differential operator technique, angnation with the discretized path-integral representatiof’
showed that the system exhibiths a tricritical behaviorAn analytical expression for the second-order phase transi-
Mattis® examined the possibility of a first-order phase tran-tion line is obtained for the bimodal random-field distribu-
sition and the existence of a tricritical point for the trimodal tion, and the phase diagrams are obtained numerically in the
random-field distribution within the mean-field approxima- (H, T) plane for various values of the coordination number
tion, and concluded that there is no tricritical point for theand the transverse fiel@. It is observed that the system
Gaussian distributiofcorresponding tg= 2 in the trimodal  €xhibits tricritical points, and reentrant phenomena for ap-
random field distribution Various approximate methods Propriate ranges of transverse field and bimodal random field
were proposed to improve the results of the mean-field apare likely due to the competition between the quantum fluc-
proximation in this modef. tuations and randomness.

The SpinéL |Sing model in the presence of a transverse The outline of the remainder of the paper is as follows: In
field, the transverse Ising model, serves for the study of coSec. Il, the model is introduced, and the analytical expres-
Operati\/e phenomer(auch as reentrance behavior, pamd sion for the average free energy is obtained. In Sec. Ill an
phase transitions in many physical systéh@ne of the analytical expression for the second-order phase transition
problems is how the form of the random fields affects theline is obtained, and the existence of tricritical points and the
structure of the phase diagrams of the systems represented [gsults of the phase diagrams are discussed.
the transverse Ising mod€lIM). In some of the previous
works, the effects of the shapes of a random field on the
phase transitions in a quantum transverse spilsing
modef~'* and a spin-1 mod# are investigated. We consider the transverse Ising model with a bimodal

The quantum spin system with a random field was invesrandom field
tigated by combining the pair approximation with the dis-
cretized path-integral representati@@PIR) for spin+ (Ref.

11) and for spin-1 model¥ In these works, the phase dia-
grams were obtained numerically for some values of the co-
ordination numbezincludingz— o, the mean-field approxi- The Hamiltonian of the model is given by

mation (MFA), the existence of tricritical points, and

reentrance phenomena were examined for various symmetri-

cal random field distributions. Spi-models were intro- H=-J> S,ZSJ-Z—FZ S—> h$, 2
duced to explain phase transitidrin DyVO, (Refs. 14 and g ' :

15) and tricritical properties in ternary fluid mixturé$.

These were studied by the mean-field approximation. RewhereS’ andS! are the quantum spif-operators at site I’
cently phase transitions in the spirBlume-Emery-Griffiths  is the transverse Ising field, ai is the random field given
model with nearest-neighbor interaction, both bilinear anddy Eq.(1). The quantum spig-operators are given as

Il. HAMILTONIAN AND MODEL

P(hi)=3[8(h;+ho)+ 8(hi—ho)]. ()
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00 o0 -3 The free energy can be expressed in terms of the free

energyFE,Z) of the reference part and the cumulant expansion
The one-body effective Hamiltonian in the pair approxi- in the reference part,

mation is given by — BF@=InTrexg — BH?)

H(l):_I‘SX_(hi‘FHEﬁ)SZ, (4) . )
— _pE®@ (=

whereH®" is the one-body effective field. The corresponding =~ BFg +n§=‘41 n! (=B)"Ca(V), (10)

one-body partition function can be obtained from E.
and(4) as with
Z,(h; ,He T)=2 cosH 2 BT 2+ (h,+ H) ]} — BF=InTrexp( — BHE), (12)
+2 cosHiVT2+ (h + HMZ]).  (5) and the cumulants are given by
The pair Hamiltonian in the pair approximation is given by Ci(V)=(V)o, 12
12
H®=— 35S~ (h;+h*" S/~ (h;+ h*H S'— I(S+S)), Co(V)=(VZ) o= (V).

(6)

where(---)o denotes an average over the reference part. We
whereh®" is an effective field, which is related to the one- take the first cumulant here; the pair partition function may
body effective fieldH®™ by hef=[(z—1)/z]H®". The corre- be evaluated from
sponding pair partition function becomes
InZ;;(h; ,hj ,he"T)
=InTrexp — BHY) — B(V)o

The pair H.amiltonian. contains noncommuting operators.  _|, z,(h; ,h¢ ) +InZ(h ,hef )+ BImm (13)
In order to eliminate this problem we reformulate the pair I !
Hamiltonian in the DPIR to obtain the pair partition function. where
In the DPIR, the quantal four-state spireperator, on each
lattice site is converted into aP-component vector _, 9InZ;(h; ,hef T
uu® u®, . UP) and eventuallyP goes to infinity. mi=p ErGi , (14
Each componertV(t=1,2,...P) is then taken to be a clas-
sical spin variabld) =+ 2 and+3, and the net effect is to andz#'f(hj ,he"T) is the same as in E@4), with H*" replaced
represent the quantum uncertainty by creating many copie®y h®".
or replicas, of the original variables. By means of the DPIR, The free energy (h®") in the pair approximation is given
the pair Hamiltonian can be broken up into a reference paﬂt’y19
HE)Z), which involves only single-site terms, and an interac-

Z(h; ,h; ,h®"T)=Trexp — BH?). (7)

i ioh i z
tlon partV, which is — BT =(InZ)p+ [N Zh-2(NZdl, (19
H@=H@+vV, (8) ) ' I

where(---),, is the average over the random-field distribu-

where tion, which is bimodal in our case. In order to obtain the free
energyf(h®") explicitly, one needs to calculate; from Eq.

—BHY'=U;-a-Ui+U;-a-Uj+h;-Ui+h;- U+ PC, (14), which is
Wi neensin3pe3sizpel]
m; = ,
(@i =ad -1, (Ap1=a, - 26| cosliBe]+ costi 3 Bé]
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where £¢= T2+ (h,+h®™?2. Then the explicit form of the where
free energy is calculated from Eq®), (13), (15), and(16)
as

2+

z 27172
= B{(h*)n=(1—2)(In[2 cosH3 B} +2 costiz Bx} I, K= hi+ﬁheﬁ) } :

+ 2 (IN[2 cost{3 e} + 2 cosi3 A&} I,

and h; andh; means the random field acting on the sites
andj, respectively.

+ ;<|n[2 cosH2BE +2 cosHiBE ). Now we are in a pos_ition ready to quculate the free en-
! ergy when the system is exposed to bimodal random field
N distribution; so, using Eq1) and taking the average over the
+ T<mimi>hi i (17 bimodal random-field distribution of E¢17),

— B(t(hey)y=— %[ln[z Costf3 B} +2 costi} B, )+ In[2 costf3 B} +2 costf} Bic_}]1+ STIn[2 costf3BE. )

J
+2 cost{ 5.} +In[2 cosff3 B} + 2 costi2 B 11+ o LM+ (m)_y T2 18)

Ki= \/F2+

and, (m)r10 and (m)_,10 mean that in Eq(14) h; is taken to be equal thy and —hg, respectively.

whereé.. = \I'?+ (= hg+heM?,

2

+hot —— hef
0 z-1

IIl. RESULTS

The second-order phase transition lines can be obtained from the zero point of the coefficient of the second-order term in
Eq. (18), when the equation is expanded in termsh®f. As a result, the second-order phase transition line is given by the
nonlinear equation

1/2
B’ =(l) , (19

where

=23 10H2/G2+H?+8H?2\/GZ+ HZ cost B’ GZ+ HZ]+ 2H2/G2+ H? cosli 28’ G?+ H?]
1
+ F{?’GZ sinl B’ VG2 +HZ2]+4G?sin{ 2B’ JGZ+H?]+3G2sin{ 3B’ G2+ H?]} |,

y=42%(G?+H?)(cosl 3 8’ G?+ H2] +cosl 3 8/ GZ+ H?])?{108’ G2H2+ 108" H*+ 88’ HA(G2+ H?)cosl B’ G2+ H?]
+2B'H2(G?+ H?)cosi 28 G2+ H2]+ 3G2\/G?+ HZ sinl{ B’ GZ+ H?]+4G2 G2+ H2sin{ 28" G2+ H?]
+3G?G%+HZsinH 3B’ JGZ+H?]},

B'=pBz, G=T/z, andH=h,/z are the dimensionless pa- settingh,=0, the second-order phase transition line is ob-

rameters, and=1 for simplicity. tained by equatingd equal to zero in Eq(19),

There are two sensible cases for which the above formal- 1o
ism should be applied. The first case corresponds to the B,z(l) (20)
guantum transverse Ising model, which could be obtained by n z—-1)
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where are obtained using the above formalism for different values
of the transverse fiel®, i.e., 0.0, 0.75, 0.85, 0.92, 0.96, 1.0,
771=22i,{3625inr{,8’6]+462 sinf28'G] and ;.05 are given in Figs(d-1(g). As can be seen from
B the figure, the second-order phase transition temperdture
5 , indicated by solid lines, is lowered on increasing the strength
T3GTsinf{35°Gl}, of the random fieldH until it reachesT=0 or ends at the
and tricritical points. The tricritical points are labeled with solid
I . . ) 5 . circles in the figure. It should also be notes thatGdbe-
y1=42>G*(cosh 3 B'G]+cosh ; B'G]){3G" sini{ B’ G] comes larger the tricritical points appear at a lowereven-
+4G3sint{28'G]+3G* sinl[38'G1}. tua}lly, ac_:cordlng to the coordination numberthe tricritical
points disappear.
The second case corresponds to the random-field Ising When one decreases the random field, two successive
model, which is obtained by takinf=0. The second-order Phase transitions are observed; reentrant phenomena can be

phase transition line is obtained by setti@gqual to zero in  seen for appropriate values @&, and may be caused by
Eqg. (19, quantum effects and randomness. The second-order phase

" transition temperatur€, indicated by dotted lines, is lowered
,_ | 2 on decreasing the random figitlfrom a higher value. These
1P = (ﬁ) : @D Gotted lines terminate at a point | [ isor-
point in the region of the disor
dered phase indicated by solid rectangles, shown in the insets
of the figures. This point which can be called an end point,
7,=2%(10H3+8H3cost B'H]+2H3costi28'H]), appears at lower temperatures. When the random field is
lowered from above, quantum effects mainly contribute and
the transition from a disordered phase to an ordered phase is
more characteristic of quantum spin transitions than the fol-
lowing one. When the random field decreases further, it be-

where

and

v,=47°H?(cosh 3 B’H]+coshi 2 8" H])?{108" H*

+8B'H*cosh B'H]+2B'H*cosh23'H]}. comes dominant, and a reentrance transition to the disor-
N dered phase may take place.
The second-order phase transition temperatureare The behavior of the second-order phase transition lines

found iteratively from Eq(19) by varying the random field for a spin$ system is similar to the for spif<Ref. 4 and
H for given Value.s Of the transverse figkland the Coord-i'. Spin_l Systemg except near the zero second-order phase_
nation numbee. Similarly, the second-order phase transitionyransition temperatures. Both these models present reentrant
temperature§’ can also be obtained for the quantum trans-hehaviors as in the spifi-case, but in the figures the end
verse Ising model and the random-field Ising model by usingygints of the dotted lines are not indicated. It should also be
Egs.(20) and(21), respectively. o mentioned that Yokoto and Sugiyarhasing the MFA, and
Besides the second-order phase transition lines, on§armento and Kaneyoshiusing an effective-field theory
should also investigate the possibility of the existence Ofyith correlation, studied the random-field transverse Ising
tricritical points. In general, when the bimodal random field model and obtained the tricritical point and reentrant behav-
and transverse field are both present, the condition for thg,, 1t is also very interesting that the critical values@#nd
existence of tricritical points can be determined in the limit- j e Egs.(22), and(23), for the existence of the tricritical

ing case off =1/8"—0 in the following manner: We expand points are exactly? times of the Egs(25) and (26) of the
the free energy, i.e., Eq18), in terms of the effective field fjrst of Refs. 11.

he and then set the coefficients of the second-and fourth- Ag 2 final note, it should be mentioned that the pair ap-
order terms in the expansion to zero separately. As a resulbroximation is equivalent to the Bethe approximation, there-
two coupled equations are obtained and have to be solvegre, its free energy is lower than the MFA free energy. The
numerically. Finally we obtain pair approximation gives lower critical temperatures, but

overestimates the tendency toward ordering as in the MFA.

o> 8 271 (22 Figure 1 illustrates the changes of the phase diagrams for
255 z ' different values ofz When the coordination numberin-
creases, it can be compared with the MFA results. In the limit
3 4 7-1 z—oo, the ordinary MFA result for the quantum system is
H=z —=— (23 recovered. This may be caused by the pair approximation,
255 z taking into account the local structure of the interaction pat-

This results show that a tricritical point exists fd@ tern of the system and its relation to the coordination number
3 . . . zof the lattice. However the MFA neglects the local structure
<[3(8/55)](z—1)/z, and tricritical point disappears for o e pattern of interactions, and its calculations are valid
G>[3(8/55)](z—1)/z only at high dimensions. This is the reason for the failure of
The phase diagrams of the bimodal random field quantunthe MFA (different pattern of the interactions can give the
spin- Ising model forz=4, 6, 8, 12, ande (the MFA resul} same thermodynamit8. Finally, we should mention that
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FIG. 1. In(a)—(g), the second-order phase transition lines, obtained in(lhé) plane for the transverse fields are 0.0, 0.75, 0.85,
0.92, 0.96, 1.0, and 1.05, respectively. The lines are labeled with the values of the coordination auftesolid and dotted lines
correspond to the second-order phase transition lines with an increase and decrease of the randpredjgdtively. The tricritical points
are labeled with solid circles in the figures, and the end points of the dotted lines are indicated by solid rectangles in the insets.
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local structure for the TIM, but the results are too compI|—>[%(§\/§)](z_l)/Z_ Reentrant phase transitions occur for

cated with the random fields. appropriate ranges &1 andG. By using the present formal-

In conclusion, the bimodal random-field quantum spin- M on n also di the sginsin tem with
Ising system was studied extensively by combining the paifs. » ON€ can also discuss the spinsing syste a
trimodal random-field distribution.

approximation with the DPIR. An analytical expression for
the second-order phase transition temperature was obtained
for the bimodal random field. Phase diagrams in tHe T)
plane were obtained numerically for some values of | would like to thank Professor M. Keskin for his infor-
the transverse fiel@ and the coordination numbeby vary-  mative discussions. This work was supported by the Re-
ing the random fieldH. It is shown that a tricritical point search Fund of Erciyes University, Grant No. 01-052-2.
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