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Phase diagrams of the quantum transverse spin-3
2 Ising system with bimodal random field
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The bimodal random field quantum spin-3
2 Ising system is investigated by combining the pair approximation

with the discretized path-integral representation. The second-order phase transition lines, and tricritical points
are obtained for the bimodal random field distribution. Reentrant phase transitions, which may be caused by the
competition between quantum effects and randomness, are observed. The phase diagrams with respect to the
random field and the second-order phase transition temperature, i.e.,~H, T! plane, are studied extensively for
given values of the transverse fieldG and the coordination numberz.
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I. INTRODUCTION

Phase transitions and the tricritical behaviors of the r
dom field Ising model were studied extensively some ye
ago.1–3 For the spin-12 Ising model, Aharony4 showed that the
bimodal random field distribution leads to a tricritical beha
ior, while the Gaussian distribution always exhibits a seco
order phase transition. Jasˇčur and Kaneyoshi5 studied the
spin-32 Ising model in a bimodal random field within th
framework of the effective-field approximation based on e
act spin identities and the differential operator technique,
showed that the system exhibiths a tricritical behav
Mattis6 examined the possibility of a first-order phase tra
sition and the existence of a tricritical point for the trimod
random-field distribution within the mean-field approxim
tion, and concluded that there is no tricritical point for t
Gaussian distribution~corresponding top5 1

3 in the trimodal
random field distribution!. Various approximate method
were proposed to improve the results of the mean-field
proximation in this model.7

The spin-12 Ising model in the presence of a transver
field, the transverse Ising model, serves for the study of
operative phenomena~such as reentrance behavior, etc.! and
phase transitions in many physical systems.8 One of the
problems is how the form of the random fields affects
structure of the phase diagrams of the systems represente
the transverse Ising model~TIM !. In some of the previous
works, the effects of the shapes of a random field on
phase transitions in a quantum transverse spin-1

2 Ising
model9–11 and a spin-1 model12 are investigated.

The quantum spin system with a random field was inv
tigated by combining the pair approximation with the d
cretized path-integral representation~DPIR! for spin-12 ~Ref.
11! and for spin-1 models.12 In these works, the phase dia
grams were obtained numerically for some values of the
ordination numberz includingz→`, the mean-field approxi-
mation ~MFA!, the existence of tricritical points, an
reentrance phenomena were examined for various symm
cal random field distributions. Spin-3

2 models were intro-
duced to explain phase transition13 in DyVO4 ~Refs. 14 and
15! and tricritical properties in ternary fluid mixtures.16

These were studied by the mean-field approximation.
cently phase transitions in the spin-3

2 Blume-Emery-Griffiths
model with nearest-neighbor interaction, both bilinear a
0163-1829/2002/65~13!/134429~6!/$20.00 65 1344
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biquadratic, and with a crystal-field interaction, were stud
within the MFA and the Monte Carlo simulation,17 and by
the renormalization-group method.18 On the other hand, the
quantum spin-32 Ising model in the presence of both tran
verse field and random fields was not studied with
present formalism; therefore, it should also be studied ex
sively, since many cooperative phenomena could only be
plained by spin-32 Ising models.

In this paper, the bimodal random-field quantum spin3
2

Ising model is investigated by combining the pair appro
mation with the discretized path-integral representation.11–12

An analytical expression for the second-order phase tra
tion line is obtained for the bimodal random-field distrib
tion, and the phase diagrams are obtained numerically in
~H, T! plane for various values of the coordination numbez
and the transverse fieldG. It is observed that the system
exhibits tricritical points, and reentrant phenomena for a
propriate ranges of transverse field and bimodal random fi
are likely due to the competition between the quantum fl
tuations and randomness.

The outline of the remainder of the paper is as follows:
Sec. II, the model is introduced, and the analytical expr
sion for the average free energy is obtained. In Sec. III
analytical expression for the second-order phase trans
line is obtained, and the existence of tricritical points and
results of the phase diagrams are discussed.

II. HAMILTONIAN AND MODEL

We consider the transverse Ising model with a bimo
random field

P~hi !5 1
2 @d~hi1h0!1d~hi2h0!#. ~1!

The Hamiltonian of the model is given by

H52J(
i j

Si
zSj

z2G(
i

Si
x2(

i
hiSi

z , ~2!

whereSi
z andSi

x are the quantum spin-3
2 operators at sitei, G

is the transverse Ising field, andhi is the random field given
by Eq. ~1!. The quantum spin-3

2 operators are given as
©2002 The American Physical Society29-1
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Si
x5F 0 )/2 0 0

)/2 0 1 0

0 1 0 )/2

0 0 )/2 0

G ,

Si
z5F 3

2 0 0 0

0 1
2 0 0

0 0 2 1
2 0

0 0 0 2 3
2

G . ~3!

The one-body effective Hamiltonian in the pair appro
mation is given by

H ~1!52GSi
x2~hi1Heff!Si

z , ~4!

whereHeff is the one-body effective field. The correspondi
one-body partition function can be obtained from Eqs.~3!
and ~4! as

Zi~hi ,Heff,G!52 cosh$ 3
2 bA@G21~hi1Heff!#%

12 cosh$ 1
2 bA@G21~hi1Heff!2#%. ~5!

The pair Hamiltonian in the pair approximation is given b

H ~2!52JSi
zSj

z2~hi1heff!Si
z2~hj1heff!Sj

z2G~Si
x1Sj

x!,
~6!

whereheff is an effective field, which is related to the on
body effective fieldHeff by heff5@(z21)/z#Heff. The corre-
sponding pair partition function becomes

Z~hi ,hj ,heff,G!5Tr exp~2bH ~2!!. ~7!

The pair Hamiltonian contains noncommuting operato
In order to eliminate this problem we reformulate the p
Hamiltonian in the DPIR to obtain the pair partition functio
In the DPIR, the quantal four-state spin-3

2 operator, on each
lattice site is converted into aP-component vector
U(U (1),U (2),...,U (P)), and eventuallyP goes to infinity.
Each componentU (t)(t51,2,...,P) is then taken to be a clas
sical spin variableU (t)56 3

2 and61
2, and the net effect is to

represent the quantum uncertainty by creating many cop
or replicas, of the original variables. By means of the DP
the pair Hamiltonian can be broken up into a reference p
H0

(2) , which involves only single-site terms, and an intera
tion partV, which is

H ~2!5H0
~2!1V, ~8!

where

2bH0
~2!5Ui•a•Ui1Uj•a•Uj1hi•Ui1hj•Uj1PC,

with

~a! t,t85ad t,t821 , ~a!p,15a,
13442
.
r

s,
,
rt
-

a5 1
2 ln cothFbG

P G , C5
1

2
lnFcoshFbG

P GsinhFbG

P G G ,
hi5

b~hi1heff!

P
~1,1,...,P!

and

2bV5
bJ

P
Ui•Uj . ~9!

The free energy can be expressed in terms of the
energyF0

(2) of the reference part and the cumulant expans
in the reference part,

2bF ~2!5 ln Tr exp~2bH ~2!!

52bF0
~2!1 (

n51

`
1

n!
~2b!nCn~V!, ~10!

with

2bF0
~2!5 ln Tr exp~2bH0

~2!!, ~11!

and the cumulants are given by

C1~V!5^V&0 ,
~12!

C2~V!5^V2&02^V&0
2,...,

where^¯&0 denotes an average over the reference part.
take the first cumulant here; the pair partition function m
be evaluated from

ln Zi j ~hi ,hj ,heff,G!

5 ln Tr exp~2bH0
~2!!2b^V&0

5 ln Zi~hi ,heff,G!1 ln Zj~hj ,heff,G!1bJmimj ~13!

where

mi5b21
] ln Zi~hi ,heff,G!

]heff , ~14!

andZj (hj ,heff,G) is the same as in Eq.~4!, with Heff replaced
by heff.

The free energyf (heff) in the pair approximation is given
by19

2b^ f ~heff!&h5^ ln Zi&h1
z

2
@^ ln Zi j &h22^ ln Zi&h#, ~15!

where ^¯&h is the average over the random-field distrib
tion, which is bimodal in our case. In order to obtain the fr
energyf (heff) explicitly, one needs to calculatemi from Eq.
~14!, which is

mi5
hi1heff

2j F sinh@ 1
2 bj#13 sinh@ 3

2 bj#

cosh@ 1
2 bj#1cosh@ 3

2 bj#
G , ~16!
9-2
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where j5AG21(hi1heff)2 . Then the explicit form of the
free energy is calculated from Eqs.~5!, ~13!, ~15!, and ~16!
as

2b^ f ~heff!&h5~12z!^ ln@2 cosh$ 3
2 bk%12 cosh$ 1

2 bk%#&hi

1
z

2
^ ln@2 cosh$ 3

2 bj%12 cosh$ 1
2 bj%#&hi

1
z

2
^ ln@2 cosh$ 3

2 bj%12 cosh$ 1
2 bj%#&hj

1
zbJ

2
^mimj&hi ,hj

, ~17!
-

a
th
b

13442
where

k5FG21S hi1
z

z21
heffD 2G1/2

,

and hi and hj means the random field acting on the sitei
and j, respectively.

Now we are in a position ready to calculate the free e
ergy when the system is exposed to bimodal random fi
distribution; so, using Eq.~1! and taking the average over th
bimodal random-field distribution of Eq.~17!,
r term in
the
2b^ f ~heff!&52
z21

2
@ ln@2 cosh$ 3

2 bk1%12 cosh$ 1
2 bk1%#1 ln@2 cosh$ 3

2 bk2%12 cosh$ 1
2 bk2%##1

z

2
@ ln@2 cosh$ 3

2 bj1%

12 cosh$ 1
2 bj1%#1 ln@2 cosh$ 3

2 bj2%12 cosh$ 1
2 bj2%##1

zbJ

8
@~m!h0

1~m!2h0
#2, ~18!

wherej65AG21(6h01heff)2,

k65AG21S 6ho1
z

z21
heffD 2

and, (m)h0
and (m)2h0

mean that in Eq.~14! hi is taken to be equal toh0 and2h0 , respectively.

III. RESULTS

The second-order phase transition lines can be obtained from the zero point of the coefficient of the second-orde
Eq. ~18!, when the equation is expanded in terms ofheff. As a result, the second-order phase transition line is given by
nonlinear equation

hb85S g

z21D 1/2

, ~19!

where

h5z2S 10H2AG21H218H2AG21H2 cosh@b8AG21H2#12H2AG21H2 cosh@2b8AG21H2#

1
1

b8
$3G2 sinh@b8AG21H2#14G2 sinh@2b8AG21H2#13G2 sinh@3b8AG21H2#% D ,

g54z5~G21H2!~cosh@ 1
2 b8AG21H2#1cosh@ 3

2 b8AG21H2# !2$10b8G2H2110b8H418b8H2~G21H2!cosh@b8AG21H2#

12b8H2~G21H2!cosh@2b8AG21H2#13G2AG21H2 sinh@b8AG21H2#14G2AG21H2 sinh@2b8AG21H2#

13G2AG21H2 sinh@3b8AG21H2#%,
b-
b85bz, G5G/z, and H5h0 /z are the dimensionless pa
rameters, andJ51 for simplicity.

There are two sensible cases for which the above form
ism should be applied. The first case corresponds to
quantum transverse Ising model, which could be obtained
l-
e
y

settingh050, the second-order phase transition line is o
tained by equatingH equal to zero in Eq.~19!,

h1b85S g1

z21D 1/2

, ~20!
9-3
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where

h15z2
1

b8
$3G2 sinh@b8G#14G2 sinh@2b8G#

13G2 sinh@3b8G#%,

and

g154z5G2~cosh@ 1
2 b8G#1cosh@ 3

2 b8G# !2$3G3 sinh@b8G#

14G3 sinh@2b8G#13G3 sinh@3b8G#%.

The second case corresponds to the random-field I
model, which is obtained by takingG50. The second-orde
phase transition line is obtained by settingG equal to zero in
Eq. ~19!,

h2b85S g2

z21D 1/2

, ~21!

where

h25z2~10H318H3 cosh@b8H#12H3 cosh@2b8H# !,

and

g254z5H2~cosh@ 1
2 b8H#1cosh@ 3

2 b8H# !2$10b8H4

18b8H4 cosh@b8H#12b8H4 cosh@2b8H#%.

The second-order phase transition temperaturesT are
found iteratively from Eq.~19! by varying the random field
H for given values of the transverse fieldG and the coordi-
nation numberz. Similarly, the second-order phase transiti
temperaturesT can also be obtained for the quantum tran
verse Ising model and the random-field Ising model by us
Eqs.~20! and ~21!, respectively.

Besides the second-order phase transition lines,
should also investigate the possibility of the existence
tricritical points. In general, when the bimodal random fie
and transverse field are both present, the condition for
existence of tricritical points can be determined in the lim
ing case ofT51/b8→0 in the following manner: We expan
the free energy, i.e., Eq.~18!, in terms of the effective field
heff, and then set the coefficients of the second-and fou
order terms in the expansion to zero separately. As a re
two coupled equations are obtained and have to be so
numerically. Finally we obtain

G5
3

2

8

5A5

z21

z
, ~22!

H5
3

2

4

5A5

z21

z
. ~23!

This results show that a tricritical point exists forG

,@ 3
2 (8/5A5)#(z21)/z, and tricritical point disappears fo

G.@ 3
2 (8/5A5)#(z21)/z.

The phase diagrams of the bimodal random field quan
spin-32 Ising model forz54, 6, 8, 12, and̀ ~the MFA result!
13442
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are obtained using the above formalism for different valu
of the transverse fieldG, i.e., 0.0, 0.75, 0.85, 0.92, 0.96, 1.
and 1.05 are given in Figs. 1~a!–1~g!. As can be seen from
the figure, the second-order phase transition temperaturT,
indicated by solid lines, is lowered on increasing the stren
of the random fieldH until it reachesT50 or ends at the
tricritical points. The tricritical points are labeled with soli
circles in the figure. It should also be notes that asG be-
comes larger the tricritical points appear at a lowerH; even-
tually, according to the coordination numberz, the tricritical
points disappear.

When one decreases the random field, two succes
phase transitions are observed; reentrant phenomena ca
seen for appropriate values ofG, and may be caused b
quantum effects and randomness. The second-order p
transition temperatureT, indicated by dotted lines, is lowere
on decreasing the random fieldH from a higher value. These
dotted lines terminate at a point in the region of the dis
dered phase indicated by solid rectangles, shown in the in
of the figures. This point which can be called an end po
appears at lower temperatures. When the random fiel
lowered from above, quantum effects mainly contribute a
the transition from a disordered phase to an ordered pha
more characteristic of quantum spin transitions than the
lowing one. When the random field decreases further, it
comes dominant, and a reentrance transition to the di
dered phase may take place.

The behavior of the second-order phase transition li
for a spin-32 system is similar to the for spin-1

2 ~Ref. 4! and
spin-1 systems,12 except near the zero second-order pha
transition temperatures. Both these models present reen
behaviors as in the spin-3

2 case, but in the figures the en
points of the dotted lines are not indicated. It should also
mentioned that Yokoto and Sugiyama,9 using the MFA, and
Sarmento and Kaneyoshi,9 using an effective-field theory
with correlation, studied the random-field transverse Is
model and obtained the tricritical point and reentrant beh
ior. It is also very interesting that the critical values ofG and
H, i.e., Eqs.~22!, and~23!, for the existence of the tricritica
points are exactly3

2 times of the Eqs.~25! and ~26! of the
first of Refs. 11.

As a final note, it should be mentioned that the pair a
proximation is equivalent to the Bethe approximation, the
fore, its free energy is lower than the MFA free energy. T
pair approximation gives lower critical temperatures, b
overestimates the tendency toward ordering as in the M
Figure 1 illustrates the changes of the phase diagrams
different values ofz. When the coordination numberz in-
creases, it can be compared with the MFA results. In the li
z→`, the ordinary MFA result for the quantum system
recovered. This may be caused by the pair approximat
taking into account the local structure of the interaction p
tern of the system and its relation to the coordination num
z of the lattice. However the MFA neglects the local structu
of the pattern of interactions, and its calculations are va
only at high dimensions. This is the reason for the failure
the MFA ~different pattern of the interactions can give th
same thermodynamics20!. Finally, we should mention tha
9-4
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FIG. 1. In ~a!–~g!, the second-order phase transition lines, obtained in the~H, T! plane for the transverse fieldsG, are 0.0, 0.75, 0.85,
0.92, 0.96, 1.0, and 1.05, respectively. The lines are labeled with the values of the coordination numberz. The solid and dotted lines
correspond to the second-order phase transition lines with an increase and decrease of the random fieldH, respectively. The tricritical points
are labeled with solid circles in the figures, and the end points of the dotted lines are indicated by solid rectangles in the insets.
134429-5
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the improved MFA~Ref. 21! for spin-12 systems includes the
local structure for the TIM, but the results are too comp
cated with the random fields.

In conclusion, the bimodal random-field quantum spin3
2

Ising system was studied extensively by combining the p
approximation with the DPIR. An analytical expression f
the second-order phase transition temperature was obta
for the bimodal random field. Phase diagrams in the~H, T!
plane were obtained numerically for some values
the transverse fieldG and the coordination numberz by vary-
ing the random fieldH. It is shown that a tricritical point
s-

.

13442
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f

appears forG,@ 3
2 ( 8

5 A5)#(z21)/z, and disappears forG

.@ 3
2 ( 8

5 A5)#(z21)/z. Reentrant phase transitions occur f
appropriate ranges ofH andG. By using the present formal
ism, one can also discuss the spin-3

2 Ising system with a
trimodal random-field distribution.
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