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Thermodynamics of the anisotropic two-channel Kondo problem
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We construct and solve numerically the thermodynamic Bethe-ansatz equations for the spin-anisotropic
two-channel Kondo model in arbitrary external figldAt high temperatures the specific heat and the suscep-
tibility show power-law dependence. For—0 and at temperatures below the Kondo temperaiyrea
two-channel Kondo effect develops characterized by a Wilson ratio 8/3, and a logarithmic divergence of the
susceptibility and the linear specific-heat coefficient. A finite magnetic fletd), drives the system to a
Fermi-liquid fixed point with an unusual Wilson ratio which depends sensitiveli.on
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I. INTRODUCTION The above physical realizations of the 2CKM have the
common feature that the 2CKM that describes them is in all
The two-channel Kondo mod€2CKM) attracted a lot of cases generically strongly spin anisotropic, and breaks the
interest during the past few yedr&his intense interest is full SU(2) spin symmetry. While this S(2) symmetry break-
mostly triggered by the rather unusual properties of thidng is known to be irrelevant at the two-channel Kondo fixed
model: The existence of finite residual entropy in zero exterpoint! it affects both qualitatively and quantitatively the
nal field, the vanishing of single-particle scattering amplitudeproperties of the model at energies around and above the
at T=0 temperature, and the logarithmic singularity of vari- Kondo temperaturd,, and has to be taken into account to
ous thermodynamic quantities. All these unusual propertiegake comparison with experiments.
appear due to the presence of a hidden and conséexent In the present paper we generalize the Bethe-ansatz re-

quantum number of the electrons. _sults of Ref. 11 to compute both analytically and numerically
Several physical systems have been proposed to realizge thermodynamics of the anisotropic 2CKM at arbitrary
the 2CKM. An unambiguous realization of the 2CKM is pro- o mneratures and magnetic fields for various values of the

vided by d(jéilllljtethuraniulrr ant?] ceriung_— batg,ed r;eetlvy ferm.ionanisotropy. Below the Kondo temperatirg we find that the
compounds. In these alloys the combination of strong S‘pm'thermodynamic properties of the model are very similar to
orbit interaction and crystal-field symmetry effects leads to

. those of the isotropic 2CKM. This observation is in full
an effective 2CKM. reement with the irrelevance of the anisotropy at the
It has been also suggested that noncommutative tunnelin Py

centers may form two-level systeniELS’s) and realize the CKM. However, ab(,)VérK, the behavior. of the model de-
2CKM.2 In this case the localized spin is replaced by theP€nds crucially on spin anisotropy. We find that ab@yeall

position of the tunneling center, while the angular momentdhermodynamic quantities displaypawer-lawbehavior with

of the conduction electrons play the role of the electron spir@" €xponent determined by the value of the anisotropy. Fur-

in the 2CKM. The electron spins in the TLS problem play thermore, we find that at finite magnetic fields the system

the role of silent flavor indices. Though there have been sevlows to an unusual Fermi-liquid fixed point with an

eral concerns raised concerning the microscopic structure @fisotropy-dependent Wilson ratio.

the TLS and the possibility of observing the two-channel The paper is organized as follows. In Sec. Il we introduce

Kondo behaviof* many experiments may be consistently the 2CKM. In Sec. Il we construct the thermodynamic

interpreted in terms of such dynamical two-channel KonddoBethe-ansatz equations for the anisotropic 2CKM that we

impurities®’ analyze in detail in Sec. IV. Some details of the computation
Another realization of the 2CKM is provided by quantum are given in the Appendix.

dots near to their charge degeneracy pbitt.this case the

charging states of the dot replace the impurity spin states and

they coup[e to the p_osition variable of the conduction elec'- Il. MODEL

trons. Again, the spin of the electrons acts as a flavor vari-

able. Though it appears to be extremely difficult to observe The anisotropic 2CKM consists of a sp8=1/2 impu-

experimentally the non-Fermi-liquid behavior associatedrity that couples dynamically to the spin of the conduction

with the two-channel Kondo fixed poifitsome fingerprints electrons through a strongly anisotropic exchange interac-

of the two-channel Kondo effect have been observed in théon, and is described by the following first quantized Hamil-

capacitance of such semiconducting quantum tbts. tonian ¢z =kg=pug=1):
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Since electrons move with the same velocity and in the same
gSé+g’Z SJZ) (1) direction, this interaction does not modify the thermodynam-
J ics in a crucial way fod,>J, . In particular, we have shown
that the specific heat of the electrons is unaffected by this
interaction. However, it doescalethe g factor in Eq.(1):
g—g°". Fortunately, we shall be able twompensatehis

+h

In this equationx; is the coordinate of th¢th conduction
el?ctr_on,Neszf s the total nu_mber of electrons, and the effect by the renormalization af factors in the magnetic-
Si's (J=0, ... Ng) denote the spin-1/2 operators of the elec-field term.

trons. Electrons als_o hqv_e_a conserved flavor que}ntum NUM- |y the present paper we restrict our discussion to the case
ber,m={1,....f}, implicit in Eq. (1). In the following we  ; ~ 5 Our calculations are therefore not directly appli-
discuss the case=2 as well though for the physical realiza- ¢aple to the quantum dot case.

tions mentioned in the Introductidn=2. (Thef=1 case has In Eq. (1), only a term~h$ has been included, which

been analyzed in Refs. 12 and Ji1. acts as a local field in thedirection. In reality, however, the
The meaning of the various terms in this Hamiltonianfie|d can also point into the “perpendicular” direction corre-
erends on the particular physical realization. The_ eXtem%ponding to a term-h, S5. In the TLS case this term de-
field h couples to the local moment and the conduction elecyrines spontaneous tunneling between the TLS positions.
tron spins with differeng factors. In the TLS problem and e general effect of the latter term is very similar to that of

the quantum dot case, the extemal figidrepresents the g "\t guantitatively it behaves somewhat differently. For
asymmetry of the TLS and the splitting between the twoy TLS, e.g., in a typical situatiorh is believed to be much

. ; ,
charging states.of the quantum dot, respecnvely, @r?ﬂo' larger tharh, ,* and furthermore, iteffectivevalue is orders
For heavy fermion systems, depending on the particular re

lization. h ) | . - fiel of magnitude reduced by polaronic effeé. Therefore in
alization,h can describe aZn external magnetic or strain fie d,most situations it is enough to include only the terrh S in
and may also couple B;S;. In the present paper we mostly the Hamiltonian
study thelocal susceptibility, corresponding @' =0. '
In the original formulation of the Bethe ansatz, similar to
the conformal field theory solution of the Kondo problén, lll. BETHE-ANSATZ SOLUTION
the impurity spin is “fused” with the spin degrees of free-  The most important ingredients of the algebraic Bethe an-
dom of the conduction electrons, and the external fieldsatz(BA) are the various scattering matrices. The impurity-

couples to the total spin, correspondinggd=1. Thus the  conduction electrorS matrix can be constructed directly
Bethe-ansatz calculates the impurity contribution todgle  from Eq. (1):

bal susceptibility withg’=g. Lowenstein made a remark- _
able attempt to treat thg’ #1 case’’ however, his results Roj=USPP(No=N)) g ot 10 o @ Id(1B0OD, )
were not fully conclusivé? In the present paper we use a oo
different strategy to cope with thg =0 situation, and show whereh,=—1 and\;=—0 denote the “rapidities” of the
that, similar to the case of the single-channel anisotropiémpurity and conduction electrojp andU is the U1) scat-
Kondo problem'® the g’=0 local susceptibility (i.e., the  tering matrix,
susceptibility arising when the field couples only to the im- 1
purity spin is simply proportional to the global susceptibil- _ fom | oot
ity. Therefore, after determining the appropriate normaliza- Uoj(M)=a(M)Py +bOVPy +56()(S0 S+ 5,
tion factor, we are able to extract the exabical
susceptibility from the Bethe-ansatz calculation wgtk g’ . a(N) sinhlipg+N9d) a(\) sinhig+AD)

In our analysis we shall assume tligt# J,=J,=J, and c(V) = sinfig) ° b(n) = sinh(A9) 4
thus the Hamiltonian has a(l) spin symmetry. This is true
for the quantum dot and heavy fermion realizations, howwith P, andP;, being the projection operators for parallel
ever, for the TLS problerﬂz>\]x>\]y=0.2 Fortunately, itis and opposite spins. Excepting the small coupling regime, the
not necessary to treat the general Bethe-ansatz equationsdannection of the parametegs and & with the bare cou-
order to determine the universal features of the TLS HamilplingsJ, andJ, is ambiguou$¥*'®and depends on the regu-
tonian in the TLS case either: Under scaling the tedinand  larization procedure of the Dirac delta and the cutoff scheme
Jy, describing electron-assisted tunneling processes, beconieed. Therefore, instead 8f andJ, , it is rathern and 6
rapidly equaf and therefore it suffices to consider an equiva-that should be viewed as the basic parameters of the BA
lent effective model Witmiﬁ:Jeﬁz‘Jl:JX/z to determine Ssolution: x turns out to be connected to the renormalized
the thermodynamics. This effective model hagl)Jorbital ~ phase shift while the ratig./ 6 determines the Kondo tem-
symmetry and can be much more easily analyzed by Bethdderature, below which non-Fermi-liquid correlations appear:
ansatz techniques than the fully anisotropic one.

In constructing the wave function we implicitly have to K
introduce a furthger electron-electron interactrijon, ’ Tk= ( 1_f;> 2D exp =m0l u, ©
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with D=N/L. coupling point® while for f=2 it can be identified with the
Since electrons move with the same velocity we have thé&Emery-Kivelson poinisee below.
liberty to define their scattering matrix in a way to maintain

integrability: IV. THERMODYNAMICS

Rij=Uij(Ni =N @F (N —Nj). (6) A. Thermodynamic Bethe-ansatz equations
HereU (M) is given by Eq.(4) andF describes scattering in To derive the thermodynamic BA equations in the con-
the flavor sector: tinuum limit L,N—c and D=N/L=cst we proceeded in

the usual way. We first defined the density of rapidifies
7) pidity holes, ¢,(\) [én(x)]. These are related to the “ex-
citation energies”e,(\) through n,=0,/¢,=e*'". The
with X;; the flavor exchange operator of parti¢landj and  functions e,(\) are determined by the following integral
c an arbitrary constant to be defined later. equations forv>f:
Starting from these scattering matrices we used the alge-
braic BA to determine the nested BA equations and then ¢, /T=ghv/2T—s*In(1+e®-2'T)+ 5, ;,,0(N),
applied the dynamical fusion procedure of Ref. 17 to elimi- ’
n_ate the fla_vor _degr_ees of free_dom. The fused equatio.n.s con- o IT=ghu/2T+s*In(1+e»2T) =5, .00\,
siderably simplify with the choice= u/ 9. Then the rapidi- ’
ties {\,;a=1,... M} describing the spin sector of the
wave function satisfy

)\i—)\j—i-iCXij

Fij(\i=hy)= Ni—\jtic

gj/T=s*In[(1+e’i+1/T)(1+ei-1/T)]

i fFLN +8,, 25 (1+e =M =5 O\ (j<v-1),
sin Ngt = |+ sinhu| N ,+iz
r(’u( “ 2 ’u( * 2) where s* denotes convolution with the Kerneb())
_ i . f =1/cosh@\), the driving term is given by O(\)
Smf‘(#()\a— 7|+ Slnhﬂ()\a—l E) =2D/T arctan €™) and e,— —o. The impurity contribu-

tion to the free energy is given by
sinhu(N,—N\g+i)

=- . —. 8 _ -
p=1 sinhp (= Ng=1) F'mpz—Tf s >\+% In{1+ex e1(\)/T}d,
The momenta of the electrons and thus the total energy is -
determined by the periodic boundary conditions and, in principle, all thermodynamic quantities can be calcu-
f lated by taking the derivatives &f'™".
M Sinhu| N\, +i > N
ekalf=T] . E=2, fky, (9 B. Analytical results
ot sinh,u( A,—i E) A Many of the thermodynamic properties can be determined

from the asymptotic form of thep,’s. Using the ansatz
where fk, denotes the total momentum of the fused n,(A— *®)~75, +b,e"""=* one obtains a set of alge-
f-electron composites, arldis the system size. braic equations for they,’s, b,'s, and the exponents. .

In the thermodynamic limit,.,N—<, N/L=D, the “spin  The latter exponents govern the scaling of the free energy in
rapidities” A, in Eq. (8) are organized into string8™ of  the vicinity of the low- and high-energy fixed points and are
lengthr and parityv = *: A—{A{""); q=1,... r} with given by 7, =4/(2+f) and r_=2u/m. The crossover be-

tween the two regimes occurs at the Kondo scale (By.
+il(1—v) (10 which emerges naturally if one rewrites the thermodynamic

Au ' BA equations above in a “universal” form by removing the
cutoff D.211922 The asymptotic form of the impurity free
energy forh<T<Ty is given by

)\(r,v)H)\((lr,v):)\(r,v)_,_ %_q

We have verified that to obtain a stable solution for
<a/f, v andr must satisfy thesame stability conditioras
for f=1812

) gh 2 T 412+ f
. . imp = || = f>2,
vsin(ua)sinu(r—a)1>0, q=1,...[r/2]. (1D - STrarhlT ) (TK)

As shown by Takahashi and Sustkithe allowed ¢,v) S| atb gh\?|[ T | T f—p
strings can be classified on the basis of an infifitefinite) a T/ || Tk n Tk ’
fraction expansion of./ . To be specific, here we only dis-
cuss the simplest cage= =/v and f <v, where onlyv dif- implying the divergence of the linear specific heat coefficient
ferent stable string configurations existi=(r,v)=(1, c¢/T ath=0 and the susceptibility a6— 0. The constanta
+),(2,+),...,(v—1,+) and (1;-). The caseu==/f rep-  andb above depend on the specific valuef @nd «, and the

resents a singular limit? For f=1 it corresponds to the de- residual entropy8™ is the same as in the isotropic cage,
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[ fm imp s\%1
Slnm Xg|0b(T—>OO)= 1—2f; E, (17)
S™=In| —— (12)
sin(i with & the phase shift generated By (see the Appendix for
f+2 the derivation and the precise definition of the phase

shift).2"#

To determine the renormalization of tigefactor and the This immediately implies the important relation

Wilson ratio, we calculated the linear specific-heat coeffi-
cient and the bulk magnetization®'= — 9F Y oh in the ab- s 52
sence of the impurity spifbut with g’ =g). Similar to the ﬁ=4——4f —. (19
casef=112 the linear specific-heat coefficient agrees with ™7 m

that of the spin sector of noninteracting free electrons. HOW'Comparing this expression with the results of Ref. 27 we

Hotice immediately thaj/# is nothing but thescaling di-
mensionof J, , which satisfies the following scaling equa-
tion at energy scales well aboveT :%’

in Ref. 12, the total spin can be relateds¢ and7,_, and
thus the magnetization is simply given by

,fL

N
d ¢ h
z_ _ tot__ z\ _ dinJ y
M (?hF g<i21 S> 9 Aag 1—fulw’ 13 —dln(wojw):;’ (0>Tg). (19

with the termg?fL/4r, the Pauli susceptibility of free elec-
trons.

From this equation it immediately follows by integration
that at zero temperature

Here wg is a high-energy cutoff. For a TLS it is of the order
of the Debye temperature, while for heavy fermions it is
usually of the order of the Fermi energy. For a quantum dot
the cutoff is the charging energy,~E.. The effective per-

2 pendicular coupling, at energy scale can be obtained by
1 . fL h . ! ! - .
Foo= — Zg%— ———. (14) simply integrating this equation.
2% 4w 1—fulm Equation(18) is further confirmed by noticing that fdr

=2 at the Emery-Kivelson lineg= =/4, the global suscep-
tibility Eq. (16) identically vanishes, in complete agreement
with the results of Refs. 28. The poiat #/2f correspond-
ing to w= 7/f is highly singular, and needs special catét
9=(1— uf/m)2 this particular point the amplitude of the leading irrelevant
operator, responsible for the divergence of the susceptibility

Having thus compensated the effect of the artificiai@nd the linear specific-heat coefficient, becomes Zero.
electron-electron interaction of E(®) by rescalingg, we can The global susceptibilitygg, and the associated global
proceed to calculate the impurity contribution to tjilebal ~ Wilson ratio Ryg},, defined in Eq(15), are useful for mag-
susceptibility (defined withg’=1, g=1 but no electron-  netic Kondo systems. However, for quantum dots and TLS’s

electron interaction We find indeed that with the choigg it is rather thocal impurity susceptibility that is of interest,

Thus theg factor isrenormalizecdue to the electron-electron
interaction asg—g/(1—uf/7)*? and to compensate the
effect of Eq.(2), we have to choose

=(1— wf/m)Y? the low-temperaturégloba) Wilson ratio, i-e., the response of the system to an external field coupled
defined in terms of this global impurity susceptibility, takesonly to the impurity spin. Hence we studied the impurity
on a universal value contribution to the susceptibility wheg=1 andg’ =0 (and
in the absence of the artificial electron-electron interagtion
_ chulk Xignl]opb 8 In order to determine this we generalized the path-integral
Rg}"opbz lim lim buk _mp 3" (15 derivation of Ref. 15 to show that

T—0 h—0 X Cg|0b

as in the isotropic casé proving again that exchange anisot- F'™P(h,T,9,9'=9)=F"™(h,T,g,'=0), (20

ropy is irrelevant at the two-channel Kondo fixed pditit?® 5

In the following we shall always denote quantities that werewhere h=h(1—2f/m)=h(1- uf/m)"2 To establish the

calculated withouti.e., compensatinghe artificial electron- ~ second equality we used E(.8). Thus we can calculate the

electron interaction by the superscript “imp.” local impurity properties(those forg=1, g’=0 and no
To capture the meaning of the parameaiewe also deter- ~€electron-electron interactiorfrom the BA equations with

mined the impurity contribution to thglobal susceptibility 9’ =9g=(1—fu/7) 2 by simply rescaling the fielti accord-

in the high-temperature regime: ing to Eq.(20).%°
Henceforth, unless otherwise stated, we shall denote the
imp 9> 1—fulmw local impurity susceptibility obtained from the BA solution
Xgob~ 2T~ ~ a1 - (1) in combination with Eq(20) by y'™ and the associated local

Wilson ratio byR™ (see below.
Using Abelian Bosonization techniques we were also able to Following the above procedure we find at high tempera-
prove analytically that fod, <J, at high temperatures, ture
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|mp:_ _ -
% 4T[1 B(T) , (21)
Cimp~ Tk e (22)
T

Note that at high temperatures the specific heat exhibits a
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which the thermodynamics is Fermi-liquid like. In particular
for T<Tg_ and small magnetic fields<Ty we find

X™P(h, T<Tg)~—In(h/Ty), (27

: T
Clmp(h1T<TFL)~ T_v (28)
FL

power-lawbehavior which crosses over to a logarithmic be-with T ~ h2/T, (for h<Ty). A local Wilson ratio for arbi-

havior in the isotropic casg— 0. Similarly, the corrections

trary local magnetic fieldh can be defined as

to the susceptibility about the free behavior are power-law

like and these power laws give way to logarithmic correc-
tions in the isotropic limitu—0. We note that the above

exponent 2/ is formally the same as found for tHe=1

Rimp(h): lim CbUIk(h) Ximp(h)

- . 29
T—ox"(h) C'™P(h) 29

case!! However, the relation between and the bare cou- In contrast to theéf =1 case, for which this quantity is inde-
plings is quite different in the two cases and involves thependent ofh, but dependent on anisotroplgeing given by

channel numbef [see Eq(18)].

RMP:f=1(h)=2/(1— /)13y, for the present=2 case it

The power-law corrections can be very easily understoodlepends explicitly orboth h and anisotropy(Fig. 6). This
from the scaling picture. Expanding the free energy in termsmportant result, which is consistent with the result for the
of J, one finds that the leading correction is second order irisotropic casé? will be discussed in the following section on

J, . Making use of the scaling equati@h9) it immediately

the numerical solution. We note here, however, that the local

follows that the leading corrections to the free energy behav#Vilson ratio for thef=2 case agrees with the=1 local
asT*2#7 implying Eq.(22). Similar arguments lead to the Wilson ratio in the case of asymptotically large magnetic
conclusion that the impurity-induced resistivity correction fields,h>Ty, i.e., in this case we have

behaves at high temperatures as

o TK 2ulm
p"P=A+B| —

- (23

for T>Tk.

‘ 2
R™(h>Ty)= 0 (30)

1——
a

although the meaning qf is different in the two casgsee

At low temperaturesT<Tx, some care is required in Eq.(18_)]. The detailed dependence of this local Wilson ratio
discussing thermodynamic properties. In contrast to the cagen h will be discussed in the next section.

f=1, whereF is analytical aroundT=h=0? here theh

=0, T=0 point is an essential singularity and the two limits

T—0 andh—0 are not interchangeable. Taking the lirit
—0 first, we find the following non-Fermi-liquid behavior,

T
X In( T—K> , (24)
imp T
C'MP~ —Kln T_K , (25)
Cbulk Ximp 1 8
RIMP— |i i = _
R ‘|I'IT0 :Lno Xbulk Cimp 1— fM/'ﬂ' 3 (26)

Here, we have defined a local Wilson rafd™. It is ex-
pressed in terms of the local impurity susceptibijt§*, and
the impurity contribution to the specific heef. It differs
from the Wilson ratio defined in E¢15) (which is the usual

C. Numerical solution

In order to obtain the thermodynamics at all temperatures,
it was necessary to solve the thermodynamic BA equations
of Sec. IV A numerically. A procedure for doing this, which
is valid for arbitrary values of the magnetic fighdand tem-
perature has been developed in Ref. 11fferl. With small
modifications, the same procedure applies also to the present
case. We considered anisotropies givenudy=1/v with v
=3, 4,5, 6. In Figs. (a—(c) we show the thermodynamics
of the anisotropic 2CKM for a large anisotropy=23) as one
might have in a realistic system. The characteristic non-
Fermi-liquid behavior, in particular the (2)/2 _entrop3}7 and
the logarithmically divergenty™”(T) and C™P(T)/T, are
found at zero field. A finite fieldn>0, restores Fermi-liquid
behavior at temperatures below a low-energy schig
=h?/Ty, as found for the isotropioy=2, case*?> The non-
Fermi-liquid behavior for &2h<<Ty is therefore restricted to
an intermediate range of temperaturés,<T<Ty, and we

definition for this quantity in the magnetic Kondo problem see that a clear signature of such beha{gurch as the two
by havingg’ =0. We see that this local Wilson ratio dependspeaks in the specific heat with each peak having only In(2)/2

on anisotropyu and thus the phase shift and is therefore
not universal.
We now consider the limit off—0, with h remaining

entropy, or a In() behavior ofy(T) for a temperature range
below T«] is possible, even at moderate magnetic fielus,
~Tg/16.

either finite, or taken to zero subsequently. In this case, and In Figs. 2a)—(c) and Figs. 8a)—(c) we show the effect of
for h<Ty, we find from the numerical results of the next different anisotropies on the thermodynamics for both a

section that there is a low-energy scdlg =h?/T, below

small external field f<Tyx, Fig. 2 and a large magnetic
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v=3 h/T=2"

e
=
T

§™(T)

C™(T)

X" (T)/3 "™ (0)

FIG. 1. The impurity contribution to the entrof§™", specific FIG. 3. The anisotropy dependence of the entropy, specific heat,
heatC'™", and(local) susceptibilityx™, as functions ofl/Ty for  and susceptibility at large magnetic field¥ T« = 2%) [note that(c)
magnetic fieldsh/Ty=2"° (solid), h/Tx=2"* (dotted, h/T¢=1 s scaled by a factor 0.125 for comparison with the corresponding
(dasheg, and h/T,=2* (long dashey for the caser=3 corre-  case for small magnetic fields shown in Fig. Zhe anisotropies
sponding to the largest anisotropy studied. shown are foru/m=1/v with v=3 (solid), »=4 (dotted, v=5

(dasheg, andv=6 (long dasheq
field (h>Ty, Fig. 3. At h<T, the main effect of anisot-
ropy is to modify the thermodynamics at intermediafe,  power-law corrections in its thermodynamics at high tem-
=T=Ty, and high temperature§,>Ty . For large mag- peraturesT>T). The exponents are uniquely related to the
netiq field, h>_TK, the anisotropy modiﬁes the thermody- anisotropy parametex [cf. Eq. (22)]. This is in contrast to
hamic properties at temperaturdss Ty (Fig. 3). _ the corresponding isotropic models which have logarithmic

A characteristic feature of the present mode@), is  corrections at high temperatures. Figures 4 and 5 show this
that, similar to the case dissipative two state systEritshas for the susceptibility and specific heat, respectively.

Figure 6 shows the remarkable magnetic-field dependence
h/T,=2" of the local Wilson raticR™P(h). This magnetic-field depen-
dence is consistent with the result for the isotropic case

3'8 T T u—032 1t is quite unexpected for the following reasons.
.6
-
g 04 0
«© 0.2

0 :I -0.5 |
03 &
o2 S ;
£ =
O 01 §

0 %ﬁ -15 |
S ¢
g 1 -2
=
205 ]
= 0 PP R S S 0 T 3 .

10 10 10 10 10 10 10 10 10 FIG. 4. The susceptibility at high temperaturds>Ty, for

anisotropiesu/m=1/v andv=3, 4, 5, 6. The impurity susceptibility
at T>Ty has the formy™(T)=(1/T)[1/4—B(T/T)>¥'™], i.e.,

FIG. 2. The anisotropy dependence of the entropy, specific heathe corrections to the free behavior are power laws with exponents
and susceptibility at small magnetic fields/Tx=2"%) [note that  2u/w=2/3, 1/2, 2/5, 1/3 forv=3, 4, 5, 6. This is illustrated in the
(b) is scaled by a factor 4 for comparison with the correspondingnset, which shows logd[Tx™(T)—1] versus logyT/T).
case of large magnetic fields shown in Fig. he anisotropies Straight lines with slopes-2u/m=-1/3, —2/5, —1/2, —2/3 for
shown are foru/m=1/v with »=3 (solid), v=4 (dotted, v=5 v=3, 4, 5, 6 are indicated by symbols and are well reproduced by
(dashed, andv=6 (long dashef the numerical results.

T/T

K
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e
n

dlog,,(C"™(T))/dlog,, T

-0.5 L :
log,(T/Ty)

FIG. 5. The specific heat at high temperaturgs; Tx, shows
power-law behaviorC™(T)~ (T /T)?#™ with w/m=1/v. The
logarithmic derivative of thisd log;gC™P(T)/d log,T, (solid line)
approaches-2u/m at T>Ty and is shown here for=5 (uw/m=1/
5). It is seen to approach 2u/m=—2/5 (dashed lingat high tem-
peratures.

First, the corresponding local Wilson ratio for the 1 case
(discussed in Refs. 12,11 and)38 independent of the mag-
netic field and is given by

2
(1—plm)’

It depends only on the anisotropy (that corresponds to the
dissipation strengtly; in the equivalent dissipative two-state
systent?). In contrast, for the present case=(2), the local
Wilson ratio depends both on the anisotropyand on the
magnetic fieldh. Thus, even though the reginTe<Tg, de-
scribes a Fermi liquid, in the sense of E89), the Fermi-
liquid state appears different to that for the1 case. We
note that the local Wilson ratio fdr=2 deviates increasingly
from the usuaf =1 Fermi-liquid Wilson ratio with decreas-

Rimp,leziz
ag

PHYSICAL REVIEW B 65 134416

h/T,

FIG. 6. The magnetic-fielth) dependence of th@ocal) Wilson
ratio R™P(h) for different anisotropieg/7w=1/v [v=3 (solid), v=4
(dotted, v=5 (dashedl]. At h>Ty, a;R™(h)=2-a(T/h)?*/".
This is illustrated in the inset, which shows g2 — R™P(h)] ver-
sus logg(h/Tk). Straight lines with slopes-2u/7=—2/3, —1/2,
—2/5, for v=3, 4, 5, are indicated by symbols and are well repro-
duced by the numerical results.

way that the power-law corrections to the high-temperature
thermodynamics gave rise to logarithmic corrections in this
limit.

V. CONCLUSIONS

In summary, we presented a detailed analysis of the ther-
modynamics of spin-anisotropic two-channel Kondo model
by using the Bethe-ansatz technique combined with
Bosonization and renormalization-group arguments, and dis-
cussed quantitatively the role of the anisotropy and the mag-
netic field.

We showed that at high temperatures the thermodynamics
is very different from that of the isotropic model: The local
impurity susceptibility is essentially free-impurity like, how-
ever, the coefficient of the global susceptibility is nonuniver-

ing h, i.e., as the range over which non-Fermi-liquid behav-sal, and is related to the phase sléifgenerated by the cou-

ior dominates increases. The numerical resultsIBP(h) in
Fig. 6 indicate thaR"™P(h) vanishes a®— 0. This result is
consistent with the numerical analysis of the:-0 estimates
of the susceptibility and specific heat in E88). In contrast,
from Eq.(26) R™(T—0,h=0) is finite, so we see again that
the two limits T—0,h=0 andT=0, h—0 cannot be ex-
changed. The inset to Fig. 6 shows thRit"™(h) exhibits
power-law behavior at large magnetic fields. er T we
find

a;R™=2-a(T/h)?/7.

Finally, for completeness, we show in Fig. 7 the impurity
magnetization(or polarizability in the presence of a local
field, M (h) =(S{)(h). For each anisotropy, M,(h) is a
universal function oh/Ty [the same holds fdR™P(h)]. The
approach ofM,(h) to the free value foh>Ty depends on
anisotropy and is found numerically to behave like

M,(h)=1/2—b(T /h)?# ™,

We expect that in the isotropic limi—0 the above power
laws will give way to logarithmic corrections in the same

pling J,. In particular, the global susceptibility vanishes at
the Emery-Kivelson line = 7/2f. More interestingly, the
impurity specific heatand the corrections to the susceptibil-

0.50

0.40

0.30

_
=
=4

= 0.20

0.10

0.00

FIG. 7. The magnetic-fiel¢h) dependence of the impurity mag-
netizationM,(h,T=0) for different anisotropiegw/7=1/v [v=3
(solid), v=4 (dotted, v=5 (dashedl]. At h>Tyx, M (h)=1/2
—b(Tk/h)?#'™. This is illustrated in the inset, which shows
log;d 1/2—M,(h)] versus logy(h/Ty). Straight lines with slopes
—2ulm=-2/3,-1/2,-2/5, forv=3, 4, 5, are indicated by symbols
and are well reproduced by the numerical results.
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ity about the free behavipexhibits a power-law behavior at
high temperature, Hin= 2 [¢] 501 5(0) =4[ (), ;(0)]SS,

(A1)

where the electronic field operatt;!«rT ,.j creates chiralright-
moving electron with spina={+, —} {7,1} and channel
The anomalous exponent is the anisotropy parameter in indexj={1, ... f}. Thus the interaction simply produces a
the Bethe ansatz. We have shown théatr is just the anoma- spin-dependent potential scattering, and gives rise to a phase
lous scaling exponent of the spin-flip terdn at high tem-  shift &,

perature and that it is related to the phase shifts generated by

) TK 2ulm
CIMP(T T, ,h)~ (?) . (31)

J, through’ Yo j(X=0") =, (x=0")e 4%, (A2)
5 52 In general, the connection betwednand § depends on
;=4;—4f?. (320 the particular cutoff scheme used except for the small cou-

pling limit, J,<1. To be specific, here we shall use Abelian

| scall & a simil | Bosonization on a system of finite size and the cutoff
On general scaling argumerits, a similar power-law de- -~ gopame associated with3h.In the Bosonization procedure

pendence is expected to appear in the impurity re3|st|V|tyWe rewrite the Hamiltonian ag=g’ =1):
For f=2 we find

. TK 2ul HZE ((9 (I)a])z'l' 2 N
p'mP(T>TK)~(?> . (33 @l
J,
rather than a simple logarithmic scaling. ESO
For h=0, and for temperatures below the Kondo tem-
perature, the thermodynamics is governed by the isotropic E
2CK fixed point and most of the thermodynamic properties Y|
resemble very much those of the fully isotropic model, even
for strong anisotropies. where the external fieltd couples to thdotal pseudospin of
For finiteh we showed that the non-Fermi-liquid behavior the systemN,, ; denotes the total number of electrons with
found for h=0 persists for an intermediate region of tem- respect to the ground state with spinin channelj, and the
peraturesTF5<T<TK, provided h<T, so that the new free Bosonic fields satisfy
scaleTg ~h/T is well below Ty, just as in the isotropic , . ,
case’? We also showed that the Fermi-liquid behavior below  [9x®Paj(X), P ar j1(X)]= =127 jj1 Sgqr H(X—X").
Tr is unusual in that the Wilson rati®®™(h), depended (A4)
very sensitively on the magnetic field (in contrast to the The original fermion fields can be represented as
f=1 case, which is completely independenthgf and we
calculated the detailed dependence of this quantity for sev- S50,
eral anisotropies. Yaj(X)= \/— & e (A5)
While here we focused our attention to specific values of
the anisotropy, our calculations can be easily generalized tavhereF , ; denotes the Klein factor, aralis a small distance
other anisotropy values and serve as a basis for any interpautoff of the order of the lattice spacing.
lation necessary for cases where there is wide distribution of The phase shift can be most easily calculated by introduc-

1
((9CI>+aN)

(A3)

NlQ

anisotropies present. ing charge and spin fields and quantum numbers:
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NC,jENT,j—i_Nl,j! (A?)

and performing a unitary transformation on the Hamiltonian

APPENDIX: DERIVATION OF EQ. (17) by U =g Zi92®s(0S¢(22) resulting in
To prove Eq.(17) let us consider the limig, —0 of Eq. 3
(1). In this case the interaction part of the Hamiltonian be- axq)syj(x)ﬁaxq)syj(x)__2565()(), (A9)
comes V2
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and the “noninteracting” Hamiltonian: Z(B)=Zo(B) X ZB,h),
H=Hy+Hq, (A10) Zs(ﬁyh)ZE 2 e BHs,
Ns Sg=+1/2

f It is easy to evaluate the sum above in the o limit giving
:2 :z f (aCIJM)ZJr ZNCJ,

h J
__ aBf(LI2m)(1/4)h? ﬂ_ _f -z
(A11) Zs~e xcos?{ 5 (1 f477”. (A14)

The first term just generates the Pauli susceptibility of a free-

2w electron gas, while the second corresponds to a free spin

Hs=h86+2 th,j+ 7 Ns +J So (A12) coupled to a renormalized magnetic field and gives a Curie
] susceptibility:

From Egs.(A9), (A6), (A5), and (A2) immediately follows s (1—1J /477)2 ALE
that in the Bosonization cutoff scheme simply Xglob™ 4T (A15)
Together with Eq(A13), this yields Eq.(17).
J, As a further test, one can compare this result with the
o=3- (A13)  exact relation, Eq(16) in the small coupling limit. Within

the Bethe-ansatz cutoff schethe cos(u)=cos(,/2)/
cos{,/2), which in the appropriate small coupling limit
To prove Eq.(17) we observe that the external field only gives w=J,/2+ O(J%) =46+ O(5%). Substituting this ex-
appears in EqA12). Therefore the partition function factor- pression into Eq(16) we indeed recover the exact relation

izes as Eq. (17) in linear order ind.
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