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Thermodynamics of the anisotropic two-channel Kondo problem
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We construct and solve numerically the thermodynamic Bethe-ansatz equations for the spin-anisotropic
two-channel Kondo model in arbitrary external fieldh. At high temperatures the specific heat and the suscep-
tibility show power-law dependence. Forh→0 and at temperatures below the Kondo temperatureTK a
two-channel Kondo effect develops characterized by a Wilson ratio 8/3, and a logarithmic divergence of the
susceptibility and the linear specific-heat coefficient. A finite magnetic field,h.0, drives the system to a
Fermi-liquid fixed point with an unusual Wilson ratio which depends sensitively onh.
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I. INTRODUCTION

The two-channel Kondo model~2CKM! attracted a lot of
interest during the past few years.1 This intense interest is
mostly triggered by the rather unusual properties of t
model: The existence of finite residual entropy in zero ex
nal field, the vanishing of single-particle scattering amplitu
at T50 temperature, and the logarithmic singularity of va
ous thermodynamic quantities. All these unusual proper
appear due to the presence of a hidden and conservedflavor
quantum number of the electrons.

Several physical systems have been proposed to re
the 2CKM. An unambiguous realization of the 2CKM is pr
vided by dilute uranium and cerium-based heavy ferm
compounds.1 In these alloys the combination of strong spi
orbit interaction and crystal-field symmetry effects leads
an effective 2CKM.

It has been also suggested that noncommutative tunne
centers may form two-level systems~TLS’s! and realize the
2CKM.2 In this case the localized spin is replaced by t
position of the tunneling center, while the angular mome
of the conduction electrons play the role of the electron s
in the 2CKM. The electron spins in the TLS problem pl
the role of silent flavor indices. Though there have been s
eral concerns raised concerning the microscopic structur
the TLS and the possibility of observing the two-chann
Kondo behavior,3,4 many experiments may be consisten
interpreted in terms of such dynamical two-channel Kon
impurities.5–7

Another realization of the 2CKM is provided by quantu
dots near to their charge degeneracy point.8 In this case the
charging states of the dot replace the impurity spin states
they couple to the position variable of the conduction el
trons. Again, the spin of the electrons acts as a flavor v
able. Though it appears to be extremely difficult to obse
experimentally the non-Fermi-liquid behavior associa
with the two-channel Kondo fixed point,9 some fingerprints
of the two-channel Kondo effect have been observed in
capacitance of such semiconducting quantum dots.10
0163-1829/2002/65~13!/134416~9!/$20.00 65 1344
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The above physical realizations of the 2CKM have t
common feature that the 2CKM that describes them is in
cases generically strongly spin anisotropic, and breaks
full SU~2! spin symmetry. While this SU~2! symmetry break-
ing is known to be irrelevant at the two-channel Kondo fix
point,1 it affects both qualitatively and quantitatively th
properties of the model at energies around and above
Kondo temperatureTK , and has to be taken into account
make comparison with experiments.

In the present paper we generalize the Bethe-ansatz
sults of Ref. 11 to compute both analytically and numerica
the thermodynamics of the anisotropic 2CKM at arbitra
temperatures and magnetic fields for various values of
anisotropy. Below the Kondo temperatureTK we find that the
thermodynamic properties of the model are very similar
those of the isotropic 2CKM. This observation is in fu
agreement with the irrelevance of the anisotropy at
2CKM. However, aboveTK the behavior of the model de
pends crucially on spin anisotropy. We find that aboveTK all
thermodynamic quantities display apower-lawbehavior with
an exponent determined by the value of the anisotropy. F
thermore, we find that at finite magnetic fields the syst
flows to an unusual Fermi-liquid fixed point with a
anisotropy-dependent Wilson ratio.

The paper is organized as follows. In Sec. II we introdu
the 2CKM. In Sec. III we construct the thermodynam
Bethe-ansatz equations for the anisotropic 2CKM that
analyze in detail in Sec. IV. Some details of the computat
are given in the Appendix.

II. MODEL

The anisotropic 2CKM consists of a spinS051/2 impu-
rity that couples dynamically to the spin of the conducti
electrons through a strongly anisotropic exchange inte
tion, and is described by the following first quantized Ham
tonian (\5kB5mB51):2
©2002 The American Physical Society16-1



e
c
u

-

an
rn
ec

wo

r
ld

ly

to
,
-

el

-

a

p

m
il-
za

w

ns
i

o
a

th

to

me
m-

this

ase
li-

-
-
ons.
of
or

an-
ty-
y

el
the

-
me

BA
ed
-
ar:
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H5(
j 51

Ne H 2 i ]/]xj1 (
a5x,y,z

d~xj !JaSj
aS0

aJ
1hS gS0

z1g8(
j

Sj
zD . ~1!

In this equationxj is the coordinate of thej th conduction
electron,Ne5N3 f is the total number of electrons, and th
Sj ’s ( j 50, . . . ,Ne) denote the spin-1/2 operators of the ele
trons. Electrons also have a conserved flavor quantum n
ber, m5$1, . . . ,f %, implicit in Eq. ~1!. In the following we
discuss the casef >2 as well though for the physical realiza
tions mentioned in the Introductionf 52. ~The f 51 case has
been analyzed in Refs. 12 and 11.!

The meaning of the various terms in this Hamiltoni
depends on the particular physical realization. The exte
field h couples to the local moment and the conduction el
tron spins with differentg factors. In the TLS problem and
the quantum dot case, the external fieldh represents the
asymmetry of the TLS and the splitting between the t
charging states of the quantum dot, respectively, andg8[0.
For heavy fermion systems, depending on the particular
alization,h can describe an external magnetic or strain fie
and may also couple to( jSj

z . In the present paper we most
study thelocal susceptibility, corresponding tog850.

In the original formulation of the Bethe ansatz, similar
the conformal field theory solution of the Kondo problem13

the impurity spin is ‘‘fused’’ with the spin degrees of free
dom of the conduction electrons, and the external fi
couples to the total spin, corresponding tog851. Thus the
Bethe-ansatz calculates the impurity contribution to theglo-
bal susceptibility withg85g. Lowenstein made a remark
able attempt to treat theg8Þ1 case,14 however, his results
were not fully conclusive.14 In the present paper we use
different strategy to cope with theg850 situation, and show
that, similar to the case of the single-channel anisotro
Kondo problem,15 the g850 local susceptibility ~i.e., the
susceptibility arising when the field couples only to the i
purity spin! is simply proportional to the global susceptib
ity. Therefore, after determining the appropriate normali
tion factor, we are able to extract the exactlocal
susceptibility from the Bethe-ansatz calculation withg5g8.

In our analysis we shall assume thatJzÞJx5Jy5J' and
thus the Hamiltonian has a U~1! spin symmetry. This is true
for the quantum dot and heavy fermion realizations, ho
ever, for the TLS problemJz@Jx.Jy50.2 Fortunately, it is
not necessary to treat the general Bethe-ansatz equatio
order to determine the universal features of the TLS Ham
tonian in the TLS case either: Under scaling the termsJx and
Jy , describing electron-assisted tunneling processes, bec
rapidly equal2 and therefore it suffices to consider an equiv
lent effective model withJx

eff5Jy
eff5J'5Jx/2 to determine

the thermodynamics. This effective model has U~1! orbital
symmetry and can be much more easily analyzed by Be
ansatz techniques than the fully anisotropic one.

In constructing the wave function we implicitly have
introduce a further electron-electron interaction,
13441
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1< i , j <Ne

(
a5x,y,z

d~xi2xj !JaSi
aSj

a . ~2!

Since electrons move with the same velocity and in the sa
direction, this interaction does not modify the thermodyna
ics in a crucial way forJz.J' . In particular, we have shown
that the specific heat of the electrons is unaffected by
interaction. However, it doesrescalethe g factor in Eq.~1!:
g→geff. Fortunately, we shall be able tocompensatethis
effect by the renormalization ofg factors in the magnetic-
field term.

In the present paper we restrict our discussion to the c
Jz.J' . Our calculations are therefore not directly app
cable to the quantum dot case.

In Eq. ~1!, only a term;hS0
z has been included, which

acts as a local field in thez direction. In reality, however, the
field can also point into the ‘‘perpendicular’’ direction corre
sponding to a term;h'S0

x . In the TLS case this term de
scribes spontaneous tunneling between the TLS positi
The general effect of the latter term is very similar to that
hS0

z , but quantitatively it behaves somewhat differently. F
a TLS, e.g., in a typical situation,h is believed to be much
larger thanh' ,4 and furthermore, itseffectivevalue is orders
of magnitude reduced by polaronic effects.2,27 Therefore in
most situations it is enough to include only the term;hS0

z in
the Hamiltonian.

III. BETHE-ANSATZ SOLUTION

The most important ingredients of the algebraic Bethe
satz~BA! are the various scattering matrices. The impuri
conduction electronS matrix can be constructed directl
from Eq. ~1!:

R0 j5U0 j
(spin)~l02l j !s0s

08 ;s js j8
^ Id ( f lavor), ~3!

wherel0521 andl j5→0 denote the ‘‘rapidities’’ of the
impurity and conduction electronj, andU is the U~1! scat-
tering matrix,

U0 j~l!5a~l!P↑↑1b~l!P↑↓1
1

2
c~l!~S0

1Sj
21S0

2Sj
1!,

a~l!

c~l!
5

sinh~ im1lq!

sinh~ im!
,

a~l!

b~l!
5

sinh~ im1lq!

sinh~lq!
, ~4!

with P↑↑ andP↑↓ being the projection operators for parall
and opposite spins. Excepting the small coupling regime,
connection of the parametersm and q with the bare cou-
plings Jz andJ' is ambiguous12,16 and depends on the regu
larization procedure of the Dirac delta and the cutoff sche
used. Therefore, instead ofJz and J' , it is ratherm and u
that should be viewed as the basic parameters of the
solution: m turns out to be connected to the renormaliz
phase shift while the ratiom/u determines the Kondo tem
perature, below which non-Fermi-liquid correlations appe

TK5S 12 f
m

p D2D exp$2pu/m%, ~5!
6-2
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with D5N/L.
Since electrons move with the same velocity we have

liberty to define their scattering matrix in a way to mainta
integrability:

Ri j 5Ui j ~l i2l j ! ^ Fi j ~l i2l j !. ~6!

HereU(l) is given by Eq.~4! andF describes scattering in
the flavor sector:

Fi j ~l i2l j !5
l i2l j1 icXi j

l i2l j1 ic
, ~7!

with Xi j the flavor exchange operator of particlei and j and
c an arbitrary constant to be defined later.

Starting from these scattering matrices we used the a
braic BA to determine the nested BA equations and th
applied the dynamical fusion procedure of Ref. 17 to elim
nate the flavor degrees of freedom. The fused equations
siderably simplify with the choicec[m/q. Then the rapidi-
ties $la ;a51, . . . ,M % describing the spin sector of th
wave function satisfy

sinhS mS la1
i

2D1q D
sinhS mS la2

i

2D1q D F sinhmS la1 i
f

2D
sinhmS la2 i

f

2D G
N

52 )
b51

M
sinhm~la2lb1 i !

sinhm~la2lb2 i !
. ~8!

The momenta of the electrons and thus the total energ
determined by the periodic boundary conditions

eikAL f5 )
a51

M sinhmS la1 i
f

2D
sinhmS la2 i

f

2D ; E5 (
A51

N

f kA , ~9!

where f kA denotes the total momentum of the fus
f-electron composites, andL is the system size.

In the thermodynamic limit,L,N→`, N/L5D, the ‘‘spin
rapidities’’ la in Eq. ~8! are organized into strings12,11 of
length r and parityv56: l→$lq

(r ,v) ; q51, . . . ,r % with

l (r ,v)↔lq
(r ,v)5l (r ,v)1F r 11

2
2qG1 i

p

4m
~12v !. ~10!

We have verified that to obtain a stable solution form
,p/ f , v and r must satisfy thesame stability conditionas
for f 51,18,12

v sin~mq!sin@m~r 2q!#.0, q51, . . . ,@r /2#. ~11!

As shown by Takahashi and Susuki,18 the allowed (r ,v)
strings can be classified on the basis of an infinite~or finite!
fraction expansion ofm/p. To be specific, here we only dis
cuss the simplest casem5p/n and f ,n, where onlyn dif-
ferent stable string configurations exist:n5(r ,v)5(1,
1),(2,1), . . . ,(n21,1) and (1,2). The casem5p/ f rep-
resents a singular limit:19 For f 51 it corresponds to the de
13441
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coupling point20 while for f 52 it can be identified with the
Emery-Kivelson point~see below!.

IV. THERMODYNAMICS

A. Thermodynamic Bethe-ansatz equations

To derive the thermodynamic BA equations in the co
tinuum limit L,N→` and D[N/L5cst we proceeded in
the usual way. We first defined the density of rapidities~ra-
pidity holes!, %n(l) @%̃n(l)#. These are related to the ‘‘ex
citation energies’’en(l) through hn[%̃n /%n[e«n /T. The
functions en(l) are determined by the following integra
equations forn. f :

«n /T5ghn/2T2s*ln ~11e«n22 /T!1dn, f 11Q~l!,

«n21 /T5ghn/2T1s*ln ~11e«n22 /T!2dn, f 11Q~l!,

« j /T5s*ln @~11e« j 11 /T!~11e« j 21 /T!#

1d j ,n22s* ~11e2«n /T!2d j , fQ~l! ~ j ,n21!,

where s* denotes convolution with the Kernels(l)
51/cosh(pl), the driving term is given by Q(l)
52D/T arctan (epl) and «0→2`. The impurity contribu-
tion to the free energy is given by

F imp52TE
2`

`

sS l1
m

q D ln$11exp@«1~l!/T#%dl,

and, in principle, all thermodynamic quantities can be cal
lated by taking the derivatives ofF imp.

B. Analytical results

Many of the thermodynamic properties can be determin
from the asymptotic form of thehn’s. Using the ansatz
hn(l→6`)'hn

61bn
6e7pt6l one obtains a set of alge

braic equations for thehn
6’s, bn

6’s, and the exponentst6 .
The latter exponents govern the scaling of the free energ
the vicinity of the low- and high-energy fixed points and a
given by t154/(21 f ) and t252m/p. The crossover be-
tween the two regimes occurs at the Kondo scale Eq.~5!,
which emerges naturally if one rewrites the thermodynam
BA equations above in a ‘‘universal’’ form by removing th
cutoff D.21,19,22 The asymptotic form of the impurity free
energy forh!T!TK is given by

2F imp/T;H Simp1Fa1bS gh

T D 2G S T

TK
D 4/21 f

f .2,

Simp1Fa1bS gh

T D 2GF T

TK
lnS T

TK
D G f 52,

implying the divergence of the linear specific heat coefficie
c/T at h50 and the susceptibility asT→0. The constantsa
andb above depend on the specific value off andm, and the
residual entropySimp is the same as in the isotropic case,17
6-3
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Simp 5 lnS sinS f p

f 12D
sinS p

f 12D D . ~12!

To determine the renormalization of theg factor and the
Wilson ratio, we calculated the linear specific-heat coe
cient and the bulk magnetizationMz

tot[2]F tot/]h in the ab-
sence of the impurity spin~but with g85g). Similar to the
casef 51,12 the linear specific-heat coefficient agrees w
that of the spin sector of noninteracting free electrons. Ho
ever, the magnetization does not. Following similar lines
in Ref. 12, the total spin can be related tohn

6 andhn21
6 and

thus the magnetization is simply given by

Mz52
]

]h
F tot5gK (

i 51

Ne

Si
zL 5g2

f L

4p

h

12 f m/p
, ~13!

with the termg2f L/4p, the Pauli susceptibility of free elec
trons.

From this equation it immediately follows by integratio
that at zero temperature

F tot52
1

2
g2

f L

4p

h2

12 f m/p
. ~14!

Thus theg factor isrenormalizeddue to the electron-electro
interaction asg→g/(12m f /p)1/2, and to compensate th
effect of Eq.~2!, we have to choose

g[~12m f /p!1/2.

Having thus compensated the effect of the artific
electron-electron interaction of Eq.~2! by rescalingg, we can
proceed to calculate the impurity contribution to theglobal
susceptibility ~defined with g851, g51 but no electron-
electron interaction!. We find indeed that with the choiceg
[(12m f /p)1/2 the low-temperature~global! Wilson ratio,
defined in terms of this global impurity susceptibility, tak
on a universal value

Rglob
imp 5 lim

T→0
lim
h→0

cbulk

xbulk

xglob
imp

cglob
imp

5
8

3
, ~15!

as in the isotropic case,23 proving again that exchange aniso
ropy is irrelevant at the two-channel Kondo fixed point.24–26

In the following we shall always denote quantities that we
calculated without~i.e., compensating! the artificial electron-
electron interaction by the superscript ‘‘imp.’’

To capture the meaning of the parameterm we also deter-
mined the impurity contribution to theglobal susceptibility
in the high-temperature regime:

xglob
imp 5

g2

4T
5

12 f m/p

4T
. ~16!

Using Abelian Bosonization techniques we were also abl
prove analytically that forJ'!Jz at high temperatures,
13441
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xglob
imp ~T→`!5S 122 f

d

p D 2 1

4T
, ~17!

with d the phase shift generated byJz ~see the Appendix for
the derivation and the precise definition of the pha
shift!.27,25

This immediately implies the important relation

m

p
54

d

p
24 f

d2

p2 . ~18!

Comparing this expression with the results of Ref. 27
notice immediately thatm/p is nothing but thescaling di-
mensionof J' , which satisfies the following scaling equa
tion at energy scalesv well aboveTK :27

d ln J'

d ln~v0 /v!
5

m

p
, ~v@TK!. ~19!

Herev0 is a high-energy cutoff. For a TLS it is of the orde
of the Debye temperature, while for heavy fermions it
usually of the order of the Fermi energy. For a quantum
the cutoff is the charging energy,v0;Ec . The effective per-
pendicular couplingJ' at energy scalev can be obtained by
simply integrating this equation.

Equation~18! is further confirmed by noticing that forf
52 at the Emery-Kivelson line,d5p/4, the global suscep
tibility Eq. ~16! identically vanishes, in complete agreeme
with the results of Refs. 28. The pointd5p/2f correspond-
ing to m5p/ f is highly singular, and needs special care:19 At
this particular point the amplitude of the leading irreleva
operator, responsible for the divergence of the susceptib
and the linear specific-heat coefficient, becomes zero.28

The global susceptibilityxglob
imp and the associated globa

Wilson ratio Rglob
imp , defined in Eq.~15!, are useful for mag-

netic Kondo systems. However, for quantum dots and TL
it is rather thelocal impurity susceptibility that is of interest
i.e., the response of the system to an external field coup
only to the impurity spin. Hence we studied the impuri
contribution to the susceptibility wheng51 andg850 ~and
in the absence of the artificial electron-electron interactio!.
In order to determine this we generalized the path-integ
derivation of Ref. 15 to show that

F imp~h,T,g,g85g!5F imp~ h̃,T,g,g850!, ~20!

where h̃5h(122 f d/p)5h(12m f /p)1/2. To establish the
second equality we used Eq.~18!. Thus we can calculate th
local impurity properties~those for g51, g850 and no
electron-electron interaction! from the BA equations with
g85g5(12 f m/p)1/2 by simply rescaling the fieldh accord-
ing to Eq.~20!.29

Henceforth, unless otherwise stated, we shall denote
local impurity susceptibility obtained from the BA solutio
in combination with Eq.~20! by x imp and the associated loca
Wilson ratio byRimp ~see below!.

Following the above procedure we find at high tempe
ture
6-4
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x imp5
1

4T F12BS TK

T D 2m/pG , ~21!

Cimp;S TK

T D 2m/p

. ~22!

Note that at high temperatures the specific heat exhibi
power-lawbehavior which crosses over to a logarithmic b
havior in the isotropic casem→0. Similarly, the corrections
to the susceptibility about the free behavior are power-
like and these power laws give way to logarithmic corre
tions in the isotropic limitm→0. We note that the abov
exponent 2m/p is formally the same as found for thef 51
case.11 However, the relation betweenm and the bare cou
plings is quite different in the two cases and involves
channel numberf @see Eq.~18!#.

The power-law corrections can be very easily underst
from the scaling picture. Expanding the free energy in ter
of J' one finds that the leading correction is second orde
J' . Making use of the scaling equation~19! it immediately
follows that the leading corrections to the free energy beh
asT122m/p, implying Eq.~22!. Similar arguments lead to th
conclusion that the impurity-induced resistivity correcti
behaves at high temperatures as

r imp5A1BS TK

T D 2m/p

~23!

for T@TK .
At low temperatures,T!TK , some care is required in

discussing thermodynamic properties. In contrast to the c
f 51, whereF is analytical aroundT5h50,12 here theh
50, T50 point is an essential singularity and the two lim
T→0 andh→0 are not interchangeable. Taking the limith
→0 first, we find the following non-Fermi-liquid behavior

x imp;
1

TK
lnS T

TK
D , ~24!

Cimp;
T

TK
lnS T

TK
D , ~25!

R̃imp5 lim
T→0

lim
h→0

cbulk

xbulk

x imp

Cimp
5

1

12 f m/p

8

3
. ~26!

Here, we have defined a local Wilson ratioR̃imp. It is ex-
pressed in terms of the local impurity susceptibilityx imp, and
the impurity contribution to the specific heatcimp. It differs
from the Wilson ratio defined in Eq.~15! ~which is the usual
definition for this quantity in the magnetic Kondo problem!
by havingg850. We see that this local Wilson ratio depen
on anisotropym and thus the phase shiftd, and is therefore
not universal.

We now consider the limit ofT→0, with h remaining
either finite, or taken to zero subsequently. In this case,
for h!TK , we find from the numerical results of the ne
section that there is a low-energy scaleTFL5h2/TK , below
13441
a
-

-

e

d
s
n

e

se

d

which the thermodynamics is Fermi-liquid like. In particul
for T!TFL and small magnetic fieldsh!TK we find

x imp~h,T!TFL!;2 ln~h/TK!, ~27!

Cimp~h,T!TFL!;
T

TFL
, ~28!

with TFL;h2/TK ~for h!TK). A local Wilson ratio for arbi-
trary local magnetic fieldh can be defined as

Rimp~h!5 lim
T→0

cbulk~h!

xbulk~h!

x imp~h!

Cimp~h!
. ~29!

In contrast to thef 51 case, for which this quantity is inde
pendent ofh, but dependent on anisotropy@being given by
Rimp, f 51(h)52/(12m/p)11,31#, for the presentf 52 case it
depends explicitly onboth h and anisotropy~Fig. 6!. This
important result, which is consistent with the result for t
isotropic case,32 will be discussed in the following section o
the numerical solution. We note here, however, that the lo
Wilson ratio for the f 52 case agrees with thef 51 local
Wilson ratio in the case of asymptotically large magne
fields,h@TK , i.e., in this case we have

Rimp~h@TK!5
2

12
m

p

, ~30!

although the meaning ofm is different in the two cases@see
Eq. ~18!#. The detailed dependence of this local Wilson ra
on h will be discussed in the next section.

C. Numerical solution

In order to obtain the thermodynamics at all temperatur
it was necessary to solve the thermodynamic BA equati
of Sec. IV A numerically. A procedure for doing this, whic
is valid for arbitrary values of the magnetic fieldh and tem-
perature has been developed in Ref. 11 forf 51. With small
modifications, the same procedure applies also to the pre
case. We considered anisotropies given bym/p51/n with n
53, 4, 5, 6. In Figs. 1~a!–~c! we show the thermodynamic
of the anisotropic 2CKM for a large anisotropy~n53! as one
might have in a realistic system. The characteristic n
Fermi-liquid behavior, in particular the ln~2!/2 entropy17 and
the logarithmically divergentx imp(T) and Cimp(T)/T, are
found at zero field. A finite field,h.0, restores Fermi-liquid
behavior at temperatures below a low-energy scaleTFL
5h2/TK , as found for the isotropic,n5`, case.32 The non-
Fermi-liquid behavior for 0,h,TK is therefore restricted to
an intermediate range of temperatures,TFL,T,TK , and we
see that a clear signature of such behavior@such as the two
peaks in the specific heat with each peak having only ln(2
entropy, or a ln(T) behavior ofx(T) for a temperature range
below TK# is possible, even at moderate magnetic fieldsh
;TK/16.

In Figs. 2~a!–~c! and Figs. 3~a!–~c! we show the effect of
different anisotropies on the thermodynamics for both
small external field (h!TK , Fig. 2! and a large magnetic
6-5
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field (h@TK , Fig. 3!. At h!TK , the main effect of anisot-
ropy is to modify the thermodynamics at intermediate,TFL
&T&TK , and high temperatures,T.TK . For large mag-
netic field, h@TK , the anisotropy modifies the thermod
namic properties at temperatures,T*TK ~Fig. 3!.

A characteristic feature of the present model (f 52), is
that, similar to the case dissipative two state systems,11 it has

FIG. 1. The impurity contribution to the entropySimp, specific
heatCimp, and ~local! susceptibilityx imp, as functions ofT/TK for
magnetic fieldsh/TK5226 ~solid!, h/TK5224 ~dotted!, h/TK51
~dashed!, and h/TK524 ~long dashed! for the casen53 corre-
sponding to the largest anisotropy studied.

FIG. 2. The anisotropy dependence of the entropy, specific h
and susceptibility at small magnetic fields (h/TK5224) @note that
~b! is scaled by a factor 4 for comparison with the correspond
case of large magnetic fields shown in Fig. 3#. The anisotropies
shown are form/p51/n with n53 ~solid!, n54 ~dotted!, n55
~dashed!, andn56 ~long dashed!.
13441
power-law corrections in its thermodynamics at high tem
peratures (T@TK). The exponents are uniquely related to t
anisotropy parameterm @cf. Eq. ~22!#. This is in contrast to
the corresponding isotropic models which have logarithm
corrections at high temperatures. Figures 4 and 5 show
for the susceptibility and specific heat, respectively.

Figure 6 shows the remarkable magnetic-field depende
of the local Wilson ratioRimp(h). This magnetic-field depen
dence is consistent with the result for the isotropic ca
m→0.32 It is quite unexpected for the following reason

at,

g

FIG. 3. The anisotropy dependence of the entropy, specific h
and susceptibility at large magnetic fields (h/TK524) @note that~c!
is scaled by a factor 0.125 for comparison with the correspond
case for small magnetic fields shown in Fig. 2#. The anisotropies
shown are form/p51/n with n53 ~solid!, n54 ~dotted!, n55
~dashed!, andn56 ~long dashed!.

FIG. 4. The susceptibility at high temperatures,T@TK , for
anisotropiesm/p51/n andn53, 4, 5, 6. The impurity susceptibility
at T@TK has the formx imp(T)5(1/T)@1/42B(TK /T)2m/p#, i.e.,
the corrections to the free behavior are power laws with expon
2m/p52/3, 1/2, 2/5, 1/3 forn53, 4, 5, 6. This is illustrated in the
inset, which shows log104@Tx imp(T)21# versus log10(T/TK).
Straight lines with slopes22m/p521/3, 22/5, 21/2, 22/3 for
n53, 4, 5, 6 are indicated by symbols and are well reproduced
the numerical results.
6-6
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First, the corresponding local Wilson ratio for thef 51 case
~discussed in Refs. 12,11 and 33! is independent of the mag
netic field and is given by

Rimp, f 515
2

a1
5

2

~12m/p!
.

It depends only on the anisotropym ~that corresponds to th
dissipation strengtha1 in the equivalent dissipative two-sta
system11!. In contrast, for the present case (f 52), the local
Wilson ratio depends both on the anisotropym and on the
magnetic fieldh. Thus, even though the regimeT!TFL de-
scribes a Fermi liquid, in the sense of Eq.~29!, the Fermi-
liquid state appears different to that for thef 51 case. We
note that the local Wilson ratio forf 52 deviates increasingly
from the usualf 51 Fermi-liquid Wilson ratio with decreas
ing h, i.e., as the range over which non-Fermi-liquid beha
ior dominates increases. The numerical results forRimp(h) in
Fig. 6 indicate thatRimp(h) vanishes ash→0. This result is
consistent with the numerical analysis of theh→0 estimates
of the susceptibility and specific heat in Eq.~28!. In contrast,
from Eq.~26! R̃imp(T→0,h50) is finite, so we see again tha
the two limits T→0, h50 and T50, h→0 cannot be ex-
changed. The inset to Fig. 6 shows thatRimp(h) exhibits
power-law behavior at large magnetic fields. Forh@TK we
find

a1Rimp522a~TK /h!2m/p.

Finally, for completeness, we show in Fig. 7 the impur
magnetization~or polarizability! in the presence of a loca
field, Mz(h)5^S0

z&(h). For each anisotropym, Mz(h) is a
universal function ofh/TK @the same holds forRimp(h)#. The
approach ofMz(h) to the free value forh@TK depends on
anisotropy and is found numerically to behave like

Mz~h!51/22b~TK /h!2m/p.

We expect that in the isotropic limitm→0 the above power
laws will give way to logarithmic corrections in the sam

FIG. 5. The specific heat at high temperatures,T@TK , shows
power-law behaviorCimp(T);(TK /T)2m/p with m/p51/n. The
logarithmic derivative of this,d log10C

imp(T)/d log10T, ~solid line!
approaches22m/p at T@TK and is shown here forn55 ~m/p51/
5!. It is seen to approach22m/p522/5 ~dashed line! at high tem-
peratures.
13441
-

way that the power-law corrections to the high-temperat
thermodynamics gave rise to logarithmic corrections in t
limit.

V. CONCLUSIONS

In summary, we presented a detailed analysis of the t
modynamics of spin-anisotropic two-channel Kondo mo
by using the Bethe-ansatz technique combined w
Bosonization and renormalization-group arguments, and
cussed quantitatively the role of the anisotropy and the m
netic field.

We showed that at high temperatures the thermodynam
is very different from that of the isotropic model: The loc
impurity susceptibility is essentially free-impurity like, how
ever, the coefficient of the global susceptibility is nonuniv
sal, and is related to the phase shiftd generated by the cou
pling Jz . In particular, the global susceptibility vanishes
the Emery-Kivelson line,d5p/2f . More interestingly, the
impurity specific heat~and the corrections to the susceptib

FIG. 6. The magnetic-field~h! dependence of the~local! Wilson
ratio Rimp(h) for different anisotropiesm/p51/n @n53 ~solid!, n54
~dotted!, n55 ~dashed!#. At h@TK , a1Rimp(h)522a(TK /h)2m/p.
This is illustrated in the inset, which shows log10@22Rimp(h)# ver-
sus log10(h/TK). Straight lines with slopes22m/p522/3, 21/2,
22/5, for n53, 4, 5, are indicated by symbols and are well rep
duced by the numerical results.

FIG. 7. The magnetic-field~h! dependence of the impurity mag
netization Mz(h,T50) for different anisotropiesm/p51/n @n53
~solid!, n54 ~dotted!, n55 ~dashed!#. At h@TK , Mz(h)51/2
2b(TK /h)2m/p. This is illustrated in the inset, which show
log10@1/22Mz(h)# versus log10(h/TK). Straight lines with slopes
22m/p522/3,21/2,22/5, forn53, 4, 5, are indicated by symbol
and are well reproduced by the numerical results.
6-7
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ity about the free behavior! exhibits a power-law behavior a
high temperature,

Cimp~T@TK ,h!;S TK

T D 2m/p

. ~31!

The anomalous exponentm is the anisotropy parameter i
the Bethe ansatz. We have shown thatm/p is just the anoma-
lous scaling exponent of the spin-flip termJ' at high tem-
perature and that it is related to the phase shifts generate
Jz through27

m

p
54

d

p
24 f

d2

p2 . ~32!

On general scaling arguments,2,27 a similar power-law de-
pendence is expected to appear in the impurity resistiv
For f 52 we find

r imp~T@TK!;S TK

T D 2m/p

. ~33!

rather than a simple logarithmic scaling.
For h50, and for temperatures below the Kondo te

perature, the thermodynamics is governed by the isotro
2CK fixed point and most of the thermodynamic propert
resemble very much those of the fully isotropic model, ev
for strong anisotropies.

For finiteh we showed that the non-Fermi-liquid behavi
found for h50 persists for an intermediate region of tem
peraturesTFL,T,TK , provided h,TK so that the new
scaleTFL;h2/TK is well belowTK , just as in the isotropic
case.32 We also showed that the Fermi-liquid behavior belo
TFL is unusual in that the Wilson ratio,Rimp(h), depended
very sensitively on the magnetic fieldh ~in contrast to the
f 51 case, which is completely independent ofh) and we
calculated the detailed dependence of this quantity for s
eral anisotropies.

While here we focused our attention to specific values
the anisotropy, our calculations can be easily generalize
other anisotropy values and serve as a basis for any inte
lation necessary for cases where there is wide distributio
anisotropies present.
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APPENDIX: DERIVATION OF EQ. „17…

To prove Eq.~17! let us consider the limitJ'→0 of Eq.
~1!. In this case the interaction part of the Hamiltonian b
comes
13441
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H int5
Jz

2 (
j 51

f

@c↑, j
† ~0!c↑, j~0!2c↓, j

† ~0!c↓, j~0!#S0
z ,

~A1!

where the electronic field operatorca, j
† creates chiral~right-

moving! electron with spina5$1,2%5$↑,↓% and channel
index j 5$1, . . . ,f %. Thus the interaction simply produces
spin-dependent potential scattering, and gives rise to a p
shift d,

ca, j~x501!5ca, j~x502!e24iadS0
z
. ~A2!

In general, the connection betweenJz and d depends on
the particular cutoff scheme used except for the small c
pling limit, Jz!1. To be specific, here we shall use Abelia
Bosonization on a system of finite sizeL and the cutoff
scheme associated with it.30 In the Bosonization procedur
we rewrite the Hamiltonian as (g5g851):

H5(
a, j

E dx

4p
~]xFa, j !

21
2p

L

1

2 (
j ,a

Na, j
2

1
Jz

2
S0

z(
a, j

S a

2p
]xFa, j1

1

L
aNa, j D

1hS (
a, j

a

2
Na, j1S0

zD , ~A3!

where the external fieldh couples to thetotal pseudospin of
the system,Na, j denotes the total number of electrons wi
respect to the ground state with spina in channelj, and the
free Bosonic fields satisfy

@]xFa, j~x!,Fa8, j 8~x8!#52 i2pd j j 8daa8d~x2x8!.
~A4!

The original fermion fields can be represented as

ca, j~x!5
1

Aa
Fa, je

2 iFa, j (x), ~A5!

whereFa, j denotes the Klein factor, anda is a small distance
cutoff of the order of the lattice spacing.

The phase shift can be most easily calculated by introd
ing charge and spin fields and quantum numbers:

S Fc, j

Fs, j
D[

1

A2
S 1 1

1 21D S F↑, j

F↓, j
D , ~A6!

Nc, j[N↑, j1N↓, j , ~A7!

Ns, j[
1

2
~N↑, j2N↓, j !, ~A8!

and performing a unitary transformation on the Hamiltoni

by U5ei ( j JzFs, j (0)S0
z/(2pA2), resulting in

]xFs, j~x!→]xFs, j~x!2
Jz

A2
S0

zd~x!, ~A9!
6-8
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and the ‘‘noninteracting’’ Hamiltonian:

H5H01Hs , ~A10!

H05(
j 51

f

(
m5c,s

E dx

4p
~]xFm, j !

21
2p

L

1

4 (
j

Nc, j
2 ,

~A11!

Hs5hS0
z1(

j
S hNs, j1

2p

L
Ns, j

2 1Jz

Ns, j

L
S0

zD . ~A12!

From Eqs.~A9!, ~A6!, ~A5!, and ~A2! immediately follows
that in the Bosonization cutoff scheme simply

d5
Jz

8
. ~A13!

To prove Eq.~17! we observe that the external field on
appears in Eq.~A12!. Therefore the partition function factor
izes as
,

r-

. B

tt

tt

13441
Z~b!5Z0~b!3Zs~b,h!,

Zs~b,h!5(
Ns

(
S0

z
561/2

e2bHs.

It is easy to evaluate the sum above in theL→` limit giving

Zs;eb f (L/2p)(1/4)h2
3coshFbh

2 S 12 f
Jz

4p D G . ~A14!

The first term just generates the Pauli susceptibility of a fr
electron gas, while the second corresponds to a free
coupled to a renormalized magnetic field and gives a Cu
susceptibility:

xglob
TLS5

~12 f Jz/4p!2

4T
. ~A15!

Together with Eq.~A13!, this yields Eq.~17!.
As a further test, one can compare this result with

exact relation, Eq.~16! in the small coupling limit. Within
the Bethe-ansatz cutoff scheme12 cos(m)5cos(Jz/2)/
cos(J'/2), which in the appropriate small coupling lim
gives m5Jz/21O(Jz

2)54d1O(d2). Substituting this ex-
pression into Eq.~16! we indeed recover the exact relatio
Eq. ~17! in linear order ind.
.
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