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Three-dimensional random-field Ising magnet: Interfaces, scaling, and the nature of states
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The nature of the zero-temperature ordering transition in the three-dimensional Gaussian random-field Ising
magnet is studied numerically, aided by scaling analyses. Various numerical calculations are used to consis-
tently infer the location of the transition to a high precision. A variety of boundary conditions are imposed on
large samples to study the order of the transition and the number of states in the large volume limit. In the
ferromagnetic phase, where the domain walls have fractal dimedsiof, the scaling of the roughness of the
domain walls,w~L?, is consistent with the theoretical predictigr 2/3. As the randomness is increased
through the transition, the probability distribution of the interfacial tension of domain walls scales in a manner
that is clearly consistent with a single second-order transition. At the critical point, the fractal dimensions of
domain walls and the fractal dimension of the outer surface of spin clusters are investigated: there are at least
two distinct physically important fractal dimensions that describe domain walls. These dimensions are argued
to be related by scaling to combinations of the energy scaling expa@hewhich determines the violation of
hyperscaling, the correlation length exponentand the magnetization expone@t The value=0.017
+0.005 computed from finite-size scaling of the magnetization is very nearly zero: this estimate is supported
by the study of the spin cluster size distribution at criticality. The variation of configurations in the interior of
a sample with boundary conditions is consistent with the hypothesis that there is a single transition separating
the disordered phase with one ground state from the ordered phase with two ground states. The array of results,
including values for several exponents, are shown to be consistent with a scaling picture and a geometric
description of the influence of boundary conditions on the spins. The details of the algorithm used and its
implementation are also described.
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[. INTRODUCTION It has been known for some time that combinatorial algo-
rithms can be used effectively to find the ground states of
In spite of many years of study, the behavior of phasesarious classes of random systems and the RFIM was one of
and phase transitions that are dominated by quenched raghe first to be studied in this w&y With current computers,
domness is still controversial. One such lively controversyine algorithm is very fast and large system sizes can be stud-

has concerned the existence or lack thereof of an orderedy iy enou ; ; foti ;

. . - . . gh detail to obtain good statistics, enabling the
phase in the random-field Ising mod®FIM) in three di- 5 of finite-size scaling to be used to analyze the zero-
mensiong3D). Although thlsliwas eventually resolved in the temperature phase transition
affirmative by rigorous work,the nature of the phase tran- : L R .

L S ' . : Various significant open questions exist about the phase
sition and the possibility of a phase intermediate between th?ransition in %he RFIM.pAIth%ugh 2 self-consistent scgling

paramagnet and the ferromagnet is still controversial. ; o ) :
picture of a zero-temperature critical fixed point was pro-

Numerical simulations of the random-field Ising model— :
and experiments—are impeded by the dramatic S|0Wmé)osed early on, it has not been adequately tested and other

down that occurs as the phase transition is approached due?ﬁe”?_r'057ha"e been suggested, including a first-order phase
the existence of free energy barriers which are broadly distransitio?” and an intermediate phase with “replica-
tributed but typically grow as a power of the correlation Symmetry breaking,”” presumably meaning many coexist-
length. Such barriers are general characteristics of phasé?g equilibrium states.

controlled, in a renormalization grol®G) sense, by stable In this paper we study the RFIM with Gaussian distrib-
zero-temperature fixed points. For the random-field Isinguted random fields, focusing on the nature of the phase tran-
model, not only is the low-temperature phase controlled by sition and the sensitivity of the ground states to varying
zero-temperature fixed poifas is the case for conventional boundary conditiongBC’s) as a probe of the number and
pure systems but the phase transition itself is also con- nature of the infinite system states. As will be explained in
trolled by such a fixed poirft® Indeed, the ground-state some detail, our results strongly support the scaling picture
properties of the random-field Ising model undergo a phasef the transition. In this picture, there is a single second-
transition as the strength of the randomness is increased awdder critical point characterized by three scaling exponents:
it is this zero-temperature transition that governs the behavr for deviations from the critical point for the energy at

ior of the transition at positive temperatures. Fortunately, thighe critical point, ands/v for the magnetization at the criti-
means that much can be learned by studying the ground-statal point. We clarify some of the substantial confusion about
properties. the order of the transition by showing that bathand v as
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well as the distributions of the “stiffness” and spin clusters zation exponeng nearly zero. Other¥! using a varying ex-

are very different from what they would be at a first-orderternal field, have found a coexistence of states suggestive of
transition. Nevertheless, as observed previously, the magne-first-order transition, in contrast with Monte Carlo restfts.
tization exponenp is extremely small so that even with the It is clear from these studies that if the transition is second
very large sizes we study, the magnetization appears almostder, the order parameter expongnt/m|~ (h.—h)#, must

discontinuous. be very small, making definitive conclusions based on mag-
netization alone difficult. We have thus focused much of our
Il. MODEL AND NUMERICAL METHOD attention—particularly for locating the transition and finding

the exponents—on other properties which naturally distin-
The random field Ising mod¥ has Hamiltonian, defined guish the phases.
over spin configurationss,= =1},

A. Algorithm

H=-J2, SiSj — > hsi, (1) The (almost surely unique ground state of a finite sample
iy [ can be determined in time polynomial in the number of
. ) . . spins? The method is based on a reduction of the problem of
W.'éh the rar?_d(;m f'EIdl:hi chk())seg mde_pend_elr:tly from a dis- (?etermining RFIM ground states to a maximum-flow prob-
i 9“0”%’2 'Ch V‘;e take to € auismn wit rr;_eqn f;ero aN%m on an augmented graph. One can then use combinatorial
varianceh®. The ferromagnetic exchange couplidgs fixed — ,imization algorithm®-1° to solve the maximum-flow

at unity in the simulations and the sitelie on a cubic lattice  prohiem We describe the special features of the algorithm
with interactions between nearest-neighbor piir)}. The  johiementation, its verification, sample timings, and the use
basic nature of the phase diagram of {88) RFIM is well of integer valuech; in the Appendix.

known: As the temperature is lowered for smalthere will
be a critical temperatur@;(h) below which the RFIM be-
comes ferromagnetically ordered with a nonzero spontane-
ous magnetization. As the strength of the random field in- We have studied system sizes up to $58hich contain
creases, the critical temperature decreases until at a criticaver 1.6< 10’ spins. Independent samples were simulated for
field h. it goes to zero. each value oh. Separate realizations were also generated for

Both the paramagnetic and ferromagnetic phases haveoundary induced domain walls, spin cluster properties,
been proved to exist at both zero and positive temperaturesnagnetization, and the thermodynamic limit studies. The
and the transition between them can thus be studied by vangame samples and domain walls were used in the stiffness
ing hat T=0. The simplest scenario at zero temperature is @nd domain wall property studies. For smaller systems
single critical field strengtth. above which the spins are (83-32%), 10° samples were optimized, typicallyFor the
disordered with a unique infinite-system ground state andlomain roughness measurements in the ordered phase,
exponential decay of correlations, and below which there aré?’—10° samples provided sufficient data, as fluctuations in
two infinite-system ground states, one with predominantly ughe interface width are not largeOf order 16—10* samples
spins and the other with predominantly down spins. were studied for each quantity for the®6dnd 128 samples.

The nature of the phases and the phase tranglitie-  For L =256, 4x 10°—10° samples were studied at edehas
tween them can be probed by studying the effects of varioupart of the magnetization and cluster studies.
boundary conditions on larger and larger systems—most Error bars for exponent values throughout this paper in-
simply cubes of siz&/=L XL XL. In the disordered phase clude both estimated systematic errors due to apparent finite-
the orientation of a spin far from the boundaries is typicallysize effects and errors due to statistical uncertainties; the er-
determined by the collection of random fields within a cor-ror bars represent an estimated range of values in which the
relation lengthé(h) of the spin and is insensitive to bound- value lies, with high confidence. In contrast, error bars in the
ary conditions imposed far away. In contrast, in the ferro-figures reflect &r statistical uncertainties, which we find to
magnetic phase some spins will still be controlled by thebe generally consistent with confidence intervals found by
random fields in their vicinity, but a finite fraction of the resampling.
spins will be controlled by the boundary conditions—no  Generally(except for the stiffness, the roughness in the
matter how far away they are imposed. The simplest scenariferromagnetic phase, fitting a power law to the bond energy
is a single transition between these two phases. The primagjensity, and thePp,o . plots), we have used estimates of
goal of this paper is to examine in detail the nature of thiseffective exponents as a function of system size to estimate
zero-temperature phase transition. exponents, rather than scaling plots. This is done to more

Many previous studies of the ground states of the RFIMclearly see trends in the data that reflect finite-size correc-
(as well as finite-temperature studidsave focused on the tions. Finite-size corrections tend to be monotonic and intro-
magnetization per spim=V"1%;s;, and the results have duce a drift withL in the effective exponents. Given the good
been somewhat ambiguous. Some have interpreted the nstatistics of the data sets that can be generated with optimi-
merical results as indicating a second-order transiidrt?  zation algorithms, collapsing data can obscure these correc-
while others have concluded that the transition is first ofder.tions, as the drift can be corrected with a slightly erroneous
Some Monte Carlo resuls suggest that the finite- exponent. Where we have used scaling plots, we do not try to
temperature transition is second order, but with the magneticollapse all of the data onto a single curve, but keep in mind

B. Statistics and analysis
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that the finite-size corrections give a consistent drift withtemperature critical point will be stable to thermal fluctua-
system size and we therefore tried to optimize the fit to thdions and the finite-temperature transition will be in the same
largest systems and nelag. universality class.

Our studies of the stiffness are based on computing ener-
gies for samples periodic in two directions and having fixed
uniform boundary spins on the other two faces. Our results

As we are interested in the behavior of the REIM in theare very consistent with the scaling predictions for the larger
thermodynamic limit, we have studied the approach to théystem sizes, up to 128close to the critical point, which
infinite-volume limit using finite-size scaling analysis tech- Occurs at
nigues similar to those applied to spin glasses and other ran-
dom system&°~25 However, in contrast with ground-state he=2.270+0.004. ()

2213";5 s?rfl gjl??h%lrams(s;(aji nznmdigtSﬁggzng)zgsm&ielrseé?ﬁt;\lglfetﬂhis location for the critical point is consistent with those
o : o obtained from scaling analyses of the domain wall dimension
sentedgshere give insight into the transition between twoan d the magnetizatign. it i)s/ somewhat lower than some pre-
phases. viously reported estimates suchtas~2.33> but it is con-
sistent with the valueb,=2.29+0.04 reported by Hartmann
A. Stiffness and Nowak!? h,=2.26+0.01, reported by d'Auriac and
The fundamental difference between an ordered phase arﬁPurl""i3 and h,=2.28+0.01 reported by Hartmann and
a disordered one is thetifiness(or rigidity) of the former: ~ Young:' Taking h.=2.270, the exponents that give a good
the free energy cost of changing one part of a system witcaling fit for the stiffness are found to be
respect to another part far away. At a macroscopic level, this
free energy cost must be at least of orklgl and is usually 6=1.49+0.03 (4)
much larger, diverging as a power of the system size. For a
Ising ferromagnet, this stiffness is provided by the free en-
ergy cost of a domain wall which scales as its surface area. »=1.37+0.00. (5)

Thus a natural quantity to study for the ground states of the
RFIM is the domain wall energy. This can be obtained fromThe value foré is consistent with exact bounds as well as
the difference in energy between antiparallel and parallefvith values derived from finite-temperature simulations by
boundary conditions imposed on opposite sides of a systemipplying exponent relations to measured critical behavior.
of cross-sectional arela?, in three dimensions. A particular To within our uncertainty, the value for also overlaps with
combination of these we call thatiffness which we denote  the value computed in Ref. 13. Note that if the transition had
by >. Because of the randomness, this energy will be samplgeen first order, one would have expected to firdd— 1
dependent and there is information to be gleaned from its=2, with a double-peaked distribution Bf corresponding to
distribution as well as its mean. “ordered” and “disordered” samples, and an effective
The scaling theory of the putative critical point of the =2/d=2/3: the results we find are far from these.
random-field Ising model predicts that the distribution of the From the modified hypersca”ng law appropriate to transi-
stiffness will have a scaling form near the critical point: tions governed by zero-temperature fixed pofris,

IIl. SUMMARY OF RESULTS

(d=0)v=2—a, (6)

dx 2
Profds ]~ —P| — ,K(h—h)L*|, 2
qd2] cL’ (CL“’ ( o) ) @ with d the dimension, here equal to 3, we predict that the

specific heat exponent for the finite-temperature transition

with @ andv universal exponent® a universal scaling func- (and for the second derivative of the energy with respedt to

tion (which does, however, depend on the shape of th&t zero temperature near the transifies

samplg, andC andK nonuniversal coefficients. In tHerro-

magnetic phasethe distribution of the stiffness will be a=2-(3-6)v=-0.07+0.17. @)

sharply peaked at long length scales about a mean value ) —

which grows aso(h)L2 with o(h) the interfacial tension. Ve also fit the sample-averaged bond part of the enégy,

This interfacial tension vanishes hs”h, . In thedisordered ~ ath to the formE;~c;—c,L(*~ " to more directly obtain

phase S will typically fall off exponentially for system «, inspired by the recent approach of Hartmann and Ydting,

thicknessed. much larger than the correlation lenggkh) who examined the scaling of the derivatidg&;/dh. We find

~(h—h,)~". This exponential decay of the stiffness with @ consistent value foe using similar methods, although our

is confirmed for all valuet>h, examined in our numerical value disagrees substantially with that of Hartmann and

results. Young. We also use an extrapolation Bf, based on the
At the critical point, the distribution of%, will be broad dimension of the domain wall surfaces, which defihg to

with both mean and width of ordér’. The exponen® thus  find

characterizes the scaling of the stiffness at the critical point.

As long as @ is positive, the basic features of the zero- a=—0.01+0.09. (8)
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Both values are consistent with experimefitsshich yield a C. Magnetization

small value ofa. Our estimates differ from the previously  ag mentioned above, some previous studies have found

reported value from Monte Carlo calculatiotise=—0.5  hat the magnetization appears to be discontinuous at the
+0.2 (a/v=-0.45:0.05), although both values are consis- yransition. Indeed, our data for the magnetization as a func-

tent with a nondivergent specific heat. tion of size for various types of boundary conditions that
_ were chosen so that some favor a ferromagnetic state while
B. Domain walls others favor a disordered stadppearto be consistent with

In addition to the stiffness measurements, we have inveghe coexistence of three states at the critical point as was
tigated the properties of the domain walls that are forced byound in other recent work:* But as discussed below, we
appropriate changes of the boundary conditions. In the feroelieve that this conclusion is influenced by the nearness of
romagnetic phase, we expect that these will be flat on largé/ v to zero. Based upon the scaling picture and numerical
length scales and have area proportional fo These walls ewdence, we will argue that at the critical point there is only
will be rough with a transverse widtiv on a scalel de- @ Single state and the apparent “up” and “down” configura-
scribed by the roughness exponéntV~1¢. But at the criti- tions do_nc_)t correspond to distinct states in the infinite-
cal point, we expect the walls will become fractal. The defi-volume limit. o o .
nition of a domain wall in the RFIM has ambiguities because  USing the magnetization data and the best fit critical point
some isolated clusters of spins—in particular those witffound from our studies of the stiffness, we can attempt to
anomalously strong random fields—afi®zen i.e., unaf- extract an estimate f(_)r_ the sgallng (_)f the magnetization with
fected by changes in boundary conditions. The identificatiorfyStém size at the critical point. This yields
of the bonds that define the domain wall is therefore uncer- p
tain up to these fixed spins. We use three methods for calcu- N
IatingQ[he fractal dimeniion of the domain walls introduced ;=0.012t 0.004  [magnetizatio, (13
by changes in the boundary conditions; each definition has a
distinct physical import in a scaling picture of the RFIM.  which isinconsistent with zerat the level of three standard

One method is to determine the surface area of the set afeviations. The primary uncertainty in our estimatega
spins connected to one face of the sample thatackhanged arises from the uncertainty in the value ke, as the statis-
when the spins on thepposite facere reversed. This yields tical errors in the sample averapa| are relatively small at
a spanning surfacef a dimension that we denott. The fixed h. This exponent describes the magnetization very well
second method is based on a box counting approach th&r systems of size 32L <256, for a range oh,, 2.265
counts which volumes in a system with antiparallel boundary<h,<2.275.
conditions differ fromboth the “up” and “down” configu-
rations obtained from parallel spin boundary conditions; this
we denoted, , to indicate its role as a measure of the volume
locally incongruent with these two configurations. In spite of the smallness g8, useful information on the

A third method does not measure a dimension directly buglecay of spin correlations at the critical point can be ob-
rather an energy: the contribution of the exchange interactained indirectly by studying the statistical properties of the
tions to the stiffness at the critical point. As will be explained domain walls separating connected clusters of parallel spins.
later, this fractal dimensiod, is not expected to be an inde- In the ferromagnetic phase, we expect that the probability of
pendent exponent. Rather, it is related to the others by ~ finding a region of diametet that is not affected by the

boundary conditions decays exponentially foe§¢ as
dy=60+1lv, 9 exgd—C(/9)%2.
a relation obtained by considering the derivative of the stiff- Smge the systirappearsto be ferromagnenc at the Cr't"
ness with respect th. It can be seen that our results for the cal point, due tdm| being nearly unity for the system sizes
exponents are entirely consistent with this scaling law. studied, we also study clusters of the minority spinshat

The three exponents associated with the fractal dimensiofy Nc- The clusters are defined hierarchically starting from
of the critical domain walls are similar, but perhaps not allthe largest connected cluster of connected spins, with the

D. Spin clusters and walls

mutually consistent, given the estimated error bars: surface of each cluster given by gistermossurface, that is,
the set of bonds connecting it to the surrounding cluster. The
ds=2.30+0.04, (100  volume of each clusteincludesthat of the fully enclosed
subclusters of the opposite sigend their subclusters, if any,
d,=2.24+0.03, (11)  eto. But the outer surface of a cluster doasst include the
surfacesof its fully enclosed subclusters, whose number
d;=2.18+0.03. (12 scales with the volume of the cluster.

T . The outer cluster surfaces are found to be fractal with
As we will discuss, we believe that at least two of these —

dimensions indeed measure slightly distinct quantities, dugean area (averaged over clusters and samplesaling
to frozen spin clusters that are relatively independent ofVith enclosed volume as

boundary conditions. The simplest plausible conjecture is . .

thatd;=d,<ds, though it may be thal; andd, are distinct. a(v)~v%/9, (14)
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with the exponent 1/r2 interactions which has a critical transition with a discon-
. tinuous magnetization, i.e3=0.2° This small value is near
=5 ~0.755+0.008, (15) the valueB= 0.92 suggestgd from numer_lcal renormalllzanon
d group calculations on a hierarchical lattieThe numerical
suggesting a surface fractal dimensidf~2.26+0.02, a value we find is consistent with several previous studies: for
: : . ; . example, Hartmann and Nowak determige= 0.02+0.01,
value consistent with the domain wall dimensidn using exact around statéd Swift et al.l find B=0 025
Perhaps more interesting is the distribution of tluenber 40 815 ng. &t d’ ~O, t ’ itive t p=0. ¢
densityof spin clusters as a function of their size, in particu-g e h, an :eg r(])un B~ | a pis' ve emper;’:\ ure,
lar the probabilityp(v) that a given site is in a minority spin ut without any latent heat or multipeak structure in the mag-
cluster of size of ordeo—more precisely, netization distribution, suggesting a second-order transition.
However, we can more clearly exclu@#v=0 as a possi-

v , o bility by making use of connections between the value of
p(v)= EProl{snee Cluster of size itw,v + év)]. Blv and the statistics of spin clusters.
(16) One question that naturally arises concerns the structure

of spin clusters for smallm| near the critical point, where
the sample no longeappearsferromagnetic. Is there a pos-
sibility of percolation of both up and down spins, whin
—h¢|=10"2*® in large enough samples? For fixed or

— boundaries, as— h,, |m| becomes small, but the minor-
ity and majority spins are not independent. Hence, even
though the density of- and — spins becomes almost equal,

oS ._the minorit ins are lar lusters em within th
even larger cluster, etc. This is exactly the type of behavio © ority spins are large clusters embedded €

. . . : Inatrix of majority spins, so thainly one sign of spin perco-
that gives rise to power-law decay of spin correlations at. ates in the disordered phass/en close enough to the criti-

critical point on SL_Jff|C|entI_y long Sca'?s' as is explained Neal point that the magnetization is very small and the density
Sec. IX. It is consistent with expectations from other obser-

: . . - of minority spins almost one-half. Exactly at the critical
vauon; we have mgd_e, in partlcqlar that the probability tha oint in an infinite sample or wheré>L in a large finite
the stiffness of a finite sample is exactly zero tends to

nonzero constant for large system sizes at the critical poin ample, the long length scale characterization of the spin
The value of g€ sy P onfiguration will be rather different than in either phase;

these differences motivated some aspects of the present nu-
p..=0.0019* 0.0004 (17) ~ merical study.

that we find® yields an estimate for

We find that over the range of sizes studjg@d) appears to
converge to amall constantalue p., for 1<v<L3, with
periodic boundary conditions. This implies that in the limit
of an extremely large system, any given spin will definitely
be in such a “minority spin” cluster; indeed, it will typically
be within one such large cluster which itself will be within a
cluster of typical size-p_.* larger which itself will be in an

E. Number of states

Blv=2dp.,,=0.011+=0.003 [clusted (18 o .
To study the RFIM phases and transition in more detail,
consistent with Eq(13). This exponent controls the decay of we have analyzed the influence of boundary conditions on a
the typical magnetization with system size at the criticalwindow of sizew in the center of a sample as the sample size
point: L diverges. As made clear by Newman and Stite char-
v acter of the thermodynamic limit of the ground states can be
m(he)~L . (19 investigated by studying such windows. Our numerical com-

For L=128, this only gives a reduction factor of 0.94 from Putations strongly support the picture of a small number of
the magnetization of a small system and is consistent wit§round states—two in the ordered phase and one in the dis-
our magnetization data. Note that with this estimate, on@rdered ~phase—consistent with the simple scaling
would need to go to system sizes of ordef'#0L <10%to ~ Scenarc.” _ N _
see a factor of 2 reduction in the magnetization at the critical Nevertheless, becaugk is so small, at the critical point
point. it it is difficult to use numerics to directly distinguish be-
For the magnetization in the ferromagnetic phase, usiné"‘/een two scenariostA) two coexisting states, as in the
this calculation of 3/» and consistent with the finite-size 1€fromagnetic phase, ¢B) a single state, with interior spins

scaling of the magnetization, we expect conventional behawnaffected by boundary conditions Bs-c. If 3 were ex-
ior with actly zero, as in(A), then the probabilityg that boundary

conditions could affect spins in the center in ways other than
m~ (h,—h)#?, (200  the apparent “up” and “down” phases would decay as a

power of the system siZ&;**q~ L% 9, whered; is the frac-

tal dimension of domain walls. In scenari®), a similar
5=0.017+-0.005 (21) Power-law scaling is expected, witq~Lds‘ﬁ‘_’V‘d, where

the change in exponent reflects the freezing of spins or,
—far smaller than for any other known system with the ex-equivalently, decay of magnetization, Bs»o. As will be
ception of the one-dimensional Ising model with long-rangeargued below, the simplest expectation is that the exponent

but with
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d,=ds— B/v, so thatg~L% 9. This is consistent with the ample, for a given sample in the ordered phase, the energy of

assumption of only one state at criticality. the up state—obtained with up BC’'s—uwiill differ from that of
the down statgobtained from down BC)k by a random
IV. OUTLINE amount of order/V arising from the differing effects of the

i . , random fields on the two states. In order to compute the
The remainder of the paper gives the details of the Nuinierfacial energy it is useful to subtract as much as possible

merical results and re_lated scaling arguments. Table | is s this random “bulk” energy so as to be left with a quantity
summary_of the numerpal valugs of the exponents. In Sec. {4t is as close as possible to an “interfacial” energy.
we describe how the stiffness is computed and demonstrate

that its scaling is quite consistent with a “conventional”
second-order phase transition. To aid in developing under-
standing, we study how the probability that the stiffness is To obtain the stiffness of a sample, we compute sje-
exactly zero depends on the sample shape. Sec. VI presemtrized energy differendsetween antiparallel and parallel
the three methods that we employ to compute the dimensiohoundary conditions. This is computed from the ground-state
of the domain walls generated by comparing different boundenergies for four different boundary conditions on a given
ary conditions(the same comparison used when calculatingsample, denoted- +, +—, —+, and ——. These corre-
the stiffness The methods differ somewhat in how they spond to fixing the spins to have valugs +1 ors=—1 on
count regions of “frozen” spins that are not affected by the left or right sides while imposing periodic boundary con-
boundary conditions. In the subsequent sectiBac. VI, ditions in the other two directions. For example,— has

we report results on the magnetizationnearh,. Though spins fixed to+1 on the left and to—1 on the right. The
the distribution ofm depends strongly on boundary condi- interface energy is then defined®as

tions, the scaling of these distributions is quite consistent

with a single value of, (and also consistent with the meth- S=(E,_+E_.—E_.,—E__)/2. (23

ods of findingh,. in other sections Our study of the scaling
of the surfaces of s pin clusters with their volumes is sum
marized in Sec. VIII. Besides giving a fractal dimensitn
consistent with the domain wall dimensidg, these compu-
tations can be used to separately inf#w, given an under-
standing of magnetization and correlation functions base
upon a domain wall picture. Our estimates for the singular: : )
behavior of the specific heat are included in this section. ThéfvIII be most pronounced well into the disordered phase.

general scaling picture that connects these results is reviewed In thedisordered phasdhe bouno_lary c_ondrqons typically
in more detail in Sec. IX. In Sec. X, we report results of hOWonly affect layers near the boundaries with thickness of order

the spin configurations depend on sample size and bounda De correlatio_n Ien_gtlg; deep in the interioffor system sizes
conditions for a fixed disorder realization. These results ar >§)dthe splnj.v_wll be;;]ozen, completely ?nﬁﬁegted gy ok
consistent with a single transition separatingaage h, dis- oundary conditions. Thaverageenergy of the boundary
ordered phase with a single thermodynamic limit from a layers will, because of the statlstlca'l symmetry, be mde'pen—
dent of whether the boundary conditions are plus or minus.

(small h, ordered phase with two distinct thermodynamic . .
limits. In the SummarySec. X)), we review the scenario for But there will be a random part of the boundary energy, with

the transition that is consistent with the numerical results ané@gnitude of order/L"" ", which is sensitive to the bound-

contrast this scenario with alternate pictures. ary condition. Thus. in threg dimensioris, \, will typically
be of orderL even in the disordered phase. In contrast, the

stiffness?, will typically be exactly zero because of the can-

cellation of the boundary energies and the concomitant fro-
To establish the location and nature of the transition, wezen interior which blocks any knowledge of the spins near

first focus on the stiffness of the system. In an ordered Isingne face about the boundary conditions on the opposite face.

phase, théfree) energy of a domain wall across a system ofIn general, the distribution foE contains as-function con-

sizeL? will be 3 ~¢L9 ! with ¢ the interfacial tension. At tribution with some weight

an ordinary first-order transition, the interfacial tension is

discontinuous at the transition, while near a second-order Po=Prod > =0]. (24

transition, it goes smoothly to zero. For a zero-temperature

transition, the interfacial tension vanishes with a variant of>@mple configurations from simulations are illustrated in
Widom scaling: Fig. 1 with two-dimensional slices shown. P&& of the

figure illustrates a situation somewhat into the disordered
UN(hc_h)(d—l— )y (22 phase in which the left and right boundaries are effectively
decoupled as discussed above. Tiwzen spinsthose that
To probe the stiffness of a random system takes somare the same with all four boundary conditions, are indicated
care. For a random-field system, there is no exact symmetryy dark or white squares in pait) of the figure, while those
between the up and down spins but onlgtatistical symme- that are affected by the BC’s, the controllable spins, are in-
try of the distributionof the random fields. Thus, for ex- dicated by gray squares.

A. Definition of the stiffness

Note that the average over samplesoivill be the same as
that of E, w=E,_—E_, . StudyingX, however, reduces
the effects of energy changes near the boundaries that are
caused by the differing boundary conditions: 31 each
goundary condition on each side appears twice but with op-
Iposite signs so that these effects cancel. This cancellation

V. STIFFNESS AND SCALING
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TABLE I. Numerical estimates. The exponent or constant name, computed value, primary method for inferring the value, section
discussed, and most relevant figure are listed.

Symbol Value Definition and data used

6 1.49+0.03 Scaling of stiffness dt., violation of hyperscaling.
Found from scaling of stiffness with andh—h,; see Sec. V and Fig. 2.

he 2.270+0.004 Critical value of the random field.
Determined from constancy iRy, probability of zero stiffnesgsee Fig. 4 and Sec.)y
and consistent with estimates from convergence of effective dimension est%@tgs
scaling ofA » peak locations with., scaling of|m| with L (Fig. 19,
and window change probabilitigfig. 29.

v 1.37£0.09 Correlation length exponent.
Found from scaling of the stiffness with Sec. V and Fig. 2, withh. fixed by Pq
measurements.

Consistent with scaling ok > peak locations with..

{ 0.66+0.03 Roughness of domain walls in the ferromagnetic phase.
Found using anisotropic scalir§ig. 13 and effective exponent ih?3x L? samples.
See Sec. VIC.

dg 2.30+0.04 Fractal dimension of connected domain walhath..

Found from surface o, . . _, as shown in Fig. 11.
See Fig. 12 and Sec. VI B.

d, 2.24+0.03 “Incongruent” fractal dimension of domain wall at criticality.
Box counting of incongruent volumeslisconnected wall See Fig. 15 and Sec. VI D.
Consistent with scaling of state overlap probabilities shown in Fig. 29.

d; 2.18+0.03 Energy “fractal dimension” ah=h,.
Found from the exchange pa of the stiffness.
See Fig. 17 and Sec. VI E.

dg 2.27+0.02 Fractal dimension of the surface of spin clusters.
See Fig. 22 and Sec. VIII A.

Do 0.0019+0.0004 Probability per scakeof crossing a spin cluster surfacetat h..
See Sec. VIII B and Figs. 23, 23, and 25.

Blv 0.011+0.003 Ratio of magnetization exponentito
Determined fromp.. and consistent with scaling ¢im| vs L at criticality.
See Fig. 19 and Sec. IX A.

B 0.017+0.005 Magnetization exponent, found frg8iv and v.

(a—1)v —0.74+0.02 Combination of heat capacity exponenand v.
Found using value fod$ and Eq.(56).

a —0.01+0.09 Heat capacity exponent, found using Ef) and v.
Consistent with modified hyperscaling E®) and the valuexr=—0.12+0.12 found
from a fit to the bond energy densiB;(L) at h. and v.

The behavior in therdered phasés quite different as can what to the right of the center. The stiffness of this sample
be seen in the parté) and (d) of Fig. 1. In this case, the will thus be half the sum of energies of the two types of
difference between the —, the + —, and the+ + boundary  walls plus the energy of the random fielddiere predomi-
conditions can be well characterized by-ra— domain wall  nantly negativgin the region between the two favored posi-
that has a minimum-energy position somewhat to the left otions of the walls; the contribution of the random fields in
the center. Similarly the difference between the-, the  this region will not cancel.

—+, and the+ + boundary conditions is characterized by a  This picture yields a stiffness in tregdered phasavith a
—|+ domain wall whose minimum-energy position is some-mean of ordet.9~1=L2 and variations around this mean of
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(a) (b)

L =40, h=2.200

| -

=40, h =2.800 L =40,h=2.200

FIG. 1. Pictures of planar sliceg£0) of configurations, for fieldéa) h=2.8 and(b) h=2.2, in samples of size 40The slices shown
at eachh are the four combinations of boundary conditions- (top left), — + (top right, + — (bottom lefy, and + + (bottom righj,
where the left and right face@n the x direction are fixed+ or — and periodic boundary conditions are in effect for théup/down
and z (out of the paggdirections. The dark squares indicate an up spin at that location in the slice-Fhend + + visualizations
forh=2.2 show the presence of minority spin “bubbles” embedded in the bulk. A summary of the effect of the boundary conditions
for h=2.8 andh=2.2 are shown in part&) and(d), respectively. Dark and light squares correspond to up and down spins, respectively,
that arefrozen i.e., invariant under this set of boundary conditions. The gragtrollable spins can be modified by choosing among
the four boundary conditions. Foh=2.8, the gray volume is composed of two unconnected regions anchored on the two
controlled boundaries, so that the stiffnés 0. In contrast, ah=2.2, in the sample shown, the gray region connects the two sides and
2 #0.

orderL%?=L3" the variations being dominated by the ran- stifinesss,, denoting, as usual, averages over the randomness
dom fields in between the positions of the two types of walls.by overbars. For the bulk of the computations, ground states
In the ordered phase fdr<h., P,—0—apparently expo- were found for cubic samples of side’® and anisotropic
nentially fast or faster il.—asL— . samples of size 2x L2 with the length along a (100) axis of
At the critical point, the behavior is qualitatively like that the lattice perpendicular to the controlled faces, xtuirec-
in the ordered phase. But here the energy cost of the interfad®n, being 2.. To check that the results were not artificially
is much lower, the interface itself is fractal, and, in the re-influenced by lattice orientation effects, we also computed
gions of controllable spins that are otherwise flipped by thevalues of2 for two types of samples whose controlled faces
changing boundary conditions, there are large frozen unareL XL rhombi, withL and 4. layers, respectively, sepa-
flipped “holes.” rating the two faces along the (111) direction. Note that such
(111) layers are separated by a distance ¢B1tather than
B. Statistics of the stiffness the distance of 1 that separates the (100) layers. As the lat-

tice in both of these geometries is cubic and the ferromag-

states for a single sample subject to each of the four boundsyme in the two orientations.

ary conditions+ +, ——, —+, and+ —. By studying many If the transition is second order, the mean interface energy
samples, we computed the distributionXffor various sys-  should scale as

tem sizes and random-field strengths. In particular, we com- .

puted both the probabilit?, thatX =0 as well as the mean S~CLS[LY"(h—hyK], (25

134411-8



THREE-DIMENSIONAL RANDOM-FIELD ISING . .. PHYSICAL REVIEW B65 134411

where the exponenf sets the scaling of the energy at the e e S I
critical point, v is the correlation length exponers,a uni-
versal scaling function that depends on tsleape of the

sample, andK and C are nonuniversal coefficients. Using 3+ & =

this scaling form and varying, v, and h. yields a good ] ol

collapse of the data, as shown in Fig. 2 for the (100) _

samples. By varying the exponents in the scaling plot, we N 2 e .

estimate the valueb,=2.27+0.01, #=1.50+0.08, andw I ™

=1.35+0.20. Using the data fdP, to fix h,=2.270 as dis- I

cussed below giveg=1.49+0.02 andv=1.37+0.09. The =

excellent collapse of the data strongly supports the conclu-

sion that the phase transition is second order. I -
The value of6 is in quantitative agreement with results 0

from Monte Carlo simulations at finite temperatdfeyhich -3 i

found = 1.53+0.10. It is also within the bounds determined (@ (h-h) L

from various arguments, —— 77— 1T

LxL’ h =2.270,0=149,v=137

[ 1 Redvg
(ol gl iy
I nu
— O\ L —
[ RS STo
oo

N_
R
(e}
—_
S
w
~

2L XL b, =2270,0=149,v =137 |

, (26) -

? ™

N
I
A
SN
Al
N

the lower bound arising from scaling laws and a rigorous | -
inequality>3* The upper bound follows from the observation 3
that any larger value of would imply that the system would
be stable—by the argument of Imry and ¥ato an in-
crease of the random field and thus should not be at the I -
critical point. SinceB/v is extremely small, we expect that 0 gAY
the true value of should be just slightly below 3/2. This is I <
to be contrasted with the “dimensional reduction” result pre- | R E— T4
dicted to obtain to all orders in d=6— € expansion off (b) (h-hy L
=2 (but see recent claims in Ref. 36 ¢
The correlation exponentmus'F be no s.malle'r thandin FIG. 2. Scaling plot for the sample averaged stiffnBstor (@
random _system§7. Qur result easily Sf”me'es this bound. In- isotropic samples of volumie® and(b) anisotropic samples of vol-
deed, it is substantially Iarger than this lower bound_an_d eVe{lme 2 x L2, with the longest axis being the direction in which the
more so than the mean-field value of one-half; this is prey,ngary conditions are varied. Note that the vertical scales differ.
sumably associated with proximity to the lower critical di- The stiffness is calculated by the symmetric comparison of four

0.5

QN W —
iy S e

o>
S~

mension ofd, = 2. ground-state energies: the energies for the four choices of spin-up
and spin-down boundary conditions on the left and right sides and
1. Stiffness in the disordered phase with periodic boundary conditions in the other two directions. The

. . fit shown is for energy exponemt=1.49, correlation length expo-
Figure 3 shows the dependence of the mean stiffness g nty=1.37, and critical valud,=2.270. This scaling is consis-

the linear dimensioih. for the L X L? samples. The decay of tent within errors, except for the= 16 isotropic samples. Statisti-
the stiffness is well fit by a decaying exponenttat-exp  cal (1o) error bars are shown.
(—L/&), for h>h, andL> &5 (roughly whenX <0.2) The
correlation length can be inferred from the fits. The values 2. Stiffness at criticality
for £ obtained from the RXL? samples, using a similar A the critical point, a nontrivial scaling function
plot, are in agreement with those from the cubic sample to
within 10% for eacth. The values of the correlation lengths P.(2/CLY)=P(3/CL’0) (27
& found are consistent with a divergence &f~(h
—hg) "1¥01 takingh,=2.27, consistent with our other de-
terminations ofy, though the data are not very ndar. It
may be possible to make a more accurate determination of
by more careful calculations usirigvalues somewhat nearer
to h;.

For the 4. X L2 samplesP,, the probability of the stiff- cubi - "
ness being zero, can be appreciable for accessildad h Po™he)=0.04+0.01. 28
nearh,. The data for fixedh=h, are consistent witi?,  This value forP, is so small that to verify thaP, indeed
approaching one exponentially with although other forms approaches a nonzero constant at the transition, we also per-
cannot be ruled out. formed simulations for anisotropic samples of various

for the distribution of2 would suggest thaP, should ap-
proach dfinite fixed point valueln Fig. 4a) a plot of Py is
shown as a function df for varioush. Observe that opposite
boundaries are almost always coupledhatin the cubic
samples:
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0.05r
* a
u
Ke: u
% 2 T
* ‘ .. A
A 0004 20 .leo'l(')o
10 10 20 30 40 50 60 70
I 0.50— oI | T
FIG. 3. Plot of the decay of the mean stiffné&awith L, in the 0.40EC = (b) 2L x L2
disordered phase. The lines are fits to the data>fer0.2 of the L - = 1=
form 3 ~exp(-L/&). In conjunction with similar fits for 2 XL 0.30 § L= +
samples, which allow us to estimate errors from finite-size fitting, ' e <z g'ﬁ:;ggg
we find the valuests =26+4,7+1 and 4.6:0.4 for h=2.4,2.6, ¥ & = |Oh=2.200
and 2.8, respectively. 0.20+ o & |Ah=2240
O vh=2255
- 4h=2270
shapes. In general, we expect that the distributiol af the 010 ® o ﬁﬂ; %ﬁggg
critical point P will depend on theshapeof the sample with <> & Oh =2.400
long thin samples typically yielding lower stiffness and a 0.00 I 1 ®* . o !
higher probability of the stiffness vanishing than short fat 10 20 L 30 100
ones of the same cross section. 0.50
For rectilinear samples of dimensions 22, with the
controlled boundaries at opposite ends of tbheg (100) 2 1p2
axis, we find thatP, approaches a value well away from 040" (©)(111),4L/3" x3 L
zero,P,=0.298+0.005, ath=2.270[Fig. 4b)]. For rhom-
boidal samples with.® spins consisting of. layers and a 0301 » Ah=2240] T
length along the (111) control axis &f \/3, Pg is not dis- P, L = h=2770) -
tinguishable from zero. However, for longer rhomboidal 0,20%/44——4»——* - _
samples with &3 spins consisting of & layers and a length I e & |
4L//3 along the control axis, we finB,=0.21+0.01 ath .10k a |
=2.270 for 16sL<64[Fig. 4(c)]. Imposing convergence of '
P, to a fixed (nontrivial) value asL—« gives a critical 0.00 ‘ | L

value of h,=2.270. These anisotropic rectilinear and long ' 10 20 5010

rhomboidal samples yield our most precise estimatehfqr L

Eq. (3). FIG. 4. Plot of the probabilityPy(h,L) that the stiffnes is

We should expect, to be a smooth function of the ¢ . ) | ¢ vol 3 and (b) ani ;
hape; the fact that it isfar from zero in samples with aspec ero, for (a) isotropic samples of volume™ and (b) anisotropic
S ’ amples of volume 2x L?, with the longest axis being the direc-

_rati(_) of order two lends strong support to the Co_njecture_th_ ion in which the boundary conditions are varied, &yl aniso-
it will be nonzero for any Shape. The obser_vatlon that _'t IStropic samples of volumel4®, with the boundary faces in th@11)
small for cubical samples is related, as will be explainedyane. For all sample shapes, the convergence to a fixed vaRig of
below, to the smallness . asL—o for h=2.270 suggests the location of the critical point.
The solid lines connect the points for=2.270 to demonstrate con-
vergence oP, to a constant, within statistical errors. Rg is very

- o . nearly zero for isotropic samplg¢$y(2.27¢°)~0.04, if the appar-
The complete probability distributions faX at various  gn; convergence holds at lart, the errors in determining, are

values ofh are plotted in Figs. 5-8 for both the cubical and jarger. From the 2x L2 anisotropic samples, where the apparent
the elongated (100) samples. For 1.6, the distribution of  extrapolation isP(2.27¢0) =0.298+ 0.05h.=2.270+0.004. For

3 appears to approach a narrow distribution ab@ut the (111)-oriented samples, with volume ofLd/3x \3L2 (layer
~(1.39)L?, regardless of the sample shape; this is as exseparationx layer area the data are also consistent with
pected for the ordered phase. For 2.27, the critical point, =2.270, with P,=0.23+0.01. Separate results, not shown, for
the distribution obeys the simple scaling form of E2). for (100 samples of shapel4<L? give a value ofP,(2.27,16<L
both the isotropic and anisotropic samples but with a differ<64)=0.79+0.02.

3. Comparison of distributions for%
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FIG. 5. Probability density (o) of the values of the interfacial FIG. 7. Scaling plot for the cumulative distributioh(X)
energy densityr=L"23 in the ordered phase with=1.60<h. =[5d3'p(2") of the stiffness, foh=2.270~h,. The stiffnessS,
As the sample size grows larger, the relative sample-to-samplhas been scaled by the energy sdafe with §=1.49. The labels
variations ofa decrease, consistent with an approach ® fanc- indicate the sample shapesL(2L2 and LxL?) for each set of
tion at the mean value-(h=1.6)~0.69, for both theL.® and 4 curves. For each sample shape, four sample sizes are plotted (16
X L? samples, X 82-128x64 and 16—128). At the resolution shown, the

scaled curves are nearly independentLofThe intercept ab =0

ent scaling functions for each of the two shapes. Figure gorresponds td(0)=P, the probability of a sample having zero
shows the integrated probability distributions for 2.40. As stif‘f_ness. As in Fig. 6, the curves converge to a fixed point distri-
L increases, the mean interfacial energy decreases approfution.
mately exponentially, an®, approaches 1.
the deep interior of a sample, and to the general scaling
picture for the transition.

In the ferromagnetic phase, the interfacial tensioris

In addition to the scaling properties of the energies ofPositive. The domain walls will appear flatter and flatter on
domain walls, we are also interested in their geometricalarge length scales with surface area proportional tdut
properties. These properties are expected to be related to thgvertheless divergent roughness characterized by a rough-
properties of the surfaces of spin clusters that are either frg?€ss exponen{=2/3 and random energy variations that
zen or induced by bulk perturbatioas opposed to bound- Scale ad.”, with 6,=4/3%-%
ary perturbations to the effects of boundary conditions on

VI. GEOMETRY OF DOMAIN WALLS

1 T T

T T T L L L
A 6x16 )
h=2270 1t s mu | 0.8f 1x64
= e |® 128x 128° I o4 x 32
4 16x8? x
R 0.4 ) ! N ;‘;Xiﬁz . R 0.6
g B O 64x32 )
- | 8 @ ﬁ g 5 ‘ O 1gxed | | <=
A g8 " 0.4
a ¢ 1 g '
021 : g i
0.2
8
. o t
. 8 . . —
N F DT odoor o001
0 1 2 3 4 c

-1.49
2L

FIG. 8. Cumulative distributioni (o)=fJdo’p(c') for h

FIG. 6. Probability density(2) of the scaled nonzero values of =2.400>h.. As the sample size increasé¥,, given by the inter-
3L~ % with §=1.49, forh=2.270<h.. A & function at> =0 with cept of the curves & =0, increases, and the typical nonzero val-
weight Py~0.04(~0.298) for the L3(2LxL?) samples is not ues ofoc=3L 2 rapidly decrease. From Fig. 3, the length scale for
shown. The distributions for samples with linear dimensidns the decay of the stiffness & =26*4. This length is comparable
greater than 16 are statistically consistent with a fixed point distrito the midrange system sizes here. Note ®@tises more quickly
bution for X, with a characteristic scalg,~L%*° and a form de- and the typical nonzero decays more rapidly with in the aniso-
pendent on the shape of the samples. tropic samples.
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At the critical point, the interfacial tension of the walls -

vanishes. Thus we should not except them to be flat even ol = @ ,_\\® = @/5’1")

large scales; the natural expectation is that they will be frac-_ | ~Z @ | D

-~ | —_— _— -~ '
tal with surface area scaling as { -} - ’,_\} { -)
s~ ®\ N

A~LY%s, (29

with dg afractal dimensionOne might expecta priori, that

the exponentg would be an independent exponent as it is @ @ T ® @ RN Y
not obviously related t@, 3, andv. For the simple scaling e e T @
scenario to obtain, we exped} to be in the range / +G)\) C R + @) @ o +
\ P ~ = \\ , PR
d—1<d.<d. (30) ¥\ - O+ )
If the transition were first order, one would expet{=d FIG. 9. Schematics of the spin configurations for four different

—1 as in the ferromagnetic phagmore precisely, some boundary condition combinations, for a case Wit 0. Here, there
fraction of samples at the transition would show such interis a set ofcontrollable spinsconnected across the sample, that can
faces. If, at the other extreme, it were found tréit=d, this  be either+ or —, depending on the boundary conditions. These are
would mean that the “walls” would be space fillingp to  the majority of the spins in the figure shown. Thezen spinsare
possible logarithmic factoysthis would cast doubt on the those that are constant under the four boundary conditions —
overall scaling scenario for excitations, etc., near the phase,+ —, and+ +; these are indicated here by the circular regions.
transition® Solid lines separate spins of opposite sign, while the dashed lines
indicate frozen islands that are of the same sign as the surrounding

A. Frozen spin regions spins.
To study interfaces we would like to compare the spinminimizes the potential role of simultaneous percolation of
configurations found using the boundary conditioast, + and— spins in some regions.
+—, —+, and —— as discussed in the previous section.

But in random-field systems, there is an intrinsic difficulty
associated with defining an interface: this arises from the
presence of frozen regions which are not affected by chang- The first method of defining an interface uses just two
ing from + + boundary conditions te- — boundary condi- different boundary conditions, for example, the— to +

tions and thus are unaffected Agychanges in the boundary + Comparison. This change in boundary conditions causes a
conditions on the controlled surfac&sWith mixed bound-
ary conditions, say;+ —, the interface between the region \y
that is like the “up” (+ +) state and the region that is like @ @_
the “down” ( — —) state can pass along the boundary of the —
frozen regions. Are we to count such sections as truly part of
the interface? Or should we exclude the frozen regions from
the system and think of the interface as bisecting only the
remaining controllable regions?

We are thus led to consider several methods for measuring
the surface area of “interfaces,” anticipating that we might
obtain results which depend on the definition. For these con+
siderations, it is useful to refer to Fig. 9, which is a sketch of
what might happen wheix, =0, and Fig. 10, which is a
representation of what might happen ®r0. ) ) ] ) )

Configurations are shown for each of the four boundary FIG. 10. Schgmatlcs o_f thg spin configurations for four q|_fferent
combinations: the circles enclose regions of “frozenP0undary condition combinations, for a case With-0. In addition
spins"—those that are constant under all four BC's—with ;0 the fr ozen |slands,hshown as ﬂrdes asl " F'E' ?j’. ‘hefe Is a set of
solid lines indicating brokefunsatisfied bonds. The dashed rozen interior spins that spans the sample in the directions perpen-

. . . . dicular to the horizontal{contro) axis. Conventions for solid and
lines indicate the location of a frozen cluster embedded in ashed lines are as in Fig. 9. The surfaces used to medgane

set of like spins. The interiors of the Con'flgura'tlons in Fig. 1O.the two surfaces of the frozen interior, but the measure used to
are also frozen. Note that the f_rozen spin regions can_contalajmpu.[edI is zerq as long as the boxes have slesmaller than
nested subclusters of alternating spins. In Fig. 9, Spins OUtxe sjze of the frozen interior. Also zero is the exchange stiffness
side of the frozen spin regions can be eitheror —, de- s a5 each bond that is broken in both the- and— + configu-
pending on the BC combination. These two figures are carirations is also broken in both the — and ++ configurations,
catures of configurations such as those shown in Fig. 1. Not@hile bonds that are broken exactly once under one of the two
that Fig. 9 does not show all of the possibilities. Also, theseantiparallel BC's is likewise broken exactly once under parallel
pictures are two-dimensional slices, which hides the possiBC’s, so that all broken bondsancelin the signed sum that defines
bility of regions having three-dimensional “handles” and 3.;.

B. Surface exponentdg

1
!
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connected set of spins anchored to the right face to flip from
up to down along with the forced right boundary spins when
the + + boundaries are replaced withh —. This set of
changingsites, which we denoté, _ .., has a bounding
surface—indicated by the heavy and light lines in Fig. 11, for
the spin configurations of Fig. 9. But some of this boundary
will surround islands of fixed up spifsome of which them-
selves have down spin inclusigrtbat are disconnected from
both controlled faces. The number of such islaritight
circles in Fig. 1) will scale with the volume of th€, _ ,
region and their boundaries will contribute an amount of
order this volume to the surface areaof_ . , . This inter-

nal contribution to the surface area will, on average, be
dominant in large systems whér<h,, but it is clearlynot
properly part of the domain wall.

What we are interested in is the part of the boundary of
C4_ ++ which interfaces with the other “half” of the sys-
tem. One way to define a domain wall is thus to start at the
unmodifiedleft face and find the set of spins connected to
this face that do not change when the boundary conditions on
the right face are changed; this set, which we denote
U,_ +4, has no interior holes, although it could have
handles. The surface of the &t _ . ., is just its interface based on the configurations of Fig. @ The heavy solid lines
with the setC, _ ., that flips. This-C interface, which indicate the boundaries used to define the domain walls for the

spans the whole cross section with no holes and thus iralculation of the fractal dimensiods of the spanning wall ob-

cludes some boundary of frozen regions, is our first definif@ined by comparing the- — and + + configurations. The region
tion of a domain wall of interest. of changed spins connected to the right fac€,is . ., which has

Averaging over samples at fixdtgives a mean surface both the heavy and light lines as boundary, while the unchanged

area of thig/-C domain wall,A(h,L). (For these and related connected reg_ion anchored on the left face, with the_si_ngle solid line
wdies, we used B1C° to 20x10° samples for smaller 25 oundan: igt. - .. . (b) Boxes used for determining, , the

S T P dimension of the locally incongruent regions. The number of boxes

sample SIzes, 8-64 and _300_5< 10° Samples fqr the larg- of sideB in which the + — configuration differs fromboth the +

est sample size 128 Estimates of the dimension of these | zpq— configurations scales as". The broken bonds around

surfacesds, can be obtained from the discrete logarithmiCihe frozen islands in ther + or —— configurations are not

derivative, counted.(c) The signed sum of broken bonds that defidgs the
exchange contribution to the stiffneSs Solid lines indicate posi-

dg(h,L)=In[A(h,y2L)/A(h,L/2)]/In(2).  (31) tive contributions and the long-dashed lines indicate negative con-
tributions.

A plot of these estimates, with statistical errors, is shown in
Fig. 12. The estimates for the caselhef 2.27=h. appear to

(a)
ds

or

Usp it

(b)

TN
il

or

©

or ~ or

/
\—/
\

N

FIG. 11. Schematics of the definitions of domain wall measures,

anisotropic samples of shapex L2, with the outer two lay-

approach a fixed valuely as L—, while d¢—2 for h
<h;, as expected. Fdr>h, the apparent exponent either

starts atlg>d, and falls or first rises before dropping with
This behavior presumably arises forké, where the grow-
ing volume allows for larger surface area, while for ¢, the
domain walls become confined to a distance less ¢mom

ers in thex direction fixed to bet+ or — and, as before, the
sample periodic in thg and z directions. Again, to reduce
lattice artifacts, we use samples whose’ faces are ori-
ented in either th€100 or (111) direction.

As overhangs are possible in these interfaces, it is neces-
sary to define carefully the “height” function(y,z): for a

the right and left faces of the sample and thus effectivelygiveny andz coordinates, we use twice the average ofsthe
become two dimensional. From this plot and the results fokoordinates of the set of spinsdf, _ __ ; in the absence of

the (111) orientation(Fig. 16), we estimate

ds=2.30+0.04, (32

overhangs, this gives the desired surface height. The sample
averaged rmsvidth Wis defined byw?=[u?]—[u]?, where
the square brackets indicate the average(of,z) over the

where systematic errors due to finite-size effects and uncebt-Z coordinates of the sample. Simple scaling in the ordered

tainty in h, dominate the statistical uncertainties.

C. Roughness in the ferromagnetic phase

phase suggests that

W=L¢T(h,X/L9), (33

We have verified that the surface roughness of the nonfor large values ofX and L, with T a geometry-dependent
fractal domain walls in the ferromagnetic phase are consistunction. We find that using=0.64+0.03, consistent with

tent with theoretical expectatioi$:** Specifically, we cal-
culated the “height” of the surfaces—deviation from flat—in

the expected vali® 7= 2/3, describes the data fairly well, as
seen in Fig. 13.
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— ] T
F I OCh=1.00 O h=2.00,7=0.5,(100)
<l h=2.00 O h=2.00,r=1,(100)
2.6 Oh=224 7 0.8k 4 h=100r=1,¢11) | |
F Ap=227 . A h=200,r=1,(11)
4r=230 W h=210,r=1,(111)
@ /=240 N ® h=2.50,r=1,(111)
b W /=260 % h=260,r=1,(111)
24 ®41=2380 | 07L i
7 I L)
ds(h,L) _
20l ] 0.6 .
r 0.5¢ ! X A B e L]
20 1'0 2'0 - ) 5I0 L 1(|)() 10 0 5 00 %0
L L

. . L~ . L FIG. 14. Plot of the effective roughness expongtit,L) in the
FIG. 12. Effective dimensiond,(h,L) obtained from a logarith ordered phase forh=2.0 with (100-oriented faces andh

mic derivative of the surface area with respectta@hese are used ~1.02.0,2.1,2.4 with(11D-oriented faces. The samples haXe

Eo estimate the fractal dimensiods=dg(h;,»). The values _ | 23 layers[of arealL? for (100) and area/3L2 for (111)]. For
ds(h,L) are CalCUIated from the Surface Of the Connected set OE” samples in the ordered phase, the exponent approa&hes
spins rooted at one face that is unchanged when the spins on theg 66+0.03 asL—, consistent with the expectegi=2/3. For
oppositeface of the sample are flipped. The scaling of the area ofomparison, data for the disordered phase are included; the apparent
this surface withL y|e|dS the estimates ShOWﬂ, via E(($1) The exponent decreases for |arge Systems V\"ﬂEmc

error bars representdl statistical uncertainties. The values con-
verge tods=2.30+ 0.04 forh near 2.27%h, with the error reflect-
ing the uncertainty irh, and the estimated magnitude of finite size
corrections. The lines connect data points with the shme

from using a sample that was much longer thanin the x

direction. Such a sample shape would result in the same
asymptotic value fo, but would have(probably logarith-

The convergence of the roughness of the interface to itgic) corrections to scaling. As can be seen in Fig. 14, the
asymptotic form is made more apparent by defining an eféffective exponent appears to converge/te0.66+0.03 in -
fective scale-dependent roughness exponent both geometries. Note that even with the appropriate aniso-

tropic scaling, the corrections to scaling are large for samples
Z(h,(L1L) Y3 =In(W,/W,)/In(L,/L,), (34)  up toL=100 with the correspondinj~ 20.

where theX , are chosen to have the valugs?’3, with r

fixed at close to unity. Assuming thdtis indeednear 2/3,

this choice ensures that a typical wall is found, rather than For an alternative measurement of the dimension of the

the best of a set of~L~¢ possibilities that would result domain walls at criticality, we have used kx-counting
method. In this method, we compare the configuration given

D. Incongruence box-counting interface exponent,

0.20— —T L L +— (or —+) boundary conditions withboth ++ and —
AN = | — configurations. This is done at various scaleby parti-
tioning the sample intol(/B)3 cubes of volumeB3. If the
0.15f - configuration with twisted boundary conditions differs from
2 £ JXr ff?z both + + and —— in a given volumeB?3, that cube must
< q ¥ =16 intersect the domain wall. But this wall witlot include any
< 0.10- 4 L=24 . boundary of frozen regions that is isolated from other broken
5 5 fzf’é bonds by a distance of at leaBt In particular, wher®, =0,
A [ =064 the number of such intersecting boxX¢€B,L,h) will be zero
0.05 3¢ CD) ii?gs N for B smaller than the size of the frozen interior region. For
example, the+ — and — + configurations in Fig. 10 are
5 1 locally congruent everywhere with either the— or the +
0000——L 1 v + configuration. Thus only for boxes larger than the width
0 1 2 3 A 5 6 7 of the interior region will a domain wall be apparent.
WIL™ The scaling of the number of intersecting boxes

N(B,L,h) with L gives an alternate estimate of an effective

FIG. 13. Scaling plot for the roughness of a forced interface 'nfractal dimension which we catfl(h,L), anticipating that

the ferromagnetically ordered phase as a function of the aspect rat d . . B .
of an XXLXL sample. For the values df shown here withh NN(L/B) ' at the critical poinfsee Fig. 1ib)]. Using the

<h,, the width of the interface scales s~ L¢ with the best fit same form of the discrete logarithmic derivative between

{=0.643), conparable to the expected exact resiit 2/3. The EcalesL and 2 as in Eq.(31) gives the effective exponent
statistical I error bars are 1/5 of the symbol sizes or less. d,(h,L), as summarized in Figs. 15 and 16. This estimate
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I ‘ — T 24 : —
(@)B=2 - :
23 i (111) boundary orientation
23F T, —e|
) 22+ N S i
I L
i Oh=1.00 d 22F ]
2.1- Oi=160| 7] 3 [ 2 =, g * |
< h=200 ] L @4 .37 x3"L" ]
Oh=2.24F 7j ma, 3" x3"0 |
20k Ap=227 | 2.1F o7 .13 x3 |
<4 /=230 L 4 2 221
®/=240 L Od 413" x3"1"|]
| L Od, . 403" x 30 |
! < 12 12,2]]
196 20 50 100 50l | L, odunteih
L 10 20 50 100
L
T T T
= . 16. Estimatesdy(h=2. .di(h=2. , and d,
(b) B =4 FIG. 16. Estimatesdy(h=2.271),d,(h=2.27L), and d,(h
2.3 ] =2.27]) of the fractal dimensions using controlled boundary sur-
faces in thg(111) plane of the cubic lattice which are rhombi with
| | sides ofL spins. The number of layers in the sample, including the
~ boundary planes, ik or 4L, as shown in the key. The error bars
d(h.L) represent & statistical uncertainties with the lines connecting data
2.1+ Oh=1.00] - points with the samér. The dimension estimates convergedp
Py gy . =2.30+0.02d, = 2.25+0.05d,=2.18+0.03; these are consistent
L Oh=224 | within errors with those from Figs. 12, 15, and 17
Ap=227
4 /1=230 , .
| . @7 =240 broken bond weights, counted as negative for the and
1975 20 50 700 ++ configurations and positive for the + and + — con-
L figurations.

_ As in computing>, using the symmetrized energy differ-
FIG. 15. Estimatesi,(h,L) of the box-counting fractal dimen- ences reduces boundary eﬁects_E]f:O, then EJZO, for
sion d,=d,(h,=), for the (100 orientation of controlled faces. example, though comparing the configurations with and
Comparisons of the- — configuration are made with the — and 4+ — boundary conditions in such a sample will reveal a do-
++ configurations in boxes of volum@?®. If the + — configura-  main wall while comparing those with + and— + bound-
tion differs from both of the others, that box is considered part Ofary conditions will reveal a second entirely distinct domain
the domain wall. The finite logarithmic derivative of the scaling of \y 51| Either of these domain walls, along with a portion of
the number of such boxes with sample sizgields the estimates the frozen spins that make up the boundary, would be
shown with the lines connecting data points with the samighe ., e in the method which yielded. But in this symme-
e'rror bgrs representolstatlstlcal uncertainties. FdI:2.27,'the trized measure fronEJ, the signed sums would cancel, so
dimension estimate convergesdp=2.24x0.03, the error being a that neither domain wall would be counted. Similarly, when
combination of statistical error and systematic erors0(02) the box sizeB is smaller than the size of thé frozen in’terior
caused by finite-size effects and uncertaintiebdn ! !
the measure used to fird] would also be zero. Note, how-
ever, thatY; doesinclude some of the boundaries of the
yields a constant at large, within statistical errors, foh  frozen regions but it does so with signs that can be either
=2.27=h; and gives a valué, =2.24+0.03. positive or negative. In the ordered phase, then, the exchange
We note that a useful compatible definition fyrcan be  stiffness ; will include contributions from the region be-
based orbondsrather than spin blocks: count the number oftween the two domain walls that occur, contributions that
bonds that are broken with theé — or —+ BC'’s that are  would not have been included in the other methods. The
satisfied with both ther + and — — BC’s. The number of three proposed measures are thus potentially all different,
such bondsN’, should have the same scaling form\adoes ~ especially off critical, but perhaps also at criticality.

for fixed B. We have used this bond definition in a smaller At the critical point the exchange energy part of the sym-
number of samples and find results Ehf(h L) at largel metrized stiffness will have contributions from the domain

; ds—Blv ; ;
consistent with the spin block definition df defined above. walls with holes,~L S.B » equivalent to the qu cpuntmg
measure of the domain wall, as well as contributions from
parts of the boundaries of the frozen regions. The simplest
expectation is that the the contributions from the frozen re-
gion boundaries will be random in sign and thus less impor-
A third measure that we have used to study domain waltantin toto.
geometry is the contribution of thexchange energio the The mean of%;(h,L) can be used to compute a fractal-
stiffness>. This we denote ;. It is the signed sunof the  dimension-like quantityd; for the interface via the assump-

E. Exchange stiffness exponend,
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24— T T T T F. Comparison of domain wall exponents

Due to the subtleties introduced by frozen islands and the
representation of the Hamiltonian as the sum of domain wall
and random field components, there are three natural mea-
surements of the domain wall surface and the domain wall
contributions to the stiffness. Each measure has its own
physical meaning. We will argue in Sec. IX B that the differ-
ence betweeng andd, is due to frozen islands, and hence
ds—d, should be related t@/v.

OO\I-&S%

P19 1 N

QADOCADO
N

Nl

dhLy |
22

VII. MAGNETIZATION

2.0 ' : — Having established the location and order of the transi-
10 20 50 100 : . e
1 tion, we now f(_)cus on an apparently problematlc_ quantity:
the magnetization. Given sets of ground-state spin configu-
FIG. 17. Estimates,(h,L) of the scaling of the exchange con- ations{s;}, the distribution of magnetizations can be studied
tribution to the stiffness defined as the total signed surface area ¢S @ function ofL and h. In order to better understand the
the changes betweew +,——,—+, and + — boundary condi- large-volume limit, we have computed the magnetization dis-
tions. The logarithmic derivative (ﬁJ(L) gives the values shown tributions forfive different boundary conditionall boundary
with the lines connecting data points with the sam&he error bars ~ spins fixed to a single value, either all positive or all negative
represent & statistical uncertainties. Fdr=2.27, the dimension (F); boundary spins fixed at independent random values
estimate converges t;=2.18+0.03. (R); open boundary conditiong)); periodic boundary con-
. ditions (P); and a combinatiofQ) with conditionsP, O, and
tion thatS ;~L% ath,. The scale-dependent effective expo- R along each of the three axes. The fixed spin boundary
nents from our data dt=2.27, shown in Fig. 17, yield an conditions will tend to favor ferromagnetism, the random
estimate of d;=2.18+0.02 that appears to be slightly Will tend to favor a disordered phase, and the combinafion
smaller than the other two dimensiodsandd, . appears to significantly reduce some finite-size effects.
One advantage Of the exchange energy is that we can We firSt describe our reSU|tS fOI’ the mean Of the absolute
relate this measure of the fractal dimension of the domairyalue of the magnetization density,
walls at the critical point to the other exponents. If a small
additional exchange’J is added to the Hamiltoniarior |m|=‘2 s
equivalently if all the random fields were decreased in mag- [
nitude by a uniform small amountthen the change in the
stiffness would be simply

L9, (37

for cubic samples with periodic boundary conditio(®.

Figure 18 is a plot of our data as a functionhpffor various

L; the magnetization drops off quite steeply nbar Figure
5E%§EJ. (35) 19 shows the magnetization as a function of system size,

J along with its discrete logarithmic derivative, which yields
an effective scale-dependent exponent. To within errors, the

SinceX~L? while X ;~L% with d;> ¢, the change in the magnetization is consistent with power-law scaling,

stiffness will become of order the stiffness itself and thus

strongly modify the system wheh~(8J)~¥(%~9  This m~L" A", (39

crossover length is thus a measure of the correlation lefigth with B/v=0.012+0.004. Forh<h,, the magnetization ap-

and we thus expect the exponent equality pears to approach a constqatg.,m(2.255]. —)~0.952.

For h>h., the effective exponent decreases significantly as
. L increases.
=d;— 6. (36) . . o

For further analysis, we characterize the distributionsiof

by the average over samples of the square of the magnetiza-
tion per spin,m?, and the root-mean-square sample-to-
sample variations of the square of the magnetization:

This can be derived directly from the scaling form EB5)

by differentiating with respect td (equivalently with respect
to —h) and noting the thermodynamic identity between de-
rivatives with respect to coefficients of terms in the Hamil- A 2\2

tonian and expectations of the corresponding téNote that Az =M= (M) (39

this is closely analogous to the relation betweeand the  Our results forA 2 are shown in Fig. 20. A§ is increased,
energetic part of the interfacial free energy at conventionathe peak magnitude oA, is seen to decrease for some
finite-temperature critical poinjsAssuming the scaling rela- boundary conditiong, O, andP, while it increases for oth-
tion, Eq.(36), would giver=1.45+0.10, a slightly different, ersR and Q. For boundary condition&, O, P, andQ, the

but consistent, value of than that from the scaling of the peak heights appear to be converging to a similar fixed value,
total symmetrized stiffnesxs. bracketed from above and below by the different sets of data.

134411-16



THREE-DIMENSIONAL RANDOM-FIELD ISING . .. PHYSICAL REVIEW B65 134411

should give the same limit fdr near enough to the peak and
L large enough.The fitted location of the peaks is extrapo-
lated for all boundary conditions as a functionlofWe ob-
tain agreement of the extrapolations for €.3<1.45 with a
value of h,=2.272+0.004, consistent with the value from
P, and other estimates. We believe that this independent es-
timate is relatively precise and robust, due to the variety of
boundary conditions used, with the variation in the results
giving an estimate of systematic uncertainties.
For the fixed spin boundary conditiofs the peak mag-
nitude of m? is apparently converging to different value
ha Pt (note that the magnetization near the surfaces will vary less
r i than with the other boundary condition# either these data
0 I ' I ' L F or the periodic boundary condition daRaat the critical
point are used(rather than the data near the pgathen a
hJ smaller value ofA 2 is found, roughly the same although
FIG. 18. Mean absolute magnetization per spinl, plotted vsh ~ @Pparently still distinct for these two cases.
for variousL, for periodic boundary conditions. Collectively, our magnetization data would appear to sug-
gest a picture of the transition that is consistent with that of

In general, we would expect that the height of these peak§ef' 14: three possible “states” at the critical point, “up,

would scale for asymptotically large sizeslas’?'”; the data down,” and d|sordgred, a.s.would occur at a first-order
are thus consistent with eithgr=0 or with a very smal. para- to ferromagnetic transition. As we shall see, however,

One can estimate the location of the transition by ﬁttingOur other data and further thought suggest that this picture,

the data forA 2 near the peaks at five or more valueshdd while a very good approximation, is not correct. We will

. ' . ) argue that in facpB is small but nonzero and thus in astro-
a Gaussian form(The Gaussian gives a better fit than a . L .
; . nomically large samples the magnetization will decay slowly
parabolic form over a larger range bf though either form

to zero at the critical point but with the scaling functions for
the distribution of the magnetizatiotand their momenjs
depending on the type of boundary conditions as is the case
for pure systems at conventional critical poifitata sug-
gesting this are presented in the next section.

0.8

0.6

[l
0.4

0.2

VIIl. SPIN CLUSTERS AT CRITICALITY

The distribution of the magnetization studied above gives
some information about the ground-state correlations of the
RFIM. But because ground-state correlations between lIsing

0.90 - - | L X q: spins are controlled by the probability that a pair of spins of
interest are in opposite directions, the observation that the

L o » .
magnetization at the critical point tends to be rather close to
0 T < T =<k T <F T <z 1 saturation suggests that the loss of correlations as the random
i xF <= T field is increased through the critical point may be associated
SO0 X X o~ T with rather rare events. In this section, we investigate the
E i =i =* - T nature of the effect that we believe gives the dominant con-
3-0 02~ - =« ] tribution: the occurrence of connected clusters of spins of the
z I * I one sign completely surrounded by spins of the opposite
2003 — ; :
= | [ 2 h=2200 1 | sign. Because all of the exchanges are ferromagnetic, such
ol | & 3 ] isolated inverted clusterwill, a fortiori, not change when
| € n=2285 (®) ] the boundary conditions are inverted: either the spins sur-
005 ® /=229 | ; | | rounding them will flip, in which case they will be content
’ 16 32 64 128 256 the way they were, or the surrounding spins will not flip and
L the spins in the cluster will be isolated from the boundary

FIG. 19. (3) Mean absolute magnetization per sgim], plotted condition change. Thus these isolated spin clusters are fro-
vs L for varioush (with periodic boundary conditionsThe solid ~ Z€nN. o _
line is|m| = (1.0009). ~%%12 (b) The discrete logarithmic derivative e have computed the statistics of the domain walls that
A In[|m(L)[ VA In(L)=In[|m(L")[/mL)In(L’/L) vs JLL' with L’ enclose isolated spin clusters in 5000 or more samples of
~2L. This is used to directly estimatg/v, yielding /»=0.012  System sizes up to 138&nd 1000 samples of size Z56t
+0.004, where the error bars are dominated by the range of valuds=2.27~h.. A slice of a configuration is shown in Fig. 21.
for h, obtained by fitting over sizes up to=256. Statistical errors in the dimension estimates and number dis-
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FrT— T T T T T T T - = =
0.3k (a) - Fixed boundaries [F] . . J - PO . .
[ |4 L=9 ] e e T .
[| & L=17 i . !
F | & L=33 i L oa " L v
02| m L=65 7 : B L.
[ ® L=129
0.1F

——
03 [ (b) - Open boundaries [O]

III . j‘ -5

03'_ (¢) - Random boundaries [R] . o '. L .y Y o . e v N

< 4

. FIG. 21. A slice of a spin configuration in a 256ample ath

] =2.27. The dark squares indicate an up spin. The nesting of spin

] clusters can be seen here — the number of levels of nesting, the

] “depth,” of the full configuration isk=3. The domain walls are

] determined by working recursively inwards from the majority

0.3 (@ - Periodic boundaries | P| ] (down) spin cluster. The surface of each cluster is taken to be the
L 3 outer surface and does not include the surface of subclusters.

m

ian RFIM, but they claim that the cluster distribution is not
broad. We find, in contrast, that there is a broad tail, which,
though weak for smaller systems, becomes more important
asL increases at the critical point. To directly contrast with
the results of Ref. 45, we find that the sum of the volume
fraction of thetwo largest clusters, though near 1, slowly
decreasesas L increases, ah=2.27=h;. The transition
separates a state with one infinite connected set of spins of
the same sign from a disordered state with two antiparallel
incipient infinite clusters.

22 24 26 28

h A. Cluster surface

FIG. 20. Magnitude of sample-to-sample fluctuatidng in the For each cluster, the total volume—which includes the
mean-square magnetization per spin, as a function of random-fielgg|ume of “holes” of opposite spin—was computed, as was
strengthh, for various system sizds(a) for fixeds;=+1 boundary  the surface area of the cluster: the number of unsatisfied
conditions £), (b) for open(free) boundary conditions@), (¢) for  egrest-neighbor bonds that separate the cluster frosuiits
random fixed spin boundary condition), (d) for periodic bound- 1 ing region of opposite spin. The domain walls are
ary conditions P), and(e) for mixed periodic, random fixed, and ¢, 4 recursively, taking as the initial surrounding region the

fixed boundary conditions, one along each ax)y.(The curves are . . . . . 0

fit locally with Gaussians in the regime whefg,. is greater than malljorlty Stﬂn fcluitir,z\évgzllghB'gyp!Call}[/hOCCILJ pltes 97b/0 of Ithe
approximately 3/4 of its peak value. Extrapolating the peak loca-YO'UMe _a c or -~ bInning the clusters y volume
tions to L= gives a best fit value ofr=1.38+0.08 andh, v, logarithmically spaced by powers of 2, averaging the sur-

=2.272+0.004, with the dominant errors being systematic errors'@C€ area in each bin, and taking the discrete logarithmic
arising from variations in the extrapolated values, presumably duél€rivative gives an estimate of the fractal dimension of the
to corrections to scaling. The lines shown are spline fits to visuallycluster surfaces, dimensiaif(h,L,v). As indicated in Fig.
organize the data. 22, at the critical point the surface area appears to scale as
0755007 for intermediate-size clusters with<lv <L 3. The
tribution were computed by a bootstrap meti{ogsampling  error in this exponent includes both statistical error and the
the statistics over the computed configuratioifiRef. 44; the  apparent uncertainty of corrections to scaling that are affect-
error bars indicate the estimated rms fluctuations in the stang the convergence to a constant value. This value is little
tistics at each cluster size. affected by the estimate of the location bf (varying h
We note that previous work by Esser, Nowak, andchanges the number of clusters, but within the uncertainty of
Usadef® studied the domain structure for a single sampleh,, does not affect the geometry of the domain wallse
size. They address questions of percolation in the 3D Gaus$ave verified that the volume enclosed by the domain walls
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v \
FIG. 22. Dependence of the surface afeamber of broken FIG. 23. Fraction of the volume(v) occupied by clusters of

bonds of cluster boundaries on the enclosed volumexpressed as  volume betweew andev, ath=2.270~h,, found by normalizing
an effective exponentag(h,L,v), at h=2.270~h,, for L the data binned according to powers ofi2., dividing the volume
=32,64,128,256. The cluster surface area scalad2=0%7for  fractions in the[v,2v] bins by In2). The solid line isp(v)
the largest clusters that are not affected by finite-size effects, yield=0-0019+(0.0017p =% one of the trial fits used to extrapolate to
ing a fractal dimensionl{=2.27(2) for the cluster surfaces. largev.

separating opposite spins scales in a manner numericall¢!piped of fixed orientation enclosing the clusteve see

consistent with thisrolumebeing nonfractal: that clusters that are neither too small nor limited by finite-
size effects—roughly a decade in length scale for
v~I9, (40 L=256—occupy an approximately scale-independent vol-

{me fraction. A comparison of the cluster distributions for
nominally off-critical values oh, as seen in Fig. 25, shows
how p(v) depends oth. From these plots we infer a large-

with | being either the geometric mean or the maximum o
the lengths of the sides of the minimal rectilinear box that
encloses the cluster. The extrapolatiordfth,L,v) to large

) . . : . limit of
L and| is therefore consistent with clusters having typical
diameterl ~v and typical surface area p(v)— p.,=0.0018+ 0.0004. (45)
a~19% (42) We cannot, of course, rule out a slow decrease(af) to
. zero for large volumes, especially as our effective range of
with length scales here is less than for other quantities because of

. the restrictions due to finite-size effects. But wen under-
ds=2.27+0.02, (42) stand on the basis of our other observations why one should

a fractal surface dimension consistent within the statisticafXPect & small but nonzero value fox .
uncertainties with our estimates of the fractal dimensidns
andd, of the domain walls induced by changing boundary IX. SCALING
conditions at the critical point. In particular, this surface di-
mension bears a close resemblance to the dimension of tr&e
) ; ; 0
spanning surface which we denotdg; thus we conjecture
that

In this section we pull together our various results about
main walls, stiffness, magnetization, and inverted spin
clusters and show how they are all consistent with a simple
picture of scaling behavior at a zero-temperature phase tran-

dg:ds- (43) sition.

. A. Critical correlations
B. Cluster density

New information is given by thelensitiesof the clusters At the crit_ic_al point, the energy cost of dpmain walls is
as a function of their size, in particular their dimensionlesstyplcally sufficiently large that almost all cubical samples—
volume fraction ' about 96% of them—_would rather have no spanniong
other large scajedomain walls unless forced to by boundary
v conditions. But in a small fraction of the cubical samples the
p(v)= —ProMl sitee cluster of size itw,v + dv)]. random fields in the central region are sufficiently strong that

v (44) they force the system to haveo domain walls for one of

the two “ferromagnetic” (+ + or — —) choices of boundary

From the data in Fig. 28and for the slightly different mea- conditions. In samples that are twice as long, this occurs
sure of Fig. 24, where is the volume of the smallest paral- much more frequently as evidenced by the increase, on going
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L the short axis. Assume that the probability that the single-
0.004£ A=3 . wall energyELWEE+,— E. , in such a system isegative
. h=2270 OL=64 is q<1. Crudely, for two walls to be favorable in a cubic
0.003F 8 éfgz ] system with+ + boundary conditions, as is needed to make
BT — ] 3 =0, one must havéoth E,<0 for the left half of the
pv) system andE\,=E_, —E,, <0 for the right half of the
0.002 '."QQQQQQOQQO (o1¢] 7 system. Naively, this occurs with probability of ordgf.

: . Dﬂ '2 ] (More precisely, one of thEy,’s could be positive but not by
0.001L Ak oD § 1 enough to dominate the other one; Fhis_ wiI_I not change_things
C AlF D.‘§§ % much as long as the bulk of the distribution of tBg/’s is
C &= T skewed substantially to the positive side of zgmBut in a

0000 vl vl vl vl vl el

system of length P rather thanL, there are many more
possibilities: if we divide the system into four sections of
v lengthL/2, one could have, for example, the second from the

FIG. 24. Fraction of the volump(v) occupied by clusters that left having El\N<O and the rlghtmost ha\./lnE{N<Q.W|th the
are contained imectilinear volumeg“boxes”) betweerv andev, wall energies of the other sections being positive. As there
ath=2.270~h,, found by normalizing the data binned according are six such choices among the four sections of the elongated
to powers of 2(i.e., dividing the volume fractions in thiv,2v] system, we expect that the chances of hading0 will be
bins by In2). For largey, p(v)—0.0019+0.0002, ifh,=2.270. about 6 times as large as in the cubical system—aobviously a

) ) very crude approximation, but one that yields roughly the
from cubical to elongated samples, in the probabiythat  measured magnitude of the ratRy(2L X LxL)/Po(L XL

the stiffness vanishes. Although whether such a pair of walls.| ) Note that this picture implies that for systems that are
is favorable generally depends on both'the random fields i, ,ch longer than they are wide, the typical number of do-
the whole system and the local behavior near the walls, gyain walls in the ground state will grow linearly with the
crude picture of what is going on can be drawn by assumingength. The roughly random spacing between them will lead
that the wall energies are relatively local and weakly depent, exponential decay of the end-to-end correlations in such a

dent on each other. We restrict consideration for now to th@ystem, with a characteristic length proportional to the linear

critical point. _ _ _ dimension of the cross section as should be expected on gen-
First consider a system of dimensiohis X L XL with the o finite-size scaling grounds.

boundary conditions imposed on the faces perpendicular t0 At conventional critical points in two dimensions, confor-
. R A e mal invariance relates the exponential decay of correlations
3 in long tubes to the power-law decay of correlations in the
0.004 AP . .
i}ﬁ bulk in infinite systems: the exponent is simply propor-
r ] tional to the ratio of the width-dependent correlation length
0003L 45 %% ] to the width? In our case, there is no such exact relation, but

-
o]

*}i*** e EE one can mal§e a quali;ative ar.gument that suggests a similar
p(V) o) O** 1 result. Consider a region of diameter of orderentered on
0.0021 tﬁ O00o0o 06 ] some chosen spin in the bulk of the sample and assume that
L §$ 00 ] outside of this region, the spins in the vicinity afel. The
(A heoasien | B ,ﬁ; Q 1 only way that the spins inside the region of interest can be
0.001F| ¥ 522555 L2 s ALX*! Q é— —1 is if there is a domain wall relative to the pure “up”
F | FamLeas ¥%§§£ configuration which surrounds this region and has negative
i Q h=2285,1.=256 JAN Y.y . energy. Roughly speaking, such a closed domain wall must
0.000 5kl 2 o 6 be made up of four or more sections which are joined to-
10 10 10 10 10 10 10 gether with each having negativer close to zerpenergy.
v Since the amount of freedom perpendicular to the area of

each of these will be somewhat less than their linear dimen-
sions, a crude approximation is that the probability of finding
each such section is of ordgrand the probability of finding
the total domain wall energy negative is of ordgy. (If a

FIG. 25. Fraction of the volume(v) occupied by clusters of
volume betweerv and ev, found by normalizing as in Fig. 23.
Here, the volume fractions are plotted for=32,64,128, withh

=2.255, andL =256, withh=2.255,2.270, and 2.285, to indicate | b f h i b ded . thi Id
some of the effect of changiny or h on p(v). The data forh arger number of such sections bounded a region, this wou

=2.255 apparently converge at largeto a well-defined distribu- give a .h.igher power of and-a highgr-order qurection for
tion that has a finite- cutoff, consistent with a finite correlation SMallg; in any case, the estimate given here is very rough,

length in the ordered phase. This is in contrast with the daté for €Specially for larger.) With P_O[cubq_zo.04~q2 (as de-
=2.27, the putative critical point, for <256, as seen in Fig. 23. Scribed in the earlier part of this section, the probability that

Forh=2.285, in the disordered phase, large volume clusters start ttv0_domain W5_1”S with qegative energy exist in a cube is
occupy a larger fraction of the volume than smaller clusters] for ~@?; such a pair of domain walls isolates the two ends of the
= 256. cube from each other by a frozen intepiathis suggests that
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the probability for finding such a spin flipped region will be  This picture of droplets within droplets strongly suggests
of order p..~q*~0.002, in the same range as that found.that neither spin species will percolate at the critical point.
Although the above argument is very crude—factors of 2'sThis is,a priori, rather surprising as the percolation concen-
or 7r's could easily have been fudged in—it nevertheless protration for a three-dimensional cubic lattice is substantially
vides a suggestive connection between the smallness of vatess than half and so one might have expected both spin
ous quantities. Indeed, a related argument actually providespecies to percolate even somewhat into the ordered phase.

more: a precise method for estimatiggv. The fact that they do not in this system is associated with the
Consider a single spin in the center of a large system asmallness of3 and the nature of the critical point.
the critical point with, for simplicity+ boundary conditions. In practice, unfortunately, the value Bf v is so small for

For each factor o0& in length scald, there is a probability the 3D RFIM that the effects discussed above will be all but
p- that the spin is an element of a cluster, flipped with re-unobservable even if experiments could reach equilibrium.
spect to its surroundings, with volume in the associatedBut in higher dimensions, 4 or 5, they might be observable
rangel<v<el®. There will, of course, be correlations be- numerically as relatively large systems sizegy., more than
tween the probabilities of occurrences of such inverted re32Y) can be explored.

gions that are similar in size and nearby to one another. As

inverted regions are so rare, though, the effects of these cor- B. Fractal dimensions of domain walls

relations will be negligible and we can assume that each
range ofl around the chosen spin is independent. A simpl
picture of the behavior then emerges: the spin of interest wi

The picture developed above suggests that the various
| ractal dimensions of interfaces or domain walls at the criti-
; . : . C cal point will not be the same but might, nevertheless, be
be in & cluster of one orientation of diamelgy which itself related to the other exponents. The fractal dimension of the
will be in a much larger cluster of the opposite orientation of L P y .
. : ) . . : spanning interfaceds (and the dimension of the surfaces of
sizel ,, etc., with the successive sizes growing approximately . ) . .
. . o . . _“clusters, is the dimension of a true surface, one with no
geometrically—in the smalb-, limit as a Poisson process in T
holes in it. Such a surface cuts across the whole system but

In(I.) W'th density dp.. .(W'th d=3). This co.nclusmn of 2 the sets of sites it is separating cannot really be thought of as
Poissonian process relies upon an assumption of scale 'nvalg'elonging to different states—the “up” and “down” states—

ance at the critical point that is consistent with the numerlcasmce, in an asymptotically large system, most of the sites

results(for similar arguments that reproduce exact results INLill be frozen and unaffected by the boundary conditions. In
some other random systems, see Rej. Z8e Poisson pro-

cess should be exact in the limit of small because corre- contrast, the incongruence box-counting dimensipis sen-
Al s'&tive only to those parts of the system tlsaie affected by

Iat|_0ns betwee_n events on the widely separated scgles 8oundary conditions: a fraction of orderL#/”. A natural
which successive clusters typically appear should vanish as-

; i : : conjecture is that the box-counting dimension is the same as
ymptotically; there will, however, be corrections and corre-

lations of orderp? . The probabilityp; that the spin has the that of the intersection of a typical fractal spanning surface

. . . with a fractal set of dimensiod— B/ v, yieldin
same orientation as the largest cluster—the system size Blv.y 9

L—is the probabjlity that an even number of_domain vy_alls_ d,=ds— B/ v. (50)
separates the spin from the largest cluster; this probability is )
easily computed for the Poissonian process i) ad yields ~ This picture is somewhat analogous to what would occur

the mean value of the spin given fixed J boundary condi-  fight at percolation in a diluted ferromagnetic Ising system at
tions, zero temperature: in a finite fraction of the samples, forcing a

domain wall by changing the spin boundary conditions
would cost no energy, while in the rest it would cost an
, (46) energy proportional to the area of an interface that only cuts
LAY across the fractal incipient infinite cluster; this interface
would have dimension analogous to alr.
The exchange energy dimensidpis sensitive to both the
frozen and the unfrozen regions. But a reasonable guess is
B_ ~ that this is dominated by the unfrozen regions as the frozen
—~2dp.,,=0.011+0.003. 47 Yy 9
4 regions contribute random signs. This suggests that

§(+)= 2p||— 1~

with the exponent

A similar argument for two spins a distanpe—y| apart in dy=d,=6+1/v, (52)

an infinite system gives o o ) )
which, if correct, implies that a relation obtains betwekn

1 and the other exponents:
T [x—y|d=27’ “9 1+8
ds: 0+ T (52
with the modified “anomalous dimension” exponent for
theseuntruncatedzero-temperature correlations given by We should note, however, that these conjectures are diffi-
_ cult to test in three dimensions, due to the smallnesg.of
d—2+n»=2Blv~4dp.. . (49 Our estimated exponents are in slight disagreement with
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these conjectures, but corrections to scaling that are not ag  0.15————
parent can be important at this level of accuracy. Neverthe- I
less, our apparent values fdy anddg do appear to be larger i
thand, andd;. 0.14
In higher dimensions, testing the conjectured scaling rela- I
tions between these dimensions and the other exponent i
might be feasible. It is of course possible, however, that fur- 7 .13}
ther analytic understanding would imply that at least some of
the fractal dimensions could be independent exponents.

residual
=
T
o
HH
L 4|
L ]
e
|

C. Specific heat I _0.0005{ Ll

The specific heat of the RFIM can be experimentally 1
measuretf and is of theoretical importance. Monte Carlo ' 5'0 ' 1(')0 ' 1;0 ' 2(')0 ' 2g0 300
methods at finite temperature have been used to estimate i L
value®*° In addition, Hartmann and YoungHY) have
recently?’ computed the exponent describing the diver-
gence of the specific heat, using ground-state configuration
They find a value ofx=—0.63+0.07. Using thesamether-
modynamic assumptions, but different analysis methods, w
find a=—0.01+0.09.

One expects that the finite-temperature definition of the
specific heat can be extended to zero temperature, with the —
second derivative ofE) with respect to temperature being dE,
replaced by the second derivative of the ground-state energy d(InL)
densityE 4 with respect tch or, equivalently, up to constants
J. The first derivativedE s/ 3J is just the average number of
unsatisfied bonds per spiE‘J:L*dEm)siSj . HY calculate
the needed second derivative by finite differences gth) =2.255,2.280), we estimate the systematic errors, given our

for values ofh nearh, . (E; is not explicitly dependent od, uncertainty inh,, arriving at the value ¢— 1)/v=—0.82

but c_:hang_es dlscontlnuou.sly in a finite Saf“p'_e W_hen the spin 0.10, which, usingg=1.37+=0.09, gives a second estimate
configuration{s;} changes; the second derivative is thus a seta — 012016
of & functions which are smoothed by the finite differenc- "~ (%) ' -

. O : ) : Besides the uncertainties im., this result fora is af-
ing.) The finite-size scaling form assumed is that the S'ngl‘"a'fected by finite-size corrections. We now argue that these
part of the specific heas behaves as

corrections can be reduced by extrapolation and that a con-
VA Uy nection exists betweea, dg and 8/v: E;, being the bond

Co L™ CL(h=he)L™]. (53 part of the energy density, is simply given by the density of

HY determinea by fitting to the maximum of the peaks in domain walls, whose scaling can be found from the results in

FIG. 26. A plot ofE;, the bond part of the energy density, for
=2.27, as a function ok. The fit shown is of the fornE;=c;
=c,Le= 1" with ¢,=0.14632¢,=0.29098, and ¢—1)/v=
—0.82. The residualénsed give y?=0.65. The statistical error in
‘(:!af 1)/v for fixed h nearh, is 0.02, but the uncertainty in this ratio
is 0.10 due to the uncertainty ..

NL(afl)/V, (55)

at h=2.27, which removes the need to fit ¢g, but intro-
duces larger uncertainties, due to the derivatives. These data
for h near h; is displayed in Fig. 27. By varyindh (h

Cs, which occur athpeq(L) - ho~L". Sec. VIII. Namely, taking the surface area of clusters to scale
Here, we estimater using the results for the stiffness with linear sizel as A~19%~3 99 and using the constant
from Sec. V and also by studying the behaviorfat h,.  limit for the distribution of volumes (v)d[In(v)] at largev,

The first estimate found by applying E@) with our values the domain wall density in a finite sample is found by inte-
of # andv is a(;y= —0.07+0.17. The computation from the grating the wall density, taking into account intersections be-

behavior ofE, is based on integrating E453) up toh,,  \Ween the scales, ovérup to the system size, giving

which gives the dependence — c
g P Ejs~ L0 d7A, (56)

Ejo(L,h=hg)=ci+c L1, (54)  This exponent can be justified by considering the change in

with ¢, andc, constants. We have computég for a large E, s upon doubling the .system size. WiFh fin?te probability
number of samples of various sizes and estimated the sing@=N2), an extra domain wall of Scf"‘lew'” b? introduced.
lar part of the sample average. We directly fit our data forThe connected surface of the domain wall will have dréa

EJ(L), at fixed h, to the form of Eq.(54). The fit for the but theincrease in domain wall arewill be smaller, as the
nominalh., h=2.27, is shown in Fig. 26. The fitted values domain wall will intersect frozen regions. The fraction of the

are (@—1)/v=—0.82+0.02, where the quoted error is sample that is not frozen scales las?'” at criticality; the
purely statistical The fit is dood for 16L <256, with y2 intersection of the new wall and the unfrozen region there-

=0.65 for a three-parameter fit to five data points. This fit isfore scales as- LA, so that the expected fraction of
also consistent with that found from taking the derivative ofnewly broken bond¢compared with the smaller samplis

E, with respect to Ini), ~L9%~9-A* (The domain wall intersects frozen regions that
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samples and fitting using a finite-size scaling form. Hor
we analyze the samples in two ways: directly extractig

0.020
data and also estimating the asymptotic scaling usingifhe
0.010 and B/v measurements. This latter method is least sensitive
S to uncertainties i, .
=]
a
;\0-005 D. Deviations from criticality
< As the system is taken away from the critical point, the
nature of the spin clusters and correlations changes in a
0.002 straightforward way. If the exchange is increased, driving the
system into the ordered phase, then the large inverted drop-
0.001 : : [ lets, which typically have gained energy of ordérat the
20 50 . 100 200 critical point, will usually have this energy gain overcome by

the extra exchange energy cost of ordﬁllg when | is
FIG. 27. Plots of the discrete derivative with respect th.)rdf ~ greater than the correlation lengéh Large inverted regions
E;, for h=2.255,2.270, and 2.285. The solid lines show power-lawwill be exponentially rare on length scales longer tl§an
fits for L=30, with slopes 1.21,0.84, and 0.60, respectively. Using  |f the random field is increased or the exchange decreased
the error estimate fan., this gives ¢—1)/v=-0.84+0.10, con-  to drive the system into the disordered phase, we can no
sistent with the results from plots as in Fig. 26. longer simply focus on the inverted regions that already exist
. o ~ at the critical point but must also consider putative inverted
did not have surfaces, as they were embedded in like spingegions thatouldexist. In any region with diameter of order
adding total area, and also intersects frozen clusters that hadihere will be, at the critical point, an excitation that flips of
surface area, removing total area, but these contributions ayyder ¢ spins for a typical energy cost of ordet (more
erage to zerg.This argument implies the scaling relation precisely it will only flip of orderl9~#* because of the fro-
zen regions within it which are not sensitive to the boundary
=dS—d—Blv. (57) of the regior). Since decreasing will decrease the energy
4 cost of this excitation by an amount of ord&#L%, a good

Note that this relation is consistent with modified hyperscal{fraction of these “excitations” will have negative energy and

ing, Eq. (6), and the conjectured relationships among thelhus occur spontaneously at scales of oréleOn this and

domain wall dimensions, Eq$43) and (52). Applying this larger scales, the orientation of the spins will be determined
result to our data, we find primarily by the local random fields within a distance of

order ¢ of the spins of interest.

(a—1)/v=—0.74+0.02, (59)

giving our best estimate E. Thermal fluctuations and excitations

The effects of thermal fluctuations have been discussed
a=—0.01+0.09. (59)  elsewher2®in the general framework of a zero-temperature
random-field critical fixed point. We will thus restrict our-
selves here to a few comments in light of the present more
detailed picture.

Note that the magnitude of thg/v contribution is small
compared with the error.

Our result fore is in marked disagreement with the value At the critical point, as has been outlined above, there
from_HY. '_I'he scaling assumptions for our and HY's "’.malys'sshould be potential éxcitations with energy of orc’iér
are identical. It may be that one set of results is More, ;. gqcn point, an independent one for roughly each fac-
strongly affected by finite-size errors, though we do_ fit Iargertor of 2 in length scald. Since the energies of these are
yalues ofL. We note that the value af that we find using, random, there is a finite probability density that the energy of
is extremely sensitive to the assumed valuboénd that the any given one of them is near zero—indeed there would
uncertainty inhg dqmmates the error estimate. A change thave been ones with negative energy but these give rise in-
t‘fobg gcc=0.(f)_1_glvfes a Ichangég(a—ﬁ)/v]~(;].2 or 5ka . stead to inverted clusters in the ground state. The thermal
~0.3. We are fitting for values neag, whereas the peaks in ., ations are dominated by thare active excitations
C found by numerical differentiation are somewhat aboveWhose energy is within of ordeT of zero. Becausd is
PC' 'F‘ S?C'hx_’r']t IS foun(rjl that the ﬁon\/ferge;s(zelht/o ahsca“ngpositive, the active excitations with diameters of ortierl
tﬁnc'uonk O'rrC c r_norle than a coupée 'C:htlhm , where occupy only a small fraction—of orddr/| —of the volume.
hfﬁea S Irt-are, IS slow compared wi € convergence alg,+ this small active fraction dominates the correlations, in

_WC. h ind d d . articular causing the thermal fluctuations of the spin-spin

Ve use nhere two in epen ent data sets to arrve at O%orrelations, theruncated correlationsto decay as
estimates fow: (@) total stiffness measurements on isotropic
and anisotropic samples, with fixed BC’s on two walls, ap-
plying finite-size scaling, ando) the measurements of the (s,—(s))(sy—(8)))~———,
bond part of the total energ; using periodic isotropic (S {8 (s~ (sy))) |x—y[d=2*7

(60)
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where the exponentp is related to that of the zero- sideration to systems, such as the RFIM with Gaussian ran-

temperature correlations, E@L8), by dom fields, in which the finite-system ground states for given
5 boundary conditions are nondegenerate with probability 1.
n=n+0, (61 (Otherwise one gets into the complications of ground-state

entropy as in diluted antiferromagnets in a field and the bi-
modal RFIM>253put these issues are distinct from the basic
equestions of “states” on which we focuys.

the extra factor ofT/|x—y|? coming from the probability
that both spins are in the same active excitafion.

In general, except for fluctuation quantities such as th
truncated correlations, the statements that we have made
about zero temperature will hold with mingif sometimes
subtle modifications provided one considers always free en- o o )
ergies instead of energies. A ground state of an infinite systewith finite-range in-

One effect which must be mentioned, however, is thderactions is a configuration whose energy cannot be de-
“hypersensitivity” to changes along the critical line— creased by changingny finite collectionof spins. Equiya-
sometimes, rather misleadingly, referred to as “chaos.” Asently, a ground state can be thought of as the limit of a
long as #<d/2, which we believe it probably is, although Seduence of f|n|te—system_ ground states of larger and larger
only barely so, which spins have which orientation at theSUbsystems, generally with appropriately chosen boundary
critical point will depend, on sufficiently large scales, ex- conditions on each size. Thus the set of all ground states for
tremely sensitively on where one is on the critical 38! 2 specific infinite system is Fhe set of all distinct limits of
Unfortunately, due to the smallness @ 6, this effect is ~S€duences of boundary con.d|t_|o?|st.:.or two ground states to
unlikely to be observable in three dimensions but may be i€ distinct, they must be distinguishable within some finite
higher dimensions for whicl is expected to deviate more distance of the origin: if the finite-system ground states differ

significantly fromd/2. (In six dimensions and above=2,)  °nly in regions whose distance from the origin grows with-
out bound as the system size increases, then the infinite-

system ground states are the sathéll infinite-system
ground states have theame energy densityut comparing
the energy of a pair of ground states is not generally well

The simple picture of the random-field Ising system ex-defined.
hibits two phases with a single transition between them: an Many of the subtleties involved in considering infinite-
ordered phase in which a typical spin is aligned with otherssystem ground states come to the fore in the ordered phase of
far away and a disordered phase in which the magnetizatiothe random-field Ising model. If we take the limit of larger
is zero and the orientation of each spin is determined locallyand larger systems with opéie., freg boundary conditions
by the random fields in its vicinity. In the ordered phdse centered, for example, on the origin, then the finite-system
<h., spins have long-range correlations and there are botgiround states will not approach a limit. This can be readily
“up” and “down” states, although domain walls can be in- understood in terms of the “up” and “down” states which
troduced that divide the system into up and down regions. Inve know exist in the infinite system—albeit with some finite
contrast, wherh>h;, the spin correlation function is short density of misaligned spinsA given finite sample of volume
ranged, with characteristic scafe-(h—h,) ", and there is )V will typically have random fields whose net effects are to
only one state; because of the locality, large-scale domaigause an energy difference between the up and the down
walls do not exist in this phase. states which is of ordehV. Thus the ground states with

But it is interesting to ask, by analogy with spin glassesopen boundary conditions will alternate randomly from
and other systems with quenched randomness, whether theostly up to mostly down as a function @he logarithm of
random-field Ising system could be more complicated, espethe) system size. Of course, the up and down states can be
cially near to the critical point. In order to address this, wefound by either taking the appropriate subsequences with
must characterize the macroscopically distinct states in anpen boundary conditions or by taking or — boundary
infinite system: is there, as the simple picture would suggestonditions on all sizes. The problem of energy comparison is
simply one state in the disordered phase and two in the omow clear: which of these two states has the lower energy in
dered phase? Or is the behavior more subtle? a specific infinite system? This is manifestly ill defined, in-

It has been claimed in the literature that “replica symme-deed, because of the effects of the boundary conditions; it is
try breaking” calculations show the existence of an interme-not possible to uniquely define the energy of an infinite-
diate glassy phase, where many solutions with distinct locasystem ground state to higher accuracy than of order the
magnetizations coexist for a finite range of parameter, besurface area of the region under consideration.
tween the paramagnetic and ferromagnetic ph3Sedut We can, however, compare the energiesaiepairs of
what does this mean? Indeed, what does one mean bwgfinite-system ground states even in random systems. In
“ground states” in an infinite system with random cou- high dimensions, greater than 3, one can make ground states
plings? Furthermore, if one answers these questions, what is the ordered phase of the RFIM with a domain wall that
the connection between multiplicity of infinite system passes near the origin with a chosen orientation by putting
ground states and the notion of “replica symmetry break-boundary conditions on half of the boundary andon the
ing?” other half. If the random fields are weak enoughfour and

To consider these questions, it is simplest to restrict confive dimensions or with arbitrary randomness in the ordered

A. Infinite-system ground states

X. GROUND STATES AND SENSITIVITY TO BOUNDARY
CONDITIONS
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phase in six or more dimensionghe domain wall will be  with a spin) The results of all of the comparisons are char-
flat on large scales with onlfinite typical deviations from acterized by counting how many spins differ for the two
planarity and its position and orientation can then be fixed byooundary conditions in a volume® centered at the origin.

its intersection with the boundary which is forced by a The primary emphasis of these calculations is to deter-
“seam” between+ and— areas of the boundary conditions. mine whether changes in boundary conditions can create
The infinite-system domain wall state so constructed will beconfigurations that differ from those with uniform or uni-
stable to changing any finite collection of spins, but in aform — boundary conditions, i.e., those that produce the up
well-defined sense, it has higher energy than either the up @nd the down states in the ordered phase. If-thand the

the down states. As the domain wall costs energy per unit- boundary conditions produce identical configurations in
area, if one looks at a sufficiently large region that overlapshe deep interior, this suggests that there is only one state. If
the domain wall—say, cubical with=19—the difference in  the probability that some other boundary condition produces
energy between the domain wall state and the up state will ba configuration in the interior that differs from thosehuaith

of orderJI9~1+hI%2 which is positive almost surely in the the + and — boundary conditions vanishes as-, this

limit of large . suggests that there are at most two states.

In contrast to the higher-dimensional case, in the three- We report here a selection of results fay the probabili-
dimensional RFIM of primary interest, oneannot make tiesPq.(h,w,L)[Pg(h,w,L)] that the boundary condition
infinite-system domain wall states straightforwardly even inO [R] gives a central volume® that differs from that for
the ordered phase. If one tries to set up a domain wall that isyoth + and — boundary conditions at fixed sample size
say, horizontal in a system of sizexL XL, one will find  (b) the probabilityPpo(h,w,L) that the number of differing
that the wall wanders in the vertical direction away from thespins within the window is nonzero when one compares open
plane determined by the boundary joint by a random, sampleoundary conditions for samples of siz& 21 and a sub-
and subsystem size-dependent amount of otdewith {  sample of sizeL, and(c) the probabilityPp. (h,w,L) that
=2/3%%* No matter how one adjusts the boundary seamopen boundary conditions on the larger sample gives a cen-
one is unlikely, in the large-system limit, to be able to forcetral volume w® that differs from that forboth + and —
the wall to be both near the origin and nearly horizontal.boundary conditions on the smaller sample.

Thus the sequence of domain wall forcing boundary condi- The calculation of the probabilitieB,. andPg. [com-
tions will, in the ordered phase, contain one subsequenggarisons(a)] allows us to study ground states néar. The
which converges to the up state, another which converges #@vents of interest are those where a given boundary condition
the down state, and, almost surely, no other convergent sul, eitherB=R or B=0, gives a configuration distinct from
sequences(There are subtleties, which we will not go into poth the+ and the— boundary conditions. Foh>h, as
here, if one allows a wall in the ordered phase to hamg | .« Py is expected to go to zero, since the effects of the
configuration-dependent orientation; these will be addressegoundary penetrate only a distar®@é¢) into the sample. For

in Ref. 42) h<h,, in contrast, most of the interior configuration is either

The crucial question that we would like to address here iy or — and the chances that random or open boundaries
whether there exists more than one infinite-system groundield some other possibility should again decay exponen-
state either at the critical point or slightly into the disorderedjg|ly. At h=h,, the correlation length diverges, and at this
phase. In principle, to investigate this one would need tqyitical point, we expect that the probability of a domain wall
study all possible sequences of boundary conditions, obVinassing near the center decays only as a power of the system
ously an impractical task. In practice, one must restrict consjze. Using simple arguments based on the fractal nature of
sideration to some small subset of boundary conditions angomain walls?>2* the probability that a window of sizer
try to extract useful information about the infinite-systemyyij intersect an object of fractal dimensiod scales as
limit by carefully studying the size dependence of various(,y/)d-dr Thjs is analogous to the probability of a domain
boundary conditions on regions near the origin. wall in the ordered phase passing near the origin as discussed
above. The appropriate fractal dimension to use here at the
critical point is the dimension from box counting,, which
we studied above. Basically, there is a substantial probability

We have studied how the ground-state configurationshat open or random boundary conditions will, at the critical
change in response both to varying the boundary condition goint, induce a system spanning domain wall relative to the

fixed size and to changing the system size. We compare con: and — boundary conditions. Near the critical point, scal-
figurations for which the boundary spins are “operQJ ing suggests the form

fixed positive (+), fixed negative {), and random fixed

spins R). For fixed-size calculations, for each realization of Pg. (h,w,L)=L%"9P[w,(h—h )L "] (62

the random fields we compare all possible pairs of boundary

conditions in the sefO,R,+,—}. We also compare ground- for B=R or O. We plot our data foPy. ,w=3, in Fig. 28
state configurations for open boundary conditions on and Fig. 2%), assuming this scaling form, takind,
sample of size —1 (denotedD) that contains a subsample =2.270d;=2.25, and the best fit value=1.37. The results
of sizeL, with the states for boundary conditio® +, or  for Pg-, while not shown here, are nearly identical, appar-
— imposed on the subsampl&he values of. were taken to  ently converging for large. near the critical point to an
be odd for these comparisons, so that the origin coincidesxtremely similar, if not the same, scaling function, though

B. Numerical studies
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Comparison(b) compares open boundary conditions on
two samples of different sizes, the smaller being a subsample

O L=9

0.6 O L=17 of the larger centered at the origin. In the disordered phase,
X ijzg with the local spin configuration determined by the random
9 L=129 fields nearby, doubling the size of the system is not expected

to change the configuration in small windows near the origin,
for w<L andL>é&~(h—h,)~". But for h<h, andL>¢
~(h,—h) ™", the spin orientation is determined by the sign
of the total (effective random field which will depend sto-
chastically on the system size as discussed in the previous
subsection. For a fully magnetized systefm|=1), these
simple expectations yielt®,o—0 for L—oo with w fixed

for h>h, and

P, (L,w=3)

‘ o] o]
975 225 h 275 325 PDO—>(7772)*1’2f dxf dy dY2-0+0%14 (g3
0 0

FIG. 28. Plot of the unscaled probabiliy. that the central for h<h,asL—o. The integral in Eq(63) is the probability
window of sizew=3 of a ground-state configuration with open that the total random field in the volume l(P® exceeds in
BC's on a given sample of siZe differs from the configuration in  magnitude and is opposite in sign to the total random field in
the window withbothuniform + and— fixed boundary conditions. g subvolume.?, assuming Gaussian distribution of the field
The lines are intended to organize the data visually. on length scalel with variancelL3. This integral gives a

value Pp=0.384973 ... forh<h.. The results of our
the smalleiL curves have slightly different finite-size correc- ground-state studies, displayed in Fig. 30, appear to be con-
tions. We expect thad; is equal to the incongruent domain sistent with this limit, forh<h,. This confirms the expecta-
wall dimensiond,, as this is the domain wall dimension that tion that as the infinite-volume limit is taken in the ordered
describes changes in the bonds, and this expectation is cophase, the spins in a fixed volume flip between two distinct
sistent with our results. configurations infinitely often — typically every factor of 3

We note that taking the valudy=2.20 appears to give a or so in length scale. Near the critical point, the probability
better fit for the peak heights away from, but as conver- of differences in the window between the full sample and
gence in several quantities is poorer away filoy the value  subsample will be modified since, wiflm|<1, there is a
d;=2.25 is acceptable. Directly fittindpe peakdor d¢ gives  nonzero probability that the window will be contained in a

a valued;=2.22+0.03. frozen spin clusters that is unaffected by the overall majority
The data for comparison&) should also scale withv  random field. But thisv-dependent difference only becomes

for large w:P[w,(h—h)L™ ¥]=wd" 4P’ [(h—h )L™ ™].  important neah,, asp is so small.

However, we do not have enough rangenirfior w>>1 to Right at the critical point the effects of frozen clusters on

confirm this; forw small, discreteness effects will prevent a all scales should in principle suppreBso to zero in the
collapse. ForL=129, the data do collapse well fov largeL limit for all w, but as it will decay only as LF'*, this
=65,33,15, assuming the above scaling form and the best féffect is hard to see. In the disordered phase, our data are
values ofh.,d;, and v. Note that similar finitew effects  consistent withPy5 vanishing exponentially fok> ¢.

were also seen in the data of Ref. 23, where largwas Comparison(c) allows us to address nearly the same
needed to see convergence to power law behaviow,in question aga), but more directly checks that increasing the
though scaling worked well for fixeds with L>1. volume of the system has the effect of setting an effective
4 L=9 —m— ' ' FIG. 29. Scaling plot for the
35 | L=17 b (b) | probability that the central win-
; L=33 Ao dow of sizew=3 of a ground-
I .:_Tﬁ-:ﬁ\& | state configuration differs from
% a5 L Ty AL ._ that of uniform + or — fixed
o A A;& boundary conditions fofa) open
Loar n a boundary conditions on the same
= 15l | | sample of sizeL and (b) open
nﬁ ) A boundary conditions on a sample
1} ot - of size 2.—1. The values used
] for scaling areh,=2.270p=1.37,
051 - and d;=2.25. The probabilities
0 d . . . scale very well neah=h., but
-4 2 0 2 4 6 the peak heights, &t>h., con-
(h-hc)L”" verge slowly.
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Frr T T T T T T T T Taken together, these results are consistent with the ex-
- ] pectations from the simple scenario for the structure of the

O L=7
0-6_— O L=13 ] states given above; there do not seem to be any indications of
DY f:ig (@ ] stranger behavior. Thus, in the absence of concrete testable
| v L=65 | predictions from those who believe there should be more

- . than just the simple set of states, we can do no more than
conclude that if they can indeed occur, it must be only under
very subtle conditions.

P, (r=2,L, w=1)

Xl. SUMMARY

In this paper, we have presented numerical results for the
ground states of 3D random-field Ising magnets focusing on
3 the transition between the ordered and disordered phases.
1 N ey YR Our results allow us to conclude that the transition is second

order, though the magnitude of the magnetization vanishes

h very slowly as the critical random-field strength is ap-
R L L proached from below. In addition to the magnetization, we
- ] have studied the stiffness of the system and some of the
0.6~ o geometrical aspects, in particular the fractal properties of do-
() main walls at the critical point. In general, the results agree
_ very well with a scaling picture of the transition introduced
. some time agband extensions of it to the properties studied
T here.

Some earlier authors have suggested that the behavior of
the RFIM near to the ordering transition will be more com-
‘z _ plicated than this scenario, finding “replica symmetry break-
hva

< ><00
Bt b
U | T
A=
(W, QNeR W, RUN)

2, L, w=3)

PDO(I

02 N ing” (RSB) in mean-field calculations under certain approxi-
. ZZ ] mations, leading to an intermediate glassy pffas&lthough
i Ay the physical meaning of RSB in this context is not made
_ explicit, if we take it to imply the existence of many infinite-
P P Y I I | N B 1 volume ground states, as is claimed for mean-field spin
13 L7 2 225 5 glasses, such a result would have testable consequences. Al-

h though a full test of the dependence of the ground states on

FIG. 30. ProbabilityPy that the central window of sizéa) sequences of boundary COE’]dItIOI’IS that this would_ imply is
w=1 and(b) w=3 of a ground-state configuration in a subsamplebeyond the scope of tngys computers and algorithms, we
of size L differs from that in a sample of sizeL2-1, with open have made So_me prellmlngry tests on the de_pendence on
boundary conditions on the subsample and sample. Note that tfoUndary conditions. In particular, we have studied the prob-
sample sizes are approximately separated by a factor of 2, exceﬁp'“ty that the conﬂgyratlon ina f.|xed volume at the genter
for the largest two sizes. For smdi] the probabilityPpo~0.38,  Of @ sample can be induced to differ from both the fixed
quantitatively consistent with a simple model with two states. For= 1 and fixeds=—1 boundary conditions by various
largeh,Ppo—0 asL— oo, consistent with a single state. The solid other boundary conditions. With the range of boundary con-
line shows the step function that would obtain o in the  ditions we have tested, this probability vanishes in the ex-
co-volume (and largew) limit, if it were the case thdtn|=1 inthe = pected manner ds—o. Indeed, the power-law dependence
ferromagnetic phase, takifig=2.270. The data are consistent with of this probability onL and the scaling witthh—h, are con-
the calculated®po values approaching this step function at larger sistent with the domain wall fractal dimension and correla-
sizes L, for h#h.. Note that ath=h.,Ppc~0.368-0.006 tion length exponents determined by other methods. Our re-
<0.3®™... forL=97 andL=129w=3, consistent with a con- sylts are thus consistent with a single disordered to ordered
stant or slowly decaying value d?po at the critical point. The  transition ath., with a unique state in the disordered phase
dashed curves are spline fits to organize the data visually. (with no indication of glassy behavior in the stajiend a

boundary condition of+ or — on the central region. The Pair of stateg*up” and *down” ) in the ordered phase. Re-
scaling collapse, shown in Fig. @9, is acceptable, as itisin CeNt simulations at finite temperature in smaller systems by
(a), with a scaling function similar to, but distinct from that Sinova and Canright; who used the spectrum of the spin-
for comparisor(a). The results foPp-. show that, except for ~Spin correlation matrix an&(q) distributions, also suggest a

a region neart, that shrinks and decreases in probability Single transition.

with increasingL, the configuration given by the larger sys- At nonzero temperature, the thermodynamic properties of
tem with open boundary conditions doest produce a dis- the phase transition are believed to be similar to those at zero
tinct interior volume from that found by imposing or — temperature: the transition is governed tgeso-temperature
boundary conditions on the smaller system of dize fixed point But at positive temperature, one can also con-
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sider dynamic effects; indeed, as has been known for a lonthe short main routine was easily modified to compute an-
time, these dominate both Monte Carlo simulations and exswers to a wide number of questions.

periments. As first pointed out by Griffiti§,random sys- The most significant change to the core push-relabel code
tems can have singularities — albeit very weak ones — invas a modification that allowed for positive and negative
thermodynamic properties well before the transition isexcesses. This modification was developed in collaboration
reached and this will be the case for the RFIM. These rargyith McNamara®® The central idea is the elimination of the
region effects are unobservable as far as equilibrium propeggyrce and sink nodes, which conventionally have links to
ties in classical = systems, but do have dynamicpe nodes of the graph representing the sginsn favor of
consequences " In the Griffiths region above the transi- introducing nodes with a negative excess. The first step in
tion, the average dynamic autocorrelations will decay morgy o -,nventional algorithm pushes as much flow as possible

slowly than exponennal_ly because of th_e e.ﬁeCtS of anoMag., 1y the source onto the lattice nodes. This step is replaced
lously ordered local regions. Perhaps this kind of rare-region

effect and the more interesting but related effects that occup Y code with an |n|t|aI|zat|0p where a positive gxcb$s
as the transition is approached are what is indicated by RSB plgced on each _node for wh|¢h>p. The c_onnecuons 0
But whether this is the case or whether something moréhe sink are .subst|tuted for by placmgmgatlyeexcess on
novel is implied, clear statements of testable predictions ard!® nodes witth;<0. The push-relabel algorithm then pro-
needed in order to distinguish between various scenarios. ff€€ds with the usual steps, with the nodes with positive ex-
such predictions involve static ground-state properties, th€€sS having their excess pushed and their heights relabeled,
RFIM is as good as system as any on which to perform suchS appropriate. The negative excess nodes act as sinks for the
tests as the system sizes that can be studied are quite impré@®sitive excess, until such a nodes total excess becomes
sive: comparable to the largest that can be studied by Montgositive. Besides removing the links to the source and sink,
Carlo simulations in pure systems. the global relabeling step must be modified. Instead of car-
rying out a breadth first search from the sink node, the
breadth first search instead starts from the nodes with nega-
tive excess(If no negative excess nodes remain, the algo-

A.A.M. would like to thank Jon Machta for stimulating fithm terminates with flow equal to the sum of the positive
discussions. A.A.M. and D.S.F. would like to thank Alexan- hi.) The initial totals of the positive and the negative ex-
dar Hartmann and Peter Young for discussions of their recerfiesses are compared with the final totals: the decrease in the
results. This work was supported in part by the Nationaftotal positive flow, for example, gives the maximum flow
Science Foundation via Grant Nos. DMR-9702242, DMR-through the graph. The spin configuration and magnetization
9809363, DMR-997621, and DMR-0109164, as well as byare determined by counting the number of nodes that are in
the Alfred P. Sloan Foundation, and a grant of computingthe maximal layer.
time from NPACI. The removal of the source and sink nodes reduces the

amount of memory used by an amountd:{(1) relative to
the conventional memory requirements and results in a slight
APPENDIX: ALGORITHM IMPLEMENTATION speedup. For the largest lattice sizes studied {2568emory

We briefly describe here the algorithm and code usedryequ.irements were redgced at the cost of speed. If pointers
including modifications to the conventional RFIM max-flow and integers each require 4 bytes, the Cherkassky and Gold-
problem; outline the verification procedure for the code; and?®'d implementation requires 16 bytes for each arc and 32

briefly outline the statistics and error bar procedure. bytes for each nodécounting the layers as part of the per-
node requirement The use of pointers was retained for sys-

tem sizes up to 128 For a regular lattice, however, the
Base code and modifications nodes at the end of each arc, sister arcs, and the list of arcs at
There is a now well-known mapping of the RFIM ground- eaqh node can be recomputed whenever ne_eded. For a cubic
state problem to a min-cut/max-flow problénThis corre- lattice, then, the number of bytes per node is reducecl) from
spondence and the push-relabel algorithm for the max-flof6x 16+32)=128 bytes to (& 4+32)=56 bytes. ForlL
problem, including terms used hefguch as layers and ex- =128 samples, the running time increased by a factor of
cessek is well described in reviews and texts, such as Refs=2.5, primarily due to the recomputation of the tail nodes of
19,60, and 17. The implementation of the Goldberg-T&ljan the arcs and the sister arcs. _
max-flow algorithm that we started with was the h_prf code One modification for the 256samples was made that is
in c written by Cherkassky and Goldbelwhich in general  not strictly sound, in that the algorithm could conceivably
performs quite well for a number of graph topologies. fail. In order to save memory, a limit to the maximum num-
We modified the code to be more compatible with theber of layers was implemented. In the Cherkassky-Goldberg
c++ language and developed objeciscluding samples, code, the _number of layers aIIoc_ated is given by the number
configuration subsets as windows, and random number ge@f nodes in the graph. In practice, however, far fewer are
erator to conveniently implement a variety of boundary Needed. A check over 1000 samples fer18<<128 was car-
conditions and analyses. One very simple benefit of an inteded out for several values of. The number of layers
grated code is that the graph input, which is quite costlyneededK, appears to be largest for=h, . At this value, the
when read as a text file, is greatly sped up. More importantlysample mean of the maximum layer needed is ahli¢ut
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FIG. 31. Elapsed time for computing ground states in the RFIM, T ' '
plotted vsh, for linear sized =8,16 . . .,128. The “fast” algorithm [ + =8 (b)
is applied, with the larger memory requirements, on a 766 MHz L < L=16 ' ]
! ‘ . . 40 A =32 °
Pentium Ill processor. The peak timpsr spinscales nearly lin- - r O =64
early with L. 2 ® L=128
£ 30[ ® o .
~2L. The distribution over samples of the number of layers 2‘ e
needed roughly scales with though the dependence of the & I Y EDD b
width of the distribution could b&*, with x near 1. In any = r m] ® ]
case, the distribution drops off very quickly witk. The ~ i e ©® 0O ,,. O 1
maximum number of layers needed over 1000 samples scale: 10 "o o oo a A .
roughly linearly withL,K™®~7L, where the maximum is for i 5 4 $A§$<l jl_j]_ jl_ g 1
periodic boundary conditions and over a rangeh@.0<h $ L 1 + N R
1 1.5 2 2.5 3

< 2.5, with a peak ik ™{(h) nearh.~2.27 (though the peak
is slightly aboveh, for smaller samples The mean number h
of layers fits relatively well to a scaling collapse, with a

maximum vglue scaling conS|st§'nt with% (or even (b), performed in computing ground states in the RFIM, plotted vs
LyinL), scaling _abOUthc%2-27 with »~1.35. We set S, for linear sized = 8,16 . . .,128. The peak number of operations
X 10* as the maximum number of layers for all sample SIZ€Sper spinscales nearly linearly with (nearh). At both high and
which is nearly 20& L for the largest samples studied. This |ow h, the number of these rearrangements scales neatly-as
number of layers was easily sufficient for all samples stud-
ied. The amount of memory needed for cubic lattices is then .

h/J=1,2.3,3,10, and system sizks=4,8,...,128. The pro-

-2
48+ O(L ) bytes per node. duction code and the other algorithms agreed in all cases,
except when the flow exceeded2which was generally the
maximum possible flow in the available algorithms. The pro-
The modifications made to the base code, while theoretiduction code used here does not have that restriction, as flow
cally sound(except for the limit on the number of layers computation is done at the end by comparing the initial and
could inadvertently introduce errors, due to errors in codingfinal positive and negative excesses, which were summed up
We therefore verified the code against the Cherkasskyas double precision quantities. The code was able to handle
Goldberg codes h_prf and hi_prersion 3.3 codes®®and larger flows consistently, as could be verified by scaling
a selection of other codes that were not based on a puskndJ to large valuesmultiplying J and theh; by a factor of,
relabel algorithm. This was done by having the productionsay, 1§ and checking that the maximum flow increases pro-
code write out the list of thé;. A small program then con- portionately and that the configuration is unchanged
verted thesdn; into arcs and nodes into a graph description  For efficiency, we have used an integer algorithm, with a
DIMACS format, using the conventional representation with aresolution of 16 by replacing theh; by random integers
source and a sink. found by roundingz; X 10* toward zero, withz; Gaussian
These graph descriptions were then used as input to h_pnfandom variables with zero mean and unit variance and the
hi_pr, and other codes, such as those developed in the Firekchange byl/hx 10*. We checked thateducingthis reso-
pIMACS Challengeé® The flows and the magnetization from lution by a factor of 10 for selected measurements did not
these available algorithms were then compared, sample kgffect the computed averages, such as the stiffness in the
sample, with the production code. The precise comparisoisotropic and anisotropic samples for systems up tc’ 128r
was done for a few tens of samples with ferromagnetic coua resolution of 18, there were discrepancies outside of sta-
pling strength)=10,1C, . .. ,10, relative disorder strength tistical errors, but these discrepancies could be consistently

FIG. 32. Statistics for the “operations,” pushé and relabels

Verification
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explained by the effects of rounding to an integer, whichthe same sample sizes and measurem@mte€xample, mag-
shifts the width of the distribution dfi; by a small, predict- netization and the largest cluster sig@se consistent with
able amount. published datd?*°
We also tested the assumption that the cut found was
unique(that is, that the ground state was unique, for a given
sample) Some accidental degeneracies were found, at the
level of a fraction of spins=0.9x 10”8, for h near 2, includ- Consistent with similar optimization problems related to
ing h.. This would result in the magnetizations being in physical problems, the typical CPU time needed to find the
error at the level ok 10~ °, well within the statistical errors. ground state scales roughly M$ nearh, . Roughly, it takes
Increasing the resolution by a factor of 10 increases the rurabout 16—-20 times longer to find the ground state each time
ning time by about 7% and reduces the fraction of degenerthe sample size is doubled, for=h.. Using CC on a 400
ate spins to~2x10"’. As the degeneracies were for the MHz Sun UltraSparc ll(the San Diego Supercomputing
most part attributable to single spins, were rare, and did no€enter Sun HDSC10000a 256 lattice required 913 MB of
affect any of the sample averaged results in the cases waemory total for the graph data, the instructions, and the
tested, the integer scale of 4®as more than sufficient for data structures required for analysis. Running time for this
this study. size and this architecture averaged 1.8 h per sampleh for
We have verified that our choice of random number gen=2.27. Run times, normalized to the elapsed time per spin,
erator does not affect the results. Specifically, we used twéor the larger memory algorithm, with the full data structure,
generators for the computations of the magnetization andre plotted in Fig. 31. The mean number of primitive opera-
domains(defined in Sec. VIl in 256° samples ah=2.27  tions per spin is plotted in Fig. 32. Clearly, the shape of the
~h, and found the results to agree within statistical errorselapsed time versul sharpens some ds increases. The
(the results reported pool the results from these genejatorgpeak running time scales as L*C over the scalesL
We also checked the results from the two generators against8—128. Further details of the scaling of the running time
each other for a larger number of smaller systems. and connections between the algorithm and the physical con-
Though quantities computed and the details of our intercepts of ground-state degeneracy and correlation length are
pretation differ from previous work, the numerical values for described in Ref. 65.

Timing
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