
PHYSICAL REVIEW B, VOLUME 65, 134411
Three-dimensional random-field Ising magnet: Interfaces, scaling, and the nature of states
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The nature of the zero-temperature ordering transition in the three-dimensional Gaussian random-field Ising
magnet is studied numerically, aided by scaling analyses. Various numerical calculations are used to consis-
tently infer the location of the transition to a high precision. A variety of boundary conditions are imposed on
large samples to study the order of the transition and the number of states in the large volume limit. In the
ferromagnetic phase, where the domain walls have fractal dimensionds52, the scaling of the roughness of the
domain walls,w;Lz, is consistent with the theoretical predictionz52/3. As the randomness is increased
through the transition, the probability distribution of the interfacial tension of domain walls scales in a manner
that is clearly consistent with a single second-order transition. At the critical point, the fractal dimensions of
domain walls and the fractal dimension of the outer surface of spin clusters are investigated: there are at least
two distinct physically important fractal dimensions that describe domain walls. These dimensions are argued
to be related by scaling to combinations of the energy scaling exponentu, which determines the violation of
hyperscaling, the correlation length exponentn, and the magnetization exponentb. The valueb50.017
60.005 computed from finite-size scaling of the magnetization is very nearly zero: this estimate is supported
by the study of the spin cluster size distribution at criticality. The variation of configurations in the interior of
a sample with boundary conditions is consistent with the hypothesis that there is a single transition separating
the disordered phase with one ground state from the ordered phase with two ground states. The array of results,
including values for several exponents, are shown to be consistent with a scaling picture and a geometric
description of the influence of boundary conditions on the spins. The details of the algorithm used and its
implementation are also described.

DOI: 10.1103/PhysRevB.65.134411 PACS number~s!: 75.10.Nr, 75.50.Lk, 02.60.Pn
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I. INTRODUCTION

In spite of many years of study, the behavior of pha
and phase transitions that are dominated by quenched
domness is still controversial. One such lively controve
has concerned the existence or lack thereof of an ord
phase in the random-field Ising model~RFIM! in three di-
mensions~3D!. Although this was eventually resolved in th
affirmative by rigorous work,1 the nature of the phase tran
sition and the possibility of a phase intermediate between
paramagnet and the ferromagnet is still controversial.

Numerical simulations of the random-field Ising model
and experiments—are impeded by the dramatic slow
down that occurs as the phase transition is approached d
the existence of free energy barriers which are broadly
tributed but typically grow as a power of the correlatio
length. Such barriers are general characteristics of ph
controlled, in a renormalization group~RG! sense, by stable
zero-temperature fixed points. For the random-field Is
model, not only is the low-temperature phase controlled b
zero-temperature fixed point~as is the case for convention
pure systems!, but the phase transition itself is also co
trolled by such a fixed point.2,3 Indeed, the ground-stat
properties of the random-field Ising model undergo a ph
transition as the strength of the randomness is increased
it is this zero-temperature transition that governs the beh
ior of the transition at positive temperatures. Fortunately,
means that much can be learned by studying the ground-
properties.
0163-1829/2002/65~13!/134411~31!/$20.00 65 1344
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It has been known for some time that combinatorial alg
rithms can be used effectively to find the ground states
various classes of random systems and the RFIM was on
the first to be studied in this way.4,5 With current computers,
the algorithm is very fast and large system sizes can be s
ied in enough detail to obtain good statistics, enabling
tools of finite-size scaling to be used to analyze the ze
temperature phase transition.

Various significant open questions exist about the ph
transition in the RFIM. Although a self-consistent scalin
picture of a zero-temperature critical fixed point was p
posed early on, it has not been adequately tested and o
scenarios have been suggested, including a first-order p
transition6,7 and an intermediate phase with ‘‘replica
symmetry breaking,’’8,9 presumably meaning many coexis
ing equilibrium states.

In this paper we study the RFIM with Gaussian distri
uted random fields, focusing on the nature of the phase t
sition and the sensitivity of the ground states to varyi
boundary conditions~BC’s! as a probe of the number an
nature of the infinite system states. As will be explained
some detail, our results strongly support the scaling pict
of the transition. In this picture, there is a single secon
order critical point characterized by three scaling expone
n for deviations from the critical point,u for the energy at
the critical point, andb/n for the magnetization at the criti
cal point. We clarify some of the substantial confusion ab
the order of the transition by showing that bothu andn as
©2002 The American Physical Society11-1
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A. ALAN MIDDLETON AND DANIEL S. FISHER PHYSICAL REVIEW B 65 134411
well as the distributions of the ‘‘stiffness’’ and spin cluste
are very different from what they would be at a first-ord
transition. Nevertheless, as observed previously, the ma
tization exponentb is extremely small so that even with th
very large sizes we study, the magnetization appears alm
discontinuous.

II. MODEL AND NUMERICAL METHOD

The random field Ising model10 has Hamiltonian, defined
over spin configurations$si561%,

H52J(̂
i j &

sisj2(
i

hisi , ~1!

with the random fieldshi chosen independently from a dis
tribution which we take to be Gaussian with mean zero a
varianceh2. The ferromagnetic exchange couplingJ is fixed
at unity in the simulations and the sitesi lie on a cubic lattice
with interactions between nearest-neighbor pairs$^ i j &%. The
basic nature of the phase diagram of the~3D! RFIM is well
known: As the temperature is lowered for smallh, there will
be a critical temperatureTc(h) below which the RFIM be-
comes ferromagnetically ordered with a nonzero sponta
ous magnetization. As the strength of the random field
creases, the critical temperature decreases until at a cr
field hc it goes to zero.

Both the paramagnetic and ferromagnetic phases h
been proved to exist at both zero and positive temperatu1

and the transition between them can thus be studied by v
ing h at T50. The simplest scenario at zero temperature
single critical field strengthhc above which the spins ar
disordered with a unique infinite-system ground state
exponential decay of correlations, and below which there
two infinite-system ground states, one with predominantly
spins and the other with predominantly down spins.

The nature of the phases and the phase transition~s! be-
tween them can be probed by studying the effects of vari
boundary conditions on larger and larger systems—m
simply cubes of sizeV5L3L3L. In the disordered phas
the orientation of a spin far from the boundaries is typica
determined by the collection of random fields within a co
relation lengthj(h) of the spin and is insensitive to bound
ary conditions imposed far away. In contrast, in the fer
magnetic phase some spins will still be controlled by
random fields in their vicinity, but a finite fraction of th
spins will be controlled by the boundary conditions—
matter how far away they are imposed. The simplest scen
is a single transition between these two phases. The prim
goal of this paper is to examine in detail the nature of t
zero-temperature phase transition.

Many previous studies of the ground states of the RF
~as well as finite-temperature studies! have focused on the
magnetization per spin,m5V 21( isi , and the results have
been somewhat ambiguous. Some have interpreted the
merical results as indicating a second-order transition,5,11,12

while others have concluded that the transition is first ord7

Some Monte Carlo results13 suggest that the finite
temperature transition is second order, but with the magn
13441
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zation exponentb nearly zero. Others,14 using a varying ex-
ternal field, have found a coexistence of states suggestiv
a first-order transition, in contrast with Monte Carlo results13

It is clear from these studies that if the transition is seco
order, the order parameter exponentb, umu;(hc2h)b, must
be very small, making definitive conclusions based on m
netization alone difficult. We have thus focused much of o
attention—particularly for locating the transition and findin
the exponents—on other properties which naturally dis
guish the phases.

A. Algorithm

The ~almost surely! unique ground state of a finite samp
can be determined in time polynomial in the number
spins.4 The method is based on a reduction of the problem
determining RFIM ground states to a maximum-flow pro
lem on an augmented graph. One can then use combinat
optimization algorithms16–19 to solve the maximum-flow
problem. We describe the special features of the algorit
implementation, its verification, sample timings, and the u
of integer valuedhi in the Appendix.

B. Statistics and analysis

We have studied system sizes up to 2563, which contain
over 1.63107 spins. Independent samples were simulated
each value ofh. Separate realizations were also generated
boundary induced domain walls, spin cluster properti
magnetization, and the thermodynamic limit studies. T
same samples and domain walls were used in the stiffn
and domain wall property studies. For smaller syste
(83–323), 105 samples were optimized, typically.~For the
domain roughness measurements in the ordered ph
102–103 samples provided sufficient data, as fluctuations
the interface width are not large.! Of order 103–104 samples
were studied for each quantity for the 643 and 1283 samples.
For L5256, 43102–103 samples were studied at eachh, as
part of the magnetization and cluster studies.

Error bars for exponent values throughout this paper
clude both estimated systematic errors due to apparent fi
size effects and errors due to statistical uncertainties; the
ror bars represent an estimated range of values in which
value lies, with high confidence. In contrast, error bars in
figures reflect 1s statistical uncertainties, which we find t
be generally consistent with confidence intervals found
resampling.

Generally~except for the stiffness, the roughness in t
ferromagnetic phase, fitting a power law to the bond ene
density, and thePD/O,6 plots!, we have used estimates o
effective exponents as a function of system size to estim
exponents, rather than scaling plots. This is done to m
clearly see trends in the data that reflect finite-size corr
tions. Finite-size corrections tend to be monotonic and int
duce a drift withL in the effective exponents. Given the goo
statistics of the data sets that can be generated with opt
zation algorithms, collapsing data can obscure these cor
tions, as the drift can be corrected with a slightly erroneo
exponent. Where we have used scaling plots, we do not tr
collapse all of the data onto a single curve, but keep in m
1-2
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THREE-DIMENSIONAL RANDOM-FIELD ISING . . . PHYSICAL REVIEW B65 134411
that the finite-size corrections give a consistent drift w
system size and we therefore tried to optimize the fit to
largest systems and nearhc .

III. SUMMARY OF RESULTS

As we are interested in the behavior of the RFIM in t
thermodynamic limit, we have studied the approach to
infinite-volume limit using finite-size scaling analysis tec
niques similar to those applied to spin glasses and other
dom systems.20–25 However, in contrast with ground-stat
studies of spin glasses and other random models for w
only a single thermodynamic phase exists, the results
sented here give insight into the transition between t
phases.26

A. Stiffness

The fundamental difference between an ordered phase
a disordered one is thestiffness~or rigidity! of the former:
the free energy cost of changing one part of a system w
respect to another part far away. At a macroscopic level,
free energy cost must be at least of orderkBT and is usually
much larger, diverging as a power of the system size. Fo
Ising ferromagnet, this stiffness is provided by the free
ergy cost of a domain wall which scales as its surface a
Thus a natural quantity to study for the ground states of
RFIM is the domain wall energy. This can be obtained fro
the difference in energy between antiparallel and para
boundary conditions imposed on opposite sides of a sys
of cross-sectional areaL2, in three dimensions. A particula
combination of these we call thestiffness, which we denote
by S. Because of the randomness, this energy will be sam
dependent and there is information to be gleaned from
distribution as well as its mean.

The scaling theory of the putative critical point of th
random-field Ising model predicts that the distribution of t
stiffness will have a scaling form near the critical point:

Prob@dS#'
dS

CLu
PS S

CLu
,K~h2hc!L

1/nD , ~2!

with u andn universal exponents,P a universal scaling func
tion ~which does, however, depend on the shape of
sample!, andC andK nonuniversal coefficients. In theferro-
magnetic phase, the distribution of the stiffness will be
sharply peaked at long length scales about a mean v
which grows ass(h)L2 with s(h) the interfacial tension.
This interfacial tension vanishes ash↗hc . In thedisordered
phase, S will typically fall off exponentially for system
thicknessesL much larger than the correlation lengthj(h)
;(h2hc)

2n. This exponential decay of the stiffness withL
is confirmed for all valuesh.hc examined in our numerica
results.

At the critical point, the distribution ofS will be broad
with both mean and width of orderLu. The exponentu thus
characterizes the scaling of the stiffness at the critical po
As long asu is positive, the basic features of the zer
13441
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temperature critical point will be stable to thermal fluctu
tions and the finite-temperature transition will be in the sa
universality class.3

Our studies of the stiffness are based on computing e
gies for samples periodic in two directions and having fix
uniform boundary spins on the other two faces. Our res
are very consistent with the scaling predictions for the lar
system sizes, up to 1283, close to the critical point, which
occurs at

hc.2.27060.004. ~3!

This location for the critical point is consistent with thos
obtained from scaling analyses of the domain wall dimens
and the magnetization. It is somewhat lower than some p
viously reported estimates such ashc'2.33,5,11 but it is con-
sistent with the valueshc52.2960.04 reported by Hartmann
and Nowak,12 hc52.2660.01, reported by d’Auriac and
Sourlas,6 and hc52.2860.01 reported by Hartmann an
Young.27 Taking hc52.270, the exponents that give a goo
scaling fit for the stiffness are found to be

u.1.4960.03 ~4!

and

n.1.3760.09. ~5!

The value foru is consistent with exact bounds as well
with values derived from finite-temperature simulations
applying exponent relations to measured critical behavio13

To within our uncertainty, the value forn also overlaps with
the value computed in Ref. 13. Note that if the transition h
been first order, one would have expected to findu5d21
52, with a double-peaked distribution ofS corresponding to
‘‘ordered’’ and ‘‘disordered’’ samples, and an effectiven
52/d52/3; the results we find are far from these.

From the modified hyperscaling law appropriate to tran
tions governed by zero-temperature fixed points,2,3

~d2u!n522a, ~6!

with d the dimension, here equal to 3, we predict that
specific heat exponent for the finite-temperature transit
~and for the second derivative of the energy with respect th
at zero temperature near the transition! is

a522~32u!n.20.0760.17. ~7!

We also fit the sample-averaged bond part of the energy,ĒJ ,
at hc to the formĒJ;c12c2L (a21)/n to more directly obtain
a, inspired by the recent approach of Hartmann and Youn27

who examined the scaling of the derivativedEJ /dh. We find
a consistent value fora using similar methods, although ou
value disagrees substantially with that of Hartmann a
Young. We also use an extrapolation ofĒJ , based on the
dimension of the domain wall surfaces, which defineEJ , to
find

a520.0160.09. ~8!
1-3
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A. ALAN MIDDLETON AND DANIEL S. FISHER PHYSICAL REVIEW B 65 134411
Both values are consistent with experiments,28 which yield a
small value ofa. Our estimates differ from the previousl
reported value from Monte Carlo calculations,13 a520.5
60.2 (a/n520.4560.05), although both values are cons
tent with a nondivergent specific heat.

B. Domain walls

In addition to the stiffness measurements, we have inv
tigated the properties of the domain walls that are forced
appropriate changes of the boundary conditions. In the
romagnetic phase, we expect that these will be flat on la
length scales and have area proportional toL2. These walls
will be rough with a transverse widthW on a scalel de-
scribed by the roughness exponentz, W; l z. But at the criti-
cal point, we expect the walls will become fractal. The de
nition of a domain wall in the RFIM has ambiguities becau
some isolated clusters of spins—in particular those w
anomalously strong random fields—arefrozen, i.e., unaf-
fected by changes in boundary conditions. The identificat
of the bonds that define the domain wall is therefore unc
tain up to these fixed spins. We use three methods for ca
lating the fractal dimension of the domain walls introduc
by changes in the boundary conditions; each definition ha
distinct physical import in a scaling picture of the RFIM.

One method is to determine the surface area of the se
spins connected to one face of the sample that areunchanged
when the spins on theopposite faceare reversed. This yield
a spanning surfaceof a dimension that we denoteds . The
second method is based on a box counting approach
counts which volumes in a system with antiparallel bound
conditions differ fromboth the ‘‘up’’ and ‘‘down’’ configu-
rations obtained from parallel spin boundary conditions; t
we denotedI , to indicate its role as a measure of the volum
locally incongruent with these two configurations.

A third method does not measure a dimension directly
rather an energy: the contribution of the exchange inte
tions to the stiffness at the critical point. As will be explain
later, this fractal dimensiondJ is not expected to be an inde
pendent exponent. Rather, it is related to the others by

dJ5u11/n, ~9!

a relation obtained by considering the derivative of the st
ness with respect toh. It can be seen that our results for th
exponents are entirely consistent with this scaling law.

The three exponents associated with the fractal dimen
of the critical domain walls are similar, but perhaps not
mutually consistent, given the estimated error bars:

ds52.3060.04, ~10!

dI52.2460.03, ~11!

dJ52.1860.03. ~12!

As we will discuss, we believe that at least two of the
dimensions indeed measure slightly distinct quantities,
to frozen spin clusters that are relatively independent
boundary conditions. The simplest plausible conjecture
thatdJ5dI,ds , though it may be thatdJ anddI are distinct.
13441
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C. Magnetization

As mentioned above, some previous studies have fo
that the magnetization appears to be discontinuous at
transition. Indeed, our data for the magnetization as a fu
tion of size for various types of boundary conditions th
were chosen so that some favor a ferromagnetic state w
others favor a disordered stateappearto be consistent with
the coexistence of three states at the critical point as
found in other recent work.14,15 But as discussed below, w
believe that this conclusion is influenced by the nearnes
b/n to zero. Based upon the scaling picture and numer
evidence, we will argue that at the critical point there is on
a single state and the apparent ‘‘up’’ and ‘‘down’’ configur
tions do not correspond to distinct states in the infinit
volume limit.

Using the magnetization data and the best fit critical po
found from our studies of the stiffness, we can attempt
extract an estimate for the scaling of the magnetization w
system size at the critical point. This yields

b

n
50.01260.004 @magnetization#, ~13!

which is inconsistent with zeroat the level of three standar
deviations. The primary uncertainty in our estimate ofb/n
arises from the uncertainty in the value ofhc , as the statis-
tical errors in the sample averageumu are relatively small at
fixed h. This exponent describes the magnetization very w
for systems of size 32<L<256, for a range ofhc , 2.265
,hc,2.275.

D. Spin clusters and walls

In spite of the smallness ofb, useful information on the
decay of spin correlations at the critical point can be o
tained indirectly by studying the statistical properties of t
domain walls separating connected clusters of parallel sp
In the ferromagnetic phase, we expect that the probability
finding a region of diameterl that is not affected by the
boundary conditions decays exponentially forl @j as
exp@2C(l/j)d22#.

Since the systemappearsto be ferromagnetic at the criti
cal point, due toumu being nearly unity for the system size
studied, we also study clusters of the minority spins ah
'hc . The clusters are defined hierarchically starting fro
the largest connected cluster of connected spins, with
surface of each cluster given by itsoutermostsurface, that is,
the set of bonds connecting it to the surrounding cluster. T
volume of each clusterincludes that of the fully enclosed
subclusters of the opposite sign~and their subclusters, if any
etc!. But the outer surface of a cluster doesnot include the
surfacesof its fully enclosed subclusters, whose numb
scales with the volume of the cluster.

The outer cluster surfaces are found to be fractal w
mean areaā ~averaged over clusters and samples! scaling
with enclosed volumev as

ā~v !;vds
c/d, ~14!
1-4
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THREE-DIMENSIONAL RANDOM-FIELD ISING . . . PHYSICAL REVIEW B65 134411
with the exponent

ds
c

d
.0.75560.008, ~15!

suggesting a surface fractal dimensionds
c.2.2660.02, a

value consistent with the domain wall dimensionds .
Perhaps more interesting is the distribution of thenumber

densityof spin clusters as a function of their size, in partic
lar the probabilityr(v) that a given site is in a minority spin
cluster of size of orderv—more precisely,

r~v ![
v

dv
Prob@sitePcluster of size in~v,v1dv !#.

~16!

We find that over the range of sizes studiedr(v) appears to
converge to asmall constantvalue r` for 1!v!L3, with
periodic boundary conditions. This implies that in the lim
of an extremely large system, any given spin will definite
be in such a ‘‘minority spin’’ cluster; indeed, it will typically
be within one such large cluster which itself will be within
cluster of typical size;r`

21 larger which itself will be in an
even larger cluster, etc. This is exactly the type of behav
that gives rise to power-law decay of spin correlations a
critical point on sufficiently long scales, as is explained
Sec. IX. It is consistent with expectations from other obs
vations we have made, in particular that the probability t
the stiffness of a finite sample is exactly zero tends to
nonzero constant for large system sizes at the critical po
The value of

r`.0.001960.0004 ~17!

that we find29 yields an estimate for

b/n52dr`.0.01160.003 @cluster# ~18!

consistent with Eq.~13!. This exponent controls the decay
the typical magnetization with system size at the criti
point:

m~hc!;L2b/n. ~19!

For L5128, this only gives a reduction factor of 0.94 fro
the magnetization of a small system and is consistent w
our magnetization data. Note that with this estimate, o
would need to go to system sizes of order 1021&L&1038 to
see a factor of 2 reduction in the magnetization at the crit
point.

For the magnetization in the ferromagnetic phase, us
this calculation ofb/n and consistent with the finite-siz
scaling of the magnetization, we expect conventional beh
ior with

m;~hc2h!b, ~20!

but with

b.0.01760.005 ~21!

—far smaller than for any other known system with the e
ception of the one-dimensional Ising model with long-ran
13441
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1/r 2 interactions which has a critical transition with a disco
tinuous magnetization, i.e.,b50.30 This small value is near
the valueb50.02 suggested from numerical renormalizati
group calculations on a hierarchical lattice.31 The numerical
value we find is consistent with several previous studies:
example, Hartmann and Nowak determineb50.0260.01,
using exact ground states,12 Swift, et al.,11 find b50.025
60.015, and Rieger13 found b'0 at positive temperature
but without any latent heat or multipeak structure in the m
netization distribution, suggesting a second-order transit
However, we can more clearly excludeb/n50 as a possi-
bility by making use of connections between the value
b/n and the statistics of spin clusters.

One question that naturally arises concerns the struc
of spin clusters for smallumu near the critical point, where
the sample no longerappearsferromagnetic. Is there a pos
sibility of percolation of both up and down spins, whenuh
2hcu&102(2268) in large enough samples? For fixed1 or
2 boundaries, ash→hc , umu becomes small, but the minor
ity and majority spins are not independent. Hence, e
though the density of1 and2 spins becomes almost equa
the minority spins are large clusters embedded within
matrix of majority spins, so thatonly one sign of spin perco
lates in the disordered phaseeven close enough to the crit
cal point that the magnetization is very small and the den
of minority spins almost one-half. Exactly at the critic
point in an infinite sample or wherej.L in a large finite
sample, the long length scale characterization of the s
configuration will be rather different than in either phas
these differences motivated some aspects of the presen
merical study.

E. Number of states

To study the RFIM phases and transition in more det
we have analyzed the influence of boundary conditions o
window of sizew in the center of a sample as the sample s
L diverges. As made clear by Newman and Stein,32 the char-
acter of the thermodynamic limit of the ground states can
investigated by studying such windows. Our numerical co
putations strongly support the picture of a small number
ground states—two in the ordered phase and one in the
ordered phase—consistent with the simple scal
scenario.22,33

Nevertheless, becauseb/n is so small, at the critical poin
it it is difficult to use numerics to directly distinguish be
tween two scenarios:~A! two coexisting states, as in th
ferromagnetic phase, or~B! a single state, with interior spin
unaffected by boundary conditions asL→`. If b were ex-
actly zero, as in~A!, then the probabilityq that boundary
conditions could affect spins in the center in ways other th
the apparent ‘‘up’’ and ‘‘down’’ phases would decay as
power of the system size,23,24q;Lds2d, whereds is the frac-
tal dimension of domain walls. In scenario~B!, a similar
power-law scaling is expected, withq;Lds2b/n2d, where
the change in exponent reflects the freezing of spins
equivalently, decay of magnetization, asL→`. As will be
argued below, the simplest expectation is that the expon
1-5
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A. ALAN MIDDLETON AND DANIEL S. FISHER PHYSICAL REVIEW B 65 134411
dI5ds2b/n, so thatq;LdI2d. This is consistent with the
assumption of only one state at criticality.

IV. OUTLINE

The remainder of the paper gives the details of the
merical results and related scaling arguments. Table I
summary of the numerical values of the exponents. In Sec
we describe how the stiffness is computed and demons
that its scaling is quite consistent with a ‘‘conventiona
second-order phase transition. To aid in developing un
standing, we study how the probability that the stiffness
exactly zero depends on the sample shape. Sec. VI pre
the three methods that we employ to compute the dimen
of the domain walls generated by comparing different bou
ary conditions~the same comparison used when calculat
the stiffness!. The methods differ somewhat in how the
count regions of ‘‘frozen’’ spins that are not affected b
boundary conditions. In the subsequent section~Sec. VII!,
we report results on the magnetizationm nearhc . Though
the distribution ofm depends strongly on boundary cond
tions, the scaling of these distributions is quite consist
with a single value ofhc ~and also consistent with the meth
ods of findinghc in other sections!. Our study of the scaling
of the surfaces of s pin clusters with their volumes is su
marized in Sec. VIII. Besides giving a fractal dimensionds

c

consistent with the domain wall dimensionds , these compu-
tations can be used to separately inferb/n, given an under-
standing of magnetization and correlation functions ba
upon a domain wall picture. Our estimates for the singu
behavior of the specific heat are included in this section. T
general scaling picture that connects these results is revie
in more detail in Sec. IX. In Sec. X, we report results of ho
the spin configurations depend on sample size and boun
conditions for a fixed disorder realization. These results
consistent with a single transition separating a~largeh, dis-
ordered! phase with a single thermodynamic limit from
~small h, ordered! phase with two distinct thermodynam
limits. In the Summary~Sec. XI!, we review the scenario fo
the transition that is consistent with the numerical results
contrast this scenario with alternate pictures.

V. STIFFNESS AND SCALING

To establish the location and nature of the transition,
first focus on the stiffness of the system. In an ordered Is
phase, the~free! energy of a domain wall across a system
sizeLd will be S'sLd21 with s the interfacial tension. At
an ordinary first-order transition, the interfacial tension
discontinuous at the transition, while near a second-or
transition, it goes smoothly to zero. For a zero-tempera
transition, the interfacial tension vanishes with a variant
Widom scaling3:

s;~hc2h!(d212u)n. ~22!

To probe the stiffness of a random system takes so
care. For a random-field system, there is no exact symm
between the up and down spins but only astatistical symme-
try of the distributionof the random fields. Thus, for ex
13441
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ample, for a given sample in the ordered phase, the energ
the up state—obtained with up BC’s—will differ from that o
the down state~obtained from down BC’s!, by a random
amount of orderAV arising from the differing effects of the
random fields on the two states. In order to compute
interfacial energy it is useful to subtract as much as poss
of this random ‘‘bulk’’ energy so as to be left with a quanti
that is as close as possible to an ‘‘interfacial’’ energy.

A. Definition of the stiffness

To obtain the stiffness of a sample, we compute thesym-
metrized energy differencebetween antiparallel and paralle
boundary conditions. This is computed from the ground-st
energies for four different boundary conditions on a giv
sample, denoted11, 12, 21, and 22. These corre-
spond to fixing the spins to have valuess511 or s521 on
the left or right sides while imposing periodic boundary co
ditions in the other two directions. For example,12 has
spins fixed to11 on the left and to21 on the right. The
interface energy is then defined as33

S[~E121E212E112E22!/2. ~23!

Note that the average over samples ofS will be the same as
that of E1W[E122E11 . Studying S, however, reduces
the effects of energy changes near the boundaries tha
caused by the differing boundary conditions: inS, each
boundary condition on each side appears twice but with
posite signs so that these effects cancel. This cancella
will be most pronounced well into the disordered phase.

In thedisordered phase, the boundary conditions typically
only affect layers near the boundaries with thickness of or
the correlation lengthj; deep in the interior~for system sizes
L@j) the spins will be frozen, completely unaffected by t
boundary conditions. Theaverageenergy of the boundary
layers will, because of the statistical symmetry, be indep
dent of whether the boundary conditions are plus or min
But there will be a random part of the boundary energy, w
magnitude of orderALd21, which is sensitive to the bound
ary condition. Thus in three dimensions,E1W will typically
be of orderL even in the disordered phase. In contrast,
stiffnessS will typically be exactly zero because of the ca
cellation of the boundary energies and the concomitant
zen interior which blocks any knowledge of the spins ne
one face about the boundary conditions on the opposite f
In general, the distribution forS contains ad-function con-
tribution with some weight

P0[Prob@S50#. ~24!

Sample configurations from simulations are illustrated
Fig. 1 with two-dimensional slices shown. Part~a! of the
figure illustrates a situation somewhat into the disorde
phase in which the left and right boundaries are effectiv
decoupled as discussed above. Thefrozen spins, those that
are the same with all four boundary conditions, are indica
by dark or white squares in part~c! of the figure, while those
that are affected by the BC’s, the controllable spins, are
dicated by gray squares.
1-6
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TABLE I. Numerical estimates. The exponent or constant name, computed value, primary method for inferring the value,
discussed, and most relevant figure are listed.

Symbol Value Definition and data used

u 1.4960.03 Scaling of stiffness athc , violation of hyperscaling.
Found from scaling of stiffness withL andh2hc ; see Sec. V and Fig. 2.

hc 2.27060.004 Critical value of the random field.
Determined from constancy inP0, probability of zero stiffness~see Fig. 4 and Sec. V!,

and consistent with estimates from convergence of effective dimension estimatesd̃s,I ,J ,
scaling ofDm2 peak locations withL, scaling ofumu with L ~Fig. 19!,
and window change probabilities~Fig. 29!.

n 1.3760.09 Correlation length exponent.
Found from scaling of the stiffness withL Sec. V and Fig. 2, withhc fixed by P0

measurements.
Consistent with scaling ofDm2 peak locations withL.

z 0.6660.03 Roughness of domain walls in the ferromagnetic phase.
Found using anisotropic scaling~Fig. 13! and effective exponent inL2/33L2 samples.
See Sec. VI C.

ds 2.3060.04 Fractal dimension of connected domain wall ath5hc.
Found from surface ofU11,12 , as shown in Fig. 11.
See Fig. 12 and Sec. VI B.

dI 2.2460.03 ‘‘Incongruent’’ fractal dimension of domain wall at criticality.
Box counting of incongruent volumes~disconnected wall!. See Fig. 15 and Sec. VI D.
Consistent with scaling of state overlap probabilities shown in Fig. 29.

dJ 2.1860.03 Energy ‘‘fractal dimension’’ ath5hc.
Found from the exchange partSJ of the stiffness.
See Fig. 17 and Sec. VI E.

ds
c 2.2760.02 Fractal dimension of the surface of spin clusters.

See Fig. 22 and Sec. VIII A.

r` 0.001960.0004 Probability per scalee of crossing a spin cluster surface ath5hc.
See Sec. VIII B and Figs. 23, 23, and 25.

b/n 0.01160.003 Ratio of magnetization exponent ton.
Determined fromr` and consistent with scaling ofumu vs L at criticality.
See Fig. 19 and Sec. IX A.

b 0.01760.005 Magnetization exponent, found fromb/n andn.

(a21)/n 20.7460.02 Combination of heat capacity exponenta andn.
Found using value fords

c and Eq.~56!.

a 20.0160.09 Heat capacity exponent, found using Eq.~56! andn.
Consistent with modified hyperscaling Eq.~6! and the valuea520.1260.12 found
from a fit to the bond energy densityEJ(L) at hc andn.
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The behavior in theordered phaseis quite different as can
be seen in the parts~b! and ~d! of Fig. 1. In this case, the
difference between the22, the12, and the11 boundary
conditions can be well characterized by a1u2 domain wall
that has a minimum-energy position somewhat to the lef
the center. Similarly the difference between the22, the
21, and the11 boundary conditions is characterized by
2u1 domain wall whose minimum-energy position is som
13441
f

-

what to the right of the center. The stiffness of this sam
will thus be half the sum of energies of the two types
walls plus the energy of the random fields~here predomi-
nantly negative! in the region between the two favored pos
tions of the walls; the contribution of the random fields
this region will not cancel.

This picture yields a stiffness in theordered phasewith a
mean of orderLd215L2 and variations around this mean o
1-7
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FIG. 1. Pictures of planar slices (z50) of configurations, for fields~a! h52.8 and~b! h52.2, in samples of size 403. The slices shown
at eachh are the four combinations of boundary conditions22 ~top left!, 21 ~top right!, 12 ~bottom left!, and11 ~bottom right!,
where the left and right faces~in the x direction! are fixed1 or 2 and periodic boundary conditions are in effect for they ~up/down!
and z ~out of the page! directions. The dark squares indicate an up spin at that location in the slice. The22 and 11 visualizations
forh52.2 show the presence of minority spin ‘‘bubbles’’ embedded in the bulk. A summary of the effect of the boundary con
for h52.8 andh52.2 are shown in parts~c! and ~d!, respectively. Dark and light squares correspond to up and down spins, respec
that arefrozen, i.e., invariant under this set of boundary conditions. The graycontrollable spins can be modified by choosing amon
the four boundary conditions. Forh52.8, the gray volume is composed of two unconnected regions anchored on the
controlled boundaries, so that the stiffnessS50. In contrast, ath52.2, in the sample shown, the gray region connects the two sides
SÞ0.
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orderLd/25L3/2, the variations being dominated by the ra
dom fields in between the positions of the two types of wa
In the ordered phase forh,hc , P0→0—apparently expo-
nentially fast or faster inL—asL→`.

At the critical point, the behavior is qualitatively like tha
in the ordered phase. But here the energy cost of the inter
is much lower, the interface itself is fractal, and, in the
gions of controllable spins that are otherwise flipped by
changing boundary conditions, there are large frozen
flipped ‘‘holes.’’

B. Statistics of the stiffness

The stiffnessS was determined by finding the groun
states for a single sample subject to each of the four bou
ary conditions11, 22, 21, and12. By studying many
samples, we computed the distribution ofS for various sys-
tem sizes and random-field strengths. In particular, we c
puted both the probabilityP0 thatS50 as well as the mean
13441
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stiffnessS̄, denoting, as usual, averages over the randomn
by overbars. For the bulk of the computations, ground sta
were found for cubic samples of sizeL3 and anisotropic
samples of size 2L3L2 with the length along a (100) axis o
the lattice perpendicular to the controlled faces, thex direc-
tion, being 2L. To check that the results were not artificial
influenced by lattice orientation effects, we also compu
values ofS for two types of samples whose controlled fac
are L3L rhombi, with L and 4L layers, respectively, sepa
rating the two faces along the (111) direction. Note that su
(111) layers are separated by a distance of 1/A3, rather than
the distance of 1 that separates the (100) layers. As the
tice in both of these geometries is cubic and the ferrom
netic couplings are the same, thehc found should be the
same in the two orientations.

If the transition is second order, the mean interface ene
should scale as

S̄'C̄LuS@L1/n~h2hc!K#, ~25!
1-8
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THREE-DIMENSIONAL RANDOM-FIELD ISING . . . PHYSICAL REVIEW B65 134411
where the exponentu sets the scaling of the energy at th
critical point, n is the correlation length exponent,S a uni-
versal scaling function that depends on theshapeof the
sample, andK and C̄ are nonuniversal coefficients. Usin
this scaling form and varyingu, n, and hc yields a good
collapse of the data, as shown in Fig. 2 for the (10
samples. By varying the exponents in the scaling plot,
estimate the valueshc52.2760.01, u51.5060.08, andn
51.3560.20. Using the data forP0 to fix hc52.270 as dis-
cussed below givesu51.4960.02 andn51.3760.09. The
excellent collapse of the data strongly supports the con
sion that the phase transition is second order.

The value ofu is in quantitative agreement with resul
from Monte Carlo simulations at finite temperature,13 which
foundu51.5360.10. It is also within the bounds determine
from various arguments,

d

2
2

b

n
<u<

d

2
, ~26!

the lower bound arising from scaling laws and a rigoro
inequality.3,34 The upper bound follows from the observatio
that any larger value ofu would imply that the system would
be stable—by the argument of Imry and Ma35—to an in-
crease of the random field and thus should not be at
critical point. Sinceb/n is extremely small, we expect tha
the true value ofu should be just slightly below 3/2. This i
to be contrasted with the ‘‘dimensional reduction’’ result pr
dicted to obtain to all orders in ad562e expansion ofu
52 ~but see recent claims in Ref. 36!.

The correlation exponentn must be no smaller than 2/d in
random systems.37 Our result easily satisfies this bound. I
deed, it is substantially larger than this lower bound and e
more so than the mean-field value of one-half; this is p
sumably associated with proximity to the lower critical d
mension ofdl52.

1. Stiffness in the disordered phase

Figure 3 shows the dependence of the mean stiffnes
the linear dimensionL for the L3L2 samples. The decay o
the stiffness is well fit by a decaying exponentialS̄;exp
(2L/jS), for h.hc andL@jS ~roughly whenS̄,0.2.! The
correlation length can be inferred from the fits. The valu
for jS obtained from the 2L3L2 samples, using a simila
plot, are in agreement with those from the cubic sample
within 10% for eachh. The values of the correlation length
jS found are consistent with a divergence ofjS;(h
2hc)

21.360.1, takinghc52.27, consistent with our other de
terminations ofn, though the data are not very nearhc . It
may be possible to make a more accurate determinationn
by more careful calculations usingh values somewhat neare
to hc .

For the 2L3L2 samples,P0, the probability of the stiff-
ness being zero, can be appreciable for accessibleL and h
near hc . The data for fixedh>hc are consistent withP0
approaching one exponentially withL, although other forms
cannot be ruled out.
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2. Stiffness at criticality

At the critical point, a nontrivial scaling function

Pc~S/CLu![P~S/CLu,0! ~27!

for the distribution ofS would suggest thatP0 should ap-
proach afinite fixed point value. In Fig. 4~a! a plot of P0 is
shown as a function ofL for varioush. Observe that opposite
boundaries are almost always coupled athc in the cubic
samples:

P0
cubic~hc!.0.0460.01. ~28!

This value forP0 is so small that to verify thatP0 indeed
approaches a nonzero constant at the transition, we also
formed simulations for anisotropic samples of vario

FIG. 2. Scaling plot for the sample averaged stiffnessS̄ for ~a!
isotropic samples of volumeL3 and~b! anisotropic samples of vol-
ume 2L3L2, with the longest axis being the direction in which th
boundary conditions are varied. Note that the vertical scales di
The stiffness is calculated by the symmetric comparison of f
ground-state energies: the energies for the four choices of spi
and spin-down boundary conditions on the left and right sides
with periodic boundary conditions in the other two directions. T
fit shown is for energy exponentu51.49, correlation length expo
nent n51.37, and critical valuehc52.270. This scaling is consis
tent within errors, except for theL516 isotropic samples. Statisti
cal (1s) error bars are shown.
1-9
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A. ALAN MIDDLETON AND DANIEL S. FISHER PHYSICAL REVIEW B 65 134411
shapes. In general, we expect that the distribution ofS at the
critical pointPc will depend on theshapeof the sample with
long thin samples typically yielding lower stiffness and
higher probability of the stiffness vanishing than short
ones of the same cross section.

For rectilinear samples of dimensions 2L3L2, with the
controlled boundaries at opposite ends of thelong (100)
axis, we find thatP0 approaches a value well away fro
zero,P050.29860.005, ath52.270 @Fig. 4~b!#. For rhom-
boidal samples withL3 spins consisting ofL layers and a
length along the (111) control axis ofL/A3, P0 is not dis-
tinguishable from zero. However, for longer rhomboid
samples with 4L3 spins consisting of 4L layers and a length
4L/A3 along the control axis, we findP050.2160.01 ath
52.270 for 16<L<64 @Fig. 4~c!#. Imposing convergence o
P0 to a fixed ~nontrivial! value asL→` gives a critical
value of hc52.270. These anisotropic rectilinear and lo
rhomboidal samples yield our most precise estimate forhc ,
Eq. ~3!.

We should expectP0 to be a smooth function of the
shape; the fact that it isfar from zero in samples with asp
ratio of order two lends strong support to the conjecture t
it will be nonzero for any shape. The observation that it
small for cubical samples is related, as will be explain
below, to the smallness ofb.

3. Comparison of distributions forS

The complete probability distributions forS at various
values ofh are plotted in Figs. 5–8 for both the cubical an
the elongated (100) samples. Forh51.6, the distribution of
S appears to approach a narrow distribution aboutS
'(1.39)L2, regardless of the sample shape; this is as
pected for the ordered phase. Forh52.27, the critical point,
the distribution obeys the simple scaling form of Eq.~2! for
both the isotropic and anisotropic samples but with a diff

FIG. 3. Plot of the decay of the mean stiffnessS̄ with L, in the
disordered phase. The lines are fits to the data forS̄,0.2 of the
form S̄;exp(2L/jS). In conjunction with similar fits for 2L3L
samples, which allow us to estimate errors from finite-size fitti
we find the valuesjS52664,761 and 4.060.4 for h52.4,2.6,
and 2.8, respectively.
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FIG. 4. Plot of the probabilityP0(h,L) that the stiffnessS is
zero, for ~a! isotropic samples of volumeL3 and ~b! anisotropic
samples of volume 2L3L2, with the longest axis being the direc
tion in which the boundary conditions are varied, and~c! aniso-
tropic samples of volume 4L3, with the boundary faces in the~111!
plane. For all sample shapes, the convergence to a fixed value oP0

as L→` for h52.270 suggests the location of the critical poin
The solid lines connect the points forh52.270 to demonstrate con
vergence ofP0 to a constant, within statistical errors. AsP0 is very
nearly zero for isotropic samples@P0(2.27,̀ )'0.04, if the appar-
ent convergence holds at largeL#, the errors in determininghc are
larger. From the 2L3L2 anisotropic samples, where the appare
extrapolation isP0(2.27,̀ )50.29860.05,hc52.27060.004. For
the ~111!-oriented samples, with volume of 4L/A33A3L2 ~layer
separation3 layer area!, the data are also consistent withhc

52.270, with P050.2360.01. Separate results, not shown, f
~100! samples of shape 4L3L2 give a value ofP0(2.27,16<L
<64)50.7960.02.
1-10
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THREE-DIMENSIONAL RANDOM-FIELD ISING . . . PHYSICAL REVIEW B65 134411
ent scaling functions for each of the two shapes. Figur
shows the integrated probability distributions forh52.40. As
L increases, the mean interfacial energy decreases app
mately exponentially, andP0 approaches 1.

VI. GEOMETRY OF DOMAIN WALLS

In addition to the scaling properties of the energies
domain walls, we are also interested in their geometr
properties. These properties are expected to be related t
properties of the surfaces of spin clusters that are either
zen or induced by bulk perturbations~as opposed to bound
ary perturbations!, to the effects of boundary conditions o

FIG. 5. Probability densityr̂(s) of the values of the interfacia
energy densitys5L22S in the ordered phase withh51.60,hc .
As the sample size grows larger, the relative sample-to-sam
variations ofs decrease, consistent with an approach to ad func-
tion at the mean values(h51.6)'0.69, for both theL3 and 2L
3L2 samples,

FIG. 6. Probability densityr(S) of the scaled nonzero values o
SL2u with u51.49, forh52.270'hc . A d function atS50 with
weight P0'0.04('0.298) for the L3(2L3L2) samples is not
shown. The distributions for samples with linear dimensionsL
greater than 16 are statistically consistent with a fixed point dis
bution for S, with a characteristic scaleS0;L1.49 and a form de-
pendent on the shape of the samples.
13441
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the deep interior of a sample, and to the general sca
picture for the transition.

In the ferromagnetic phase, the interfacial tensions is
positive. The domain walls will appear flatter and flatter
large length scales with surface area proportional toL2 but
nevertheless divergent roughness characterized by a ro
ness exponentz52/3 and random energy variations th
scale asLu I, with u I54/3.38–41

le

i-

FIG. 7. Scaling plot for the cumulative distributionI (S)
5*0

SdS8r(S8) of the stiffness, forh52.270'hc . The stiffnessS
has been scaled by the energy scaleLu, with u51.49. The labels
indicate the sample shapes (2L3L2 and L3L2) for each set of
curves. For each sample shape, four sample sizes are plotted
382→1283642 and 163→1283). At the resolution shown, the
scaled curves are nearly independent ofL. The intercept atS50
corresponds toI (0)5P0, the probability of a sample having zer
stiffness. As in Fig. 6, the curves converge to a fixed point dis
bution.

FIG. 8. Cumulative distributionÎ (s)5*0
sds8r̂(s8) for h

52.400.hc . As the sample size increases,P0, given by the inter-
cept of the curves atS50, increases, and the typical nonzero va
ues ofs[SL22 rapidly decrease. From Fig. 3, the length scale
the decay of the stiffness isjS52664. This length is comparable
to the midrange system sizes here. Note thatP0 rises more quickly
and the typical nonzeros decays more rapidly withL in the aniso-
tropic samples.
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A. ALAN MIDDLETON AND DANIEL S. FISHER PHYSICAL REVIEW B 65 134411
At the critical point, the interfacial tension of the wal
vanishes. Thus we should not except them to be flat eve
large scales; the natural expectation is that they will be fr
tal with surface area scaling as

A;Lds, ~29!

with ds a fractal dimension. One might expect,a priori, that
the exponentds would be an independent exponent as it
not obviously related tou, b, andn. For the simple scaling
scenario to obtain, we expectds to be in the range

d21,ds,d. ~30!

If the transition were first order, one would expectds5d
21 as in the ferromagnetic phase~more precisely, some
fraction of samples at the transition would show such int
faces!. If, at the other extreme, it were found thatds5d, this
would mean that the ‘‘walls’’ would be space filling~up to
possible logarithmic factors!; this would cast doubt on the
overall scaling scenario for excitations, etc., near the ph
transition.3

A. Frozen spin regions

To study interfaces we would like to compare the sp
configurations found using the boundary conditions11,
12, 21, and 22 as discussed in the previous sectio
But in random-field systems, there is an intrinsic difficu
associated with defining an interface: this arises from
presence of frozen regions which are not affected by cha
ing from 11 boundary conditions to22 boundary condi-
tions and thus are unaffected byanychanges in the boundar
conditions on the controlled surfaces.42 With mixed bound-
ary conditions, say,12, the interface between the regio
that is like the ‘‘up’’ (11) state and the region that is lik
the ‘‘down’’ ( 22) state can pass along the boundary of
frozen regions. Are we to count such sections as truly par
the interface? Or should we exclude the frozen regions fr
the system and think of the interface as bisecting only
remaining controllable regions?

We are thus led to consider several methods for measu
the surface area of ‘‘interfaces,’’ anticipating that we mig
obtain results which depend on the definition. For these c
siderations, it is useful to refer to Fig. 9, which is a sketch
what might happen whenS50, and Fig. 10, which is a
representation of what might happen forSÞ0.

Configurations are shown for each of the four bound
combinations: the circles enclose regions of ‘‘froz
spins’’—those that are constant under all four BC’s—w
solid lines indicating broken~unsatisfied! bonds. The dashed
lines indicate the location of a frozen cluster embedded
set of like spins. The interiors of the configurations in Fig.
are also frozen. Note that the frozen spin regions can con
nested subclusters of alternating spins. In Fig. 9, spins
side of the frozen spin regions can be either1 or 2, de-
pending on the BC combination. These two figures are c
catures of configurations such as those shown in Fig. 1. N
that Fig. 9 does not show all of the possibilities. Also, the
pictures are two-dimensional slices, which hides the po
bility of regions having three-dimensional ‘‘handles’’ an
13441
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minimizes the potential role of simultaneous percolation
1 and2 spins in some regions.

B. Surface exponentds

The first method of defining an interface uses just t
different boundary conditions, for example, the12 to 1
1 comparison. This change in boundary conditions caus

FIG. 9. Schematics of the spin configurations for four differe
boundary condition combinations, for a case withSÞ0. Here, there
is a set ofcontrollable spins, connected across the sample, that c
be either1 or 2, depending on the boundary conditions. These
the majority of the spins in the figure shown. Thefrozen spinsare
those that are constant under the four boundary conditions22,2
1,12, and11; these are indicated here by the circular regio
Solid lines separate spins of opposite sign, while the dashed l
indicate frozen islands that are of the same sign as the surroun
spins.

FIG. 10. Schematics of the spin configurations for four differe
boundary condition combinations, for a case withS50. In addition
to the frozen islands, shown as circles as in Fig. 9, there is a s
frozen interior spins that spans the sample in the directions per
dicular to the horizontal~control! axis. Conventions for solid and
dashed lines are as in Fig. 9. The surfaces used to measureds are
the two surfaces of the frozen interior, but the measure use
computedI is zero, as long as the boxes have sideB smaller than
the size of the frozen interior. Also zero is the exchange stiffn
SJ , as each bond that is broken in both the12 and21 configu-
rations is also broken in both the22 and 11 configurations,
while bonds that are broken exactly once under one of the
antiparallel BC’s is likewise broken exactly once under para
BC’s, so that all broken bondscancelin the signed sum that define
SJ .
1-12
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connected set of spins anchored to the right face to flip fr
up to down along with the forced right boundary spins wh
the 11 boundaries are replaced with12. This set of
changingsites, which we denoteC12,11 , has a bounding
surface—indicated by the heavy and light lines in Fig. 11,
the spin configurations of Fig. 9. But some of this bound
will surround islands of fixed up spins~some of which them-
selves have down spin inclusions! that are disconnected from
both controlled faces. The number of such islands~light
circles in Fig. 11! will scale with the volume of theC12,11

region and their boundaries will contribute an amount
order this volume to the surface area ofC12,11 . This inter-
nal contribution to the surface area will, on average,
dominant in large systems whenh,hc , but it is clearlynot
properly part of the domain wall.

What we are interested in is the part of the boundary
C12,11 which interfaces with the other ‘‘half’’ of the sys
tem. One way to define a domain wall is thus to start at
unmodified left face and find the set of spins connected
this face that do not change when the boundary condition
the right face are changed; this set, which we den
U12,11 , has no interior holes, although it could ha
handles. The surface of the setU12,11 is just its interface
with the setC12,11 that flips. ThisU-C interface, which
spans the whole cross section with no holes and thus
cludes some boundary of frozen regions, is our first defi
tion of a domain wall of interest.

Averaging over samples at fixedh gives a mean surfac
area of thisU-C domain wall,A(h,L). ~For these and relate
studies, we used 53103 to 203103 samples for smaller
sample sizes, 83–643 and 300–53103 samples for the larg-
est sample size 1283.! Estimates of the dimension of thes
surfaces,ds , can be obtained from the discrete logarithm
derivative,

d̃s~h,L !5 ln@A~h,A2L !/A~h,L/A2!#/ ln~2!. ~31!

A plot of these estimates, with statistical errors, is shown
Fig. 12. The estimates for the case ofh52.27.hc appear to
approach a fixed valueds as L→`, while d̃s→2 for h
,hc , as expected. Forh.hc , the apparent exponent eithe
starts atd̃s.ds and falls or first rises before dropping withL.
This behavior presumably arises forL!j, where the grow-
ing volume allows for larger surface area, while forL@j, the
domain walls become confined to a distance less thanj from
the right and left faces of the sample and thus effectiv
become two dimensional. From this plot and the results
the ~111! orientation~Fig. 16!, we estimate

ds52.3060.04, ~32!

where systematic errors due to finite-size effects and un
tainty in hc dominate the statistical uncertainties.

C. Roughness in the ferromagnetic phase

We have verified that the surface roughness of the n
fractal domain walls in the ferromagnetic phase are con
tent with theoretical expectations.38–41 Specifically, we cal-
culated the ‘‘height’’ of the surfaces—deviation from flat—
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anisotropic samples of shapeX3L2, with the outer two lay-
ers in thex direction fixed to be1 or 2 and, as before, the
sample periodic in they and z directions. Again, to reduce
lattice artifacts, we use samples whose ‘‘x’’ faces are ori-
ented in either the~100! or ~111! direction.

As overhangs are possible in these interfaces, it is ne
sary to define carefully the ‘‘height’’ functionu(y,z): for a
given y andz coordinates, we use twice the average of thx
coordinates of the set of spins inU12,22 ; in the absence of
overhangs, this gives the desired surface height. The sam
averaged rmswidth W is defined byW25@u2#2@u#2, where
the square brackets indicate the average ofu(y,z) over the
y-z coordinates of the sample. Simple scaling in the orde
phase suggests that

W5LzT~h,X/Lz!, ~33!

for large values ofX and L, with T a geometry-dependen
function. We find that usingz50.6460.03, consistent with
the expected value38 z52/3, describes the data fairly well, a
seen in Fig. 13.

FIG. 11. Schematics of the definitions of domain wall measur
based on the configurations of Fig. 9.~a! The heavy solid lines
indicate the boundaries used to define the domain walls for
calculation of the fractal dimensionds of the spanning wall ob-
tained by comparing the12 and 11 configurations. The region
of changed spins connected to the right face isC12,11 , which has
both the heavy and light lines as boundary, while the unchan
connected region anchored on the left face, with the single solid
as boundary, isU12,11 . ~b! Boxes used for determiningdI , the
dimension of the locally incongruent regions. The number of bo
of sideB in which the12 configuration differs fromboth the 1
1 and22 configurations scales asLdI. The broken bonds around
the frozen islands in the11 or 22 configurations are not
counted.~c! The signed sum of broken bonds that definesSJ , the
exchange contribution to the stiffnessS. Solid lines indicate posi-
tive contributions and the long-dashed lines indicate negative c
tributions.
1-13
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The convergence of the roughness of the interface to
asymptotic form is made more apparent by defining an
fective scale-dependent roughness exponent

z̃~h,~L1L2!1/2!5 ln~W2 /W1!/ ln~L2 /L1!, ~34!

where theX1,2 are chosen to have the valuesrL 1,2
2/3, with r

fixed at close to unity. Assuming thatz is indeednear 2/3,
this choice ensures that a typical wall is found, rather th
the best of a set of;L12z possibilities that would resul

FIG. 12. Effective dimensionsd̃s(h,L) obtained from a logarith-
mic derivative of the surface area with respect toL. These are used

to estimate the fractal dimensionds[d̃s(hc ,`). The values

d̃s(h,L) are calculated from the surface of the connected se
spins rooted at one face that is unchanged when the spins o
oppositeface of the sample are flipped. The scaling of the area
this surface withL yields the estimates shown, via Eq.~31!. The
error bars represent 1s statistical uncertainties. The values co
verge tods52.3060.04 forh near 2.27'hc , with the error reflect-
ing the uncertainty inhc and the estimated magnitude of finite si
corrections. The lines connect data points with the sameh.

FIG. 13. Scaling plot for the roughness of a forced interface
the ferromagnetically ordered phase as a function of the aspect
of an X3L3L sample. For the values ofh shown here withh
,hc , the width of the interface scales asW;Lz with the best fit
z50.64(3), comparable to the expected exact resultz52/3. The
statistical 1s error bars are 1/5 of the symbol sizes or less.
13441
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from using a sample that was much longer thanLz in the x
direction. Such a sample shape would result in the sa
asymptotic value forz, but would have~probably logarith-
mic! corrections to scaling. As can be seen in Fig. 14,
effective exponent appears to converge toz50.6660.03 in
both geometries. Note that even with the appropriate an
tropic scaling, the corrections to scaling are large for samp
up to L5100 with the correspondingX;20.

D. Incongruence box-counting interface exponentdI

For an alternative measurement of the dimension of
domain walls at criticality, we have used abox-counting
method. In this method, we compare the configuration giv
12 ~or 21) boundary conditions withboth 11 and 2
2 configurations. This is done at various scalesw by parti-
tioning the sample into (L/B)3 cubes of volumeB3. If the
configuration with twisted boundary conditions differs fro
both 11 and 22 in a given volumeB3, that cube must
intersect the domain wall. But this wall willnot include any
boundary of frozen regions that is isolated from other brok
bonds by a distance of at leastB. In particular, whenS50,
the number of such intersecting boxesN(B,L,h) will be zero
for B smaller than the size of the frozen interior region. F
example, the12 and 21 configurations in Fig. 10 are
locally congruent everywhere with either the22 or the1
1 configuration. Thus only for boxes larger than the wid
of the interior region will a domain wall be apparent.

The scaling of the number of intersecting box
N(B,L,h) with L gives an alternate estimate of an effecti
fractal dimension which we calldI(h,L), anticipating that
N;(L/B)dI at the critical point@see Fig. 11~b!#. Using the
same form of the discrete logarithmic derivative betwe
scalesL and 2L as in Eq.~31! gives the effective exponen
d̃I(h,L), as summarized in Figs. 15 and 16. This estim

f
the
f

n
tio

FIG. 14. Plot of the effective roughness exponentz̃(h,L) in the
ordered phase forh52.0 with ~100!-oriented faces andh
51.0,2.0,2.1,2.4 with~111!-oriented faces. The samples haveX
5rL 2/3 layers@of areaL2 for ~100! and areaA3L2 for ~111!#. For
all samples in the ordered phase, the exponent approachz
50.6660.03 asL→`, consistent with the expectedz52/3. For
comparison, data for the disordered phase are included; the app
exponent decreases for large systems whenh.hc .
1-14
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THREE-DIMENSIONAL RANDOM-FIELD ISING . . . PHYSICAL REVIEW B65 134411
yields a constant at largeL, within statistical errors, forh
52.27.hc and gives a valuedI52.2460.03.

We note that a useful compatible definition fordI can be
based onbondsrather than spin blocks: count the number
bonds that are broken with the12 or 21 BC’s that are
satisfied with both the11 and 22 BC’s. The number of
such bonds,N8, should have the same scaling form asN does
for fixed B. We have used this bond definition in a smal

number of samples and find results ford̃I(h,L) at largeL
consistent with the spin block definition ofdI defined above.

E. Exchange stiffness exponentdJ

A third measure that we have used to study domain w
geometry is the contribution of theexchange energyto the
stiffnessS. This we denoteSJ . It is the signed sumof the

FIG. 15. Estimatesd̃I(h,L) of the box-counting fractal dimen

sion dI5d̃I(hc ,`), for the ~100! orientation of controlled faces
Comparisons of the12 configuration are made with the22 and
11 configurations in boxes of volumeB3. If the 12 configura-
tion differs from both of the others, that box is considered part
the domain wall. The finite logarithmic derivative of the scaling
the number of such boxes with sample sizeL yields the estimates
shown with the lines connecting data points with the sameh. The
error bars represent 1s statistical uncertainties. Forh52.27, the
dimension estimate converges todI52.2460.03, the error being a
combination of statistical error and systematic errors ('0.02)
caused by finite-size effects and uncertainties inhc .
13441
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broken bond weights, counted as negative for the22 and
11 configurations and positive for the21 and12 con-
figurations.

As in computingS, using the symmetrized energy diffe
ences reduces boundary effects. IfS50, then SJ50, for
example, though comparing the configurations with11 and
12 boundary conditions in such a sample will reveal a d
main wall while comparing those with11 and21 bound-
ary conditions will reveal a second entirely distinct doma
wall. Either of these domain walls, along with a portion
the frozen spins that make up the boundary, would
counted in the method which yieldedds . But in this symme-
trized measure fromSJ , the signed sums would cancel, s
that neither domain wall would be counted. Similarly, wh
the box sizeB is smaller than the size of the frozen interio
the measure used to finddI would also be zero. Note, how
ever, thatSJ does include some of the boundaries of th
frozen regions but it does so with signs that can be eit
positive or negative. In the ordered phase, then, the excha
stiffnessSJ will include contributions from the region be
tween the two domain walls that occur, contributions th
would not have been included in the other methods. T
three proposed measures are thus potentially all differ
especially off critical, but perhaps also at criticality.

At the critical point the exchange energy part of the sy
metrized stiffness will have contributions from the doma
walls with holes,;Lds2b/n, equivalent to the box counting
measure of the domain wall, as well as contributions fro
parts of the boundaries of the frozen regions. The simp
expectation is that the the contributions from the frozen
gion boundaries will be random in sign and thus less imp
tant in toto.

The mean ofSJ(h,L) can be used to compute a fracta
dimension-like quantitydJ for the interface via the assump

f

FIG. 16. Estimatesd̃s(h52.27,L),d̃I(h52.27,L), and d̃J(h
52.27,L) of the fractal dimensions using controlled boundary s
faces in the~111! plane of the cubic lattice which are rhombi wit
sides ofL spins. The number of layers in the sample, including
boundary planes, isL or 4L, as shown in the key. The error ba
represent 1s statistical uncertainties with the lines connecting da
points with the sameh. The dimension estimates converge tods

52.3060.02,dI52.2560.05,dJ52.1860.03; these are consisten
within errors with those from Figs. 12, 15, and 17
1-15
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A. ALAN MIDDLETON AND DANIEL S. FISHER PHYSICAL REVIEW B 65 134411
tion thatS̄J;LdJ at hc . The scale-dependent effective exp
nents from our data ath52.27, shown in Fig. 17, yield an
estimate of dJ52.1860.02 that appears to be slightl
smaller than the other two dimensionsds anddI .

One advantage of the exchange energy is that we
relate this measure of the fractal dimension of the dom
walls at the critical point to the other exponents. If a sm
additional exchangedJ is added to the Hamiltonian~or
equivalently if all the random fields were decreased in m
nitude by a uniform small amount!, then the change in the
stiffness would be simply

dS'
dJ

J
SJ . ~35!

SinceS;Lu while SJ;LdJ with dJ.u, the change in the
stiffness will become of order the stiffness itself and th
strongly modify the system whenL;(dJ)21/(dJ2u). This
crossover length is thus a measure of the correlation lengj,
and we thus expect the exponent equality

1

n
5dJ2u. ~36!

This can be derived directly from the scaling form Eq.~25!
by differentiating with respect toJ ~equivalently with respec
to 2h) and noting the thermodynamic identity between d
rivatives with respect to coefficients of terms in the Ham
tonian and expectations of the corresponding term.~Note that
this is closely analogous to the relation betweenn and the
energetic part of the interfacial free energy at conventio
finite-temperature critical points.! Assuming the scaling rela
tion, Eq.~36!, would given51.4560.10, a slightly different,
but consistent, value ofn than that from the scaling of th
total symmetrized stiffnessS.

FIG. 17. Estimatesd̃J(h,L) of the scaling of the exchange con
tribution to the stiffness defined as the total signed surface are
the changes between11,22,21, and 12 boundary condi-
tions. The logarithmic derivative ofS̄J(L) gives the values shown
with the lines connecting data points with the sameh. The error bars
represent 1s statistical uncertainties. Forh52.27, the dimension
estimate converges todJ52.1860.03.
13441
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F. Comparison of domain wall exponents

Due to the subtleties introduced by frozen islands and
representation of the Hamiltonian as the sum of domain w
and random field components, there are three natural m
surements of the domain wall surface and the domain w
contributions to the stiffness. Each measure has its o
physical meaning. We will argue in Sec. IX B that the diffe
ence betweends anddI is due to frozen islands, and henc
ds2dI should be related tob/n.

VII. MAGNETIZATION

Having established the location and order of the tran
tion, we now focus on an apparently problematic quant
the magnetization. Given sets of ground-state spin confi
rations$si%, the distribution of magnetizations can be studi
as a function ofL and h. In order to better understand th
large-volume limit, we have computed the magnetization d
tributions forfive different boundary conditions: all boundary
spins fixed to a single value, either all positive or all negat
(F); boundary spins fixed at independent random val
(R); open boundary conditions (O); periodic boundary con-
ditions (P); and a combination~Q! with conditionsP, O, and
R along each of the three axes. The fixed spin bound
conditions will tend to favor ferromagnetism, the rando
will tend to favor a disordered phase, and the combinationQ
appears to significantly reduce some finite-size effects.

We first describe our results for the mean of the abso
value of the magnetization density,

umu5U(
i

siUL2d, ~37!

for cubic samples with periodic boundary conditions~P!.
Figure 18 is a plot of our data as a function ofh, for various
L; the magnetization drops off quite steeply nearhc . Figure
19 shows the magnetization as a function of system s
along with its discrete logarithmic derivative, which yield
an effective scale-dependent exponent. To within errors,
magnetization is consistent with power-law scaling,

m;L2b/n, ~38!

with b/n50.01260.004. Forh,hc , the magnetization ap
pears to approach a constant@e.g.,m(2.255,L→`)'0.952#.
For h.hc , the effective exponent decreases significantly
L increases.

For further analysis, we characterize the distributions om
by the average over samples of the square of the magne
tion per spin, m̄2, and the root-mean-square sample-
sample variations of the square of the magnetization:

Dm2[Am̄42~m̄2!2. ~39!

Our results forDm2 are shown in Fig. 20. AsL is increased,
the peak magnitude ofDm2 is seen to decrease for som
boundary conditionsF, O, andP, while it increases for oth-
ers R and Q. For boundary conditionsR, O, P, and Q, the
peak heights appear to be converging to a similar fixed va
bracketed from above and below by the different sets of d

of
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In general, we would expect that the height of these pe
would scale for asymptotically large sizes asL22b/n; the data
are thus consistent with eitherb50 or with a very smallb.

One can estimate the location of the transition by fitti
the data forDm2 near the peaks at five or more values ofh to
a Gaussian form.~The Gaussian gives a better fit than
parabolic form over a larger range ofh, though either form

FIG. 18. Mean absolute magnetization per spin,umu, plotted vsh
for variousL, for periodic boundary conditions.

FIG. 19. ~a! Mean absolute magnetization per spin,umu, plotted
vs L for varioush ~with periodic boundary conditions!. The solid
line is umu5(1.0009)L20.012. ~b! The discrete logarithmic derivative
D ln@um(L)u#/D ln(L)[ln@um(L8)u/um(L)#/ln(L8/L) vs ALL8 with L8
'2L. This is used to directly estimateb/n, yielding b/n50.012
60.004, where the error bars are dominated by the range of va
for hc obtained by fitting over sizes up toL5256.
13441
ks

should give the same limit forh near enough to the peak an
L large enough.! The fitted location of the peaks is extrap
lated for all boundary conditions as a function ofL. We ob-
tain agreement of the extrapolations for 1.3,n,1.45 with a
value of hc52.27260.004, consistent with the value from
P0 and other estimates. We believe that this independen
timate is relatively precise and robust, due to the variety
boundary conditions used, with the variation in the resu
giving an estimate of systematic uncertainties.

For the fixed spin boundary conditionsF, the peak mag-
nitude of m2 is apparently converging to adifferent value
~note that the magnetization near the surfaces will vary l
than with the other boundary conditions!. If either these data
F or the periodic boundary condition dataP at the critical
point are used~rather than the data near the peak!, then a
smaller value ofDm2 is found, roughly the same althoug
apparently still distinct for these two cases.

Collectively, our magnetization data would appear to su
gest a picture of the transition that is consistent with that
Ref. 14: three possible ‘‘states’’ at the critical point, ‘‘up,
‘‘down,’’ and ‘‘disordered,’’ as would occur at a first-orde
para- to ferromagnetic transition. As we shall see, howe
our other data and further thought suggest that this pict
while a very good approximation, is not correct. We w
argue that in factb is small but nonzero and thus in astr
nomically large samples the magnetization will decay slow
to zero at the critical point but with the scaling functions f
the distribution of the magnetization~and their moments!
depending on the type of boundary conditions as is the c
for pure systems at conventional critical points.43 Data sug-
gesting this are presented in the next section.

VIII. SPIN CLUSTERS AT CRITICALITY

The distribution of the magnetization studied above giv
some information about the ground-state correlations of
RFIM. But because ground-state correlations between Is
spins are controlled by the probability that a pair of spins
interest are in opposite directions, the observation that
magnetization at the critical point tends to be rather close
saturation suggests that the loss of correlations as the ran
field is increased through the critical point may be associa
with rather rare events. In this section, we investigate
nature of the effect that we believe gives the dominant c
tribution: the occurrence of connected clusters of spins of
one sign completely surrounded by spins of the oppo
sign. Because all of the exchanges are ferromagnetic, s
isolated inverted clusterswill, a fortiori, not change when
the boundary conditions are inverted: either the spins s
rounding them will flip, in which case they will be conten
the way they were, or the surrounding spins will not flip a
the spins in the cluster will be isolated from the bounda
condition change. Thus these isolated spin clusters are
zen.

We have computed the statistics of the domain walls t
enclose isolated spin clusters in 5000 or more sample
system sizes up to 1283 and 1000 samples of size 2563 at
h52.27'hc . A slice of a configuration is shown in Fig. 21
Statistical errors in the dimension estimates and number

es
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A. ALAN MIDDLETON AND DANIEL S. FISHER PHYSICAL REVIEW B 65 134411
tribution were computed by a bootstrap method~resampling
the statistics over the computed configurations! ~Ref. 44!; the
error bars indicate the estimated rms fluctuations in the
tistics at each cluster size.

We note that previous work by Esser, Nowak, a
Usadel45 studied the domain structure for a single sam
size. They address questions of percolation in the 3D Ga

FIG. 20. Magnitude of sample-to-sample fluctuationsDm2 in the
mean-square magnetization per spin, as a function of random-
strengthh, for various system sizesL ~a! for fixed si511 boundary
conditions (F), ~b! for open~free! boundary conditions (O), ~c! for
random fixed spin boundary conditions (R), ~d! for periodic bound-
ary conditions (P), and ~e! for mixed periodic, random fixed, an
fixed boundary conditions, one along each axis (Q). The curves are
fit locally with Gaussians in the regime whereDm2 is greater than
approximately 3/4 of its peak value. Extrapolating the peak lo
tions to L5` gives a best fit value ofn51.3860.08 andhc

52.27260.004, with the dominant errors being systematic err
arising from variations in the extrapolated values, presumably
to corrections to scaling. The lines shown are spline fits to visu
organize the data.
13441
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ian RFIM, but they claim that the cluster distribution is n
broad. We find, in contrast, that there is a broad tail, whi
though weak for smaller systems, becomes more impor
asL increases at the critical point. To directly contrast w
the results of Ref. 45, we find that the sum of the volum
fraction of the two largest clusters, though near 1, slow
decreasesas L increases, ath52.27'hc . The transition
separates a state with one infinite connected set of spin
the same sign from a disordered state with two antipara
incipient infinite clusters.

A. Cluster surface

For each cluster, the total volumev—which includes the
volume of ‘‘holes’’ of opposite spin—was computed, as w
the surface areaa of the cluster: the number of unsatisfie
nearest-neighbor bonds that separate the cluster from itssur-
rounding region of opposite spin. The domain walls a
found recursively, taking as the initial surrounding region t
majority spin cluster, which typically occupies.97% of the
volume athc for L,256.46 Binning the clusters by volume
v, logarithmically spaced by powers of 2, averaging the s
face area in each bin, and taking the discrete logarith
derivative gives an estimate of the fractal dimension of
cluster surfaces, dimensiond̃s

c(h,L,v). As indicated in Fig.
22, at the critical point the surface area appears to scal
v0.75560.07 for intermediate-size clusters with 1!v!L3. The
error in this exponent includes both statistical error and
apparent uncertainty of corrections to scaling that are aff
ing the convergence to a constant value. This value is li
affected by the estimate of the location ofhc ~varying h
changes the number of clusters, but within the uncertainty
hc , does not affect the geometry of the domain walls!. We
have verified that the volume enclosed by the domain w

FIG. 21. A slice of a spin configuration in a 2563 sample ath
52.27. The dark squares indicate an up spin. The nesting of
clusters can be seen here — the number of levels of nesting
‘‘depth,’’ of the full configuration isk53. The domain walls are
determined by working recursively inwards from the major
~down! spin cluster. The surface of each cluster is taken to be
outer surface and does not include the surface of subclusters.
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separating opposite spins scales in a manner numeric
consistent with thisvolumebeingnonfractal:

v; l d, ~40!

with l being either the geometric mean or the maximum
the lengths of the sides of the minimal rectilinear box th
encloses the cluster. The extrapolation ofds

c(h,L,v) to large
L and l is therefore consistent with clusters having typic
diameterl;v1/d and typical surface area

a; l ds
c
, ~41!

with

ds
c.2.2760.02, ~42!

a fractal surface dimension consistent within the statist
uncertainties with our estimates of the fractal dimensionsds
and dI of the domain walls induced by changing bounda
conditions at the critical point. In particular, this surface
mension bears a close resemblance to the dimension o
spanning surface which we denotedds ; thus we conjecture
that

ds
c5ds . ~43!

B. Cluster density

New information is given by thedensitiesof the clusters
as a function of their size, in particular their dimensionle
volume fraction

r~v ![
v

dv
Prob@sitePcluster of size in~v,v1dv !#.

~44!

From the data in Fig. 23~and for the slightly different mea
sure of Fig. 24, wherev is the volume of the smallest para

FIG. 22. Dependence of the surface area~number of broken
bonds! of cluster boundaries on the enclosed volumev expressed as

an effective exponentd̃s
c(h,L,v), at h52.270'hc , for L

532,64,128,256. The cluster surface area scales asv0.75560.007 for
the largest clusters that are not affected by finite-size effects, y
ing a fractal dimensionds

c52.27(2) for the cluster surfaces.
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lelpiped of fixed orientation enclosing the cluster! we see
that clusters that are neither too small nor limited by fini
size effects—roughly a decade in length scale
L5256—occupy an approximately scale-independent v
ume fraction. A comparison of the cluster distributions f
nominally off-critical values ofh, as seen in Fig. 25, show
how r(v) depends onh. From these plots we infer a large-v
limit of

r~v !→r`.0.001960.0004. ~45!

We cannot, of course, rule out a slow decrease ofr(v) to
zero for large volumes, especially as our effective range
length scales here is less than for other quantities becaus
the restrictions due to finite-size effects. But wecan under-
stand on the basis of our other observations why one sh
expect a small but nonzero value forr` .

IX. SCALING

In this section we pull together our various results ab
domain walls, stiffness, magnetization, and inverted s
clusters and show how they are all consistent with a sim
picture of scaling behavior at a zero-temperature phase t
sition.

A. Critical correlations

At the critical point, the energy cost of domain walls
typically sufficiently large that almost all cubical samples
about 96% of them—would rather have no spanning~or
other large scale! domain walls unless forced to by bounda
conditions. But in a small fraction of the cubical samples t
random fields in the central region are sufficiently strong t
they force the system to havetwo domain walls for one of
the two ‘‘ferromagnetic’’ (11 or 22) choices of boundary
conditions. In samples that are twice as long, this occ
much more frequently as evidenced by the increase, on g

d-

FIG. 23. Fraction of the volumer(v) occupied by clusters of
volume betweenv andev, at h52.270'hc , found by normalizing
the data binned according to powers of 2~i.e., dividing the volume
fractions in the @v,2v# bins by ln2). The solid line isr(v)
50.00191(0.0017)v20.33, one of the trial fits used to extrapolate t
largev.
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A. ALAN MIDDLETON AND DANIEL S. FISHER PHYSICAL REVIEW B 65 134411
from cubical to elongated samples, in the probabilityP0 that
the stiffness vanishes. Although whether such a pair of w
is favorable generally depends on both the random field
the whole system and the local behavior near the wall
crude picture of what is going on can be drawn by assum
that the wall energies are relatively local and weakly dep
dent on each other. We restrict consideration for now to
critical point.

First consider a system of dimensions1
2 L3L3L with the

boundary conditions imposed on the faces perpendicula

FIG. 24. Fraction of the volumer(v) occupied by clusters tha
are contained inrectilinear volumes~‘‘boxes’’ ! betweenv andev,
at h52.270'hc , found by normalizing the data binned accordin
to powers of 2~i.e., dividing the volume fractions in the@v,2v#
bins by ln2). For largev,r(v)→0.001960.0002, ifhc52.270.

FIG. 25. Fraction of the volumer(v) occupied by clusters o
volume betweenv and ev, found by normalizing as in Fig. 23
Here, the volume fractions are plotted forL532,64,128, withh
52.255, andL5256, with h52.255,2.270, and 2.285, to indica
some of the effect of changingL or h on r(v). The data forh
52.255 apparently converge at largeL to a well-defined distribu-
tion that has a finite-v cutoff, consistent with a finite correlation
length in the ordered phase. This is in contrast with the data foh
52.27, the putative critical point, forL<256, as seen in Fig. 23
For h52.285, in the disordered phase, large volume clusters sta
occupy a larger fraction of the volume than smaller clusters, foL
5256.
13441
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the short axis. Assume that the probability that the sing
wall energyE1W

l [E122E11 in such a system isnegative
is q!1. Crudely, for two walls to be favorable in a cub
system with11 boundary conditions, as is needed to ma
S50, one must haveboth EW

l ,0 for the left half of the
system andEW

r [E212E11,0 for the right half of the
system. Naively, this occurs with probability of orderq2.
~More precisely, one of theEW’s could be positive but not by
enough to dominate the other one; this will not change thi
much as long as the bulk of the distribution of theEW’s is
skewed substantially to the positive side of zero.! But in a
system of length 2L rather thanL, there are many more
possibilities: if we divide the system into four sections
lengthL/2, one could have, for example, the second from
left havingEW

l ,0 and the rightmost havingEW
r ,0 with the

wall energies of the other sections being positive. As th
are six such choices among the four sections of the elong
system, we expect that the chances of havingS50 will be
about 6 times as large as in the cubical system—obvious
very crude approximation, but one that yields roughly t
measured magnitude of the ratioP0(2L3L3L)/P0(L3L
3L). Note that this picture implies that for systems that a
much longer than they are wide, the typical number of d
main walls in the ground state will grow linearly with th
length. The roughly random spacing between them will le
to exponential decay of the end-to-end correlations in suc
system, with a characteristic length proportional to the lin
dimension of the cross section as should be expected on
eral finite-size scaling grounds.

At conventional critical points in two dimensions, confo
mal invariance relates the exponential decay of correlati
in long tubes to the power-law decay of correlations in t
bulk in infinite systems: the exponenth is simply propor-
tional to the ratio of the width-dependent correlation leng
to the width.47 In our case, there is no such exact relation, b
one can make a qualitative argument that suggests a sim
result. Consider a region of diameter of orderl centered on
some chosen spin in the bulk of the sample and assume
outside of this region, the spins in the vicinity are11. The
only way that the spins inside the region of interest can
21 is if there is a domain wall relative to the pure ‘‘up
configuration which surrounds this region and has nega
energy. Roughly speaking, such a closed domain wall m
be made up of four or more sections which are joined
gether with each having negative~or close to zero! energy.
Since the amount of freedom perpendicular to the area
each of these will be somewhat less than their linear dim
sions, a crude approximation is that the probability of findi
each such section is of orderq and the probability of finding
the total domain wall energy negative is of orderq4. ~If a
larger number of such sections bounded a region, this wo
give a higher power ofq and a higher-order correction fo
small q; in any case, the estimate given here is very rou
especially for largerq.! With P0@cube#.0.04;q2 ~as de-
scribed in the earlier part of this section, the probability th
two domain walls with negative energy exist in a cube
;q2; such a pair of domain walls isolates the two ends of
cube from each other by a frozen interior!, this suggests tha

to
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THREE-DIMENSIONAL RANDOM-FIELD ISING . . . PHYSICAL REVIEW B65 134411
the probability for finding such a spin flipped region will b
of order r`;q4;0.002, in the same range as that foun
Although the above argument is very crude—factors of
or p’s could easily have been fudged in—it nevertheless p
vides a suggestive connection between the smallness of
ous quantities. Indeed, a related argument actually prov
more: a precise method for estimatingb/n.

Consider a single spin in the center of a large system
the critical point with, for simplicity,1 boundary conditions.
For each factor ofe1/d in length scalel, there is a probability
r` that the spin is an element of a cluster, flipped with
spect to its surroundings, with volume in the associa
rangel d<v,eld. There will, of course, be correlations be
tween the probabilities of occurrences of such inverted
gions that are similar in size and nearby to one another
inverted regions are so rare, though, the effects of these
relations will be negligible and we can assume that e
range ofl around the chosen spin is independent. A sim
picture of the behavior then emerges: the spin of interest
be in a cluster of one orientation of diameterl 1, which itself
will be in a much larger cluster of the opposite orientation
sizel 2, etc., with the successive sizes growing approximat
geometrically—in the small-r` limit as a Poisson process i
ln(l) with density dr` ~with d53). This conclusion of a
Poissonian process relies upon an assumption of scale in
ance at the critical point that is consistent with the numer
results~for similar arguments that reproduce exact results
some other random systems, see Ref. 48!. The Poisson pro-
cess should be exact in the limit of smallr` because corre
lations between events on the widely separated scale
which successive clusters typically appear should vanish
ymptotically; there will, however, be corrections and cor
lations of orderr`

2 . The probabilitypi that the spin has the
same orientation as the largest cluster—the system
L—is the probability that an even number of domain wa
separates the spin from the largest cluster; this probabilit
easily computed for the Poissonian process in ln(l) and yields
the mean value of the spin given fixed (1) boundary condi-
tions,

s̄(1)52pi21;
1

Lb/n
, ~46!

with the exponent

b

n
'2dr`.0.01160.003. ~47!

A similar argument for two spins a distanceux2yu apart in
an infinite system gives

sxsy;
1

ux2yud221h̃
, ~48!

with the modified ‘‘anomalous dimension’’ exponent fo
theseuntruncatedzero-temperature correlations given by

d221h̃52b/n'4dr` . ~49!
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This picture of droplets within droplets strongly sugge
that neither spin species will percolate at the critical poin
This is,a priori, rather surprising as the percolation conce
tration for a three-dimensional cubic lattice is substantia
less than half and so one might have expected both
species to percolate even somewhat into the ordered ph
The fact that they do not in this system is associated with
smallness ofb and the nature of the critical point.

In practice, unfortunately, the value ofb/n is so small for
the 3D RFIM that the effects discussed above will be all b
unobservable even if experiments could reach equilibriu
But in higher dimensions, 4 or 5, they might be observa
numerically as relatively large systems sizes~e.g., more than
324) can be explored.

B. Fractal dimensions of domain walls

The picture developed above suggests that the var
fractal dimensions of interfaces or domain walls at the cr
cal point will not be the same but might, nevertheless,
related to the other exponents. The fractal dimension of
spanning interface,ds ~and the dimension of the surfaces
clusters!, is the dimension of a true surface, one with
holes in it. Such a surface cuts across the whole system
the sets of sites it is separating cannot really be thought o
belonging to different states—the ‘‘up’’ and ‘‘down’’ states—
since, in an asymptotically large system, most of the s
will be frozen and unaffected by the boundary conditions.
contrast, the incongruence box-counting dimensiondI is sen-
sitive only to those parts of the system thatare affected by
boundary conditions: a fraction of order 1/Lb/n. A natural
conjecture is that the box-counting dimension is the same
that of the intersection of a typical fractal spanning surfa
with a fractal set of dimensiond2b/n, yielding

dI5ds2b/n. ~50!

This picture is somewhat analogous to what would oc
right at percolation in a diluted ferromagnetic Ising system
zero temperature: in a finite fraction of the samples, forcin
domain wall by changing the spin boundary conditio
would cost no energy, while in the rest it would cost
energy proportional to the area of an interface that only c
across the fractal incipient infinite cluster; this interfa
would have dimension analogous to ourdI .

The exchange energy dimensiondJ is sensitive to both the
frozen and the unfrozen regions. But a reasonable gues
that this is dominated by the unfrozen regions as the fro
regions contribute random signs. This suggests that

dJ5dI5u11/n, ~51!

which, if correct, implies that a relation obtains betweends
and the other exponents:

ds5u1
11b

n
. ~52!

We should note, however, that these conjectures are d
cult to test in three dimensions, due to the smallness ofb.
Our estimated exponents are in slight disagreement w
1-21
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A. ALAN MIDDLETON AND DANIEL S. FISHER PHYSICAL REVIEW B 65 134411
these conjectures, but corrections to scaling that are not
parent can be important at this level of accuracy. Nevert
less, our apparent values fords andds

c do appear to be large
thandI anddJ .

In higher dimensions, testing the conjectured scaling re
tions between these dimensions and the other expon
might be feasible. It is of course possible, however, that
ther analytic understanding would imply that at least some
the fractal dimensions could be independent exponents.

C. Specific heat

The specific heat of the RFIM can be experimenta
measured28 and is of theoretical importance. Monte Car
methods at finite temperature have been used to estima
value.13,49 In addition, Hartmann and Young~HY! have
recently27 computed the exponenta describing the diver-
gence of the specific heat, using ground-state configurati
They find a value ofa520.6360.07. Using thesamether-
modynamic assumptions, but different analysis methods,
find a520.0160.09.

One expects27 that the finite-temperature definition of th
specific heat can be extended to zero temperature, with
second derivative of̂E& with respect to temperature bein
replaced by the second derivative of the ground-state en
densityEgs with respect toh or, equivalently, up to constant
J. The first derivative]Eg.s./]J is just the average number o
unsatisfied bonds per spin,EJ5L2d(^ i j &sisj . HY calculate
the needed second derivative by finite differences ofEJ(h)
for values ofh nearhc . (EJ is not explicitly dependent onJ,
but changes discontinuously in a finite sample when the s
configuration$si% changes; the second derivative is thus a
of d functions which are smoothed by the finite differen
ing.! The finite-size scaling form assumed is that the singu
part of the specific heatCs behaves as

Cs;La/nC̃@~h2hc!L
1/n#. ~53!

HY determinea by fitting to the maximum of the peaks i
Cs , which occur athpeak(L)2hc;L1/n.

Here, we estimatea using the results for the stiffnes
from Sec. V and also by studying the behavior ofĒJ at hc .
The first estimate found by applying Eq.~6! with our values
of u andn is a (1)520.0760.17. The computation from th
behavior ofĒJ is based on integrating Eq.~53! up to hc ,
which gives the dependence

ĒJ,s~L,h5hc!5c11c2L (a21)/n, ~54!

with c1 andc2 constants. We have computedEJ for a large
number of samples of various sizes and estimated the si
lar part of the sample average. We directly fit our data
ĒJ(L), at fixed h, to the form of Eq.~54!. The fit for the
nominalhc , h52.27, is shown in Fig. 26. The fitted value
are (a21)/n520.8260.02, where the quoted error is
purely statistical. The fit is good for 16<L<256, with x2

50.65 for a three-parameter fit to five data points. This fi
also consistent with that found from taking the derivative
ĒJ with respect to ln(L),
13441
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d~ ln L !
;L (a21)/n, ~55!

at h52.27, which removes the need to fit toc1, but intro-
duces larger uncertainties, due to the derivatives. These
for h near hc is displayed in Fig. 27. By varyingh (h
52.255,2.280), we estimate the systematic errors, given
uncertainty inhc , arriving at the value (a21)/n520.82
60.10, which, usingn51.3760.09, gives a second estima
a (2)520.1260.16.

Besides the uncertainties inhc , this result fora is af-
fected by finite-size corrections. We now argue that th
corrections can be reduced by extrapolation and that a c
nection exists betweena, ds

c and b/n: EJ , being the bond
part of the energy density, is simply given by the density
domain walls, whose scaling can be found from the result
Sec. VIII. Namely, taking the surface area of clusters to sc

with linear size l as A; l ds
c
;vds

c/d and using the constan
limit for the distribution of volumesr(v)d@ ln(v)# at largev,
the domain wall density in a finite sample is found by int
grating the wall density, taking into account intersections
tween the scales, overL up to the system size, giving

ĒJ,s;Lds
c
2d2b/n. ~56!

This exponent can be justified by considering the chang
ĒJ,s upon doubling the system size. With finite probabili
(r` ln 2), an extra domain wall of scaleL will be introduced.

The connected surface of the domain wall will have areaLds
c
,

but theincrease in domain wall areawill be smaller, as the
domain wall will intersect frozen regions. The fraction of th
sample that is not frozen scales asL2b/n at criticality; the
intersection of the new wall and the unfrozen region the

fore scales as;Lds
c
2b/n, so that the expected fraction o

newly broken bonds~compared with the smaller sample! is

;Lds
c
2d2b/n. ~The domain wall intersects frozen regions th

FIG. 26. A plot ofEJ , the bond part of the energy density, fo
h52.27, as a function ofL. The fit shown is of the formEJ5c1

2c2L (a21)/n, with c150.14632,c250.29098, and (a21)/n5
20.82. The residuals~inset! give x250.65. The statistical error in
(a21)/n for fixed h nearhc is 0.02, but the uncertainty in this rati
is 0.10 due to the uncertainty inhc .
1-22
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THREE-DIMENSIONAL RANDOM-FIELD ISING . . . PHYSICAL REVIEW B65 134411
did not have surfaces, as they were embedded in like sp
adding total area, and also intersects frozen clusters that
surface area, removing total area, but these contributions
erage to zero.! This argument implies the scaling relation

a21

n
5ds

c2d2b/n. ~57!

Note that this relation is consistent with modified hypersc
ing, Eq. ~6!, and the conjectured relationships among
domain wall dimensions, Eqs.~43! and ~52!. Applying this
result to our data, we find

~a21!/n520.7460.02, ~58!

giving our best estimate

a520.0160.09. ~59!

Note that the magnitude of theb/n contribution is small
compared with the error.

Our result fora is in marked disagreement with the valu
from HY. The scaling assumptions for our and HY’s analy
are identical. It may be that one set of results is m
strongly affected by finite-size errors, though we do fit larg
values ofL. We note that the value ofa that we find usingEJ
is extremely sensitive to the assumed value ofhc and that the
uncertainty inhc dominates the error estimate. A change
hc by dhc50.01 gives a changed@(a21)/n#'0.2 or da
'0.3. We are fitting for values nearhc , whereas the peaks i
C found by numerical differentiation are somewhat abo
hc . In Sec. X, it is found that the convergence to a scal
function forh2hc more than a couple of timesL21/n, where
the peaks inC are, is slow compared with the convergence
h5hc .

We use here two independent data sets to arrive at
estimates fora: ~a! total stiffness measurements on isotrop
and anisotropic samples, with fixed BC’s on two walls, a
plying finite-size scaling, and~b! the measurements of th
bond part of the total energyEJ using periodic isotropic

FIG. 27. Plots of the discrete derivative with respect to ln(L) of
EJ , for h52.255,2.270, and 2.285. The solid lines show power-l
fits for L>30, with slopes 1.21,0.84, and 0.60, respectively. Us
the error estimate forhc , this gives (a21)/n520.8460.10, con-
sistent with the results from plots as in Fig. 26.
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samples and fitting using a finite-size scaling form. For~b!,
we analyze the samples in two ways: directly extractingEJ

data and also estimating the asymptotic scaling using theds
c

andb/n measurements. This latter method is least sensi
to uncertainties inhc .

D. Deviations from criticality

As the system is taken away from the critical point, t
nature of the spin clusters and correlations changes i
straightforward way. If the exchange is increased, driving
system into the ordered phase, then the large inverted d
lets, which typically have gained energy of orderl u at the
critical point, will usually have this energy gain overcome
the extra exchange energy cost of orderdJlJ

d when l is
greater than the correlation lengthj. Large inverted regions
will be exponentially rare on length scales longer thanj.

If the random field is increased or the exchange decrea
to drive the system into the disordered phase, we can
longer simply focus on the inverted regions that already e
at the critical point but must also consider putative inver
regions thatcouldexist. In any region with diameter of orde
l, there will be, at the critical point, an excitation that flips
order l d spins for a typical energy cost of orderl u ~more
precisely it will only flip of orderl d2b/n because of the fro-
zen regions within it which are not sensitive to the bound
of the region!. Since decreasingJ will decrease the energy
cost of this excitation by an amount of orderdJLdJ, a good
fraction of these ‘‘excitations’’ will have negative energy an
thus occur spontaneously at scales of orderj. On this and
larger scales, the orientation of the spins will be determin
primarily by the local random fields within a distance
orderj of the spins of interest.

E. Thermal fluctuations and excitations

The effects of thermal fluctuations have been discus
elsewhere3,50 in the general framework of a zero-temperatu
random-field critical fixed point. We will thus restrict ou
selves here to a few comments in light of the present m
detailed picture.

At the critical point, as has been outlined above, th
should be potential excitations with energy of orderl u

around each point, an independent one for roughly each
tor of 2 in length scalel. Since the energies of these a
random, there is a finite probability density that the energy
any given one of them is near zero—indeed there wo
have been ones with negative energy but these give rise
stead to inverted clusters in the ground state. The ther
fluctuations are dominated by therare active excitations
whose energy is within of orderT of zero. Becauseu is
positive, the active excitations with diameters of orderl @1
occupy only a small fraction—of orderT/ l u—of the volume.
But this small active fraction dominates the correlations,
particular causing the thermal fluctuations of the spin-s
correlations, thetruncated correlations, to decay as

^~sx2^sx&!~sy2^sy&!&;
T

ux2yud221h
, ~60!

g
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A. ALAN MIDDLETON AND DANIEL S. FISHER PHYSICAL REVIEW B 65 134411
where the exponenth is related to that of the zero
temperature correlations, Eq.~48!, by

h5h̃1u, ~61!

the extra factor ofT/ux2yuu coming from the probability
that both spins are in the same active excitation.3

In general, except for fluctuation quantities such as
truncated correlations, the statements that we have m
about zero temperature will hold with minor~if sometimes
subtle! modifications provided one considers always free
ergies instead of energies.

One effect which must be mentioned, however, is
‘‘hypersensitivity’’ to changes along the critical line—
sometimes, rather misleadingly, referred to as ‘‘chaos.’’
long asu,d/2, which we believe it probably is, althoug
only barely so, which spins have which orientation at t
critical point will depend, on sufficiently large scales, e
tremely sensitively on where one is on the critical line.22,51

Unfortunately, due to the smallness ofd/22u, this effect is
unlikely to be observable in three dimensions but may be
higher dimensions for whichu is expected to deviate mor
significantly fromd/2. ~In six dimensions and above,u52.!

X. GROUND STATES AND SENSITIVITY TO BOUNDARY
CONDITIONS

The simple picture of the random-field Ising system e
hibits two phases with a single transition between them:
ordered phase in which a typical spin is aligned with oth
far away and a disordered phase in which the magnetiza
is zero and the orientation of each spin is determined loc
by the random fields in its vicinity. In the ordered phaseh
,hc , spins have long-range correlations and there are b
‘‘up’’ and ‘‘down’’ states, although domain walls can be in
troduced that divide the system into up and down regions
contrast, whenh.hc , the spin correlation function is sho
ranged, with characteristic scalej;(h2hc)

2n, and there is
only one state; because of the locality, large-scale dom
walls do not exist in this phase.

But it is interesting to ask, by analogy with spin glass
and other systems with quenched randomness, whethe
random-field Ising system could be more complicated, es
cially near to the critical point. In order to address this,
must characterize the macroscopically distinct states in
infinite system: is there, as the simple picture would sugg
simply one state in the disordered phase and two in the
dered phase? Or is the behavior more subtle?

It has been claimed in the literature that ‘‘replica symm
try breaking’’ calculations show the existence of an interm
diate glassy phase, where many solutions with distinct lo
magnetizations coexist for a finite range of parameter,
tween the paramagnetic and ferromagnetic phases.8,9 But
what does this mean? Indeed, what does one mean
‘‘ground states’’ in an infinite system with random co
plings? Furthermore, if one answers these questions, wh
the connection between multiplicity of infinite syste
ground states and the notion of ‘‘replica symmetry bre
ing?’’

To consider these questions, it is simplest to restrict c
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sideration to systems, such as the RFIM with Gaussian
dom fields, in which the finite-system ground states for giv
boundary conditions are nondegenerate with probability
~Otherwise one gets into the complications of ground-st
entropy as in diluted antiferromagnets in a field and the
modal RFIM,52,53 but these issues are distinct from the ba
questions of ‘‘states’’ on which we focus.!

A. Infinite-system ground states

A ground state of an infinite systemwith finite-range in-
teractions is a configuration whose energy cannot be
creased by changingany finite collectionof spins. Equiva-
lently, a ground state can be thought of as the limit o
sequence of finite-system ground states of larger and la
subsystems, generally with appropriately chosen bound
conditions on each size. Thus the set of all ground states
a specific infinite system is the set of all distinct limits
sequences of boundary conditions.32 For two ground states to
be distinct, they must be distinguishable within some fin
distance of the origin: if the finite-system ground states dif
only in regions whose distance from the origin grows wit
out bound as the system size increases, then the infin
system ground states are the same.54 All infinite-system
ground states have thesame energy densitybut comparing
the energy of a pair of ground states is not generally w
defined.

Many of the subtleties involved in considering infinite
system ground states come to the fore in the ordered pha
the random-field Ising model. If we take the limit of large
and larger systems with open~i.e., free! boundary conditions
centered, for example, on the origin, then the finite-syst
ground states will not approach a limit. This can be read
understood in terms of the ‘‘up’’ and ‘‘down’’ states whic
we know exist in the infinite system—albeit with some fini
density of misaligned spins.1 A given finite sample of volume
V will typically have random fields whose net effects are
cause an energy difference between the up and the d
states which is of orderhAV. Thus the ground states wit
open boundary conditions will alternate randomly fro
mostly up to mostly down as a function of~the logarithm of
the! system size. Of course, the up and down states can
found by either taking the appropriate subsequences w
open boundary conditions or by taking1 or 2 boundary
conditions on all sizes. The problem of energy compariso
now clear: which of these two states has the lower energ
a specific infinite system? This is manifestly ill defined, i
deed, because of the effects of the boundary conditions;
not possible to uniquely define the energy of an infini
system ground state to higher accuracy than of order
surface area of the region under consideration.

We can, however, compare the energies ofsomepairs of
infinite-system ground states even in random systems
high dimensions, greater than 3, one can make ground s
in the ordered phase of the RFIM with a domain wall th
passes near the origin with a chosen orientation by putting1
boundary conditions on half of the boundary and2 on the
other half. If the random fields are weak enough~in four and
five dimensions or with arbitrary randomness in the orde
1-24
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THREE-DIMENSIONAL RANDOM-FIELD ISING . . . PHYSICAL REVIEW B65 134411
phase in six or more dimensions!, the domain wall will be
flat on large scales with onlyfinite typical deviations from
planarity and its position and orientation can then be fixed
its intersection with the boundary which is forced by
‘‘seam’’ between1 and2 areas of the boundary condition
The infinite-system domain wall state so constructed will
stable to changing any finite collection of spins, but in
well-defined sense, it has higher energy than either the u
the down states. As the domain wall costs energy per
area, if one looks at a sufficiently large region that overla
the domain wall—say, cubical withv5 l d—the difference in
energy between the domain wall state and the up state wi
of orderJld216hld/2 which is positive almost surely in th
limit of large l.

In contrast to the higher-dimensional case, in the thr
dimensional RFIM of primary interest, onecannot make
infinite-system domain wall states straightforwardly even
the ordered phase. If one tries to set up a domain wall tha
say, horizontal in a system of sizeL3L3L, one will find
that the wall wanders in the vertical direction away from t
plane determined by the boundary joint by a random, sam
and subsystem size-dependent amount of orderLz with z
52/3.38–40 No matter how one adjusts the boundary sea
one is unlikely, in the large-system limit, to be able to for
the wall to be both near the origin and nearly horizont
Thus the sequence of domain wall forcing boundary con
tions will, in the ordered phase, contain one subseque
which converges to the up state, another which converge
the down state, and, almost surely, no other convergent
sequences.~There are subtleties, which we will not go int
here, if one allows a wall in the ordered phase to haveany
configuration-dependent orientation; these will be addres
in Ref. 42.!

The crucial question that we would like to address her
whether there exists more than one infinite-system gro
state either at the critical point or slightly into the disorder
phase. In principle, to investigate this one would need
study all possible sequences of boundary conditions, o
ously an impractical task. In practice, one must restrict c
sideration to some small subset of boundary conditions
try to extract useful information about the infinite-syste
limit by carefully studying the size dependence of vario
boundary conditions on regions near the origin.

B. Numerical studies

We have studied how the ground-state configurati
change in response both to varying the boundary conditio
fixed size and to changing the system size. We compare
figurations for which the boundary spins are ‘‘open’’ (O),
fixed positive (1), fixed negative (2), and random fixed
spins (R). For fixed-size calculations, for each realization
the random fields we compare all possible pairs of bound
conditions in the set$O,R,1,2%. We also compare ground
state configurations for open boundary conditions on
sample of size 2L21 ~denotedD) that contains a subsamp
of size L, with the states for boundary conditionsO,1, or
2 imposed on the subsample.~The values ofL were taken to
be odd for these comparisons, so that the origin coinci
13441
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with a spin.! The results of all of the comparisons are cha
acterized by counting how many spins differ for the tw
boundary conditions in a volumew3 centered at the origin.

The primary emphasis of these calculations is to de
mine whether changes in boundary conditions can cre
configurations that differ from those with uniform1 or uni-
form 2 boundary conditions, i.e., those that produce the
and the down states in the ordered phase. If the1 and the
2 boundary conditions produce identical configurations
the deep interior, this suggests that there is only one stat
the probability that some other boundary condition produ
a configuration in the interior that differs from those ofboth
the 1 and 2 boundary conditions vanishes asL→`, this
suggests that there are at most two states.

We report here a selection of results for~a! the probabili-
ties PO6(h,w,L)@PR6(h,w,L)# that the boundary condition
O @R# gives a central volumew3 that differs from that for
both 1 and 2 boundary conditions at fixed sample sizeL,
~b! the probabilityPDO(h,w,L) that the number of differing
spins within the window is nonzero when one compares o
boundary conditions for samples of size 2L21 and a sub-
sample of sizeL, and ~c! the probabilityPD6(h,w,L) that
open boundary conditions on the larger sample gives a c
tral volume w3 that differs from that forboth 1 and 2
boundary conditions on the smaller sample.

The calculation of the probabilitiesPO6 and PR6 @com-
parisons~a!# allows us to study ground states nearhc . The
events of interest are those where a given boundary cond
B, eitherB5R or B5O, gives a configuration distinct from
both the1 and the2 boundary conditions. Forh.hc as
L→`,PB6 is expected to go to zero, since the effects of t
boundary penetrate only a distanceO(j) into the sample. For
h,hc , in contrast, most of the interior configuration is eith
1 or 2 and the chances that random or open bounda
yield some other possibility should again decay expon
tially. At h5hc , the correlation length diverges, and at th
critical point, we expect that the probability of a domain wa
passing near the center decays only as a power of the sy
size. Using simple arguments based on the fractal natur
domain walls,23,24 the probability that a window of sizew
will intersect an object of fractal dimensiondf scales as
(w/L)d2df . This is analogous to the probability of a doma
wall in the ordered phase passing near the origin as discu
above. The appropriate fractal dimension to use here at
critical point is the dimension from box counting,dI , which
we studied above. Basically, there is a substantial probab
that open or random boundary conditions will, at the critic
point, induce a system spanning domain wall relative to
1 and2 boundary conditions. Near the critical point, sca
ing suggests the form

PB6~h,w,L !5Ldf2dPB@w,~h2hc!L
21/n# ~62!

for B5R or O. We plot our data forPO6 ,w53, in Fig. 28
and Fig. 29~a!, assuming this scaling form, takinghc
52.270,df52.25, and the best fit valuen51.37. The results
for PR6 , while not shown here, are nearly identical, app
ently converging for largeL near the critical point to an
extremely similar, if not the same, scaling function, thou
1-25
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the smallerL curves have slightly different finite-size corre
tions. We expect thatdf is equal to the incongruent doma
wall dimensiondI , as this is the domain wall dimension th
describes changes in the bonds, and this expectation is
sistent with our results.

We note that taking the valuedf52.20 appears to give a
better fit for the peak heights away fromhc , but as conver-
gence in several quantities is poorer away fromhc , the value
df52.25 is acceptable. Directly fittingthe peaksfor df gives
a valuedf52.2260.03.

The data for comparisons~a! should also scale withw
for large w:P@w,(h2hc)L

21/n#5wd2dfP8@(h2hc)L
21/n#.

However, we do not have enough range inw for w..1 to
confirm this; forw small, discreteness effects will prevent
collapse. ForL5129, the data do collapse well forw
565,33,15, assuming the above scaling form and the be
values ofhc ,dI , and n. Note that similar finitew effects
were also seen in the data of Ref. 23, where largew was
needed to see convergence to power law behavior inw,
though scaling worked well for fixedw with L@1.

FIG. 28. Plot of the unscaled probabilityPO6 that the central
window of sizew53 of a ground-state configuration with ope
BC’s on a given sample of sizeL differs from the configuration in
the window withbothuniform 1 and2 fixed boundary conditions
The lines are intended to organize the data visually.
13441
n-

fit

Comparison~b! compares open boundary conditions
two samples of different sizes, the smaller being a subsam
of the larger centered at the origin. In the disordered pha
with the local spin configuration determined by the rando
fields nearby, doubling the size of the system is not expec
to change the configuration in small windows near the orig
for w!L and L@j;(h2hc)

2n. But for h,hc and L@j
;(hc2h)2n, the spin orientation is determined by the sig
of the total~effective! random field which will depend sto
chastically on the system size as discussed in the prev
subsection. For a fully magnetized system (umu51), these
simple expectations yieldPDO→0 for L→` with w fixed
for h.hc and

PDO→~7p2!21/2E
0

`

dx E
0

`

dy e[ 2y2/22(y1x)2/14] ~63!

for h,hc asL→`. The integral in Eq.~63! is the probability
that the total random field in the volume (2L)3 exceeds in
magnitude and is opposite in sign to the total random field
a subvolumeL3, assuming Gaussian distribution of the fie
on length scaleL with varianceL3. This integral gives a
value PDO50.384 973 . . . forh,hc . The results of our
ground-state studies, displayed in Fig. 30, appear to be c
sistent with this limit, forh,hc . This confirms the expecta
tion that as the infinite-volume limit is taken in the order
phase, the spins in a fixed volume flip between two disti
configurations infinitely often — typically every factor of
or so in length scale. Near the critical point, the probabil
of differences in the window between the full sample a
subsample will be modified since, withumu,1, there is a
nonzero probability that the window will be contained in
frozen spin clusters that is unaffected by the overall majo
random field. But thisw-dependent difference only become
important nearhc , asb is so small.

Right at the critical point the effects of frozen clusters
all scales should in principle suppressPDO to zero in the
largeL limit for all w, but as it will decay only as 1/Lb/n, this
effect is hard to see. In the disordered phase, our data
consistent withPDO vanishing exponentially forL@j.

Comparison~c! allows us to address nearly the sam
question as~a!, but more directly checks that increasing th
volume of the system has the effect of setting an effect
e

e

FIG. 29. Scaling plot for the
probability that the central win-
dow of size w53 of a ground-
state configuration differs from
that of uniform 1 or 2 fixed
boundary conditions for~a! open
boundary conditions on the sam
sample of sizeL and ~b! open
boundary conditions on a sampl
of size 2L21. The values used
for scaling arehc52.270,n51.37,
and df52.25. The probabilities
scale very well nearh5hc , but
the peak heights, ath.hc , con-
verge slowly.
1-26
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THREE-DIMENSIONAL RANDOM-FIELD ISING . . . PHYSICAL REVIEW B65 134411
boundary condition of1 or 2 on the central region. The
scaling collapse, shown in Fig. 29~b!, is acceptable, as it is in
~a!, with a scaling function similar to, but distinct from tha
for comparison~a!. The results forPD6 show that, except for
a region nearhc that shrinks and decreases in probabil
with increasingL, the configuration given by the larger sy
tem with open boundary conditions doesnot produce a dis-
tinct interior volume from that found by imposing1 or 2
boundary conditions on the smaller system of sizeL.

FIG. 30. ProbabilityPDO that the central window of size~a!
w51 and~b! w53 of a ground-state configuration in a subsam
of size L differs from that in a sample of size 2L21, with open
boundary conditions on the subsample and sample. Note tha
sample sizes are approximately separated by a factor of 2, ex
for the largest two sizes. For smallh, the probabilityPDO'0.38,
quantitatively consistent with a simple model with two states. F
largeh,PDO→0 asL→`, consistent with a single state. The sol
line shows the step function that would obtain forPDO in the
`-volume~and largew) limit, if it were the case thatumu[1 in the
ferromagnetic phase, takinghc52.270. The data are consistent wi
the calculatedPDO values approaching this step function at larg
sizes L, for hÞhc . Note that at h5hc ,PDO'0.36860.006
,0.379 . . . for L597 andL5129,w53, consistent with a con-
stant or slowly decaying value ofPDO at the critical point. The
dashed curves are spline fits to organize the data visually.
13441
Taken together, these results are consistent with the
pectations from the simple scenario for the structure of
states given above; there do not seem to be any indication
stranger behavior. Thus, in the absence of concrete tes
predictions from those who believe there should be m
than just the simple set of states, we can do no more t
conclude that if they can indeed occur, it must be only un
very subtle conditions.

XI. SUMMARY

In this paper, we have presented numerical results for
ground states of 3D random-field Ising magnets focusing
the transition between the ordered and disordered pha
Our results allow us to conclude that the transition is sec
order, though the magnitude of the magnetization vanis
very slowly as the critical random-field strengthhc is ap-
proached from below. In addition to the magnetization,
have studied the stiffness of the system and some of
geometrical aspects, in particular the fractal properties of
main walls at the critical point. In general, the results ag
very well with a scaling picture of the transition introduce
some time ago3 and extensions of it to the properties studi
here.

Some earlier authors have suggested that the behavio
the RFIM near to the ordering transition will be more com
plicated than this scenario, finding ‘‘replica symmetry brea
ing’’ ~RSB! in mean-field calculations under certain appro
mations, leading to an intermediate glassy phase.8,9Although
the physical meaning of RSB in this context is not ma
explicit, if we take it to imply the existence of many infinite
volume ground states, as is claimed for mean-field s
glasses, such a result would have testable consequence
though a full test of the dependence of the ground states
sequences of boundary conditions that this would imply
beyond the scope of today’s computers and algorithms,
have made some preliminary tests on the dependence
boundary conditions. In particular, we have studied the pr
ability that the configuration in a fixed volume at the cen
of a sample can be induced to differ from both the fixeds
511 and fixed s521 boundary conditions by variou
other boundary conditions. With the range of boundary c
ditions we have tested, this probability vanishes in the
pected manner asL→`. Indeed, the power-law dependen
of this probability onL and the scaling withh2hc are con-
sistent with the domain wall fractal dimension and corre
tion length exponents determined by other methods. Our
sults are thus consistent with a single disordered to orde
transition athc , with a unique state in the disordered pha
~with no indication of glassy behavior in the statics! and a
pair of states~‘‘up’’ and ‘‘down’’ ! in the ordered phase. Re
cent simulations at finite temperature in smaller systems
Sinova and Canright,55 who used the spectrum of the spin
spin correlation matrix andP(q) distributions, also suggest
single transition.

At nonzero temperature, the thermodynamic properties
the phase transition are believed to be similar to those at
temperature: the transition is governed by azero-temperature
fixed point. But at positive temperature, one can also co
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A. ALAN MIDDLETON AND DANIEL S. FISHER PHYSICAL REVIEW B 65 134411
sider dynamic effects; indeed, as has been known for a l
time, these dominate both Monte Carlo simulations and
periments. As first pointed out by Griffiths,56 random sys-
tems can have singularities — albeit very weak ones —
thermodynamic properties well before the transition
reached and this will be the case for the RFIM. These r
region effects are unobservable as far as equilibrium pro
ties in classical systems, but do have dynam
consequences.57–59 In the Griffiths region above the trans
tion, the average dynamic autocorrelations will decay m
slowly than exponentially because of the effects of anom
lously ordered local regions. Perhaps this kind of rare-reg
effect and the more interesting but related effects that oc
as the transition is approached are what is indicated by R
But whether this is the case or whether something m
novel is implied, clear statements of testable predictions
needed in order to distinguish between various scenario
such predictions involve static ground-state properties,
RFIM is as good as system as any on which to perform s
tests as the system sizes that can be studied are quite im
sive: comparable to the largest that can be studied by Mo
Carlo simulations in pure systems.
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APPENDIX: ALGORITHM IMPLEMENTATION

We briefly describe here the algorithm and code us
including modifications to the conventional RFIM max-flo
problem; outline the verification procedure for the code; a
briefly outline the statistics and error bar procedure.

Base code and modifications

There is a now well-known mapping of the RFIM groun
state problem to a min-cut/max-flow problem.4 This corre-
spondence and the push-relabel algorithm for the max-fl
problem, including terms used here~such as layers and ex
cesses!, is well described in reviews and texts, such as Re
19,60, and 17. The implementation of the Goldberg-Tarja61

max-flow algorithm that we started with was the h_prf co
in C written by Cherkassky and Goldberg,16 which in general
performs quite well for a number of graph topologies.

We modified the code to be more compatible with t
C11 language and developed objects~including samples,
configuration subsets as windows, and random number
erators! to conveniently implement a variety of bounda
conditions and analyses. One very simple benefit of an i
grated code is that the graph input, which is quite cos
when read as a text file, is greatly sped up. More importan
13441
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the short main routine was easily modified to compute
swers to a wide number of questions.

The most significant change to the core push-relabel c
was a modification that allowed for positive and negat
excesses. This modification was developed in collabora
with McNamara.62 The central idea is the elimination of th
source and sink nodes, which conventionally have links
the nodes of the graph representing the spinssi , in favor of
introducing nodes with a negative excess. The first step
the conventional algorithm pushes as much flow as poss
from the source onto the lattice nodes. This step is repla
in our code with an initialization where a positive excesshi

is placed on each node for whichhi.0. The connections to
the sink are substituted for by placing anegativeexcess on
the nodes withhi,0. The push-relabel algorithm then pro
ceeds with the usual steps, with the nodes with positive
cess having their excess pushed and their heights relab
as appropriate. The negative excess nodes act as sinks fo
positive excess, until such a nodes total excess beco
positive. Besides removing the links to the source and s
the global relabeling step must be modified. Instead of c
rying out a breadth first search from the sink node,
breadth first search instead starts from the nodes with n
tive excess.~If no negative excess nodes remain, the alg
rithm terminates with flow equal to the sum of the positi
hi .) The initial totals of the positive and the negative e
cesses are compared with the final totals: the decrease in
total positive flow, for example, gives the maximum flo
through the graph. The spin configuration and magnetiza
are determined by counting the number of nodes that ar
the maximal layer.

The removal of the source and sink nodes reduces
amount of memory used by an amount 1/(d11) relative to
the conventional memory requirements and results in a sl
speedup. For the largest lattice sizes studied (2563), memory
requirements were reduced at the cost of speed. If poin
and integers each require 4 bytes, the Cherkassky and G
berg implementation requires 16 bytes for each arc and
bytes for each node~counting the layers as part of the pe
node requirement!. The use of pointers was retained for sy
tem sizes up to 1283. For a regular lattice, however, th
nodes at the end of each arc, sister arcs, and the list of ar
each node can be recomputed whenever needed. For a
lattice, then, the number of bytes per node is reduced fr
(6316132)5128 bytes to (634132)556 bytes. ForL3

51283 samples, the running time increased by a factor
'2.5, primarily due to the recomputation of the tail nodes
the arcs and the sister arcs.

One modification for the 2563 samples was made that
not strictly sound, in that the algorithm could conceivab
fail. In order to save memory, a limit to the maximum num
ber of layers was implemented. In the Cherkassky-Goldb
code, the number of layers allocated is given by the num
of nodes in the graph. In practice, however, far fewer
needed. A check over 1000 samples for 8,L,128 was car-
ried out for several values ofh. The number of layers
needed,K, appears to be largest forh'hc . At this value, the
sample mean of the maximum layer needed is abouK̄
1-28
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THREE-DIMENSIONAL RANDOM-FIELD ISING . . . PHYSICAL REVIEW B65 134411
'2L. The distribution over samples of the number of laye
needed roughly scales withL, though the dependence of th
width of the distribution could beLx, with x near 1. In any
case, the distribution drops off very quickly withK. The
maximum number of layers needed over 1000 samples sc
roughly linearly withL,Kmax'7L, where the maximum is for
periodic boundary conditions and over a range ofh,2.0,h
,2.5, with a peak inKmax(h) nearhc'2.27~though the peak
is slightly abovehc for smaller samples!. The mean numbe
of layers fits relatively well to a scaling collapse, with
maximum value scaling consistent withL1.08 ~or even
LAln L), scaling abouthc'2.27 with n'1.35. We set 5
3104 as the maximum number of layers for all sample siz
which is nearly 2003L for the largest samples studied. Th
number of layers was easily sufficient for all samples st
ied. The amount of memory needed for cubic lattices is th
481O(L22) bytes per node.

Verification

The modifications made to the base code, while theor
cally sound~except for the limit on the number of layers!,
could inadvertently introduce errors, due to errors in codi
We therefore verified the code against the Cherkass
Goldberg codes h_prf and hi_pr~version 3.3! codes16,63 and
a selection of other codes that were not based on a p
relabel algorithm. This was done by having the product
code write out the list of thehi . A small program then con
verted thesehi into arcs and nodes into a graph descripti
DIMACS format, using the conventional representation with
source and a sink.

These graph descriptions were then used as input to h_
hi_pr, and other codes, such as those developed in the
DIMACS Challenge.64 The flows and the magnetization from
these available algorithms were then compared, sample
sample, with the production code. The precise compari
was done for a few tens of samples with ferromagnetic c
pling strengthJ510,102, . . . ,107, relative disorder strength

FIG. 31. Elapsed time for computing ground states in the RF
plotted vsh, for linear sizesL58,16, . . . ,128. The ‘‘fast’’ algorithm
is applied, with the larger memory requirements, on a 766 M
Pentium III processor. The peak timesper spinscales nearly lin-
early with L.
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h/J51,2.3,3,10, and system sizesL54,8, . . .,128. The pro-
duction code and the other algorithms agreed in all ca
except when the flow exceeded 231, which was generally the
maximum possible flow in the available algorithms. The p
duction code used here does not have that restriction, as
computation is done at the end by comparing the initial a
final positive and negative excesses, which were summe
as double precision quantities. The code was able to ha
larger flows consistently, as could be verified by scalingh
andJ to large values~multiplying J and thehi by a factor of,
say, 105 and checking that the maximum flow increases p
portionately and that the configuration is unchanged!.

For efficiency, we have used an integer algorithm, with
resolution of 104 by replacing thehi by random integers
found by roundingzi3104 toward zero, withzi Gaussian
random variables with zero mean and unit variance and
exchange byJ/h3104. We checked thatreducingthis reso-
lution by a factor of 10 for selected measurements did
affect the computed averages, such as the stiffness in
isotropic and anisotropic samples for systems up to 1283. For
a resolution of 102, there were discrepancies outside of s
tistical errors, but these discrepancies could be consiste

,

z

FIG. 32. Statistics for the ‘‘operations,’’ pushes~a! and relabels
~b!, performed in computing ground states in the RFIM, plotted
h, for linear sizesL58,16, . . . ,128. The peak number of operation
per spinscales nearly linearly withL ~nearhc). At both high and
low h, the number of these rearrangements scales nearly asL0.3.
1-29
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explained by the effects of rounding to an integer, wh
shifts the width of the distribution ofhi by a small, predict-
able amount.

We also tested the assumption that the cut found
unique~that is, that the ground state was unique, for a giv
sample.! Some accidental degeneracies were found, at
level of a fraction of spins'0.931026, for h near 2, includ-
ing hc . This would result in the magnetizations being
error at the level of,1026, well within the statistical errors
Increasing the resolution by a factor of 10 increases the
ning time by about 7% and reduces the fraction of degen
ate spins to'231027. As the degeneracies were for th
most part attributable to single spins, were rare, and did
affect any of the sample averaged results in the cases
tested, the integer scale of 104 was more than sufficient fo
this study.

We have verified that our choice of random number g
erator does not affect the results. Specifically, we used
generators for the computations of the magnetization
domains~defined in Sec. VIII! in 2563 samples ath52.27
'hc and found the results to agree within statistical err
~the results reported pool the results from these generat!.
We also checked the results from the two generators aga
each other for a larger number of smaller systems.

Though quantities computed and the details of our in
pretation differ from previous work, the numerical values f
v.
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the same sample sizes and measurements~for example, mag-
netization and the largest cluster sizes! are consistent with
published data.12,45

Timing

Consistent with similar optimization problems related
physical problems, the typical CPU time needed to find
ground state scales roughly asN1.3 nearhc . Roughly, it takes
about 16–20 times longer to find the ground state each t
the sample size is doubled, forh'hc . Using CC on a 400
MHz Sun UltraSparc II~the San Diego Supercomputin
Center Sun HDSC10000!, a 2563 lattice required 913 MB of
memory total for the graph data, the instructions, and
data structures required for analysis. Running time for t
size and this architecture averaged 1.8 h per sample, foh
52.27. Run times, normalized to the elapsed time per s
for the larger memory algorithm, with the full data structur
are plotted in Fig. 31. The mean number of primitive ope
tions per spin is plotted in Fig. 32. Clearly, the shape of
elapsed time versush sharpens some asL increases. The
peak running time scales as;L4.0 over the scalesL
58 –128. Further details of the scaling of the running tim
and connections between the algorithm and the physical c
cepts of ground-state degeneracy and correlation length
described in Ref. 65.
tion
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