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A systematic field-theory approach to electron spin reson888& in the S=1/2 quantum antiferromag-
netic chain at low temperatuie(compared to the exchange couplifigis developed. In particular, effects of
a transverse staggered fididand an exchange anisotrofincluding a dipolar interactions on the ESR line
shape are discussed. In the lowest order perturbation theory, the linewidth is givdh@3? and o (5/J)2T,
respectively. In the case of a transverse staggered field, the perturbative expansion diverges at lower tempera-
ture; nonperturbative effects at very low temperature are discussed using exact results on the sine-Gordon field
theory. We also compare our field-theory results with the predictions of Kubo-Tomita theory for the high-
temperature regime, and discuss the crossover between the two regimes. It is argued that a naive application of
the standard Kubo-Tomita theory to the Dzyaloshinskii-Moriya interaction gives an incorrect result. A rigorous
and exact identity on the polarization dependence is derived for certain class of anisotropy, and compared with
the field-theory results.
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[. INTRODUCTION anisotropy is small, the ESR line shape is shown to be
Lorentzian up to a possible small smooth background; the
Quantum spin chains have been studied extensively fowidth and the shift of the Lorentzian peak are given pertur-
both their experimental and theoretical interests. Amongdatively. In one dimension, it was argued that the diffusive
many experimental methods of investigation, electron spirspin dynamics leads to a non-Lorentzian line shape, which is
resonancéESR) is unique for its high sensitivity to anisot- indeed observed in theS=3 antiferromagnetic chain
ropy. While the theory of ESR has been studiédor along  TMMC.* However, our results imply that the argument does
time, there remain important open problems, especially fonot apply to the present case of tBe- 3 chain at low tem-
strongly interacting systems. One of the problems is thatperature. We will study several consequences of our theory
generally one has to make a crucial assumption about thior two types of perturbations of the one-dimensior&al
line shape at some point during the calculation. As we will=1/2 Heisenberg antiferromagnet: a staggered field and an
demonstrate, such an assumption could be incorrect in son@xchange anisotropfor dipolar interaction
cases although it might have been taken for granted in the In a compound with a low crystal symmetry permitting a
literature. In addition, in an actual calculation one has tostaggered component of the gyromagnetic tensor or a
calculate various correlation functions. Traditionally, crudeDzyaloshinskii-Moriya(DM) interaction, an effective stag-
approximations such as the high-temperature approximatiorgered field is also produced by the applied uniform field. The
the classical spin approximation and the decoupling of thestaggered field corresponds to a relevant operator in the
correlation functions are used. However, these approximaenormalization group sense, and is related to the field-
tions break down when the many-body correlation effects arénduced gap phenomenon recently found in several quasi-
strong. As a consequence, rather little has been understoathe-dimensionalS=1/2 antiferromagnet¥.® Since it is a
about ESR when many-body correlations become importantelevant operator, one may expect that its effect is enhanced
Even in the cases which were believed to be understood witht lower temperatures. Indeed, we find that the staggered
the existing theories, there appear to be subtle problems. field contributes to the linewidth proportionally t?/T?2
In this paper, we study ESR i8=1/2 quantum spin whereh is the magnitude of the staggered field. We propose
chains in the “one-dimensional critical region” where the this as an explanation of the peculiar low-temperature
temperatureT is sufficiently small compared to the charac- behaviot® found in ESR on Cu Benzoate nearly 30 years
teristic energy of the exchange interactidribut T is still ago. Moreover, we propose that the sharp resonance found at
large compared to three-dimensional ordering temperature otery low temperaturé® which was understood as a signature
spin-Peierls transition temperatur&Ve stress that ESR in of a three-dimensional N¢ ordering, may well be under-
such a region is essentially a many-body problem. Herestood in a purely one-dimensional framework based on sine-
many of the traditional theoretical techniques lose their vaGordon field theory.
lidity. Instead, (1+1)-dimensional field theory should de- On the other hand, dipolar interactions or exchange
scribe the universal, low-energy/large-distance behavior. Ouanisotropies are present in virtually any real material. We
main purpose in the present paper is to develop an approadimd that their contribution to the linewidth is proportional to
to ESR based on field theorpbosonization methods. At T, which appears to be consistent with existing experimental
least for several simple caséwhich are of experimental data on several quasi one dimensioSal1/2 antiferromag-
interes} we are able to formulate the problem in terms of thenet such as CuGeQ KCuF; and Na\Os.
systematic Feynman-Dyson perturbation theory, avoiding Basic ideas and some of the results in the present paper
previously madead hocassumptions. When the effect of the were presented briefly in Ref. 12. This paper is organized as
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follows. In Sec. I, we briefly review the basics of ESR in where(...) is the statistical average at temperatiteln
interacting spin systems, including a fdapparently new  most experiments, the applied electromagnetic wave is typi-
results, namely an exact and rigorous identity on the polareally in the microwave regime, and its wavelength is very
ization dependence, and the relation between théarge compared to all relevant length scales in the antiferro-
Kubo-Tomitd and Mori-Kawasalki® theories. In Secs. Il magnet since the spin-wave velocity is much less than the
and V we develop a new framework for studying ESR inspeed of light. Thus, in ESR, the dynamical susceptibility is
guantum spin chains, based on field theory methods and, imeasured at essentially zero momentgm0. ESR probes
particular, the Dyson formula expressing the Green’s functhe dynamics of the system only at the special momentum
tion for a scalar field in terms of the self-energy. It is appliedq=0, in contrast to neutron scattering which can be used to
in Secs. IV, VI, VII, and VIII to systems with an exchange scan momentum space. However, as we will explain below,
anisotropy(or dipolar interactionor a transverse staggered there is an interesting feature at the special momengum
field. (The case of an exchange anisotropy with the axis par=0. Together with the relatively easy availability of highly
allel to the field turns out to be easier to treat and not toprecise data, ESR offers a unique insight into magnetic sys-
require the self-energy formalism. Therefore it is treated firsttems which would be difficult to obtain with other experi-
in Sec. 1V) In Sec. IX, we compare our results to those in themental methods.

high-temperature regime obtained with the previous ap- A remarkable feature of ESR is that, if the Hamiltonian of
proach. Section X is devoted to conclusions. Appendix Athe system(apart from the Zeeman teinis isotropicli.e.,
contains an alternative derivation of an old formula for theSU(2) symmetrid, the resonance is still at the Zeeman en-

width/shift first derived by Mori and Kawasak? ergy and completely sharp, as if there is no interaction at all.
This result can be deduced rather easily from the equation of
Il. ELECTRON SPIN RESONANCE motion, as we will show in the following. Throughout this
paper, we take the direction of the static applied field as the
A. Definition of the problem z axis. Let us consider the total Hamiltonian
A single spin in a magnetic fieléH has energy levels
separated by the Zeeman eneily=gugH. If an electro- H="Ho+Hz, 2.4

magnetic wave of angular frequenayis applied to such a

system, resonant absorption occurs whien=E, and the o oo
polarization (direction of the oscillating magnetic fields c_hange Ham|lton|a_n which is assumed to be(Blsymmet-
fic. We choose units so thdt=gug=1 except where ex-

rpendicular to th ic field. When th ins ar led,”. ) X
perpendicular o the static field en the spins are coup epl|c|t|y mentioned otherwise; these constants can be

by interactions, the physics is of course not that simple! covered by dimensional analvsis. As we have mentioned
However, generally some resonant absorption occurs also fgeovered by di ! ySIS. We hav :
ove, in ESR the electromagnetic wave is coupled to the

the interacting system. This is the phenomenon of ESF@‘_0 tof th . : v the total Spi
which we study in the present paper. In an interacting sysg_ component ot the spin operators, namely he total spin

tem, it is also possible to observe absorption of the electro@PeratorsS”=2;Si". The Heisenberg equation of motion for

magnetic wave polarized parallel to the static magnetic field =S'+iS’ reads
(so called Voigt configuratiopln this paper, we focus on the
standard(Faraday configuration, which measures the ab-
sorption of the electromagnetic wave polarized perpendicular dt
to the static magnetic field.
Assuming that the absorption can be described by lineapecauseH, commutes withS* due to the S() symmetry

response theory, the absorption intens{ty) per volume for ~ of Ho. It follows that S*(t)=S*"e™"™", and consequently
the radiation linearly polarized in therlz direction is X' (0.@)*8(w—H). This means that the resonance is

where’H,=—HZ;Sf is the Zeeman term aril, is the ex-

+

=i[H,S"]=i[Hz,S"]=—iHS", (2.5

given by completely sharp, and located exactly at the Zeeman energy.
Namely, this resonance has the line shape identical to ESR in

HZw a single(noninteracting spin in spite of an arbitrary strong
(w)= 5 Xr (0=0,0), (2.1)  exchange interaction. On the other hand, the absorption in-

tensity is generally affected by the exchange interactign
For example, in a spin-gap system at zero temperature, the
absorption intensity is zero if the applied fiditlis smaller
than the gap.

As we have seen, the completely sharp resonance is re-
" R lated to the SI) symmetry of the exchange Hamiltonian
Xap(d0)=—IMG 4(q,0), (2.2 34, While it is natural that symmetries of the system are
important in determining the dynamics of the system, the
present situation is rather unique, for the(8lsymmetry is
explicitly broken down to 1) by the applied static field but

R I « —igx+iet is still essential in ESR. This peculiar feature is related to the
G upllh0) |f0 dtg ([8°(x,1).5°(0.0 e ’ fact that the applied field couples to the total magnetization

2.3y  $*=2;S, which is a generator of the global ) symme-

where Hy is the amplitude of the radiation and' is the
imaginary part of the dynamical magnetic susceptibilityis
related to the retarded Green’s functiéff as

whereG?; is defined by
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try and is conserved undét,. Since the total magnetization We focus on this limit of strong isotropic exchange interac-

and Hamiltonian are simultaneously diagonalizable, the apUOﬂ,lVVSh”e other cases have been discussed previously as

plied field does not change the eigenstates of the system, fell.”~ . _ _

they are classified b$’. The only effect of the static applied ~ For the case of the Lorentzian line shape, Mori and

field is to shift the energy levels of the eigenstates; thé<awasakf proposed a formula, which we call the MK for-

shifted energy levels still reflects the &Y multiplet struc-  mula, for the linewidthx:

ture. This kind of “weak” symmetry breaking by one of the

symmetry generators preserves some structures of the fully n= 1 |m[—GiAf(w=H)], 2.7)

symmetric system. In ESR of an isotropic systéty, the 2x,H

dsgt(ezr)mslzlr:;n ?rﬁ:eyléssgns%ev:/:?riﬁy broken and is essential Inwhere)(u is the magnetic susceptibility ar@li at(w) is the
A similar application of the concept of weakly broken Fouri.er transform of theunperturbed retarded Green’s

global symmetry was also exploited recently by Zhdrig ~ function

his SQ5) theory of highT. superconductivity. Namely, in R . +

the SA@5) theory, the most important terms in the effective G uat(t)= =1 6OAD,AT(0) o, 2.8

Hamiltonian are S() symmetric one and the chemical po- where( . . . ), is the expectation value under the unperturbed
tential couples to one of the generators of the global330  Hamiltonian H,+H,, 6(t) is the step function, and! is
symmetry. The so-calledr excitation in this context is a defined by the commutator

sharp resonance which is similar to ESR in isotropic spin
systems. A=[H',S"]. (2.9
In real magnetic systems, there are various types of an-

isotropy, such as the dipolar interaction. Let us write the total" thiS paperg refers to a full Green's function calculated
Hamiltonian as using the Hamiltonian including the perturbatidti, while

G denotes the unperturbed Green’s function evaluated in the
absence of the perturbation. Both kinds of Green'’s functions
(G and G) should be evaluated including the Zeeman term

' -~ : . _Hz, in the original spin chain context. However, as we will
where7i' is the symmetry-breaking perturbation. Through see in Sec. lll, in the effective field theory, the Zeeman term

out this paper, we assume the interaction to be nearly isotro- . )
pic, namely that{' is small compared to the other terri Is absorbed by a momentum shift. Thus, the Green’s func-

andH,. Once the perturbatioft’ is added, the argument t|on|s_, _|r|1 thelegf_ectlvhe field theory will be defined without
leading to the delta-function resonance at the Zeeman eneréeﬁ(p ieitly Inciuding the Zeemap term. .
In addition to the broadening, the perturbatidfi also

breaks down. Thus, in general, the addition/af causes causes a shift of the resonance energy; the shift is given b
changes in the line shape, such as a broadening and a shift &t 9y 9 y

the resonance. The main theoretical problem is then to cal- -1
culate the absorption spectrum for the given Hamiltorfian Aw= 5o H
and other conditions such as the temperature of the system. Xu

This formula for the shift is slightly different from the one
B. Previous theories given in the original paper\We believe that ours is the cor-

. rect one in the lowest order of perturbation theory.
The ezqztmg approaches to ESR, S%%Ch as those of Kubo The gerivation of the MK formulas in the original paper
and Tomita and of Mori and Kawasakr” were developed geems somewhat involved, and it is not clear to us what

mainly during the 1950's-1960's. Here we summarize,qq mptions are necessary to prove them. However, we
briefly, a part of those achievements which is closely relateqy ,nq that the MK formulas are indeed exact in the lowest

to our analysis. order of the perturbation theorjf the (single) Lorentzian

When the isotropic_exchange interactions betwee.n SPiNfne shape is assumegxplicitly speaking, we must assume
are weak, namelyH, is much smaller thart{,, the line

shape is generally expected to be Gaussian. On the other R 2(S%)

hand, once the anisotropy’ is present, strong isotropic ex- Ggrg-(0)= o_A-S" (211
change interactiong{, between spins affects the ESR line

shape, even though it does not break théZdymmetry by  whereX, is a smooth function ofo nearo=H. Regarding®
itself. In the presence of the strong interactidhy&Hz), as a constant near the resonance, we obtain a Lorentzian line
which applies to the problem considered in this paper, theshape[SettingX=0 in Eq.(2.11) gives the exact result for
line shape is generally expected to be Lorentzi@n the the isotropic case'=0.] The simple, and possibly new,
other hand, the line shape is believed to be neither Gaussialternative derivation using the equation of motion is pre-
nor Lorentzian, when the spin diffusion is domindnfThe  sented in the Appendix.

effect of the isotropic exchange interactions on the line shape On the other hand, Kubo and Tomit§T)* studied ESR
has been traditionally called exchange narrowing. We emusing a somewhat different formulation. For the case of
phasize that ESR in such an interacting spin system probdsrentzian line shape, their theory gives the following for-
the collective motion of the many-body system. In this papermula for the linewidth, at high temperature:

H=Ho+H +Hz, (2.6

{([A,S ])-ReG} ,{(w=H)}. (2.10
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1 (AAT) hand, the direct numerical calculation is applicable at any

Kl @ (212 temperature. In contrast, the field theory approach, which we
will develop in the present paper, is valid only at low tem-

where the expectation value is tegatic correlation function.  peratures while it is based on the thermodynamic limit. Thus

We shall call this the KT formula in this paper. We could not they are complementary to each other.

find in the literature how the two formulg®.7) and (2.12 We remark that some results quite closely related to ours

are related. On the other hand, if the KT form@®a12 for ~ were derived by Giamarchi and Milfi$>?in their work on

the Lorentzian line shape is indeed valid at high temperaturghe ac conductivity of a Tomonaga-LuttingdiL) liquid. We

it must be consistent with the MK formula. In fact, we have will comment on the connection with our work later.

verified that the KT formulg2.12 follows from the high-

temperature limit of the MK formulg2.7) with a certain C. Polarization dependence

assumption. The derivation is given as follows. Taking the

Fourier transform of Eq(2.8), at temperaturd,

7~

When observing ESR in the Faraday configuration, the
polarization of the electromagnetic wave is perpendicular to
the direction of the static magnetic field, which we take as
Gh 1) f dte'“tTr([ A(t), AT(0)]e” Tt 72Ty, the z axis. There are still two independent possible polariza-
(2.13 tions; the linear polarization can take any direction inxlye
: plane. Except when the total Hamiltoni&nhis invariant un-
wherez=Tre~ ("o™"2)/T Expanding this up to the first or- der a rotation about theaxis, the absorption spectrum gen-
der in 17T, we find erally depends on the polarization. Within the linear response
theory, the dependence comes from the difference between
the dynamical susceptibilityy,(0,0) # xy,(0,0). The MK
formula ignores the possible polarlzatlon dependence, be-
cause it deals withy”. _~ x,+ xyy, and notyy, and xy,
(%(I)AT(O))e‘“’t separately. The polarization dependence was discussed theo-
retically first by Natsumeet al®~*" generalizing the Kubo-
Tomita theory. It has also been observed experimentaify
and numerically?
However, apparently it has been not recognized that, for
some special cases, axact and rigorougesult on the po-
ot (2.14 larization dependence can be derived easily from the equa-
' ' tion of motion. Let us consider the special case in which the
perturbatiorH’ is written in terms of thex component of the
spin operatorsX The examples include the transverse stag-
gered fieldH'=hZ;(— 1) S, and the exchange anisotropy
with the anlsotropy axis in the direction’ ' = 6%;SS, ; .
In these case$S*,H']=0 holds, and consequently

AAT("’ f dt Tr{[ Ho+ Hz, A(t)]AT(0)}e'

“T2.Jo

— 1 T
== 37 TA0A(0)]

) w
'TZ.

where the time evolution is defined with respect to the un-
perturbed Hamiltoniaft{,+ H; andZ.,=Tr 1 is the partition
function in the infinite temperature limit. The first term is
real and does not contribute to the imaginary part. If we
assume that the dynamical correlation function at infinite
temperature Ttd '(t).4(0)] decays exponentially with the

X
characteristic time 7,~1/J, the second term gives d_S:HSy_ (2.16
—i(w/IT)(AT(0).A(0)).., where( ), is the expectation dt
value at the infinite temperature and we us€J. We note his id lead
that a similar assumption was made also in the original derit Nis 1 entity leads to
vation of Eq.(2.12) in the Kubo-Tomita paper. Thus the MK )
formula (2.7) reduces, in the high-temperature limit, to " He
@7 gh-temp X 0,0) = — Xi(0,0), (2.17
(Al 215 @
2XUTJ ' and more generally, for the polarization in the directioin

Becausg(S"S™)~2x,T in the high-temperature limit, this the xy plane,

is equivalent to the KT formulé2.12). We note that, because ) .
~1/ is valid only as an order-of-magnitude estimate at X"“(Ow)zH coSP + w’sif®

best, the KT formula has the uncertainty of an overall con- ’ »?

stant factor.

Recently, a numerical approach to ESR in quantum spitwhere® is the angle betweer and «. (In the notation of
chains is also being developédby a direct calculation of the Refs. 15-179=90° and their¢ corresponds to oub.)
dynamical susceptibility” (). Since it is based on an exact  For a sharp resonance concentrated aeaH, the polar-
diagonalization of the full spectrum of short chains, it isization dependence is not significant. However, if the center
restricted to rather short chain of up to 10 spins evenSor of the resonance is defined by the average frequency of the
=1/2, making finite size effects rather severe. On the othespectrum

xY(0,w), (2.18
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f ol (0)do

w,=

: (2.19
f | (w)dw

oy<w, because the higher frequency part is emphasized in

the latter. As a consequence, there is a positive frequency

shift for the polarization iny axis, compared to the case

where inx axis. 0
This is in agreement with theoretical and experimental -

results in Refs. 15,16 and numerical results in Ref. 14, onthe FiG. 1. The spin structure factor of tf&=1/2 Heisenberg an-

exchange anisotropy. We note that, in the actual experimentgerromagnetic chain at=0. It is nonvanishing only in the filled

on ESR, the resonance frequency is kept fixed and the apegion shown in the frequency-momentum plane. The structure fac-

plied field is scanned to measure the absorption. Because afr becomes a delta functio®(w—vq) in the q—0 limit.

this, it is customary to discuss the shift of the resonance field

for a fixed frequency. The directiafpositive or negativeof At zero uniform field, the spin operators may be written in

the field shift is opposite to that of the frequency shift weterms of the field$ as follows:

discuss in this paper. They find that the resonance field is

shifted negatively for the polarization in direction com- , 1 9¢ , J. 1)

pared to thex polarization case, which is indeed consistent S~ 3R ax T Cs(—Dcosz, 3.3

with our result. The angular dependence is also consistent

with the theoretical formula in Ref. 15. On the other hand, in ¢ L

Ref. 17, the polarization dependence is studied by a different Sj‘~CJe"2”R¢cos§+ Co(—1)ei2mRe (3.9

formalism (Mori’s memory function method . When the an-

isotropy axis is perpendicular to the applied field, the ob- o , , .

tained polarization dependence is rather opposite to th\évhere the dual field is defined in terms of right-movery

above, and is in contradiction to our rigorous regalt?). andg, as¢=o¢r+ @ and¢=er—¢_. While * andS*”
are represented in a very different way, their correlation

functions turn out to be equal at the &)Y invariant radius

T

Ill. FIELD-THEORY APPROACH TO THE S=1/2

HEISENBERG ANTIFERROMAGNETIC CHAIN R=_ 12, as requwed from the symmetry of the original
Heisenberg chain.
A. Bosonization of S=1/2 Heisenberg chain The dynamical structure fact&““ (Fourier transforma-

dion of the spin correlation functigrof the Heisenberg chain
has been studied in detail. It is equivalent to the dynamical
susceptibility forT=0 and »>0. At zero temperature, the
L dynamical structure factor is nonvanishing only in the lim-
Ho=32 S S1. (3.1 ited region of the frequency—momentuny space shown in
J Fig. 1. The field theory actually can handle only the low-
with symmetry-breaking perturbatioh’ and of course the energy excitations near momentum O amdThe structure
Zeeman termH,. The low-energy physics of the one- factor forS** nearq=0 andqg= = is given by the correlation
dimensional quantum antiferromagnets is well described bjunction of 9¢/dx and cos¢/R), respectively. AfT=0, they
field theory methods(bosonization In this section, we read
briefly summarize the aspects of this approach that are rel-
evant to the present discussion of the ESR. We refer the S w,q)*8(w—|ql) (3.9
reader to Refs. 18,19 for more details. While the method iior q~0 and
now standard, here we also clarify subtleties specific to ES
problems, which are related to the weakly broken(ZU
symmetry discussed in Sec. Il. S w,q)
The effective field theory of th&= 1/2 Heisenberg chain ’
H, is given by the free boson Lagrangian

In the present paper, we mainly discuss ESR on the on
dimensionalS=1/2 Heisenberg antiferromagnet

1
for g~ . It is noted that the structure factor is completely
1 ) ) sharp and is delta-function-like gt 0. In fact, the structure
525[(‘90‘1’) —(019)°], B2 factor atg~0 remains so even at finite temperature. As men-
tioned before, the structure factor is of course isotropic
where x°=vt, x'=x and we make identificationp~¢  (S*=8YY=8?) at H=0 for the isotropic Heisenberg
+27R with the compactification radiuR. The radiusRis  chain.
actually fixed to the value Y27 by the SU2) symmetry. Now let us consider the effect of the applied magnetic
Hereafter we seb =1 for simplicity; the spinon velocity field. The Zeeman termi, in the Lagrangian becomes, upon
can be recovered by dimensional analysis when necessarybosonization,

134410-5



MASAKI OSHIKAWA AND IAN AFFLECK PHYSICAL REVIEW B 65 134410

o H d¢ @7 ®
A 2w ox '
This term can be eliminated by a redefinition of the boson w=H
field L
+-
BEX) = B(LX)+ (38) N4
lX - 5X _X, .
N2 -+ q
-Hlv Hiv

but ¢ remains unchanged. This is equivalent to the shift of
chiral fields as FIG. 2. The zero temperature transverse spin structure factor
Si(@,9)=S,(w,q) of the S=1/2 Heisenberg antiferromagnetic
1 1 chai_n unlder aF;(tpplde fi:_ellg, n;zarq=|0. Ilt_iis]apprc_)ximflhtely pro-
- - ortional to w[ S(w—|q—H|)+ é(w—|gq+ , giving the reso-
PR PR 2@HX'¢L_~PL+ 2\/ZHX' 39 Eance aig=0, w=H. '?his consists oftho bran?:hesgcoming from
S, _andS_ ., which are marked by- — and— + in the graph. In
While this leaves the free Lagrangian unchanged, it doefact, there is a small spreading of the spectrum and the structure

change the bosonization formulas of physical spin operatordactor is generally not a perfect delta function. However, it is ex-
actly the delta function(w—H) atq=0, as explained in the text.

1
S~m+ — +C§cos{g+(H+w)x

d¢
27R 9x

’ (31() S+—(qu)

ocfx dtfm dxd(@t=a)

iHx

+Cg(—1)ie 127RY,
(3.11 y

S+~Cue“27$cos<g+Hx

e —iHx

(t—iE-I—X)2+ (t—ie—x)2

e

The first termmin S represents the expectation value of the
magnetization induced by the magnetic fiéld For a small
magnetic fieldm is proportional to the fieldH. Another im-
portant feature is that the applied field induces the shift of the
soft-mode momenturf?? The shift occur differently for the *wb(w)[d(w—H+q)+d(w—H=-0q)]. (3.19
longitudinal (27 and the transversex{y) components. The
gapless points under the applied uniform fi¢ldare atq
=0 (uniform parj} andq=w*H (“staggered” par} for the
longitudinal modes. For the transverse modes, they ace at S (0,q)*xwl(w)w+H+q)+dw+H—-q)].
==+H (“uniform” part) andgq= = (staggered part (3.15
Let us focus on the transverse mode ngarO, because
the transverse mode gt=0 is measured in ESR in the Far- Namely,S, _ andS_ give different branches of excitation.
aday configuration. For simplicity, here we restrict ourselvesThe fact thatS_, does not contain the brandB.14 was

to zero temperature. In the low energy effective theory, théecognized earlie(see Fig. 17 of Ref. 21 On the other
“uniform” part of the S* is given hand, thatS, _ lacks the brancti3.15 (at least in the low-

energy limi) was apparently not appreciated in Fig. 18 of
Ref. 21.S,, andS,, are given by their superposition

Q) =S,(w, S(w—|g+H]) +8(w—|g—HD1.
where we have used the ) symmetric compactification Sol@.@) =Sy @) 0l dw=|atH])+(w]g (3|.)1]6)
radius R=1/y27 (see below for reason for taking this

value) This gives the correlation function & at zero tem-  This zero-temperature transverse structure factor gezd
perature: under the applied magnetic field is shown in Fig. 2. Because

the structure factor neajy=0 was sharp, and the gapless
point is shifted byH, we expect a sharp resonance at energy
+ . w~H at g=0. This corresponds to the expected paramag-
(t—ie+x)? (t—ie—x)? netic ESR for the isotropic Heisenberg chain.
(3.13 However, it should be noted that we have so far ignored
various renormalization effects due to the applied magnetic
Dynamical structure factd®, _ , which is the Fourier trans- field. There are irrelevant operators, which themselves van-
form of the above, is ish in the low-energy limit but renormalize parameters of the

©

:j dX[—ZWwG(w)]e*in[einfiwx_i_efin+in]

The other oneS_, is given by replacingd— —H in the
above, using the time reversal transformation. Thus

ST ot (HX+IBToR) 4 oF (IHX+1BTGL) (3.12

IHX e*IHX

(S*(t,X)S(0,0)
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low-energy effective theory. The way they renormalize is gR —(®,q)
affected by the applied magnetic field. In general, the precise (4.4)

value of the momentum shift is given byrn rather tharH, = —sin(Zq-rA)(ZwT)Z(A*K*l)

wherem is the magnetization. This can be derived from the

shift of Fermi momentum in the Jordan-Wigner transforma- oRM — .w—( —
tion, and also is required from a rigorous version of Lutting- XB| A m’l_ZA) B<A_' m'l_ZA ’

er's theorem in one dimensidARestoring the spinon veloc-

ity v, the ESR frequency appears to be given bynd . For (3.19

the standard Heisenberg antiferromagnetic chain in an agvhereB denotes the Euler beta function

plied field, the magnetizatiom and the spinon velocity

can be obtained as a function Bif from the Bethe ansatz re)r(y)

integral equation. Generally,72mv is different fromH ex- B(x,y)= Txty) (3.20
cept in the zero field limit, implying that the ESR frequency

deviates fromH. However, this cannot be true, because theandI' is Euler’'s gamma function. Considering the momen-
equation of motion for the original Heisenberg modetder  tum shift induced by the applied field, the absorption mea-
an applied fieldl requires the resonance to be exactly at thesured in ESR corresponds to the Green’s function evaluated
frequencyH. The resolution is that, the dispersion relationat g=H. Thus, the spectrum is given by the delta function
for g~0 is not completely linear. The curvature of the dis- only if (A,A)=(1,0 or (0,1, namely,R=1/\/27. The renor-
persion comes form irrelevant operators which break Lorentmalization ofR due to the applied field seems to imply that
invariance. Because of the curvature, the resonance frehe ESR spectrum should not be given by a delta-function,
quency atg=0 is modified from 2rmv, which is derived even in the absence of the perturbatith

assuming the linear dispersion. What the equation of motion However, this is inconsistent with the equation of motion
tells us is that these renormalization effects miraculouslyof the original Heisenberg model. It predicts a completely
cancel, to give the resonance exactlyat H for q=0. With  sharp(&-function resonance precisely at the Zeeman energy
this nontrivial mechanism in mind, we will take the momen- even for a finite fieldH. Since the equation of motion is
tum shift asH, setting the spinon velocity=1. exact and rigorous for the original spin problem, we con-

There is another “miraculous” cancellation similar to the clude that we should take the unrenormalized(Bsym-
above. At zero field, the compactification radius of the effec-metric valueR= 1/\/27 even in a finite field, for the calcu-
tive field theory is fixed to the special $2) symmetric lation of the ESR. This appears contradictory to the well-
valueR=1/\/27, as is required from the SB) symmetry of established renormalization @ due to the applied field.
the original Heisenberg model. However, in the presence ofhis is not a real contradiction, however, because the stan-
the applied field, the S@) symmetry is, of course, broken dard result on the renormalization of the radius is determined
down to U1). Correspondingly, the raditRis renormalized at the zero energy limit, while the ESR probes the excitation
away from the S(P) point by the applied field. The renor- at the finite energyH. In general, effective coupling con-
malized radiusR as a function of the applied field has been stants depend on the energy scale as a consequence of the
also obtained from the exact Bethe ansatz solifioh.is renormalization. We may introduce an effective radR{s)
indeed rather sensitive té for smallH/J. A consequence of as a function of the energy scale While the determination
the radius renormalization is the dependence of the correlaf the functionR(w) in general is a tedious task, the exact
tion exponents on the applied field. In particular, the “uni- equation of motion on ESR gives the restriction at the Zee-
form” part of the transverse spin operator, which is relevantman energy R(w=H)=1/\27r. The nonrenormalization
for ESR, is represented by the vertex operator of the typeould be related to the qualitative understanding of the RG
ex;{iZwiR?ﬁi #IR]; its conformal weight is given by flow in the presence of the applied field, Fig. 7 in Ref. 7. The

RG flow in the presence of the applied field is almost iden-
tical to that in the zero field, down to energy scaleGqH),
(A, A)=(1+A",A") (3.17  Where the flow is “cut off.” If we look at the energi, the
effective theory may be almost identical to the isotropic one.
This argument would not, however, explain why the effective
or (A",1+A"), where radius should be exactly at the &) point. From the view-
point of the field theory, this is again a miraculous cancella-
tion between the renormalization by the uniform field and
_ (27R-1R)? that by the finite energy. The equation of motion, although
N 8 ' (3.18 quite simple, gives an exact and highly nontrivial constraint
on the effective field theory description.

_ _ Thus, in the following calculations we do not include the
which does depend oR. As a result, the structure factor is radius renormalization due to the applied field, and take the
no longer given by a\ function for R#1/y27. More ex-  sy(2)-symmetric valugR=1/\2. As a result, the appropri-
plicitly, the retarded Green’s function of a conformal primary ate effective field theory of ESR is an & symmetric one,
field with conformal weight A,A) at finite temperatur@ is  namely, the level-1 S(2) Wess-Zumino-Witten(WZW)
obtained explicitly* as theory, even in a finite field; all the effects of the applied
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field are represented by the shift of tifield (3.8), resulting  operators also in the field theory. However, most of the op-

in the momentum shift3.10 and (3.11). This may be re- erators have large scaling dimensions, and thus renormalize

garded as a field theory representation of the crucial2sU rapidly to zero under the RG transformation. Thus, at low

symmetry which is broken only weakly, discussed in Sec. Il.enough temperatures, only a few types of perturbations with
It is often convenient to introduce the operators in non-smaller scaling dimensions are important.

Abelian bosonization to make the symmetry manifest(3U The operators with the lowest scaling dimension 1/2 are

current operatord® (a=Xx,y,z) are related to the Abelian n® and tg in WZW theory. In the original spin chain Hamil-

bosonization as follows: tonian (at H=0), they correspond to the staggered field
(three independent perturbations corresponding to three di-
JAW)=iJAmipr(w), (3.2)  rections and the bond alternation. However, the bond alter-
o nation does not break the &) symmetry and hence should
Jg(w)=2e*1BTer(W), (3.22  not affect the ESR line shape, although it is not trivial to see
o o this in the field theory. On the other hand, the staggered field
Ji(w)=—=iVamie (W), (3.23 perturbation does break the &) symmetry and thus affects
B the ESR line shape. The operators of interest with the second
I (W)= {27 BTeLW) (3.24  lowest scaling dimension 2, which are marginal, afdg.

e 1xaiy . . They correspond to the exchange anisotropy in the spin chain
where J==J"+iJ", we have introduced complex coordi- pyamiitonian. We will discuss these two most important cases
natesw=7+ix (7=it) and ¢(w,w)=e(W)+¢(W). Jgq) in later sections.

is the right-movefleft-moven component of the current, and ~ While we use the S[(2) symmetric field theory, care
we have normalized them by should be taken with the momentum shift due to the applied
field. The momentum shift is determined by a simple rule in

b Abelian bosonization formulation(3.9). Namely, if one

a b
(IR(W1)Jr(W2)) = (Wy—W,)2' (3.29 writes some operator at zero field in termsgg$, the above
replacement gives a correct formula under the finite fi¢ld
wherea,b=x,y,z and the complex coordinate=7+iX=  The operator corresponding to the perturbatténmay con-
—i(t—x) and likewise for theL sector.(We note that this is  tain an oscillating factor. While such a term may be ignored
different normalization from Ref. 2b. in order to know whether there is a finite excitation gap

The “uniform” part of the spin operator§® correspond  above the ground state, it should be retained in theory of
to the SU2) currentsJ*, while the “staggered” part is re- ESR which probes finite momentum of the effective field
lated to the S2) triplet n®=Tr g where the SW2) matrix  theory. For a general perturbation, the oscillating factor ap-
field gg(x,t) is the fundamental field of the Wess-Zumino- pears in the effective field theory, and it makes the theoreti-
Witten nonlineare model. Equation$3.10 and(3.11) may cal analysis rather complicated. In this paper, we focus on a
be rewritten as few simple cases in which there is no oscillating temith

finite momentum in the effective Lagrangian. This still in-

- 1 (J2t 77 cludes several cases of physical interest which are mentioned
R L

/872 below.
+Cg cog H+ m)xn?+ sin(H + 7)x tr g], 1. Transverse staggered field
(3.26 A quasi-one-dimensional spin system often has an alter-

nating crystal structure along the chain. In such a case, gen-
1 ' . erally we expect two features which are absent in a uniform
S ~——=(Jge "™+ e M)+ (—1)*Cen=. (3.29  system.
V8w’ Staggered g tensoiThe magnetic fieldd couples to the
The “staggered” part ofS* may be written as £1)*n* at  spin as MBEJ,a,bHa[ggbwL(—1)Jg§b]Sjb, where g®° is the
H=0, but is a mixture oh* and tg in a finite field. The ESR  staggered component of tlgetensor.

absorption intensity is related to the Green’s functiorsb¥; Dzyaloshinskii-Moriya (DM) interaction The low
thus what is needed in the field theory is the Green’s functiosymmetry  allows the antisymmetric interactt&f’
of J*Y at momentum+H. zjﬁj.(gjxéjﬂ),
. The DM interaction can be either unifornﬁ(=|5) or
B. Perturbations staggeredD;=(— 1)iB].

Having established the effective field theory for the un- When the staggered tensor is present, an effective
perturbed systeni{y+7H;, we now want to calculate the staggered fieldcg°H is produced upon an application of the
effects of the perturbatioh’ on the ESR line shape. Assum- external field. The direction of the staggered field is often
ing that the perturbatioft?’ is small,’ X" can be mapped to approximately perpendicular to the applied field, although it
an operator of the level-1 SB) WZW theory. is not necessarily so. The effect of the DM interaction is less

In principle, an infinite variety of symmetry breaking per- trivial, but it can be actually eliminated by an exact transfor-
turbationsH’ is possible. In fact, there are infinitely many mation. Let us consider the case of a staggered DM interac-
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tion, and choose the axes so that the DM veEtds parallel wherer’ ij represents the vector from siteindj and for the

to thez axis. Then the Hamiltonian including the DM inter- simplicity theg factor is assumed to be uniform and isotro-
action is given by pic. In a spin chain, the vect(ﬁij is parallel to the chain
direction, and the dipolar interaction reduces to an effective
exchange anisotropy parallel to the chain direction. The ef-
fect would be essentially the same with the nearest-neighbor

How=32 §-Sj41+(~1'D(SS1~ S8,y
anisotropic exchange interaction, because the dipolar interac-

1 _ _ tion strength decreases rapidly with the distance.
- + +
2 2 [TS2)-18+ T S35+ (Hee))] Let us consider the simplest case of the exchange
anisotropy
+32 [S5-185+ 55,5441, (3.28 -
’ Ha= 02 S8, (3.3

where J=J+iD. Now let us define the anglea ] ] ) ]
=tan 'D/J, and rotate the spin at sitp by the angle With a symmetry axis, which effectively covers the case of

(— 1) a/2 about thez axis: the dipolar interaction if is taken to be the chain direction.
Even in this simple case, a variety of configurations is pos-
St_,grel(-Dlar (3.29 sible by changing the relative direction mfind the direction
! i . . I : ) -
z of the applied field, as is often done in experiments.
Then we obtain the Hamiltonian of theXZ chain As mentioned before, for a general direction, the pertur-

bation in the field theory is rather complicated, making a
calculation from first principles difficult. Thus, in this paper,

. (830  we will focus on the two simplest cases, namely, windn
andn.l z. The case||z allows us a direct calculation of the

It is argued® that this anisotropic exchange can cancel thdine shape and will be discussed in Sec. IV. The latter case

preexisting one. nL z will be discussed in Sec. VI, based on the self-energy

Now suppose that an external figttlis applied inx di- approach developed in Sec. V.
rection. The applied field is transformed as

- Y/
H=Zj [ngsf+1+7(sj+sj+l+ H.c.)

IV. EXCHANGE ANISOTROPY PARALLEL
TO THE FIELD: DIRECT CALCULATION

—HY Sf—>—HX
J J

cos%S}%(—l)%in%S}’}
(3.31) Here we consid(_ar the case_where the anisotrppy axis is
' parallel to the applied magnetic field, namety=z in Eq.
by the above transformation. Thus, in the presence of thé3.34. In this case, it is obvious that there is no polarization
Dzyaloshinskii-Moriya interaction, the applied uniform field dependence a8* and S’ are equivalent.

produces an effective staggered fiél&for general orienta- _ In this case, the pe_rtur_bation in the effective field theory is
tions of D of the staggered DM interaction given, at zero magnetic fieldas
L L,=—NIRJIL, (4.0
How=20 (~1)D-(§%S5.0), (332

where\ is a parameter proportional & J, for a small an-

the eﬁectjve ftaggered field due to the DM interaction isi?;tsrglp);rfy.rn-gzeelp(;?aggrrﬂjogrg‘tl—fg f[:r?g sst;r:]ta]gfdlngic;r;;%erg

given by D XH/(2J). antiferromagnetic chainy is determined in Sec. VIC to-

These two effects give an effective transverse staggeregether with a logarithmic correction.

field which is approximately perpendicular to the applied Before performing an explicit calculation, let us see what

field. This mechanism is important in studying properties ofcan be said about the temperature dependence of the line-

several quasi-one dimensional antiferromagnets including Ciyidth from a general scaling argument. The perturbation

benzoate;’ Yb,As;,® and pyrimidine Cu dinitraté. (4.1) is a marginal one with the scaling dimension 2. Thus,
ignoring the logarithmic corrections, scaling arguments im-

2. Exchange anisotropy ply that the linewidth takes the scaling form

The exchange anisotropy is the second relevant perturba-
tion which affects the ESR line shape. The dipolar interac- p=Tf
tion which exists in any real magnetic system is given by,
restoring the Bohr magnetqmng ,

3T 4.2

5 H>,

where we have used the fact thathas the dimension of
&8 3& .1 E.F energy. In fact, this scaling argument can be applied to any
Hdp:(gMB)22 SS 3(Sri)(S§ry) , direction of the applied field. On the other hand, the explicit

ij |rﬁij|3 |Fij|5 form of the scaling functiorf cannot be determined by the
(3.33 scaling argument alone.
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Now let us calculate the linewidth explicitly for the an- applied field gives the following effects on paramagnetic
isotropy parallel to the applied field. As we have discussedESR: shift: —27A\Ho —H 8, width: 473\2Toc(5/3)2T.
all the effect of the applied uniform field is represented by
the shift of the¢ field (3.8). Consequently, the perturbation V. SELE-ENERGY APPROACH

under the applied fieltH is
In the last section, the ESR absorption spectrum was cal-

\H AH? culated directly in the low-energy effective theory. This was
La=—NJRI— T(Jéﬁ N - (4.3 made possible because the effective theory was reduced to
2 the free boson theory. However, in general, the problem
The third term is a constant and thus can be ignored. This more difficult because the effective field theory involves
second term is interactions.
A possible application of the field theory method to ESR
ANH o 1 d¢ is to evaluate the Green'’s function appearing in MK formula
- E(JRJFJL) =—27m\H o X’ (4.4 (2.7 by means of the field theory. While the MK formula has
m been applied to quantum spin chains by several authors, most

which is equivalent to the additional magnetic field of of the calculations are based on classical or high-temperature
—2m7\H. This can be absorbed by a renormalization of theapproximations which break down at low temperature and in
magnetic field, giving the shift of the resonance by low dimensions. Thus it would be worthwhile to evaluate the
—2m\H. This shift is first order in the perturbatiofland MK formula using field theory to study quantum spin sys-
the fieldH. tems at lower temperature and in lower dimensions. On the
Now, let us discuss the effect of the first term. We shouldother hand, the crucial assumption of isengle) Lorentzian

calculate the correlation functiofd*J~) in the presence of line shape is made in using the MK formula usually without
the perturbation—\JZJ? . For this particular problem, this @ rigorous justification. Moreover, the MK formula ignores
can be done exactly, because the perturbalfgt is propor- the possible polarization dependence discussed in Sec. Il C.
tional to the kinetic term of the free boson Lagrangian; it just| "US: In this section, we develop a systematic field-theory

gives a renormalization of the compactification radius. Tha@PProach to ESR, which we call the self-energy approach.
is, the Lagrangian density reads The ESR spectrum is given by the imaginary part of the

retarded Green’s function & . As we have discussed in the
+ 27\ last section, it corresponds to the Green’s function of the
2 (%(ﬁ)z- (4.5 current operators in the effective field theory via E827).
We now assume that the perturbation preserves a symme-
Rescaling the fieldp so that the coefficient of the kinetic try which forbids mixing betweenJ* and J¥, namely
term is again given by 1/2, the renormalized radiRiss  (J*J¥)=0. Then the correlation function of the total spin can
given as be decoupled to d* andJY part:

1+27\ 1 )
R=\—— (4.6 (S*(t)S(O))=QJ' dxlf dxp(Jx(t, x>

We note that, we have not included the similar renormaliza-
tion due to the applied field because of the subtleties ex-

1 2 zZ 1z 1
[,:E(&Mqﬁ) —NJ{JR=

X JR(0X2)) +(Jf (t,x7)

lained in Sec. Ill A. In contrast, the exchange anisotro —iH (] —Xp) 7% X
Soes break the S@) symmetry; there is no r(gason not tgy xe I (00)) + (JR(txe)
include the renormalization in the present case. x eHatX2) 3% (0,x5) )+ (IF(t, %)
The conformal weight of the vertex operatal” ) 1 .
:eti2wR¢+i¢/R is (A,K):(l'f'A,,A/) or (A,,l"‘A,) Xe 1772 JL(O,X2)>+(J —)Jy) (51)

whereA’ =(27R—1/R)?/(87) ~ m?\2. Its Green’s function
at finite temperature is given in E.19. As explained, the
Green’s function evaluated at the momernt#l is relevant
for ESR. Near the center of the resonance, the spectrum
dominated by the pole of thE function; it reduces to

Since our effective field theory is §B) symmetric, we may
freely rotate thexyz axes. Thus, instead of calculating cor-
relation functions ofJ* we can calculate those df, with
Eerturbations also rotated correspondinglyhe same ap-
plies to calculation of)Y correlations.
The motivation for us to rotate theyz axes is thatJ)? is
gRS+Sf(w)NLnSt_ (4.7 expressed as a derivative of the boson figidas in Eqg.
w—H+47TA’I (3.21). Thus the problem is reduced to the calculation of the
bosonic correlation function¢¢). The structure of the
bosonic correlation function is well established by the stan-
p=4mA' T=473\2T, 4.9 dard di.agrammatic perturbation theory, and the E_SR line
shape is related to the boson self-energy as we will show
This is consistent with the scaling argumént2). To sum-  below. On the other hand, when the perturbation allows mix-
marize, the exchange anisotropy with the axis parallel to théng of J* andJ¥ (in the original representationthere seems

Thus the resonance is Lorentzian with the width
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no way to reduce the problem to tke¢) correlation func- i J%

tion. In such cases, we do not know at present how to con- —_— =, (5.7
struct the theory of ESR based on self-energy. Thus, below at X

we restrict ourselves to the situation in whi¢handJ¥ do

not mix, in the discussion of the self-energy approach. W0 that we may represent the current operator in terms of
remark that there is no apparent difficulty in the applicationeither ¢ or ¢. However, in the presence of the interaction,

of the MK formula even in cases where the perturbationye cannot define the dual fields and ¢ that satisfy both

allows mixing of J* and J. identities. For example, let us take the Lagrangian density
As mentioned in Sec. Il B, we restrict ourselves to the

case where the perturbation does not contain an oscillating 1
factor &%, Then the contribution from the cross terms such —
en t L£=5(9,$)*=\ cosB¢, (5.8
as(JgJ.) vanish in Eq.(5.1), due to momentum conserva-
tion. The correlation function thus reduces, upon Fourier

transformation to and definethe dual field$ by Eq. (5.6). Then, from the
equation of motion, we find

1
<S+S_>(w)=8—[<3§3§>(w,— H) +(JI0) (@, H)

2 t

cosB¢(t’,x)dt’,
(5.9

Iy d(t,X) + 3y p(1,X) = — B\ f
+(ILIR) (@, —H) + (I} ) (w,H)], (5.2

where (JJ)(»,q) denotes the correlation function at fre-
quencyw and momentuny. As we have discussed above, violating Eq.(5.7).
we now rotate the axes and calculdfecorrelation function Thus it is not completely clear whether the current opera-
instead ofJ* andJY, to obtain tor should be written as a derivative gf or ¢. However,
upon Fourier transform, the “difference ternjtight-hand
1 side of Eq.(5.9)] does not give a sharp pedlRkecall that
(S"S M) == [{(IRIRNx— 2 @,H) +(II )y @, —H) only the operators of conformal weigtit,0) or (0,1) produce
8m a delta-function spectrum. Other operators give broad spec-
+<J§J§>yﬂz(waH)+(JEJDsz(wY—H)], trum given by.Eq._(3.19), even in the zeroth or.dérMore—
over, the contribution from the difference term is suppressed
(5.3 by a factor\? Therefore, the difference term would lead, at
most, only to a small and broad background. In discussing

) . the line shape of the main resonance, we can ignore the
bauqn rotateQ<—>z. Using Eq_s.(3.2_1) and(3.23, thosg €O difference term and focus on the derivative of either boson
relation functions can be written in terms of bosonic corre-

lation function field ¢ or~¢. For calculational convenience, we chgose to
use ¢ (or ¢) if the interaction is given in terms ap (¢.)

where( ),_,, means the correlation function with the pertur-

w+H)2 Thus the problem of finding the ESR absorption spectrum

(s* S‘)(w)=4—<¢¢)xéz(w,H) is reduced to the calculation of the correlation function of the
& boson field¢. We now make the Wick rotation and consider
(w+H)? the corresponding Matsubara Green'’s function defined by

where we have used the symmefpd)(w,—H)=(d¢) QAB(T)=—%TrTT[A(T)B(O)], (5.10
X(w,H). The above formula is useful if the perturbation

(after the rotatiohis given by a Lagrangian density local in ) _ _ _ _
the boson fieldp. If, for example, the Lagrangian density is whereT , is the ordering operator with respect to the imagi-

~ i — ATH —TH H _
local in terms of the dual field after the rotatiory—z, the ~ N/ fime 7 and A(7)=e™Ae "". The standard diagram

. matic perturbation theory can be applied to the Matsubara
second term in Eq5.4) should be replaced by Green’'s function. After obtaining the Matsubara Green’'s

2 function, we can analytically continue back to real time to
(o+H)* - : , .
———($P)y_Aw,H). (5.5  obtain the retarded Green’s function.
A Provided that the Lagrangian is local in terms of the bo-

son field, its correlation function can be written in a self-
In fact, there is a subtlety in defining the current. In theenergy form

free boson theory without interactions, we have
-1
w2+ q?+1I(w,,q)

% _ 3%

= , (5.11
ax ot

(5.6) gqsz/;(wnaQ)
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where( is the (full) Matsubara Green’s functiom,, is the A symmetry breaking perturbatio’ would give nonva-
Matsubara frequency, andl(w,,q) is the self-energy, nishing boson self-energyi,,Il,. This changes the ESR
namely, the sum of all one-particle irreducible diagramsline shape. Near the resonanee-H, we can write

Thus we obtain

(ioy+H)2 -1 R 1
Gsrs-(wn,q)~ Ggrg-(0)=5—
n 477 wﬁ+H2+HX(wn,H) 27T (J)_H_%HS(&),H)
(iwy+H)? -1
+ 4 2 2 1 H 1
m w,+H +Hy(wn H) + > 1 . (5.18
R
(5.12 w_H_ﬁHy(a)!H)

wherell, andIl, are the self-energy in the Matsubara for-

”?a“sm* respﬁctivel);, _for{¢¢_)xﬂland é"l’d’)wé' dTgiS JIf the self-energy changes smoothly around the resonance
gives, upon the analytic continuation, the retarded Green S ~H, we may regard the self-energy as being constant in a

function frequency range sulfficiently close to the center of resonance.
LH)2 1 Then, within this range, the line shape is given by a Lorent-
GR. (0,q)~ (0+H) zian, and the real and imaginary parts of the self-energy give
s'S Am W2 —H2-TI}(w,H) the shift and width of the ESR, respectively. The linewidth is
given by
. (w+H)? 1
41 - HZ-TI(w,H) _ .
(513) n= ﬁlmHa(H,H), (519)
where the “self-energy’l’[E (a=x,y) is defined by the ana-
lytic continuation while the shift is
5 wn, @)= 4(w5,9) (5.14 )
for w,>0. Aw=sRellf(H,H), (5.20
First let us check what we obtain in the absence of the
perturbation. ThedIZ=TI1}=0 so that the Green’s function . N
has a pole aty=H: for a=Xx,y. In general, the signal could be superposition of
two Lorentzian spectra correspondingﬁ[& and H}Ff. How-
GR H 1 51 ever, in the concrete cases we study in the present pH[Ser,
s+s4“’)”; w—H+i0" (5.19 and HyR are equal; thus a single Lorentzian line shape is

This means that we have a complete_ly sharp resonance at tﬁéef#:fe?are we have successfully formulated the theory of
Zeeman energyo=H as expected, in agreement with the gqp ithout any particular assumption on the line shape.
equation of r.notlo'n. The reydulﬁ/w at the pole of thg _The self-energy is usually a smooth function ofnear w
Green'’s function gives the intensity of the resonance. This is_ tor finite H except for the smooth weak background
also consistent with the exact result from the original Spindiscussed below Eq(5.9; we have given a microscopic
chain: foundation for the Lorentzian line shape which is assumed
priori in the MK approach. Application of the present self-
- energy formalism to two cases relevant to experiments will
w—H+i0 be discussed in the following sections. However, precisely
(5.16 speaking, our approach is only formulated ignoring the iso-
wherem is the magnetization. For small field, the magne- tropic marginal operator, which is generally present in the
tization is given bym= y,H, where the uniform susceptibil- effective theory of the Heisenberg antiferromagnetic chains.

Gl (=1 duis' (.5 (0))-

ity is Some discussions on the effects of the isotropic marginal
operator will be given in Sec. VI C.
1 Comparing with the assumption, E(.11) used in our
Xu=5— (5.17  derivation of the MK formula in the Appendix, it is obvious

that the MK formula and the self-energy approach are
in the low-temperature limit, ignoring the effect of the iso- closely related. Namely?. introduced in Eq.(2.11) corre-
tropic marginal operatd® (We remind the reader that we sponds tolI¥/(2H) if they vary smoothly around the reso-
have been setting=1.) Thus we obtain the amplituden?2  nance. The important difference is that it is an assumption
=H/m, in agreement with Eq5.15. that the Green’s function can be written as in E2j11) with
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a smooth>, whereas we can prove E¢p.11) using the dia- N \ \H H2
grammatic perturbation theory. The self-eneidyis given Lo=— = (RN =ILIN)+ 5 IR+ —=(JR+I)) + —.
by the sum of all one-particle irreducible Feynman diagrams 2 2 242 4

as in proven in any book on field theory. In this way, our (6.2

self-energy formulation effectively gives a proof of the

Lorentzian form(2.11) which is often assumed without & Fortunately, there is no oscillating factet'* here. The last

microscopic foundation. We emphasize that, although Edeonstant term has no effect in the following, and will be

(2.11) may appear innocent, it is a rather strong assumptiofgnored. The third term represents the additional magnetic

and is far from trivial. field of +#\H [compare with Eq(4.3)]. This is again ab-
When the line Shape turns out to be Lorentzian, the reSU|t§orbed by a renormalization of the uniform figt] g|v|ng

must agree between the MK and self-energy approaches, e shift of w\H.

the correlation functions are evaluated correctly. This will be  The shift depends on the sign of the anisotropy. When

verified for a few cases in Secs. VIB, VIII B, and VIIIC. On comparing with experiments or existing literature, it should

the other hand, while the validity of the MK formula is lim- pe recalled that we discuss the shift in frequency for a fixed

ited to the lowest order perturbation theory, the self-energyield H, while usually a shift in the resonance field for a fixed

formulation allows us to go beyond that. In fact, we will frequency is studied. We also remark that the dipolar inter-

make a nonperturbative analysis of the line shape, based Qfttion corresponds to a negatiséand\). Taking these into

the self-energy formalism, in Sec. VIIIE. account, our results on the shift are qualitatively consistent
We note that assumptions similar to Eg8.11) have been ith the literaturet446

made in literature® for different problems; sometimes the  The remaining problem then is to study the effect of the

assumed, is referred to as the memory function. For ex- perturbation

ample, Giamarch studied the conductivity of the TL liquid

with the bosonization method. His discussion is rather N

closely related to our analysis of ESR in the present paper. Ll=— = (IR —ILI —IRID). 6.3

(See also Ref. 31In fact, he calcuclated the ac conductivity 2

of a TL liquid by evaluating the memory function with the

field theory. This is quite similar to a field-theory calculation The first two terms corresponds to an interaction in terms of

of the MK formula for ESR, which we will discuss in later the boson field?ﬁ, and the problem cannot be reduced to a

sections. We could a_tlso apply our ;elf-gnergy approach to thﬁ'ee field theory. Thus it is not possible to calculate the ESR
problem discussed in Ref. 30. This might be useful for pro'absorption spectrum directly as we have done for the ex-
viding a more rigorous foundation and a possibility to go

. 9~ change anisotropy parallel to the magnetic field in Sec. IV.
beyond the lowest order perturbation theory. The possiblg o afore we will employ the self-energy approach devel-
breakdown of the MK-type formula, in the context of the oped in Séc. V.
conductivity of a TL liquid, was discussed by Giamarchi and
Millis. >t

A. Self-energy approach

Because the anisotropy considered here breaks the rota-
tional symmetry in thexy plane, we expect a polarization
dependence. Thus let us consider the correlation function of

Now we consider the exchange anisotropy with the axisS* and S’ separately. Under the magnetic fielt,” at zero
perpendicular to the applied magnetic field. Let us take thenomentum are expressed as
axis of the anisotropy as theaxis. In the low-energy effec-

VI. EXCHANGE ANISOTROPY PERPENDICULAR
TO THE MAGNETIC FIELD

tive theory, at zero uniform field the anisotropy term is JEH)+ 3 (—H) +Ig(—H)+ 7 (H)
given as St= > , (6.9
28w
Lam NI = — S (IR - I + 320+ N3 + + - -
a= ~MRIL=— 5 (JRIL—IRID + 5 IRILH SIr- L JR(H)+IF(—H)=Ig(—H)= I (H)
: 2i /8772

Here the parametex, which is proportional ta5 for a small e emphasize here that, under the magnetic f8fds re-

6, is the same as the one introduced in E41). The last  |ated to both current operatod andJ¥. The original spin

term Jg-J, of the second line is the isotropic marginal op- operator and the current operator are quite different objects.

erator, which does not affect the resonance directly and will Absorbing the third term in Eq6.2) as a renormalization

thus be ignored in the following. of the magnetic field, the perturbation respects the symmetry
Now let us include the effect8.8) of the applied uniform  J*—J*,3¥— —J¥,J*— — J Thus the cross terqy*J¥) van-

field H. The first and second terms in E(.1) are trans- ishes in this case, allowing us to proceed with the rotation

formed into trick described in Sec. V. Namely,
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(59

1
[(IrIR)+ (JRID) + (ILIR) +(ILID) + (JEIR) + (JRID) + (IR + (I IDT(@=H) + ——[---1(a=—H)

3272 327

:—32W2[<J§J§e>x+<JZRJi)X+(JiJZR)X+(JfJf)X+<J§J§z>y+<JZRJE>y+<JfJ§z>y+<Jf3f>y](q= H)

+

ol da=—H), (6.6

(99) =[(IrIR) — (IRID) — (IIR) +(ILIN) + (IRIL) — (IRIVD — (R IR +(HINW(q=H)+[- - - 1(q=—H)
=[(IRIRx—(IRIDx— (FLIRIH (ILID N+ (JRIR)y— (JRID)y — (JLIR)y H(ILIDI(@=H) +[- - - 1(a=—H).
(6.7
1
<5X3y>=%[<3§3§>—<J§Jf>+<Jf3§>—<3f~1f)+<3¥e3)§>+(J?QJ{)—<J{J§>—<J{J{>](q:H)—[' ~-1(q=—H)
:[(‘]ZR‘]ZR>X_<JZRJE>X+<‘JE‘]ZR>X_<JEJE>X+<JZR‘JZR>y+<JZRJE>y_<‘]EJZR>y_<JEJE>y](q: H)—[---1(g=—H).
(6.8

Here (), and (), mean the expectation value in the presence of(tbeated perturbation\/2[Jf J§— (JfIg+JI{I%)] and
N2[(IFI%— IV IL) — IZIZ], respectively. Fortunately, these can be written in terms of either ¢:

JEIR— (LI + NI = —m(d,$)?— 2 cos\87h, Ry w?— g2
(69) gJZR‘]i (w,q):ﬂ-wz—qz—HR(w q)1 (615)
(JEIR— I IR — I Ig=m(9,$)*+2 cos\8m¢. . (w+0)2
6.1 g z zy , = , 6.1
(6.10 75 (w,9) sz—qz—HR(w,q) (6.16

The ((9M<;5)2 term gives a renormalization of the radi&s Re | : , .
However, in the lowest order of the perturbation theory, itsWhereg (a=x.y) is the retarded Green's function de-

. . R .
effect is negligible on the boson correlation functipng)  ned b% thehexbpectat:‘pr; V_aIL(E’ Ve (w’?)h's the self-
and thus will be dropped in the following. energy for the boson fielg in the presence of the interaction

Thus, in evaluatingJ?J%), we will represent the current —\ C0s\8m¢ (or the self-energy for the boson fieldl in
operatorJ? as a derivative ofp, so that the problem is re- the presence of cos\/8mé, but this is identical Plugging
duced to the correlation function of the fundamental bosorthese into Eqs(6.6), (6.7), we obtain
field ¢ in the presence of the interaction in termsdgaf On
the other hand, in evaluating)“J*),, we will express the H? 1

- R .
currentJ” by of ¢ for (J23%), . G @) 2T w2—H2—TIR(w,H) (6.17
As a result, we have
2
— )2 R w 1
R x — ((x) q) gyy(w)zz_ 2 2 R y (618)
Gy (,0) T Re.q) (6.1 T w?—H2=I1R(w,H)
R w’=q° 61 Qi‘y:—G?x(w):iz—ﬂ " 1HR o 619
gJZRJE (w’q)_ﬂ-wz—qz—HR(w,q), ( . 2 w ((1),

Whereggﬁ is the retarded Green’s functions of the spin op-

. (0+q)? eratorsS® andSP, as defined in Eq(2.3).
22 (@,q)= , A1 For a directiona in the lane,
g‘]LJL (w,q) Trwz—qz—HR(w,q) (6.13 a directiona in Xy p
, r  HZcoS®+ w?sifd 1
(0—0q) aa™ 2_ 142 R '
ng 2y w,q)=m y 6.1 ™ o“—H—1II (wa)
LI (@,9) 02— >~ TR(w,q) (6.14 (6.20
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(a) lated by the diagrammatic expansi@re., Wick's theorem
The second-order term in the boson correlation function is
related to

2
2);<4<¢(1 x8w¢(2)e*i€%¢(3)¢(4)>

A (uF) (—iyBm™"
-8 m!
X(p(1):"(2)::™(3): (4)) (6.21)

(b) = K p(1) p(2))(e BTHDe BTN (3) (4))

+(23)— N (1) (2))(€ Br(2)g—i \sﬁ¢(3)>

X(P(2)p(4))+(2<3)

+ TN P(1) p(4))(eh BT I VETA(3)) (6.22

The three terms here represent contributions from different
(©) kinds of Feynman diagrams, as shown in Fig. 3. The second
type of the term —(¢(1)¢(2))(e E7¢(Re NETH3))
X(p(2)p(4))+(2-3) represents the “tadpole” type
Feynman diagraniFig. 3(b)], while the last term corre-
sponds to a disconnected Feynman diagrdfig. 3(c)],
which is canceled by the correction to the partition function.
In fact, there is a similar contribution from
e BT¢)eTIBTH(3) pesides the above, and one has to inte-
grate the coordinates 2 and 3 over Euclidean space-time. As
a result, we obtain the self-energy in the lowest order
[O(\?)] of the perturbation as

FIG. 3. Three types of Feynman diagrams appearing in the per- I (w,,0) =47\ G(11(@n,0) —G11y(0,0],
turbative expansion(a), (b), and(c) correspond to the first, second (6.23
and third terms in Eq(6.22), respectively. The disconnected dia-
gram(c) is canceled by the correction to the partition function; thewhereG 4 ;) is the Matsubara Green’s function of the opera-
“tadpole” diagram (b) does not contribute to the imaginary part of tor of the conformal weight1,1) in the free boson theory.
the self-energyi.e., the linewidth. These two terms come from tyge) and (b) Feynman dia-
grams in Fig. 3, respectively. Analytic continuation back to

whered is the angle betweenanda directions, namely, the €@l time leads to
angle between the anisotropy axis and the polarization of the MR(w,q) =477)\2[G(R1 o, q)—G(Rl (0,01, (6.24
electromagnetic wave.

As a result, for any directions of the polarization perpen-WhereGy 4y is the retarded Green's function corresponding
dicular to the magnetic field, the ESR line shape is Lorentz10 the Matsubara Green’s functi@®y, ;). Its imaginary part
ian with the width—ImIIR(H,H)/(2H). However, the line can be derived by taking the limi,A—1 in Eq.(3.19:
shape has some angle dependence through the numerator 2
H? cog 6+w? sir? 6. In fact, the present result is consistent
with the exact and rigorous relatid2.18 for original spin

n G (,(),q - w q CO || CO ||
@1 8 4T 4T

model. This serves as a consistency check of our field-theory (6.25
approach. The imaginary part then reads

Now let us calculate the self-enerfly of boson fielde in ginary p
the presence of interactioncos8m . It is easy to see the —ImIIR(H,H)=473\?HT, (6.26

first order perturbation to the boson correlation function van-
iving the width
ishes due to symmetry. The second order perturbation to th% g the widt
boson correlation function does not vanish and can be calcu- 7=2m\2T. (6.27
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Again, this is consistent with the scaling analy@ls?). The 202
real part is proportional tog”>— ), which corresponds to a n=
wave function renormalization, and does not lead to any shift Xu
at O(\?). In any case, there is a shift @(\) discussed Using Eq.(5.17 again(recall we have set=1),
above, which is dominant. a2

To summarize, the exchange anisotropy with the axis per- n=4m\T. (6.32

pendicular to the applied field gives the following effects onThjs indeed agrees exactly with the resit8) obtained by
paramagnetic ESR. Shift:- mAHxH§, width: 27°\*T  quite a different approach. We remark that a similar deriva-
%<(8/3)>T. Comparing to the result for the exchange anisotjon of a similar formula for the ac conductivity of a TL
ropy with the axis parallel to the applied field, the width jiquid was given earlier by GiamarcHf.

obtained here is half of the resy#.8) for the parallel case. Next let us consider the exchange anisotropy perpendicu-
This can be understood naturally with the MK formula as wejgy to the applied field. Absorbing the third term in E§.2)

will discuss in the next subsection. On the other hand, thento the renormalization of the magnetic field, the perturba-
shift takes opposite sign and the absolute value is half of thafon to be considered isH' = (A/2)[dx(I I~ IV I

in the parallel case. —J{JR). Consequently, the commutator becomes

T, (6.31)

B. MK approach ) A B .

_ , o A=i[H',ST]=i —f dx{[J (x)J&(x)+JIF I 1e'H>
The line shape is shown to be Lorentzian in the two cases 2
discussed abovéexchange anisotropy parallel and perpen-
dicular to the applied field up to a possible broad back-
ground of O(A?). Thus the MK formula is expected to be This leads to
also valid for these cases. In order to check consistency of
our field-theory approach, here we study the same problem
with the MK formula.

Let us consider the exchange anisotropy parallel to the . .
applied field considered in Sec. IV. We may apply the MK Where we have used the susceptibili17) in the second

formula to the spin chain Hamiltonian and then take the con€duality. Again we have found an exact agreement with the
tinuum limit, but taking the continuum limit first and then Self-energy approack6.27). The ratio 2 of the width be-
apply the MK formula turns out to be simpler. Absorbing the tWeen the parallel case4.8) and the perpendicular case
second term of the effective perturbatiéhd into a renor-  (6:27 is simply understood in this approach. It arises from
malization of the magnetic field, we need to consider thene factor of 1/2 and the presence of twice as many terms in
effect of the perturbatioftt’ ~\ f dxJJ%. Eq. (6.33 as compared to Ed6.29. In fact, such an angle

First we have to obtain the commutat@9) appearing in dependence also holds at higher temperature and has been

the MK formula. The total spin raising/lowering operagt discussed in the literature, for example, in Refs. 32, 33.

in the continuum limit is given from E¢3.27) as

+[F(x)Ig(x)+I] IEle M. (6.33

A2
77:)( Hlm[_G(Rl,l)(H'H)]:ZWSAZT, (6.34
u

C. Effect of the marginal isotropic operator:
Logarithmic correction

+ 1 + 4+ + i
S=\/8_2f dx(Jge™™+J e, (6.28 The Hamiltonian of the Heisenberg antiferromagnetic
™ chain with a small anisotropy in the direction can be

Using the standard commutation relation among the currentd/ritten as
the commutatotA is given by H=Hy— [@HIT+ ILIY) + g2I237], (6.39
A=i[H',S"] where we ignored the applied fiel, which will be consid-
ered later. Here we can rewrite the perturbation as
=i)\f dx[ JZ(x) I (x)e* Lo
S 9", - Jrt (97~ g")J7 2, (6.36
+IL)J] (x)eHx. (6.29  Where the first term is the isotropic marginal operator. The
second term gives the anisotropic interaction —g*+g”.
JiJ% andJJ| are primary fields with the conformal weight ~ As is now well known, the isotropic marginal perturbation

(1,1). Thus, from the MK formuld2.7) we obtain the line-  €Xists in the low-energy effective theory of the Heisenberg
width antiferromagnetic chain, giving several effects such as the

logarithmic correction to the magnetic susceptibffitat low

5 temperature. While it has a simple fordp-Jg at H=0, it
= M_H|m[_G(1,1)(H’H)]' (6.30 becomes complicated if we include the effect of the applied
field H. It introduces complications such as the momentum
The Green’s function is what we have already considered imonconservation in the effective theory and the mixing’of
Eq. (6.29, and thus we obtain the width andJY, thereby invalidating the simple self-energy approach

)\2
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discussed in Sec. V. Thus we actually have no microscopic

T T
derivation of the Lorentzian line shape in the presence of the L8 €:S§8;’*5ﬂ|'§ ﬁ 7
isotropic marginal operator, at present. On the other hand, thi 16 - KCuF3 H |lc O X X °
operator by itself, being isotropic, does not directly affect the 14 *N‘j,S‘;S@% I ff, Z Iy A% 7
linewidth. Since the isotropic marginal coupling constant 1.2 NavzosHHb * N@ ]
renormalizes to zero, we may expect the Lorentzian Iine(mmﬁfj) 'r A2 T 1
shape is basically unaffected by its presence. It does, how 081 - )
ever, indirectly affect the linewidth through the renormaliza- 06 pEEER @ 8 8K il
tion of the anisotropic perturbation as we discuss in the o4 i
following. 02 . , , , , , L
As discussed in Ref. 37, the coupling constagitandg?* 0 0 02 04 06 08 1 12 14

are renormalized by the Kosterlitz-Thouless type RG flow.
The solution of the RG equatiofior H=0) in the lowest
order gives

T/J

FIG. 4. The temperature dependence of the ESR linewidth in
KCuF;, CuGeQ, and Na\,Os. The data are taken from Refs.

« € 1 33, 35, 36, respectively. The horizontal axis is the temperafure
g T A sinf(elnr)’ (6.37 normalized by the exchange couplidgand the vertical axis is the
normalized linewidth.
€
gz=Ecotr(e Inr), (6.38  This corresponds to the coefficientintroduced in Eq(4.1).

The larger of the temperatufe or the applied fieldH im-
wherer is the scale variable(J/T) and € is a constant, poses the cutoff of the RG flow, and thus the scale factor
which determines the crossover scdlEhis solution is valid  should be replaced by/max(T,H).
only if the infrared(IR) limit is a massless free boson theory,  In the present discussion, the uniform figldappears only
namely, if 5<0. We proceed by assuming this case; the finalas a cutoff scale imposed on the RG flow at zero field. Thus,
result on the ESR linewidth should be valid also ##0.] In  to this order, the renormalization of the coupling constant
the IR limit r—oo, g*=0 and applies to arbitrary direction of the anisotropy relative to the

applied field. Therefore we conclude the low-temperature

g4(o0) = % 6.39 asymptotic behavior of the linewidth and shift to be
. _ _ 4 (52 J 2
This corresponds to a renormalized free boson Lagrangian n= _3(_) In———| T, (6.44
[1-2mg%(*)](d,.¢)%2, which leads to the critical expo- w2\ maxT,H)
nent z,=1—2mwg*(>), where{S*(r)S*(0))~r " "=
On the other hand, the critical exponent in the low-energy A 296 J 6.45
w= .

limit of the HeisenbergXXZ model has been obtained from

273 "maxT,H)
the Bethe ansatz exact solution. For the Heisenberg model

with an exchange anisotropy
H= 2 HSS, 1 +9/S ) +(I+8)SIS,, (6.40

it is known that

1
27R?

—1- Zcos 1|1+ 2 6.4
7z =1-—cos 3 (6.4

for a negatives. Combining these results, we obtain, for
small g, 6,

if the anisotropy axis is parallel to the applied field. They are

2

2 [68)\° J
7]:;(3) In—ma)(T,H) T, (6.46)
)
Aw ! J (6.47

=273 "maxT,H)

if the anisotropy axis is perpendicular to the applied field.

D. Comparison with experiments

In this paper, we have not calculated the ESR line shape
for a general relative direction between the anisotropy axis
and the magnetic field, let alone more complicated anisot-
ropy of general form. However, the resul#.8), (6.27) to-
gether with the scaling argumeft.2) imply that the line-
width due to the exchange anisotrofy dipolar interactioh
scales proportionally to the temperaturein the low tem-
perature regimeT<J (but above the Na or spin-Peierls
transition temperatujeThis, in fact, appears to be observed
in many quasi-one-dimensionalS=1/2 antiferromag-
net$8-40:333536 jncluding CPC, KCuk, CuGeQ, and

1 [/-86

€= —

3 (6.42

Since the isotropic pag*=,Ji'Jg commutes withS*, the
important perturbation is the “asymmetric pag”—g*. In
the intermediate scale<e', which would be relevant to
ESR for a weak anisotropy,

1 2 Inr §
8¢ nr= FEICE

A=—-g*+g*= (6.43
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NaV,Os. In the case of Cu benzoaté there is a field- which are given as dimensionless numbers. In these materi-

dependent diverging contribution to the linewidth at low als, the data foH|la andH||b are quite similar, and thus only
temperature due to a staggered field effect, as we will discuggne set of them is shown for each material.
in Sec. VIII. There seems to be another contribution to the Comparing with our result¢.44 and(6.46, the anisot-
linewidth, which is approximatelyT linear and frequency ropy ¢6/J seems to be about a few percent. It was
independent. We presume the latter contribution is due to thargued®>>*that, in these material it is to@p to 10 timey
exchange anisotropy. big compared to what we expect from Moriy&'estimate

In Fig. 4 we show the observ&f>3°ESR linewidth for ~ 8~(Ag/g)2] where Ag is the anisotropy of the-tensor.
KCuF;, CuGeQ, and Na\,Os, as a function of the normal- (Actually the discussion in Refs. 33-36 was based on the
ized temperaturd/J. We note that, these materials exhibit high-temperature limit. See Sec. IX for relation to our low-
phase transitiongsuch as Nel and spin-Peierls transitions temperature theoryHowever, we believe that Moriya’s for-
at low enough temperatures, where the linewidth appears tula is only valid as an order-of-magnitude estimate. There
diverge. Since we focus on one-dimensional systems in thig a room for a factor which is presumably not too much
present work, in Fig. 4 we have omitted such temperaturglifferent from 1, but could still allow the exchange anisot-
regimes, above which we may regard the system simply as #®py that is consistent with the observed linewidth.
spin chain. It could be possible that, however, the displayed The linewidth deviates from the field theory resull at
data are still affected by the interchain interactions, the spinhigher temperatures. This is not surprising, since the field
Peierls instability, etc. theory is only valid in the low temperature<J. We will

An analysis on the linewidth in Na\Ds similar to ours give more discussions on the crossover to the high-
was published previously by Zvyagif.However, we also temperature regime in Sec. IX. On the other hand, if all the
remark that theT-linear behavior of the linewidth due to an materials can be regarded as a standard Heisenberg antifer-
exchange anisotropy was reported earlier in Ref. 12. In factiomagnetic chain with the same type of anisotropy, we would
Eg.(3) in Ref. 52 is equivalent to Eq11) in Ref. 12. More-  expect the linewidth to be a universal functionTof). How-
over, in Ref. 52 it was argued that a bond-alternation perturever, in Fig. 4 it is evident that the linewidth behaves differ-
bation leads to a linewidth<(J;—J,)%/T2. However, the ently at high temperature, especially in KGufFhis suggests
argumenfleading to Eq(4) in Ref. 52 cannot be correct per that not all of them can be described by the standard Heisen-
se, because the ESR linewidth must remain strictly zero aerg antiferromagnetic chaii3.1) with the same type of an-
long as all terms in the Hamiltonian except the Zeeman ternisotropy. We remark that the low-temperature asymptotic be-
commute with the total spin operators, as we reviewed irhavior should be universal for a certain class of
Sec. Il A. An isotropic bond alternation keeps this property.Hamiltonians, but the explicit coefficients obtained in Egs.
It is possible that an isotropic bond-alternation perturbatior(6.44 and (6.46 are specific to the standard Hamiltonian
J,J, together with an exchange anisotropic uniform ex-(3.1).
change perturbatiod might lead to a width, but it would be Certainly, there are many questions still to be understood.
suppressed by the factd?/J?, as the width should vanish An important problem is the dependence on the direction of
when 6=0. In any case, a reliable derivation seems lackingthe applied field. In the case of NaWs;, the observed line-
so far. We point out that the ESR spectrum cannot simply bavidth at low temperature is twice as large whidfic com-
related to the boson propagator in the field theory, in thepared as whei_Lc. This is consistent with our result, if an
presence of a bond alternatiofSee remarks below Eg. exchange anisotropy with the single anisotropy axis parallel
(5.1).] to c is assumed. However, in the case of Cugeghd

In Fig. 4 we took J=400, 150, and 560 K, respec- KCuF;, the observed linewidth fo | c is smaller than that
tively®3>%for KCuF;, CuGeQ, and Na\Os, while there  for H|la and H|/b. This kind of angular dependence cannot
are some uncertainties in the estimate. The linewidth ide explained with an exchange anisotropy with a single an-
renormalized to be compared willtJ. The low-temperature isotropy axis. This suggests that we have to consider more
asymptotic behavior of the linewidth indeed seems consisgeneral types of anisotropy, or some other effects.
tent, although not perfectly, with the universilinear be- A complete theoretical description of the experimental
havior we have derived. On the other hand, it is difficult todata in these materials is left for the future. Nevertheless, we
discuss the predicted logarithmic correction in the presenbelieve that the universal decrease of ESR linewidth at low
data. Regarding Fig. 4 as a fitting, the low-temperaturédemperatures its=1/2 antiferromagnetic chains is basically
asymptotic behavior reads understood with our theory. Ours is presumably the ‘first

microscopic derivation of this approximatelylinear line-
width. In Refs. 33—-36 a completely different interpretation

(42x10°* (CuGeQ,H|c), was proposed. However, we will argue against it in Sec. IX.
47x10°% (CuGeQ,H|a),
7 17X 104 (KCuF3,H||c), VII. ESR IN AN XXZ ANTIFERROMAGNET
T ) 22x10°4 (KCuF3,H|a), (6.48 So far in this paper, we have restricted ourselves to the
1310 (N, Ho) e s o
| 0.65x 1074 (NaV,0s,H|b), the self-energy formalism to a not small anisotropy, one has
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to sum up higher orders of the perturbation. In addition, theAs we have discussed already, the staggered field is mapped
foundation of our self-energy formalism based on the weaklyto the operator

broken SUW2) symmetry may be questionable in such cases,

because the S@) symmetry is strongly broken in the spin n*~k cog 2mR¢) (8.2)
Hamiltonian.

However, there is one case in which we can study ESRvhich has scaling dimension 1/2. A standard scaling analysis
with a strong anisotropy: an easy-plax¥ Z antiferromagnet  similar to that in Sec. IV shows that, ignoring the logarithmic
with a field applied perpendicular to the easy plane. This iorrection, the linewidth should be given as
nothing but the isotropic Heisenberg antiferromagnet with a
negative exchange anisotropy parallel to the applied field Eg H
(6.40, with 6<0. Here we can apply the direct calculation 77=Tg(?,?),
introduced in Sec. IV.

The compactification radiuR for the XXZ model with a  where E, is the excitation gdp’ due to the staggered field
given anisotropys is known from Bethe ansatz exact solu- proportiona| toh?331/3, Again, the Sca”ng argument alone

tion and is given in Eq(6.41). Using this radius, the ESR cannot determine the actual form of the scaling function
absorption spectrum given by the Green’s functigri9 of

the vertex operator with the conformal weigBt17), (3.18.
Since 6 is not small, the spectrum is no longer a simple
Lorentzian, except at low enough temperatifeH<J As we have discussed, The staggered transverse(@cld
where the spectrum reduces to the Lorentzia). is mapped to the field theory operatot:

In this Lorentzian case, the width here dows reduce to
the previous oné6.44 which was proportional t@&5?, even
in the limit §—0. The reason of this disagreement is that
they describe different regimes. The res(6t44 is valid
when the energy scale maxH) is above the crossover en- where k is a constant, and we normalize* by
ergy E.=e~Y¢, while the present result is valid if the rel- (n*(r)n*(0))=1/r. Namely,k? gives the correlation ampli-
evant energy scal& andH are both belowE.. For a small  tyde <5331_X>~(_1)ik2/j_ This form is not affected by the
anisotropy, the crossover scale is exponentially small, makapplication of the magnetic fielt, except for the possible
ing Eq. (6.44 realistic for the experimentally accessible re- renormalization of the amplitude and the exponent, which
gime. we will ignore.

For a small exchange anisotropy and above the crossover The SU2) WZW field theory with the perturbation* has
energyE,, the width is proportional to\? in the leading rotational symmetry about theaxis. While the original spin
order of perturbation theory; the width is insensitive to theproblem is not invariant under a rotation about xexis due
sign of the anisotropyeasy-plane or easy-axisHowever, to the applied field, the effective field theory does have this
when the anisotropy is large arH<E_, this symmetry no  symmetry. As a consequence, correlation functions of the
longer holds. In fact, the system in the zero temperature limitype (3*9Y) vanishes. Thus we can apply the self-energy
is gapless for an easy-plane anisotrdj@<0) while it ac-  method by reducing the ESR spectrum to Green'’s function of
quires a gap~ E, for an easy-axis anisotropyp>0). In the  the bosonic field, as discussed in Sec. V.
gapful cases>0 andT,H<E., ESR probes the creation of  The transverse staggered field in théirection breaks the
the elementary excitation above the ground state; the absorgotational symmetry in they plane, leading to polarization
tion spectrum then has a sharp peak centered at the energy@pendence. Calculations similar to those in Sec. VI lead to
the gap. the same resul(6.17), (6.18, and (6.19. The polarization

dependence is again consistent with the rigorous relation
(2.18 which can be applied to the present case.
VIIl. TRANSVERSE STAGGERED FIELD The self-energyll is now replaced by the boson self-

As we have discussed in Sec. Il B, a staggered field is th gnergy in the presence of the perturbatiohcosy2m .

most relevant perturbation of the isotropic Heisenberg anti%gam’ arguments similar to those in Sec. VI can be applied

ferromagnet. Breaking the $PB) symmetry, the staggered to obtain the result

field affects also the ESR spectrum. Here we discuss the

effect by the field theory methods described in previous sec- 17w, 0) = 27(kh) [ G{lya 1/af ©,0) ~ G (s 114(0.0)],

tions, and then explain the mysterious observations in ESR (8.5

experiment®* on Cu Benzoate in the 1970's which were \hqre the second term comes from the tadpole term

recently confirmed and extend&t. .
Let us focus on the case of a transverse staggered field

(8.3

A. Self-energy approach

H'=h>, (—1)iij~khf n*(r)dr, (8.4)
J

The self-energy is a smooth function ef near the reso-
nancew~H. Thus, the line shape is Lorentzian near the
center of the resonance, with the width and shift determined
by the self-energy atd,q)=(H,H). The imaginary part of
H’=h2 (—1)is. (8.1) the second, tadpole term vanishes according to (B4.9.

] ! Using Eq.(5.19, the linewidth is given by
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k?h? R On the other hand, in the original spin representation, the
7=—g M= G(ya,afH,H)]. (8.6)  commutator is easily evaluated as
From Eq.(3.19, the linewidth shows quite a nontrivial A=[H',S]=hD (-1)i& (8.11)
j ' '

dependence on the applied figidand temperaturé. How-
ever, in the weak field regimél<T, the formula can be
simplified and linewidth has simpl& 2 dependence on the namely, the longitudinal staggered field with the coefficient
temperature: h. Taking continuum limit, it agrees with E@8.10).
Thus, from the MK formula, the linewidth is given by

2
wkZ(r(%)> h2 . -
=4 P : keh
u
We note that this is consistent with the scaling analy§ig-
call that we have sat=1.) Again using Eq.(5.17), this agrees exactly with the result

The correlation amplitudk? was recently determined ex- (8.6) obtained in the self-energy approach.
actly for theS= 1/2 Heisenberg antiferromagfiet’ *?with a
logarithmic correction due to the presence of marginal C. Shift of the resonance frequency

operators . . ) .
In the present case, there is no shift to first ordeln.itn

fact, the first term in the MK formul#2.10 vanishes in the
(—1)"(S¥r)S*0))~ s (8.9 present case. The lowest order shift is thus second order in
(2m)=e T This is given by either the MK formula2.10 or by
ReIIR(H,H)/(2H) in the self-energy approach. Again, both

The logarithmic correction is translated into aJfi{) factor g\pproaches give the same result for the frequency shift

in the ESR, where the temperature gives the IR cutoff. Thu
we obtain(upon reinstating = 7J/2)

Mo 7= T R~ G {00+ G uf HH
. 1\/; r 2Jh2| ; 0685701‘&' ; 0=7= o & = G(1/4,1/4( 0,0 + G s 12 H, ()8]-13)
W—E ET%) ?nf~. Tznf. .
(8.9 This is a straightforward consequence of the self-energy

approach. On the other hand, the derivation from the MK
approach might need an explanation. While the second term
proportional to—G(R1,4’1,4)(H,H) just comes fronGiAT in

the MK formula (2.10, the first term [proportional to
—6?1,4’1,4)(0,0)] is less obvious. From E@8.11), the com-

Since the line Shape is LorentZian, the MK formula Shouldmutator in the first term of the MK formu'@_l@ is given
be valid also in this case, provided the correlation function ig,

evaluated appropriately. There are two ways to evaluate the

commutator(2.9) appearing in the MK formula: to take the

continuum limit before calculating the commutator, or to first [A,S ]=hD, (—1)is". (8.19
calculate the commutator in terms of the original spin vari- j

able and then take the continuum limit. We think the former . . ) )
is generally more reliable, since the field theory only dealdts expectation value vanishes if evaluated in the absence of

with universal low-energy phenomena while the Lorentzianthe Staggered field{’. However, taking the staggered field

assumption of MK formula would be valid at best in the Perturbation into account,

long-time limit. In the present case, the two methods give the

same result as we will show below. ([A, S 1)=—h?xs+0(h%), (8.19
Taking the continuum limit first, we calculate the commu-

tator between the field theory operat¢8s4) and(3.27. The  Wherexs is the (transversgstaggered susceptibility. By the

standard relation between the commutator and OPE leads tinear response theory, we have

Implication of this result on the experiments will be dis-
cussed in Sec. VIII D.

B. MK approach

A=[H',S7] Xs= —k?ReG 14 1/4(0,0), (8.16
_ X - ZiHr - iHr which leads to Eq(8.13), with the replacement of,, by its
{hkf n (r)dr,quzf Jr(rje (e zero-temperature limit5.17).

For the standardS=1/2 Heisenberg antiferromagnetic
_ —iV2ZTpa—iHI | AiZTPaiHT chain, we can apply the exact result on the correlation am-
(hklz)f e e e edr. (810 iude as we did for the width. We obtain
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classical limit. However, we believe that E®.20 itself is

not quite correct even i were evaluated exactly. In fact,
Eq. (8.20 differs from ours(8.13. Interestingly, Eq(8.20

is equivalent to including only the tadpole contribution in the
self-energy approach. The discrepancy becomes particularly
important at low magnetic field. In the limit ¢ —0 at fixed

h andT (although this limit is not realistic in experimerthe
MK/self-energy approach predict the shift lineaHrbut Eq.
(8.20 gives a diverging shift~1/H, which is presumably
unphysical. While Eq(8.19 captures some physics of the
frequency shift, it fails to include more subtle effects of fluc-
tuation, presumably because of the oversimplified ansatz and
of not including the long-timescale dynamics.

D. Comparison with the experiments

FIG. 5. The temperature and frequency dependence of the ESR

linewidth for H||c” 10, after subtracting the frequency independent

part. It is compared our theor{8.9). See also Fig. 2 of Ref. 12 for
the same comparison without the subtraction.

1 2
A _1\/%I J\Jn? F(Z)
“=g V2" T/HT W

CH
'oaT

Bl W

N w| AR

! Wl)
'2
(8.17)

For small fieldH compared to temperatuie we obtain by
Taylor expansion of the Gamma function

. Jh°H (3
Aw=0.344 057T—3In 7 (8.18

(An incorrect prefactor was given in Ref. 12amely, we

The result(8.9) of the perturbation theory implies an in-
teresting behavior of the ESR linewidth in materials such as
Cu benzoate. As we have discussed in Sec. Il B 1, there an
effective transverse staggered field is induced proportionally
to the applied field f=cH), and the proportionality con-
stantc depends strongly on the direction of the applied field.
Thus, the linewidth increases a2 as the temperature is
lowered. Furthermore, it depends on the applied fielcthe
resonance frequengy and on the direction of the applied
field. This very characteristic behavior is not expected for the
exchange anisotropy. In fact, these features were actually
observed nearly 30 years ago in ESR on Cu benzoate and
apparently have not been understood until recently. Our re-
sults give a natural understanding of these observatfons.

The only unknown parameters in Cu benzoate were two
components of DM vector. We have chosen

(D,r,Der)=(0.13,0.02J, (8.20)

which seemed most reasonable to fit ESR d&ta.is also
roughly consistent with other experimeh&ich as neutron
scattering, although not perfectly. This choice of DM vector
fit rather nicely the direction dependen@gg. 1 of Ref. 12,
temperature and field dependeri€ég. 2 of Ref. 12. How-

obtain the positive shift which rapidly increases with de-gyer, we should note that the determination of the logarith-

creasing temperature.
The shift in the presence of the staggeetensor was
previously discussed by Nag&taising the formula

. + ’ —
Aw=—m<[[s VH'1,S™ D). (8.19

derived in Refs. 45, 46also see the Appendix.In the

mic correction in a practical fitting is a difficult problem; the
leading log correction is only valid in the low temperature
limit. Our fittings were done setting the logarithmic factor to
unity.

There is some discrepancy between the theory and the
experiments. We see, in the experimental data, a
field(frequency-independent contribution which appears to

present case, it is reduced to the expectation value of th@€ @pproximately linear in temperature. This is presumably

staggered fieldij(—l)jS}‘. The leading order of the shift
in the perturbatiorh is thus given by
h2
Aw= m){s, (82@
where y, is the staggered susceptibilf The positive fre-
guency shift(i.e., negative field shiftwas argued to be con-

sistent with the experimefif:** On the other hand, the theo-

due to effects other than the staggered field. A probable
mechanism is the effect of an exchange anisotropy, which
gives a linewidth which isT-linear and independent of the
field. If we subtract the field-independent contribution from
the experimental data at the price of introducing additional
fitting parameters, the agreement becomes better as shown in
Fig. 5.

Recently Asanoet al. made a detailed experimental
study*® on ESR in Cu benzoate. They also confirmed our

retical result in Ref. 44 is not in quantitative agreement,prediction on the linewidth at higher field. In addition, they

partly due to the evaluation ofs in the high-temperature

found that, when the temperature is small compareditiat
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not too low, the shift is consistent with our predicti18

(see Fig. 2 of Ref. 43 Moreover, we can read off the pro-

portionality constant from their Fig. 2 as

3

T (8.22

H

Aw~0.05<—

for H||c, whereAw andH are measured in Tesla whileis
in K. On the other hand, using the DM veci@&:21), we find

thath=0.095H for H||c. Combining this with Eq(8.18, we
the theoretical prediction

H 3
Aw~0.044 ?) ,

where we have again replaced the logarithmd/Th with

(8.23

unity. Considering the subtlety of the logarithmic correction,

PHYSICAL REVIEW B 65 134410

whereZ? is the wave function renormalization constant ob-
tained exactl§? as

TV
2

17 t
WVeXF{_;fO mdt), (8.29

23|n?

Z%=(1+v)

where v=3%/(87— 3%). For the present case,=1/3 and
thusZ?=0.978689.

From this, we immediately find that the ESR spectrum at
zero temperature is given by a delta function

H+VHZ+M%)?
R MY o RPN,

—IHIGR+ (w)=
s's(@) 2\H?+M?
(8.26)

the agreement between the theory and the experiment i§ince the wave function renormalizati@f is close to unity,

rather good.

Thus our perturbative results agrees well with the experi-

the intensity is identical to that of a free resonance.
Thus we obtain a rather complicated behavior of ESR in

ments. However, at very low temperatures, the line shapge presence of the staggered field. As the temperature is
evolves differently than what we expect from the lowest or-|gyered, the linewidth increases in the perturbative regime

der perturbation theory. This will be discussed in the nex

subsection.

E. Resonance at very low temperature

t(T>Eg) as we discussed, but at lower temperatufie (

<Eg4) we see a revival of a sharp resonance. The width of
the resonance vanishes at zero temperature. At small but fi-
nite temperature € T<Ey, the resonance may be broad-

So far, our analysis was perturbative in the staggered fiel§n€d due to the thermally activated excitations, but presum-
h. While the perturbation theory seems reasonable for a sma@tly the effect is only of the order of the density of such
staggered field, it eventually fails at lower temperature wher&Xcitations~exp(—E,/T).
the effect of the staggered field is enhanced. In fact, the On the other hand, the ESR frequency at z@overy

perturbative expansion turns out to be an expansion i

Jh?/T3, which is divergent at low enough temperature.
The effective field theory describing tH&=1/2 Heisen-

berg antiferromagnetic chain with a staggered field is given
by Eq. (3.2 perturbed with Eq(8.2). As discussed in Ref. 6,

fow) temperature does receive a shift due to the staggered

field. Namely, the resonance frequensyis given by

w=H?+M?, (8.27)

compared to the Zeeman frequenidy For small masdM ;

this is nothing but the sine-Gordon field theory, which is one<H the shift is given as
of the best understood strongly interacting field theories.

Since the interaction terrt8.2) is relevant, the sine-Gordon

field theory is massive, i.e. has a finite excitation dap

above the ground state. The elementary excitations of the

M% J 1/3J2/3h4/3
Awo~=—~1.578 78€Inﬁ) -, (828

2H H

sine-Gordon model consist of solitons, antisolitons andvhere we used the result of the breather méstd-induced
breathers which are bound states of a soliton and agap Eq=M;~1.776 95In(J/h)*%(Ih?%)*3 in Refs. 6, 7.

antisoliton.

Here we emphasize that our self-energy approach is valid

The perturbation theory is expected to be valid only forbeyond the lowest order of perturbation theory, unlike the

T>E,. Here we consider the opposite linfit<Egy, where

MK formula. Thus it allows us a nonperturbative analysis

the system is essentially in the groundstate. Then we obtaiguch as the above.

quite a different picture. It is still valid that the ESR spec-

Our prediction agrees quite well with the experimental

trum is given by the& ¢ ¢) Green’s function at frequency and result in Ref. 11, as discussed in Ref. 12. The nontrivial
momentumH. However, we have to consider the zero-evolution of the line shape was indeed observed in the ex-

temperature Green’s function in a nonperturbative way.

In the present case3E= v27), the lowest excitations are

1st breather, soliton and antisoliton, which form an(3U
triplet. Thus the excitation gaf, is identical to the first
breather mas#,. The boson field$ couples to the first
breather, and thus its propagator is given by

zZ¢
<¢¢>(w,q)~m, (8.24)

M1

periment in 1970’s. Moreover, using the same parameter
(8.2 we have used for the perturbative analysis, we are able
to reproduce the direction dependence of the resonance fre-
quency at very low temperature quite well with £§.27) as
shown in Fig. 3 of Ref. 12. However, the data were only
shown at fixed temperature and fixed frequency in Ref. 11.
Thus several other predictions of our theory could not be
compared. After our proposil,Asanoet al. studied® ESR

in Cu benzoate at low temperature and at higher field. They
confirmed the crossover to the nonperturbative regime, and
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n ever, a recent: SR experiment on Cu benzoate revéathat

(ST a Neel ordering does not occur even down to 20 mK. We
believe that the evolution of the ESR line shape is primarily

57 explained within our one-dimensional theory taking the ef-

fective staggered field into account. On the other hand, we
also note that the interpretation in Ref. 11 is not totally dif-
ferent from ours; the system has a long-range magnetic order
in both theories. The difference is that the order is induced
spontaneoushdue to the interchain interaction in Ref. 11

T while it is forced externally by the staggered field in our
picture. Spin-wave theory can also be applied to the exter-

FIG. 6. Simplest scenario of the temperature dependence of th'aaIIy ordered state; the resonance at very low temperature

linewidth in the presence of an exchange anisotropy. Tieear ~ Would be then identified with the “upper mod&', [see Eq.
behavior at low temperature predicted by the field theory method3-12 of Ref. 7] which has a qualitatively similar depen-
crossovers smoothly to the constant?/J predicted by the Kubo- dence orh andH to Eq.(8.27) (we thank Shiba for pointing
Tomita theory at the high-temperature limit. The crossover takeghis oud. Quantitatively, however, the sine-Gordon field
place atT~J, which is the limit of the validity of the field theory Lheory is expected to work better for a small staggered field
approach. .

=/

that the resonance at very low temperature agreed with the

prediction(8.28 for various fields. Moreover, the crossover IX. ESR AT HIGHER TEMPERATURES

between the perturbative and the nonperturbative regime oc- | this paper, we have developed a field-theory approach

curs at temperaturd ~E,, consistently with our picture. o ESR in quantum spin chains. The field theory is a low-

The broadening at the nonperturbative regime was also cormergy effective theory, and is only valid at low temperatures

sistent with the picture =T, compared to the exchange coupling. Here we would like to
On the other hand, the precise line shape at the crossovgpnsider ESR in the other extreme, namely, the high-

temperature regimé&~ E4 requires a nonperturbative calcu- temperature limit using Kubo-Tomita theory. We will also

lation of the correlation function of the boson field in the discuss the crossover between the |0W_temperature and h|gh_
sine-Gordon field theoryt finite temperatureDespite re-  temperature regime.

markably many exact results on the theory based on the in-
tegrability, calculation of the finite temperature correlation _
remains an unsolved problem. The ESR line shape in Cu A. Exchange anisotropy

benzoate provides a set of rather precise experimental data For the exchange anisotrog§.34) in a generic direction,

for the finite temperature correlation function in the sine-the KT formula(2.12 has been applied to the linewidth in
Gordon field theory. It is hoped that future theoreticalthe literature. The result is

progress will enable us to compare theoretical nonperturba-

tive results with the ESR data in the crossover temperature 2

regimeT~ Eg. ' % —, 9.1
In Ref. 11, the sharp resonance at very low temperature is J

considered to be the “antiferromagnetic resonance,” which

reflects the Nel ordering due to the interchain interaction. In where we have ignored the direction dependence. It is diffi-
particular, they identified the appearance of the sharp resquilt to discuss the intermediate temperature regime either
nance at very low temperature as theeNeansition. How-  with the existing theories or with our field theory approach.
However, our result can be naturally related to the high-
temperature limit, assuming a smooth crossover at tempera-

i JHIT
/ ture T~J, namely if theT-linear behavior4.8), (6.27) is cut

off at T~J as shown in Fig. 6. In fact, this simple scenario
seems to agree with the experimental resgittd-33353%n
CPC, KCuk, CuGeQ, and Na\Os, which we think the
exchange anisotropyncluding the dipolar interactioris the
) primary mechanism of the broadening. See Fig. 4 for some
wiy of the examples.
T We note that, while the low-temperature asymptotic be-
~] havior described by the field theory is universal, the cross-
over to the high-temperature regime is expected to be non-
FIG. 7. Simplest scenario of the temperature dependence of theniversal. The linewidth as a function of the temperature
linewidth in the presence of a staggered field, interpolating the lowwould depend, for example, on the next-nearest-neigh-
temperature field theory resulh?®/T? and the high-temperature re- bor interaction introduced additionally to the standard
sulth?/J. Hamiltonian(3.1).
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B. Staggered field

No literature on the effect of a staggered field in ESR

linewidth is known to us. The application of the KT formula
(2.12 to the staggered field perturbati@® 1) is nevertheless
straightforward, giving the linewidth

h2

3 (9.2

77%

PHYSICAL REVIEW B 65 134410

2
X' (q=m, ),

9.9

Xphyd d=0,0)~x"(q=0,0) + ( 3

wherey” is the imaginary part of the dynamical susceptibil-
ity for the transformed model. The staggered pgfi{q
=1,w) is already broad even in the absence of the aniso-
tropic perturbation, and is further suppressed by the factor
(D/J)2. Thus it would be practically indistinguishable from

at the high—temperatu_re limit. This is again consistgnt withiha background, especially in the high-temperature regime.
the low-temperature field theory result Eg§.9), assuming a The main absorption due to th¢(q=0,0) term is presum-

smooth crossover at~J, as shown in Fig. 7.

C. Dzyaloshinskii-Moriya interaction

While the effects of a DM interactioi(3.32 has been
discussed in the literatufé;** we believe there is a rather

serious problem with these previous treatments. A direct ap

plication of the KT formula(2.12), as was made previously,
yields the width

D2

3 9.3

770(
where we have again ignored the angle dependence.

On the other hand, a staggered DM interaction can b
reduced to an exchange interactidn D?/J and a transverse
staggered fielch~DH/J via an exact transformation dis-
cussed in Sec. llIB1. If we apply the KT formula after the
transformation, we obtain

D2H2
J3

D4
x?—i—

, (9.9

where we ignored constants €f(1). This actually differs
substantially from the result of the direct applicati®?3). In
a typical situation,D/J~0.1 and H<D<J so that 7
~0.01) from Eq. (9.3 while »~10"4J from Eq. (9.4),
which means a factor of 100 differend@ctually, we have

ably Lorentzian with the width given by E¢0.4). According

to this picture, the line shape is not a single Lorentzian,
although apparently it is. The direct application of the KT
formula misses such a structure, and treats all the effects as if
the line shape is a single Lorentzian. This presumably leads
to the incorrect resulf9.3).

An indirect evidence of our claim is that the elimination
seems to work well in the field theory of ESR at low tem-
perature. Assuming a smooth crossoverTatJ, the latter
result (9.4 seems more plausible. In addition, a recent
experimeniton a very good one-dimensiongi 1/2 Heisen-
berg antiferromagnet pyrimidine Cu dinitrate strongly sug-
gests that there is a staggered DM interaction along the
chain, resulting in the field-induced gap similar to that ob-

8erved in Cu benzoate. An analysif various experimental

data suggests the staggered DM interactiorDis 0.14],
where the exchange coupling in this compound Jis
~36 K. According to the direct approad®.3), the line-
width at high temperature should be of order Bf/J
~5000 Oe.This might be too large to understand the ob-
served small linewidth 20 Oe at room temperatiwehich is
quite high compared to the exchange interactioOn the
other hand, if we use E@9.4), the estimate of the linewidth
becomes to be of order @*/J3~100 Oe, which is not too
far from the experimental result. We note that we do not
know the numerical coefficients and thus a conclusive quan-
titative discussion is difficult. In addition, the exchange an-
isotropy (before the elimination of the DM interactign

to know the numerical coefficient, which has been ignored savhich is ignored in the above estimate, is not known pre-

far, in order to discuss the absolute value of the width.

addition, it is argue that there exists an exchange anisot-

ropy (before the transformationvhich accompanies the DM

cisely. Nevertheless, considering the significant difference,
the observed linewidth in pyrimidine Cu dinitrate could
serve as an experimental support for our claim that the direct

interaction, and cancels the anisotropy coming from the DMreatment of the DM interaction is inappropriate.
interaction. The discrepancy would be even greater when this On the other hand, we do not understand at present how to

happens.

deal with a uniform DM interaction along the chain. While it

Obvious|y, both results cannot be true at the same timéan be eliminated by a similar transformation as We”, the

(while they could be both wrongWhat we believe is that
the latter approach eliminating the DM interaction first is

result contains the magnetic field rotating in its direction
along the chain. This is a rather unfamiliar problem which

appropriate, and the direct application of the KT formula toWe do not know how to handle at present.
the DM interaction is incorrect. A possible reason why the

direct application(9.3) fails is as follows. In the latter ap-
proach based on the transformatih4), the physical total
spin operatoS*Y is actually given by a sum of the total spin

D. High-temperature expansion of the linewidth

In a series of papers, Yamada and collaborators studied

operator and the staggered spin operator of the model aftéhe temperature dependence of ESR linewidth in one dimen-
the transformation. Thus, the physical absorption spectrursional magnetic systems experimentally and theoretically. In
of ESR is also given by the sum of contributions from thethe theoretical study, they discussed the temperature depen-
uniform and staggered part: dence by a high-temperature expansion of the KT formula.
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More precisely, they attempted a high-temperature expansiotompared to the third term in our calsle<J. The third term
of (AAT) in the numerator of the KT formula, E¢2.12. represents the nearest-neighbor correlation effect, and should
They concluded that for an exchange anisotropy the linebe proportional to-J/T at high temperatur&. Note that we
width increases as the temperature is lowered, while the terare dealing withan antiferromagnetso that the nearest-
dency is the opposite for @niform or staggeredDM inter-  neighbor correlation should be negative. Ignoring other pos-
action. Based on this observation, they argued that the DMible sources of temperature dependence following Refs. 33—
interaction should be dominant in several one-dimensionaB6, the linewidth in the present case is given by
antiferromagnets which showed a decreasing linewidth at

lower temperature. In some cases the DM interaction is for- 52 J J2

bidden according to the previously identified crystal symme- n=—|a—-b=+0|=||, (9.9
. : J T T2

try; they went on to the conclusion that the actual symmetry

is lower than what had been believed, allowing the DM N\with positive coefficientsa,b for an antiferromagnet.

teraction. Namely, the linewidth decreases at lower temperature con-

roj?]\:jvsviz}sihilr:ea[\?um teenr:] ISergiukr): g):'tglzseignOga:er\]/gtragtrary to the claims made in Refs. 33—-36; this is rather natural
9 ) ' gh-temp P : ffom the field theory results at low temperatures as discussed
trusted except for very high temperature. BR&J our field

in Sec. IX A. It appears that, they took the nearest-neighbor
Horrelation as positive, which is valid for a ferromagfiéut
ot for an antiferromagnet.
Now let us consider the transverse staggered field pertur-
bation in the same framework. In this casé=[H',S"]=
—hE,-(—l)jS-Z, which gives the “numerator”

opposite result to their claim. Second, they expand only th
numeratok AA ") in the KT formula to the first order in T/
ignoring other possible contributions of ordef 11t is not
clear to us whether their scheme makes sense a3 a&xt/
pansion of the linewidth. Third, perhaps most importantly,
even in their framework of the calculation, the conclusion
should be reversed because they apparently made a crucial (AAT)thE (_1)J+k<51,132(>_ (9.10
sign mistake as we will show below. Finally, they apply the ik

KT formula directly to the DM interaction; this is problem-

atic as we have pointed out. In any case, the sign problerjdn the high-temperature limit, we may ignore all the correla-

persists whether the direct approach or the elimination apt_|on functions other than the nearest neighbor one. This leads

proach is taken in dealing with the DM term. to the formula

In the following, let us show that the sign should be re-
versed within the framework of Refs. 33—-36. We consider (AATY=h2N
S=1/2 Heisenberg antiferromagnetic chains with a small

perturbation. First let us discuss the case of an anisotropé/: o ) . )
parallel to the applied field. The calculation for general an-considering that the nearest-neighbor correlation is neg-

isotropy angle should be similar. This gives the commutato@tiVe for an antiferromagnet, the linewidth is supposed to be
given as

. (9.11

1
4 2SS0

A=[H',S"]= 5; (SFS1+SSh). (9.8 h?

M aib2iof
R R B

1, (9.12

The “numerator” of the KT formula is then given by
wherea’ and b’ are positive constants. Namely, the line-

(AAT):az_E ((S;rsjz+1+ szsj++l)(3:s§+l+ SiSi1))- width increases at lower temperature; again in a qualitative
Ik agreement with the field theory.
(9.7) For a staggered DM interaction, as we have discussed

Considering the high-temperature limit we can ignore all butoefore, presumably we should first eliminate the DM inter-

nearest-neighbor correlations. Thus we only considerjthe action to reduce the problem to the exchange anisotropy and
=k terms in the double sum: the transverse staggered field. In a typical situatib&D

<J, the staggered fielh~DH/J and the anisotropys
(S%) e ~D?J induced by the transformation satish §<J. In
>TSS this case, the linewidth would initially decrease by lowering
(9.9  the temperature, then start increasing below the crossover
temperature where the staggered field becomes dominant.
where we have used identities f@=1/2, such asS|S;  This was actually observed in Cu benzoate, as discussed al-
= sz+ 1/2 andN is the number of sites. In the limit of infinite ready in Sec. VIIID.
temperature, the width is given by the first term which is  Finally, we consider a direct application of the KT for-
5%J as was already discussed. mula to the DM interaction. Although we believe this is not
As the temperature is lowered from infinity, the leadingan adequate approach, the claims in Refs. 33—36 still suffers
correction is given by the second and third terms. The seconflom the same sign problem even if we accept the direct
term proportional to the magnetizatiof§?) is negligible  approach. Now we have

1
(M, SIS H'D)~&N 7+
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2
=5

experimental probe because a very precise spectrum can be
A=[H',S"]=2 Dji(S[S/,1-S/S},1), (913  obtained.
' Obviously, there remain many problems to be investigated
giving in the future. Even in the simple quantum antiferromagnetic
chain, the formulation of ESR in terms of self-energy of the
(AA T>~D2N[1—(SjXS}‘+1)], (9.14  boson fieldé does not hold for generic types of anisotropic
perturbations, because of the mixing of several operators.
ignoring other than next-nearest-neighbor correlation in thé&xtension of the self-energy formulation to the generic cases
high-temperature limit. Because the nearest neighbor corrés an important open problem; presumably we have to con-
lation function is negative in an antiferromagnet, we obtain sider perturbative expansion of correlation functions of the
vertex operatorgexponentials of the boson figléh a sys-
J? tematic way. Moreover, degrees of freedom other than spins
a'+b"5+0 /| (9.19  (e.g., charge fluctuation, lattice vibration, etwill be rel-
evant in some real materials. While the ESR in a three-
wherea” andb” are positive constants, implying the increas_Qimensional 3magnet appears to be understood with the exist-
ing linewidth at lower temperatures. The error in Refs.'"9 thepry?' we think that the problem should be
33-36 is again apparently due to the identification of the€investigated with the modern understanding of many-body
nearest-neighbor correlation as positive. physics and critical phenomena. Naturally, the two-
dimensional problem, which is expected to be more sensitive
to the fluctuation effects, would also deserve consideration.
X. CONCLUSIONS We hope the present work will stimulate further theoretical
In this paper, we have developed a new approach baséd experimen.tal studies on this.fe.\scinating subject.
on field theory to ESR in quantum spin chains. It is expected Note added in prooffter submitting the present paper, a
to be exact in the low-energffow-temperaturg limit, pre- ~ Paper by3 Choukroun, = Richard, and Stepanov was
cisely where the traditional calculational methods on ESF\PUb“Sheds- They made a similar proposal to oufSec. IXC
become invalid. The weakly broken &) symmetry under N the present papgon the treatment of the DM interaction.
an applied field, in the absence of an anisotropic perturba-
tion, is represented by the $2) symmetric field theory and ACKNOWLEDGMENTS
an anisotropic mapping between the physical spin operators |, . .
and the corresponding field theory operators. E Itl IS elxqpllczeasurre] to th\e(mll:/lY. gqlros, JMP Bﬁ.‘:Chir’ l\ll: tH. L.
The formulation of the ESR in terms of Feynman-Dyson ssier, k. Feyernerm, ¥. Maeda, 5. Miyashita, Y. INatsume,
self-energy gives, at least in some simple cases, a micrq'j" Nojiri, and H. Shiba for st!mulatmg discussions and use-
scopic derivation of the Lorentzian line shape up to a pos-UI correspond_ences. In _par‘ucular, we are grateful to D. M
sible smooth weak background. The spin diffusion picture,EdWarOIS for .h's suggestion on t_he content of the Appendix
which predicts a non-Lorentzian line shape in one dimen—and for aIIov_vmg us to present it in this paper. We also thank
. 9 . . ; A. A. Zvyagin for pointing out Ref. 52. This work has been
sion, does not apply to th&= 5 antiferromagnetic chain at di b Grant-in-Aid from MEXT of Japan
low temperature. The spin diffusion hypothesis does not holguppforte n par ]}/ a P
in the present case, as the spin correlation function is giveﬁnd rom NSERC of Canada.
explicitly using Eq.(3.19. The width and shift are calculated
perturbatively for a transverse staggered field perturbation APPENDIX: ALTERNATIVE DERIVATION
and an exchange anisotropy parallel or perpendicular to the OF THE MORI-KAWASAKI FORMULA
applied uniform field. They seem to explain many existing | this appendix, we describe a simple alternative deriva-
experimental data. Furthermore, th_e self-energy formujanorgion of the MK formula(2.7),(2.10 suggested to us by Ed-
can be usefd beyond thefptlarturrl;)atlon theory. Inhfact, in thgyards. It depends only on the assumption that the line shape
Goun 1 2 low enowah temperatUe. The ESR specirin n a2 Single Lorentzian form, and appears much simpler
zero temperature limit is discussed with a nonperturbativg,jmasr\llvera thlg quee(s)trilg:ln\?vr?;r?d Wrr:emtehz ”ﬁre S?]r;r;el ta(lzgz ?hoe
treatment of the sine-Gordon field theory. This again seemg antzian form.
to explain the experimentally observed ESR line shape in Cu \ye consider ESR in a general spin system given by the
be?/\zlﬁﬁléeoitr\??e%I?rﬁ;?;ngsgigg; works only at low ter- Hamiltonian(2.6). Here and in the following, a spin operator
peratures, we have also discussed a few aspects of ESRwnhout Z\ site index is regarded_ as th+e total spin operator
higher temperatures. In particular, we have pointed out that a =25’ The equations of motion fc8™ are given by

naive application of the standard Kubo-Tomita theory fails dst
even in the high-temperature limit, in the presence of a =—iHS"+i A, (A1)
Dzyaloshinskii-Moriya interaction. dt

We hope that the reader is convinced that ESR in a B
strongly interacting quantum system is quite an interesting d—=+iHS*—iAT (A2)
problem from the theoretical point of view. It is also a useful dt '
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where A=[H',S"]. Combining Eqs(A4) and (A7), we obtain
The ESR spectrum can be obtained from the Green’s
function of S*. Let us relate this to the Green’s function.f R 2<sz> —([A(0),S” (0)]>+QAAT(“’)
and A", using the equations of motion. Using a partial inte- gs+s*(w)_w H )2
gration and the equations of motion (0—H)
(A8)
gR+ (w)z_ifweiwt<[s+(t) S(0)])dt This should be an exact relation between the full Green’s
S'S 0 ’ functions(in which the effect of the perturbatioh’ is fully
1 taken into account When H'=0, we recover the simple
:_<[S+(0),Sf(0)]> resultggsf(w):Z(SZ)/(w—H).
w Now let us assume the perturbatidti is small, and the

1 (= ds* EER line shape is Lorentzian. Namely, we assume that
+ Zfo e""t< W(t),s (O)Ddt Gs+5-(w) is given by Eq.(2.11), whereZ, is a smooth func-
tion of w. Near the resonanee~H, 3 may be regarded as a
2(SZ> 1 . constant. R& and —Im 3, gives the shift and width of the
Q sts- (@)= G js-(@). (A3)  resonance, respectively. We assume thatan be expanded
perturbatively in?'.
Thus Comparing Eqgs(2.11) and(A8), we obtain,in the lowest
R order of perturbation theory
2(SZ>—QAS,

w—H

(O]

gSJrSf(w): (A4)

~([A(0),S (0)])+ G y1(0=H)
(Precisely speaking we should introduce the convergence 2(S%) .
factor so thatw —H is replaced byw —H +i e with a positive
infinitesimal e. Although we omit this for brevity, it can be
recovered when necessarierforming similar steps

(A9)

Here we note thaf[.4(0),S (0)]) is purely real since
[A,S ] is Hermitean. This gives

e i — -1
gjs_(w)=—.JOe YLA),S(0)])dt 7= ey Mo =H), (A10)

1 _
=—([A(0),S7(0)]) Ao

[— <[AS ]>+RegAAT(w H)J.

1 das 2<Sz>
__f eiwt< A(t),W(O)}>dt (All)
@Jo For a small fieldH, the denominator £5%) can be written as
(LA0),S(0)]) H g 2x,H where x, is the uniform susceptibility. ¥Ve also note
=+t ————+ -G s (0) that the first term in the shift-([.4,S™])/(2(S?)) was de-
@ @ rived previously by Kanamori and Tachiki,and by Nagata
1 4 and Tazuké® However, their theory did not incorporate the
— 9 aur(@), (AS)  dynamical effects represented by,
) So far, we have defined the expectation value and the
where we used the relation Green’s functions with respect to the full Hamiltonig

S =Ho+Hz+H' . However, the present result is only valid in
A, 7 (0)

i([A(t),S‘(O)])=—< > (A6)  the leading order. Since the Green's function.éfabove
dt already contains the factar® (\ is the small parameter that

which holds because the Green’s function depends only ofharacterizes the perturbatidii’), we may replaceg? ,+

the difference of two time arguments. Thus with the unperturbed Green'’s functi@iﬁ. This gives the
formulas in Egs(2.7) and (2.10. We note that, in general,
GR )= ([A(0),S(0)])— gAAT(‘”) (A7) ([A,S™ 1) must still be evaluated in the presence?¢f be-
as-(@ w—H causd A,S7] is only first order inX.
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