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Electron spin resonance inSÄ 1
2 antiferromagnetic chains
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A systematic field-theory approach to electron spin resonance~ESR! in the S51/2 quantum antiferromag-
netic chain at low temperatureT ~compared to the exchange couplingJ! is developed. In particular, effects of
a transverse staggered fieldh and an exchange anisotropy~including a dipolar interaction! d on the ESR line
shape are discussed. In the lowest order perturbation theory, the linewidth is given as}Jh2/T2 and}(d/J)2T,
respectively. In the case of a transverse staggered field, the perturbative expansion diverges at lower tempera-
ture; nonperturbative effects at very low temperature are discussed using exact results on the sine-Gordon field
theory. We also compare our field-theory results with the predictions of Kubo-Tomita theory for the high-
temperature regime, and discuss the crossover between the two regimes. It is argued that a naive application of
the standard Kubo-Tomita theory to the Dzyaloshinskii-Moriya interaction gives an incorrect result. A rigorous
and exact identity on the polarization dependence is derived for certain class of anisotropy, and compared with
the field-theory results.
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I. INTRODUCTION

Quantum spin chains have been studied extensively
both their experimental and theoretical interests. Amo
many experimental methods of investigation, electron s
resonance~ESR! is unique for its high sensitivity to anisot
ropy. While the theory of ESR has been studied1–4 for a long
time, there remain important open problems, especially
strongly interacting systems. One of the problems is th
generally one has to make a crucial assumption about
line shape at some point during the calculation. As we w
demonstrate, such an assumption could be incorrect in s
cases although it might have been taken for granted in
literature. In addition, in an actual calculation one has
calculate various correlation functions. Traditionally, cru
approximations such as the high-temperature approxima
the classical spin approximation and the decoupling of
correlation functions are used. However, these approxi
tions break down when the many-body correlation effects
strong. As a consequence, rather little has been unders
about ESR when many-body correlations become import
Even in the cases which were believed to be understood
the existing theories, there appear to be subtle problems

In this paper, we study ESR inS51/2 quantum spin
chains in the ‘‘one-dimensional critical region’’ where th
temperatureT is sufficiently small compared to the chara
teristic energy of the exchange interactionJ ~but T is still
large compared to three-dimensional ordering temperatur
spin-Peierls transition temperature.! We stress that ESR in
such a region is essentially a many-body problem. He
many of the traditional theoretical techniques lose their
lidity. Instead, ~111!-dimensional field theory should de
scribe the universal, low-energy/large-distance behavior.
main purpose in the present paper is to develop an appr
to ESR based on field theory~bosonization! methods. At
least for several simple cases~which are of experimenta
interest! we are able to formulate the problem in terms of t
systematic Feynman-Dyson perturbation theory, avoid
previously madead hocassumptions. When the effect of th
0163-1829/2002/65~13!/134410~28!/$20.00 65 1344
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anisotropy is small, the ESR line shape is shown to
Lorentzian up to a possible small smooth background;
width and the shift of the Lorentzian peak are given pert
batively. In one dimension, it was argued that the diffus
spin dynamics leads to a non-Lorentzian line shape, whic
indeed observed in theS5 1

2 antiferromagnetic chain
TMMC.4 However, our results imply that the argument do
not apply to the present case of theS5 1

2 chain at low tem-
perature. We will study several consequences of our the
for two types of perturbations of the one-dimensionalS
51/2 Heisenberg antiferromagnet: a staggered field and
exchange anisotropy~or dipolar interaction!.

In a compound with a low crystal symmetry permitting
staggered component of the gyromagnetic tensor o
Dzyaloshinskii-Moriya~DM! interaction, an effective stag
gered field is also produced by the applied uniform field. T
staggered field corresponds to a relevant operator in
renormalization group sense, and is related to the fie
induced gap phenomenon recently found in several qu
one-dimensionalS51/2 antiferromagnets.5–9 Since it is a
relevant operator, one may expect that its effect is enhan
at lower temperatures. Indeed, we find that the stagge
field contributes to the linewidth proportionally toh2/T2

whereh is the magnitude of the staggered field. We propo
this as an explanation of the peculiar low-temperat
behavior10 found in ESR on Cu Benzoate nearly 30 yea
ago. Moreover, we propose that the sharp resonance foun
very low temperature,11 which was understood as a signatu
of a three-dimensional Ne´el ordering, may well be under
stood in a purely one-dimensional framework based on s
Gordon field theory.

On the other hand, dipolar interactions or exchan
anisotropies are present in virtually any real material.
find that their contribution to the linewidth is proportional
T, which appears to be consistent with existing experimen
data on several quasi one dimensionalS51/2 antiferromag-
net such as CuGeO3, KCuF3 and NaV2O5.

Basic ideas and some of the results in the present p
were presented briefly in Ref. 12. This paper is organized
©2002 The American Physical Society10-1
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follows. In Sec. II, we briefly review the basics of ESR
interacting spin systems, including a few~apparently! new
results, namely an exact and rigorous identity on the po
ization dependence, and the relation between
Kubo-Tomita1 and Mori-Kawasaki2,3 theories. In Secs. III
and V we develop a new framework for studying ESR
quantum spin chains, based on field theory methods an
particular, the Dyson formula expressing the Green’s fu
tion for a scalar field in terms of the self-energy. It is appli
in Secs. IV, VI, VII, and VIII to systems with an exchang
anisotropy~or dipolar interaction! or a transverse staggere
field. ~The case of an exchange anisotropy with the axis p
allel to the field turns out to be easier to treat and not
require the self-energy formalism. Therefore it is treated fi
in Sec. IV.! In Sec. IX, we compare our results to those in t
high-temperature regime obtained with the previous
proach. Section X is devoted to conclusions. Appendix
contains an alternative derivation of an old formula for t
width/shift first derived by Mori and Kawasaki.2,3

II. ELECTRON SPIN RESONANCE

A. Definition of the problem

A single spin in a magnetic fieldH has energy levels
separated by the Zeeman energyEZ5gmBH. If an electro-
magnetic wave of angular frequencyv is applied to such a
system, resonant absorption occurs when\v5EZ and the
polarization ~direction of the oscillating magnetic field! is
perpendicular to the static field. When the spins are coup
by interactions, the physics is of course not that simp
However, generally some resonant absorption occurs als
the interacting system. This is the phenomenon of E
which we study in the present paper. In an interacting s
tem, it is also possible to observe absorption of the elec
magnetic wave polarized parallel to the static magnetic fi
~so called Voigt configuration.! In this paper, we focus on th
standard~Faraday! configuration, which measures the a
sorption of the electromagnetic wave polarized perpendic
to the static magnetic field.

Assuming that the absorption can be described by lin
response theory, the absorption intensityI (v) per volume for
the radiation linearly polarized in thea'z direction is
given by

I ~v!5
HR

2v

2
xaa9 ~q50,v!, ~2.1!

where HR is the amplitude of the radiation andx9 is the
imaginary part of the dynamical magnetic susceptibility.x9 is
related to the retarded Green’s functionG R as

xab9 ~q,v!52Im G ab
R ~q,v!, ~2.2!

whereG ab
R is defined by

G ab
R ~q,v!52 i E

0

`

dt(
x

^@Sa~x,t !,Sb~0,0!#&e2 iqx1 ivt,

~2.3!
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where ^ . . . & is the statistical average at temperatureT. In
most experiments, the applied electromagnetic wave is t
cally in the microwave regime, and its wavelength is ve
large compared to all relevant length scales in the antife
magnet since the spin-wave velocity is much less than
speed of light. Thus, in ESR, the dynamical susceptibility
measured at essentially zero momentumq50. ESR probes
the dynamics of the system only at the special momen
q50, in contrast to neutron scattering which can be used
scan momentum space. However, as we will explain bel
there is an interesting feature at the special momentumq
50. Together with the relatively easy availability of high
precise data, ESR offers a unique insight into magnetic s
tems which would be difficult to obtain with other exper
mental methods.

A remarkable feature of ESR is that, if the Hamiltonian
the system~apart from the Zeeman term! is isotropic @i.e.,
SU~2! symmetric#, the resonance is still at the Zeeman e
ergy and completely sharp, as if there is no interaction at
This result can be deduced rather easily from the equatio
motion, as we will show in the following. Throughout th
paper, we take the direction of the static applied field as
z axis. Let us consider the total Hamiltonian

H5H01HZ , ~2.4!

whereHZ52H( jSj
z is the Zeeman term andH0 is the ex-

change Hamiltonian which is assumed to be SU~2! symmet-
ric. We choose units so that\5gmB51 except where ex-
plicitly mentioned otherwise; these constants can
recovered by dimensional analysis. As we have mentio
above, in ESR the electromagnetic wave is coupled to
q50 component of the spin operators, namely the total s
operatorsSa5( jSj

a . The Heisenberg equation of motion fo
S15Sx1 iSy reads

dS1

dt
5 i @H,S1#5 i @HZ ,S1#52 iHS1, ~2.5!

becauseH0 commutes withS1 due to the SU~2! symmetry
of H0. It follows that S1(t)5S1e2 iHt , and consequently
x12(0,v)}d(v2H). This means that the resonance
completely sharp, and located exactly at the Zeeman ene
Namely, this resonance has the line shape identical to ES
a single~noninteracting! spin in spite of an arbitrary strong
exchange interaction. On the other hand, the absorption
tensity is generally affected by the exchange interactionH0.
For example, in a spin-gap system at zero temperature,
absorption intensity is zero if the applied fieldH is smaller
than the gap.

As we have seen, the completely sharp resonance is
lated to the SU~2! symmetry of the exchange Hamiltonia
H0. While it is natural that symmetries of the system a
important in determining the dynamics of the system,
present situation is rather unique, for the SU~2! symmetry is
explicitly broken down to U~1! by the applied static field bu
is still essential in ESR. This peculiar feature is related to
fact that the applied field couples to the total magnetizat
Sz5( jSj

z , which is a generator of the global SU~2! symme-
0-2
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try and is conserved underH0. Since the total magnetizatio
and Hamiltonian are simultaneously diagonalizable, the
plied field does not change the eigenstates of the system
they are classified bySz. The only effect of the static applie
field is to shift the energy levels of the eigenstates;
shifted energy levels still reflects the SU~2! multiplet struc-
ture. This kind of ‘‘weak’’ symmetry breaking by one of th
symmetry generators preserves some structures of the
symmetric system. In ESR of an isotropic systemH0, the
SU~2! symmetry is only weakly broken and is essential
determining the ESR spectrum.

A similar application of the concept of weakly broke
global symmetry was also exploited recently by Zhang13 in
his SO~5! theory of high-Tc superconductivity. Namely, in
the SO~5! theory, the most important terms in the effecti
Hamiltonian are SO~5! symmetric one and the chemical p
tential couples to one of the generators of the global SO~5!
symmetry. The so-calledp excitation in this context is a
sharp resonance which is similar to ESR in isotropic s
systems.

In real magnetic systems, there are various types of
isotropy, such as the dipolar interaction. Let us write the to
Hamiltonian as

H5H01H81HZ , ~2.6!

whereH8 is the symmetry-breaking perturbation. Throug
out this paper, we assume the interaction to be nearly iso
pic, namely thatH8 is small compared to the other termsH0
and HZ . Once the perturbationH8 is added, the argumen
leading to the delta-function resonance at the Zeeman en
breaks down. Thus, in general, the addition ofH8 causes
changes in the line shape, such as a broadening and a sh
the resonance. The main theoretical problem is then to
culate the absorption spectrum for the given HamiltonianH
and other conditions such as the temperature of the sys

B. Previous theories

The existing approaches to ESR, such as those of K
and Tomita1 and of Mori and Kawasaki2,3 were developed
mainly during the 1950’s–1960’s. Here we summar
briefly, a part of those achievements which is closely rela
to our analysis.

When the isotropic exchange interactions between s
are weak, namely,H0 is much smaller thanHZ , the line
shape is generally expected to be Gaussian. On the o
hand, once the anisotropyH8 is present, strong isotropic ex
change interactionsH0 between spins affects the ESR lin
shape, even though it does not break the SU~2! symmetry by
itself. In the presence of the strong interaction (H0@HZ),
which applies to the problem considered in this paper,
line shape is generally expected to be Lorentzian.~On the
other hand, the line shape is believed to be neither Gaus
nor Lorentzian, when the spin diffusion is dominant.4! The
effect of the isotropic exchange interactions on the line sh
has been traditionally called exchange narrowing. We e
phasize that ESR in such an interacting spin system pro
the collective motion of the many-body system. In this pap
13441
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we focus on this limit of strong isotropic exchange intera
tion, while other cases have been discussed previousl
well.1–3

For the case of the Lorentzian line shape, Mori a
Kawasaki2 proposed a formula, which we call the MK for
mula, for the linewidthh:

h5
1

2xuH
Im@2GAA †

R
~v5H !#, ~2.7!

wherexu is the magnetic susceptibility andGAA †
R (v) is the

Fourier transform of theunperturbed retarded Green’s
function

GAA †
R

~ t !52 iu~ t !^@A~ t !,A †~0!#&0 , ~2.8!

where^ . . . &0 is the expectation value under the unperturb
Hamiltonian H01HZ , u(t) is the step function, andA is
defined by the commutator

A5@H8,S1#. ~2.9!

In this paper,G refers to a full Green’s function calculate
using the Hamiltonian including the perturbationH8, while
G denotes the unperturbed Green’s function evaluated in
absence of the perturbation. Both kinds of Green’s functio
(G and G) should be evaluated including the Zeeman te
HZ , in the original spin chain context. However, as we w
see in Sec. III, in the effective field theory, the Zeeman te
is absorbed by a momentum shift. Thus, the Green’s fu
tions in the effective field theory will be defined withou
explicitly including the Zeeman term.

In addition to the broadening, the perturbationH8 also
causes a shift of the resonance energy; the shift is given

Dv5
21

2xuH
$^@A,S2#&2ReGAA †

R
~v5H !%. ~2.10!

This formula for the shift is slightly different from the on
given in the original paper.2 We believe that ours is the cor
rect one in the lowest order of perturbation theory.

The derivation of the MK formulas in the original pape
seems somewhat involved, and it is not clear to us w
assumptions are necessary to prove them. However,
found that the MK formulas are indeed exact in the low
order of the perturbation theory,if the (single) Lorentzian
line shape is assumed.Explicitly speaking, we must assum

G S1S2
R

~v!5
2^Sz&

v2H2S
, ~2.11!

whereS is a smooth function ofv nearv5H. RegardingS
as a constant near the resonance, we obtain a Lorentzian
shape.@SettingS50 in Eq. ~2.11! gives the exact result fo
the isotropic caseH850.# The simple, and possibly new
alternative derivation using the equation of motion is p
sented in the Appendix.

On the other hand, Kubo and Tomita~KT!1 studied ESR
using a somewhat different formulation. For the case
Lorentzian line shape, their theory gives the following fo
mula for the linewidth, at high temperature:
0-3
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MASAKI OSHIKAWA AND IAN AFFLECK PHYSICAL REVIEW B 65 134410
h;
1

uJu
^AA †&

^S1S2&
, ~2.12!

where the expectation value is thestaticcorrelation function.
We shall call this the KT formula in this paper. We could n
find in the literature how the two formulas~2.7! and ~2.12!
are related. On the other hand, if the KT formula~2.12! for
the Lorentzian line shape is indeed valid at high temperat
it must be consistent with the MK formula. In fact, we ha
verified that the KT formula~2.12! follows from the high-
temperature limit of the MK formula~2.7! with a certain
assumption. The derivation is given as follows. Taking
Fourier transform of Eq.~2.8!, at temperatureT,

GAA †
R

~v!52
i

ZE0

`

dteivtTr~@A~ t !,A †~0!#e2(H01HZ)/T!,

~2.13!

whereZ5Tr e2(H01HZ)/T. Expanding this up to the first or
der in 1/T, we find

GAA †
R

~v!;
i

TZ`
E

0

`

dt Tr$@H01HZ ,A~ t !#A †~0!%eivt

5
1

TZ`
E

0

`

dt TrS dA
dt

~ t !A †~0! Deivt

52
1

TZ`
Tr@A~0!A †~0!#

2 i
v

TZ`
E

0

`

dt Tr@A~ t !A †~0!#eivt, ~2.14!

where the time evolution is defined with respect to the
perturbed HamiltonianH01HZ andZ`5Tr 1 is the partition
function in the infinite temperature limit. The first term
real and does not contribute to the imaginary part. If
assume that the dynamical correlation function at infin
temperature Tr@A †(t)A(0)# decays exponentially with the
characteristic time tc;1/J, the second term gives
2 i (v/JT)^A †(0)A(0)&` , where ^ &` is the expectation
value at the infinite temperature and we usev!J. We note
that a similar assumption was made also in the original d
vation of Eq.~2.12! in the Kubo-Tomita paper. Thus the MK
formula ~2.7! reduces, in the high-temperature limit, to

h;
^AA †&`

2xuTJ
. ~2.15!

Becausê S1S2&;2xuT in the high-temperature limit, this
is equivalent to the KT formula~2.12!. We note that, becaus
tc;1/J is valid only as an order-of-magnitude estimate
best, the KT formula has the uncertainty of an overall co
stant factor.

Recently, a numerical approach to ESR in quantum s
chains is also being developed14 by a direct calculation of the
dynamical susceptibilityx9(v). Since it is based on an exa
diagonalization of the full spectrum of short chains, it
restricted to rather short chain of up to 10 spins even foS
51/2, making finite size effects rather severe. On the ot
13441
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hand, the direct numerical calculation is applicable at a
temperature. In contrast, the field theory approach, which
will develop in the present paper, is valid only at low tem
peratures while it is based on the thermodynamic limit. Th
they are complementary to each other.

We remark that some results quite closely related to o
were derived by Giamarchi and Millis30,52 in their work on
the ac conductivity of a Tomonaga-Luttinger~TL! liquid. We
will comment on the connection with our work later.

C. Polarization dependence

When observing ESR in the Faraday configuration,
polarization of the electromagnetic wave is perpendicula
the direction of the static magnetic field, which we take
the z axis. There are still two independent possible polari
tions; the linear polarization can take any direction in thexy
plane. Except when the total HamiltonianH is invariant un-
der a rotation about thez axis, the absorption spectrum ge
erally depends on the polarization. Within the linear respo
theory, the dependence comes from the difference betw
the dynamical susceptibilityxxx9 (0,v)Þxyy9 (0,v). The MK
formula ignores the possible polarization dependence,
cause it deals withx129 ;xxx9 1xyy9 , and notxxx9 and xyy9
separately. The polarization dependence was discussed
retically first by Natsumeet al.15–17 generalizing the Kubo-
Tomita theory. It has also been observed experimentally15,16

and numerically.14

However, apparently it has been not recognized that,
some special cases, anexact and rigorousresult on the po-
larization dependence can be derived easily from the eq
tion of motion. Let us consider the special case in which
perturbationH8 is written in terms of thex component of the
spin operatorSj

x . The examples include the transverse sta
gered fieldH85h( j (21) jSj

x , and the exchange anisotrop
with the anisotropy axis in thex directionH85d( jSj

xSj 11
x .

In these cases,@Sx,H8#50 holds, and consequently

dSx

dt
5HSy. ~2.16!

This identity leads to

xxx9 ~0,v!5
H2

v2
xyy9 ~0,v!, ~2.17!

and more generally, for the polarization in the directiona in
the xy plane,

xaa~0,v!5
H2cos2F1v2sin2F

v2
xyy~0,v!, ~2.18!

whereF is the angle betweenx and a. ~In the notation of
Refs. 15–17,u590° and theirf corresponds to ourF.!

For a sharp resonance concentrated nearv;H, the polar-
ization dependence is not significant. However, if the cen
of the resonance is defined by the average frequency of
spectrum
0-4
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v̄a5

E vI a~v!dv

E I a~v!dv

, ~2.19!

v̄x,v̄y because the higher frequency part is emphasize
the latter. As a consequence, there is a positive freque
shift for the polarization iny axis, compared to the cas
where inx axis.

This is in agreement with theoretical and experimen
results in Refs. 15,16 and numerical results in Ref. 14, on
exchange anisotropy. We note that, in the actual experim
on ESR, the resonance frequency is kept fixed and the
plied field is scanned to measure the absorption. Becaus
this, it is customary to discuss the shift of the resonance fi
for a fixed frequency. The direction~positive or negative! of
the field shift is opposite to that of the frequency shift w
discuss in this paper. They find that the resonance fiel
shifted negatively for the polarization iny direction com-
pared to thex polarization case, which is indeed consiste
with our result. The angular dependence is also consis
with the theoretical formula in Ref. 15. On the other hand,
Ref. 17, the polarization dependence is studied by a diffe
formalism ~Mori’s memory function method.! When the an-
isotropy axis is perpendicular to the applied field, the o
tained polarization dependence is rather opposite to
above, and is in contradiction to our rigorous result~2.17!.

III. FIELD-THEORY APPROACH TO THE SÄ1Õ2
HEISENBERG ANTIFERROMAGNETIC CHAIN

A. Bosonization ofSÄ1Õ2 Heisenberg chain

In the present paper, we mainly discuss ESR on the o
dimensionalS51/2 Heisenberg antiferromagnet

H05J(
j

SW j•SW j 11 . ~3.1!

with symmetry-breaking perturbationH8 and of course the
Zeeman termHZ . The low-energy physics of the one
dimensional quantum antiferromagnets is well described
field theory methods~bosonization!. In this section, we
briefly summarize the aspects of this approach that are
evant to the present discussion of the ESR. We refer
reader to Refs. 18,19 for more details. While the method
now standard, here we also clarify subtleties specific to E
problems, which are related to the weakly broken SU~2!
symmetry discussed in Sec. II.

The effective field theory of theS51/2 Heisenberg chain
H0 is given by the free boson Lagrangian

L5
1

2
@~]0f!22~]1f!2#, ~3.2!

where x05vt, x15x and we make identificationf;f
12pR with the compactification radiusR. The radiusR is
actually fixed to the value 1/A2p by the SU~2! symmetry.
Hereafter we setv51 for simplicity; the spinon velocityv
can be recovered by dimensional analysis when necessa
13441
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At zero uniform field, the spin operators may be written
terms of the fieldf as follows:

Sj
z;

1

2pR

]f

]x
1Cs

z~21! jcos
f

R
, ~3.3!

Sj
2;Cu

2e2 i2pRf̃cos
f

R
1Cs

2~21! je2 i2pRf̃, ~3.4!

where the dual fieldf̃ is defined in terms of right-moverwR

andwL asf5wR1wL and f̃5wR2wL . While Sz andSx,y

are represented in a very different way, their correlat
functions turn out to be equal at the SU~2! invariant radius
R51/A2p, as required from the symmetry of the origin
Heisenberg chain.

The dynamical structure factorSaa ~Fourier transforma-
tion of the spin correlation function! of the Heisenberg chain
has been studied in detail. It is equivalent to the dynam
susceptibility forT50 and v.0. At zero temperature, the
dynamical structure factor is nonvanishing only in the lim
ited region of the frequencyv–momentumq space shown in
Fig. 1. The field theory actually can handle only the lo
energy excitations near momentum 0 andp. The structure
factor forSzz nearq50 andq5p is given by the correlation
function of ]f/]x and cos(f/R), respectively. AtT50, they
read

S zz~v,q!}d~v2uqu! ~3.5!

for q;0 and

S zz~v,q!}
1

Av22~q2p!2
u~v2uq2pu! ~3.6!

for q;p. It is noted that the structure factor is complete
sharp and is delta-function-like atq;0. In fact, the structure
factor atq;0 remains so even at finite temperature. As me
tioned before, the structure factor is of course isotro
(S xx5S yy5S zz) at H50 for the isotropic Heisenberg
chain.

Now let us consider the effect of the applied magne
field. The Zeeman termHZ in the Lagrangian becomes, upo
bosonization,

FIG. 1. The spin structure factor of theS51/2 Heisenberg an-
tiferromagnetic chain atT50. It is nonvanishing only in the filled
region shown in the frequency-momentum plane. The structure
tor becomes a delta functiond(v2vq) in the q→0 limit.
0-5
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LH5
H

A2p

]f

]x
. ~3.7!

This term can be eliminated by a redefinition of the bos
field

f~ t,x!→f~ t,x!1
H

A2p
x, ~3.8!

but f̃ remains unchanged. This is equivalent to the shift
chiral fields as

wR→wR1
1

2A2p
Hx,wL→wL1

1

2A2p
Hx. ~3.9!

While this leaves the free Lagrangian unchanged, it d
change the bosonization formulas of physical spin operat

Sz;m1
1

2pR

]f

]x
1Cs

zcosFfR 1~H1p!xG , ~3.10!

S6;Cu
2e2 iA2pf̃cosS f

R
1HxD1Cs

2~21! je2 i2pRf̃.

~3.11!

The first termm in Sz represents the expectation value of t
magnetization induced by the magnetic fieldH. For a small
magnetic field,m is proportional to the fieldH. Another im-
portant feature is that the applied field induces the shift of
soft-mode momentum.20,21The shift occur differently for the
longitudinal ~z! and the transverse (x,y) components. The
gapless points under the applied uniform fieldH are atq
50 ~uniform part! andq5p6H ~‘‘staggered’’ part! for the
longitudinal modes. For the transverse modes, they areq
56H ~‘‘uniform’’ part ! andq5p ~staggered part!.

Let us focus on the transverse mode nearq50, because
the transverse mode atq50 is measured in ESR in the Fa
aday configuration. For simplicity, here we restrict ourselv
to zero temperature. In the low energy effective theory,
‘‘uniform’’ part of the S6 is given

S6}e6( iHx1 iA8pfR)1e7( iHx1 iA8pfL), ~3.12!

where we have used the SU~2! symmetric compactification
radius R51/A2p ~see below for reason for taking th
value.! This gives the correlation function ofS6 at zero tem-
perature:

^S1~ t,x!S2~0,0!&}
eiHx

~ t2 i e1x!2
1

e2 iHx

~ t2 i e2x!2
.

~3.13!

Dynamical structure factorS12 , which is the Fourier trans
form of the above, is
13441
n

f

s
s:

e

s
e

S12~v,q!

}E
2`

`

dtE
2`

`

dxei (vt2qx)

3F eiHx

~ t2 i e1x!2
1

e2 iHx

~ t2 i e2x!2G
5E

2`

`

dx@22pvu~v!#e2 iqx@eiHx2 ivx1e2 iHx1 ivx#

}vu~v!@d~v2H1q!1d~v2H2q!#. ~3.14!

The other oneS21 is given by replacingH→2H in the
above, using the time reversal transformation. Thus

S21~v,q!}vu~v!@d~v1H1q!1d~v1H2q!#.
~3.15!

Namely,S12 andS21 give different branches of excitation
The fact thatS21 does not contain the branch~3.14! was
recognized earlier~see Fig. 17 of Ref. 21!. On the other
hand, thatS12 lacks the branch~3.15! ~at least in the low-
energy limit! was apparently not appreciated in Fig. 18
Ref. 21.Sxx andSyy are given by their superposition

Sxx~v,q!5Syy~v,q!}v@d~v2uq1Hu!1d~v2uq2Hu!#.
~3.16!

This zero-temperature transverse structure factor nearq50
under the applied magnetic field is shown in Fig. 2. Beca
the structure factor nearq50 was sharp, and the gaples
point is shifted byH, we expect a sharp resonance at ene
v;H at q50. This corresponds to the expected param
netic ESR for the isotropic Heisenberg chain.

However, it should be noted that we have so far igno
various renormalization effects due to the applied magn
field. There are irrelevant operators, which themselves v
ish in the low-energy limit but renormalize parameters of t

FIG. 2. The zero temperature transverse spin structure fa
Sxx(v,q)5Syy(v,q) of the S51/2 Heisenberg antiferromagneti
chain under an applied fieldH, nearq50. It is approximately pro-
portional to v@d(v2uq2Hu)1d(v2uq1Hu)#, giving the reso-
nance atq50, v5H. This consists of two branches coming fro
S12 andS21 , which are marked by12 and21 in the graph. In
fact, there is a small spreading of the spectrum and the struc
factor is generally not a perfect delta function. However, it is e
actly the delta functiond(v2H) at q50, as explained in the text
0-6
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low-energy effective theory. The way they renormalize
affected by the applied magnetic field. In general, the pre
value of the momentum shift is given by 2pm rather thanH,
wherem is the magnetization. This can be derived from t
shift of Fermi momentum in the Jordan-Wigner transform
tion, and also is required from a rigorous version of Luttin
er’s theorem in one dimension.22 Restoring the spinon veloc
ity v, the ESR frequency appears to be given by 2pmv. For
the standard Heisenberg antiferromagnetic chain in an
plied field, the magnetizationm and the spinon velocityv
can be obtained as a function ofH from the Bethe ansatz
integral equation. Generally, 2pmv is different fromH ex-
cept in the zero field limit, implying that the ESR frequen
deviates fromH. However, this cannot be true, because
equation of motion for the original Heisenberg model~under
an applied field! requires the resonance to be exactly at
frequencyH. The resolution is that, the dispersion relati
for q;0 is not completely linear. The curvature of the d
persion comes form irrelevant operators which break Lore
invariance. Because of the curvature, the resonance
quency atq50 is modified from 2pmv, which is derived
assuming the linear dispersion. What the equation of mo
tells us is that these renormalization effects miraculou
cancel, to give the resonance exactly atv5H for q50. With
this nontrivial mechanism in mind, we will take the mome
tum shift asH, setting the spinon velocityv51.

There is another ‘‘miraculous’’ cancellation similar to th
above. At zero field, the compactification radius of the eff
tive field theory is fixed to the special SU~2! symmetric
valueR51/A2p, as is required from the SU~2! symmetry of
the original Heisenberg model. However, in the presence
the applied field, the SU~2! symmetry is, of course, broke
down to U~1!. Correspondingly, the radiusR is renormalized
away from the SU~2! point by the applied field. The renor
malized radiusR as a function of the applied fieldH has been
also obtained from the exact Bethe ansatz solution.23 It is
indeed rather sensitive toH for smallH/J. A consequence o
the radius renormalization is the dependence of the corr
tion exponents on the applied field. In particular, the ‘‘un
form’’ part of the transverse spin operator, which is releva
for ESR, is represented by the vertex operator of the t
exp@62piRf̃6f/R#; its conformal weight is given by

~D,D̄ !5~11D8,D8! ~3.17!

or ~D8,11D8!, where

D85
~2pR21/R!2

8p
, ~3.18!

which does depend onR. As a result, the structure factor
no longer given by aD function for RÞ1/A2p. More ex-
plicitly, the retarded Green’s function of a conformal prima
field with conformal weight (D,D̄) at finite temperatureT is
obtained explicitly24 as
13441
e

-
-

p-

e

e

tz
e-
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a-

t
e

G(D,D̄)
R

~v,q!

52sin~2pD!~2pT!2(D1D̄21)

3BS D2 i
v1q

4pT
,122D DBS D̄2 i

v2q

4pT
,122D̄ D ,

~3.19!

whereB denotes the Euler beta function

B~x,y!5
G~x!G~y!

G~x1y!
~3.20!

and G is Euler’s gamma function. Considering the mome
tum shift induced by the applied field, the absorption me
sured in ESR corresponds to the Green’s function evalua
at q5H. Thus, the spectrum is given by the delta functi
only if ~D,D̄!5~1,0! or ~0,1!, namely,R51/A2p. The renor-
malization ofR due to the applied field seems to imply th
the ESR spectrum should not be given by a delta-functi
even in the absence of the perturbationH8.

However, this is inconsistent with the equation of moti
of the original Heisenberg model. It predicts a complete
sharp~d-function! resonance precisely at the Zeeman ene
even for a finite fieldH. Since the equation of motion i
exact and rigorous for the original spin problem, we co
clude that we should take the unrenormalized SU~2! sym-
metric valueR51/A2p even in a finite field, for the calcu
lation of the ESR. This appears contradictory to the we
established renormalization ofR due to the applied field.
This is not a real contradiction, however, because the s
dard result on the renormalization of the radius is determi
at the zero energy limit, while the ESR probes the excitat
at the finite energyH. In general, effective coupling con
stants depend on the energy scale as a consequence o
renormalization. We may introduce an effective radiusR(v)
as a function of the energy scalev. While the determination
of the functionR(v) in general is a tedious task, the exa
equation of motion on ESR gives the restriction at the Z
man energy R(v5H)51/A2p. The nonrenormalization
could be related to the qualitative understanding of the
flow in the presence of the applied field, Fig. 7 in Ref. 7. T
RG flow in the presence of the applied field is almost ide
tical to that in the zero field, down to energy scale ofO(H),
where the flow is ‘‘cut off.’’ If we look at the energyH, the
effective theory may be almost identical to the isotropic o
This argument would not, however, explain why the effect
radius should be exactly at the SU~2! point. From the view-
point of the field theory, this is again a miraculous cance
tion between the renormalization by the uniform field a
that by the finite energy. The equation of motion, althou
quite simple, gives an exact and highly nontrivial constra
on the effective field theory description.

Thus, in the following calculations we do not include th
radius renormalization due to the applied field, and take
SU~2!-symmetric valueR51/A2p. As a result, the appropri
ate effective field theory of ESR is an SU~2! symmetric one,
namely, the level-1 SU~2! Wess-Zumino-Witten~WZW!
theory, even in a finite field; all the effects of the applie
0-7
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field are represented by the shift of thef field ~3.8!, resulting
in the momentum shift~3.10! and ~3.11!. This may be re-
garded as a field theory representation of the crucial SU~2!
symmetry which is broken only weakly, discussed in Sec.

It is often convenient to introduce the operators in no
Abelian bosonization to make the symmetry manifest. SU~2!
current operatorsJa (a5x,y,z) are related to the Abelian
bosonization as follows:

JR
z ~w!5 iA4p]wR~w!, ~3.21!

JR
6~w!5A2e6 iA8pwR(w), ~3.22!

JL
z~w̄!52 iA4p]̄wL~w̄!, ~3.23!

JL
6~w̄!5A2e7 iA8pwL(w̄), ~3.24!

where J65Jx6 iJy, we have introduced complex coord
natesw5t1 ix (t5 i t ) and f(w,w̄)5w(w)1w̄(w̄). JR(L)

a

is the right-mover~left-mover! component of the current, an
we have normalized them by

^JR
a~w1!JR

b~w2!&5
dab

~w12w2!2
, ~3.25!

wherea,b5x,y,z and the complex coordinatew5t1 ix5
2 i (t2x) and likewise for theL sector.~We note that this is
different normalization from Ref. 25.!

The ‘‘uniform’’ part of the spin operatorsSa correspond
to the SU~2! currentsJa, while the ‘‘staggered’’ part is re-
lated to the SU~2! triplet na5Tr gsa where the SU~2! matrix
field gb

a(x,t) is the fundamental field of the Wess-Zumin
Witten nonlinears model. Equations~3.10! and ~3.11! may
be rewritten as

Sz;
1

A8p2
~JR

z 1JL
z !

1Cs@cos~H1p!xnz1sin~H1p!x tr g#,

~3.26!

S6;
1

A8p2
~JR

6e6 iHx1JL
2e7 iHx!1~21!xCsn

6. ~3.27!

The ‘‘staggered’’ part ofSz may be written as (21)xnz at
H50, but is a mixture ofnz and trg in a finite field. The ESR
absorption intensity is related to the Green’s function ofSx,y;
thus what is needed in the field theory is the Green’s func
of Jx,y at momentum6H.

B. Perturbations

Having established the effective field theory for the u
perturbed systemH01HZ , we now want to calculate the
effects of the perturbationH8 on the ESR line shape. Assum
ing that the perturbationH8 is small,H8 can be mapped to
an operator of the level-1 SU~2! WZW theory.

In principle, an infinite variety of symmetry breaking pe
turbationsH8 is possible. In fact, there are infinitely man
13441
I.
-

n

-

operators also in the field theory. However, most of the
erators have large scaling dimensions, and thus renorma
rapidly to zero under the RG transformation. Thus, at l
enough temperatures, only a few types of perturbations w
smaller scaling dimensions are important.

The operators with the lowest scaling dimension 1/2
na and trg in WZW theory. In the original spin chain Hamil
tonian ~at H50), they correspond to the staggered fie
~three independent perturbations corresponding to three
rections! and the bond alternation. However, the bond alt
nation does not break the SU~2! symmetry and hence shoul
not affect the ESR line shape, although it is not trivial to s
this in the field theory. On the other hand, the staggered fi
perturbation does break the SU~2! symmetry and thus affect
the ESR line shape. The operators of interest with the sec
lowest scaling dimension 2, which are marginal, areJL

aJR
a .

They correspond to the exchange anisotropy in the spin c
Hamiltonian. We will discuss these two most important ca
in later sections.

While we use the SU~2! symmetric field theory, care
should be taken with the momentum shift due to the app
field. The momentum shift is determined by a simple rule
Abelian bosonization formulation~3.9!. Namely, if one
writes some operator at zero field in terms ofw ’s, the above
replacement gives a correct formula under the finite fieldH.
The operator corresponding to the perturbationH8 may con-
tain an oscillating factor. While such a term may be ignor
in order to know whether there is a finite excitation g
above the ground state, it should be retained in theory
ESR which probes finite momentum of the effective fie
theory. For a general perturbation, the oscillating factor
pears in the effective field theory, and it makes the theor
cal analysis rather complicated. In this paper, we focus o
few simple cases in which there is no oscillating term~with
finite momentum! in the effective Lagrangian. This still in
cludes several cases of physical interest which are mentio
below.

1. Transverse staggered field

A quasi-one-dimensional spin system often has an al
nating crystal structure along the chain. In such a case, g
erally we expect two features which are absent in a unifo
system.

Staggered g tensor. The magnetic fieldHW couples to the
spin as mB( j ,a,bHa@gab

u 1(21) jgab
s #Sj

b , where gs is the
staggered component of theg tensor.

Dzyaloshinskii-Moriya (DM) interaction. The low
symmetry allows the antisymmetric interaction26,27

( jDW j•(SW j3SW j 11).
The DM interaction can be either uniform (DW j5DW ) or

staggered@DW j5(21) jDW #.
When the staggeredg tensor is present, an effectiv

staggered field}gsHW is produced upon an application of th
external field. The direction of the staggered field is oft
approximately perpendicular to the applied field, although
is not necessarily so. The effect of the DM interaction is le
trivial, but it can be actually eliminated by an exact transf
mation. Let us consider the case of a staggered DM inte
0-8
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tion, and choose the axes so that the DM vectorDW is parallel
to thez axis. Then the Hamiltonian including the DM inte
action is given by

HDM5J(
j

SW j•SW j 111~21! jD~Sj
xSj 11

y 2Sj
ySj 11

x !

5
1

2 (
j

@JS2 j 21
1 S2 j

2 1J* S2 j
1 S2 j 11

2 1~H.c.!#

1J(
j

@S2 j 21
z S2 j

z 1S2 j
z S2 j 11

z #, ~3.28!

where J[J1 iD . Now let us define the anglea
5tan21D/J, and rotate the spin at sitej by the angle
(21) ja/2 about thez axis:

Sj
1→Sj

1ei (21) ja/2. ~3.29!

Then we obtain the Hamiltonian of theXXZ chain

Ĥ5(
j

FJSj
zSj 11

z 1
uJu
2

~Sj
1Sj 11

2 1H.c.!G . ~3.30!

It is argued28 that this anisotropic exchange can cancel
preexisting one.

Now suppose that an external fieldH is applied inx di-
rection. The applied field is transformed as

2H(
j

Sj
x→2H(

j
Fcos

a

2
Sj

x1~21! jsin
a

2
Sj

yG
~3.31!

by the above transformation. Thus, in the presence of
Dzyaloshinskii-Moriya interaction, the applied uniform fie
produces an effective staggered field.6 For general orienta-
tions of DW of the staggered DM interaction

HDM5(
j

~21! jDW •~SW j3SW j 11!, ~3.32!

the effective staggered field due to the DM interaction
given byDW 3HW /(2J).

These two effects give an effective transverse stagge
field which is approximately perpendicular to the appli
field. This mechanism is important in studying properties
several quasi-one dimensional antiferromagnets including
benzoate,5–7 Yb4As3,8 and pyrimidine Cu dinitrate.9

2. Exchange anisotropy

The exchange anisotropy is the second relevant pertu
tion which affects the ESR line shape. The dipolar inter
tion which exists in any real magnetic system is given
restoring the Bohr magnetonmB ,

Hdp5~gmB!2(
i j

FSW i•SW j

urW i j u3
2

3~SW i•rW i j !~SW j•rW i j !

urW i j u5
G ,

~3.33!
13441
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whererW i j represents the vector from sitei and j and for the
simplicity theg factor is assumed to be uniform and isotr
pic. In a spin chain, the vectorrW i j is parallel to the chain
direction, and the dipolar interaction reduces to an effect
exchange anisotropy parallel to the chain direction. The
fect would be essentially the same with the nearest-neigh
anisotropic exchange interaction, because the dipolar inte
tion strength decreases rapidly with the distance.

Let us consider the simplest case of the excha
anisotropy

Ha5d(
j

Sj
nSj 11

n ~3.34!

with a symmetry axisn, which effectively covers the case o
the dipolar interaction ifn is taken to be the chain direction
Even in this simple case, a variety of configurations is p
sible by changing the relative direction ofn and the direction
z of the applied field, as is often done in experiments.

As mentioned before, for a general direction, the pert
bation in the field theory is rather complicated, making
calculation from first principles difficult. Thus, in this pape
we will focus on the two simplest cases, namely, whenniz
andn'z. The caseniz allows us a direct calculation of th
line shape and will be discussed in Sec. IV. The latter c
n'z will be discussed in Sec. VI, based on the self-ene
approach developed in Sec. V.

IV. EXCHANGE ANISOTROPY PARALLEL
TO THE FIELD: DIRECT CALCULATION

Here we consider the case where the anisotropy axi
parallel to the applied magnetic field, namely,n5z in Eq.
~3.34!. In this case, it is obvious that there is no polarizati
dependence asSx andSy are equivalent.

In this case, the perturbation in the effective field theory
given,at zero magnetic field, as

La52lJR
z JL

z , ~4.1!

wherel is a parameter proportional tod/J, for a small an-
isotropy d/J. The proportionality constantlJ/d is nonuni-
versal and model dependent.~For the standard Heisenber
antiferromagnetic chain,l is determined in Sec. VI C to-
gether with a logarithmic correction.!

Before performing an explicit calculation, let us see wh
can be said about the temperature dependence of the
width from a general scaling argument. The perturbat
~4.1! is a marginal one with the scaling dimension 2. Thu
ignoring the logarithmic corrections, scaling arguments i
ply that the linewidth takes the scaling form

h5T fS d

J
,
H

T D , ~4.2!

where we have used the fact thath has the dimension o
energy. In fact, this scaling argument can be applied to
direction of the applied field. On the other hand, the expl
form of the scaling functionf cannot be determined by th
scaling argument alone.
0-9
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MASAKI OSHIKAWA AND IAN AFFLECK PHYSICAL REVIEW B 65 134410
Now let us calculate the linewidth explicitly for the an
isotropy parallel to the applied field. As we have discuss
all the effect of the applied uniform field is represented
the shift of thef field ~3.8!. Consequently, the perturbatio
under the applied fieldH is

La52lJR
z JL

z2
lH

A2
~JR

z 1JL
z !2

lH2

2
. ~4.3!

The third term is a constant and thus can be ignored.
second term is

2
lH

A2
~JR

z 1JL
z !522plH

1

A2p

]f

]x
, ~4.4!

which is equivalent to the additional magnetic field o
22plH. This can be absorbed by a renormalization of
magnetic field, giving the shift of the resonance by
22plH. This shift is first order in the perturbationd and
the fieldH.

Now, let us discuss the effect of the first term. We sho
calculate the correlation function̂J1J2& in the presence o
the perturbation2lJR

z JL
z . For this particular problem, this

can be done exactly, because the perturbationJR
z JL

z is propor-
tional to the kinetic term of the free boson Lagrangian; it ju
gives a renormalization of the compactification radius. T
is, the Lagrangian density reads

L5
1

2
~]mf!22lJL

zJR
z 5

112pl

2
~]mf!2. ~4.5!

Rescaling the fieldf so that the coefficient of the kineti
term is again given by 1/2, the renormalized radiusR is
given as

R5A112pl

2p
. ~4.6!

We note that, we have not included the similar renormali
tion due to the applied field because of the subtleties
plained in Sec. III A. In contrast, the exchange anisotro
does break the SU~2! symmetry; there is no reason not
include the renormalization in the present case.

The conformal weight of the vertex operatorJ6

5e6 i2pRf̃1 if/R is (D,D̄)5(11D8,D8) or (D8,11D8)
whereD85(2pR21/R)2/(8p);p2l2. Its Green’s function
at finite temperature is given in Eq.~3.19!. As explained, the
Green’s function evaluated at the momenta6H is relevant
for ESR. Near the center of the resonance, the spectru
dominated by the pole of theG function; it reduces to

G R
S1S2~v!;

const

v2H14pTD8i
. ~4.7!

Thus the resonance is Lorentzian with the width

h54pD8T54p3l2T. ~4.8!

This is consistent with the scaling argument~4.2!. To sum-
marize, the exchange anisotropy with the axis parallel to
13441
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applied field gives the following effects on paramagne
ESR: shift:22plH}2Hd, width: 4p3l2T}(d/J)2T.

V. SELF-ENERGY APPROACH

In the last section, the ESR absorption spectrum was
culated directly in the low-energy effective theory. This w
made possible because the effective theory was reduce
the free boson theory. However, in general, the probl
is more difficult because the effective field theory involv
interactions.

A possible application of the field theory method to ES
is to evaluate the Green’s function appearing in MK formu
~2.7! by means of the field theory. While the MK formula ha
been applied to quantum spin chains by several authors, m
of the calculations are based on classical or high-tempera
approximations which break down at low temperature and
low dimensions. Thus it would be worthwhile to evaluate t
MK formula using field theory to study quantum spin sy
tems at lower temperature and in lower dimensions. On
other hand, the crucial assumption of the~single! Lorentzian
line shape is made in using the MK formula usually witho
a rigorous justification. Moreover, the MK formula ignore
the possible polarization dependence discussed in Sec.
Thus, in this section, we develop a systematic field-the
approach to ESR, which we call the self-energy approa
The ESR spectrum is given by the imaginary part of t
retarded Green’s function ofS6. As we have discussed in th
last section, it corresponds to the Green’s function of
current operators in the effective field theory via Eq.~3.27!.

We now assume that the perturbation preserves a sym
try which forbids mixing betweenJx and Jy, namely
^JxJy&50. Then the correlation function of the total spin ca
be decoupled to aJx andJy part:

^S1~ t !S2~0!&5
1

8p2E dx1E dx2^JR
x ~ t,x1!eiH (x12x2)

3JR
x ~0,x2!&1^JL

x~ t,x1!

3e2 iH (x12x2)JL
x~0,x2!&1^JR

x ~ t,x1!

3eiH (x11x2)JL
x~0,x2!&1^JL

x~ t,x1!

3e2 iH (x11x2)JL
x~0,x2!&1~Jx→Jy!. ~5.1!

Since our effective field theory is SU~2! symmetric, we may
freely rotate thexyz axes. Thus, instead of calculating co
relation functions ofJx we can calculate those ofJz, with
perturbations also rotated correspondingly. The same ap-
plies to calculation ofJy correlations.

The motivation for us to rotate thexyz axes is that,Jz is
expressed as a derivative of the boson fieldf as in Eq.
~3.21!. Thus the problem is reduced to the calculation of t
bosonic correlation function̂ ff&. The structure of the
bosonic correlation function is well established by the st
dard diagrammatic perturbation theory, and the ESR l
shape is related to the boson self-energy as we will sh
below. On the other hand, when the perturbation allows m
ing of Jx andJy ~in the original representation!, there seems
0-10
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no way to reduce the problem to the^ff& correlation func-
tion. In such cases, we do not know at present how to c
struct the theory of ESR based on self-energy. Thus, be
we restrict ourselves to the situation in whichJx andJy do
not mix, in the discussion of the self-energy approach.
remark that there is no apparent difficulty in the applicat
of the MK formula even in cases where the perturbat
allows mixing ofJx andJy.

As mentioned in Sec. III B, we restrict ourselves to t
case where the perturbation does not contain an oscilla
factor eiHx. Then the contribution from the cross terms su
as ^JRJL& vanish in Eq.~5.1!, due to momentum conserva
tion. The correlation function thus reduces, upon Fou
transformation to

^S1S2&~v!5
1

8p2
@^JR

x JR
x &~v,2H !1^JL

xJL
x&~v,H !

1^JR
y JR

y &~v,2H !1^JL
yJL

y&~v,H !#, ~5.2!

where ^JJ&(v,q) denotes the correlation function at fre
quencyv and momentumq. As we have discussed abov
we now rotate the axes and calculateJz correlation function
instead ofJx andJy, to obtain

^S1S2&~v!5
1

8p2
@^JR

z JR
z &x→z~v,H !1^JL

zJL
z&x→z~v,2H !

1^JR
z JR

z &y→z~v,H !1^JL
zJL

z&y→z~v,2H !#,

~5.3!

where^ &x→z means the correlation function with the pertu
bation rotatedx→z. Using Eqs.~3.21! and~3.23!, those cor-
relation functions can be written in terms of bosonic cor
lation function

^S1S2&~v!5
~v1H !2

4p
^ff&x→z~v,H !

1
~v1H !2

4p
^ff&y→z~v,H !, ~5.4!

where we have used the symmetry^ff&(v,2H)5^ff&
3(v,H). The above formula is useful if the perturbatio
~after the rotation! is given by a Lagrangian density local i
the boson fieldf. If, for example, the Lagrangian density
local in terms of the dual fieldf̃ after the rotationy→z, the
second term in Eq.~5.4! should be replaced by

~v1H !2

4p
^f̃f̃&y→z~v,H !. ~5.5!

In fact, there is a subtlety in defining the current. In t
free boson theory without interactions, we have

]f

]x
5

]f̃

]t
, ~5.6!
13441
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-

]f

]t
52

]f̃

]x
, ~5.7!

so that we may represent the current operator in terms
either f or f̃. However, in the presence of the interactio
we cannot define the dual fieldsf and f̃ that satisfy both
identities. For example, let us take the Lagrangian densi

L5
1

2
~]mf!22l cosbf, ~5.8!

and define the dual fieldf̃ by Eq. ~5.6!. Then, from the
equation of motion, we find

]xf̃~ t,x!1] tf~ t,x!52blE
2`

t

cosbf~ t8,x!dt8,

~5.9!

violating Eq.~5.7!.
Thus it is not completely clear whether the current ope

tor should be written as a derivative off or f̃. However,
upon Fourier transform, the ‘‘difference term’’@right-hand
side of Eq.~5.9!# does not give a sharp peak.@Recall that
only the operators of conformal weight~1,0! or ~0,1! produce
a delta-function spectrum. Other operators give broad sp
trum given by Eq.~3.19!, even in the zeroth order.# More-
over, the contribution from the difference term is suppres
by a factorl2. Therefore, the difference term would lead,
most, only to a small and broad background. In discuss
the line shape of the main resonance, we can ignore
difference term and focus on the derivative of either bos
field f or f̃. For calculational convenience, we choose
usef ~or f̃) if the interaction is given in terms off (f̃.!

Thus the problem of finding the ESR absorption spectr
is reduced to the calculation of the correlation function of t
boson fieldf. We now make the Wick rotation and consid
the corresponding Matsubara Green’s function defined b

GAB~t!52
1

Z
Tr Tt@A~t!B~0!#, ~5.10!

whereTt is the ordering operator with respect to the ima
nary time t and A(t)[etHAe2tH. The standard diagram
matic perturbation theory can be applied to the Matsub
Green’s function. After obtaining the Matsubara Gree
function, we can analytically continue back to real time
obtain the retarded Green’s function.

Provided that the Lagrangian is local in terms of the b
son field, its correlation function can be written in a se
energy form

Gff~vn ,q!5
21

vn
21q21P~vn ,q!

, ~5.11!
0-11



s

r-

n

-

th
n

t
e

s
pi

-

o-
e

nce
in a
ce.

nt-
ive
is

of

,
is

of
pe.

d
c
d
lf-
will
ely
so-
he
ins.
inal

s
re

-
ion

MASAKI OSHIKAWA AND IAN AFFLECK PHYSICAL REVIEW B 65 134410
whereG is the ~full ! Matsubara Green’s function,vn is the
Matsubara frequency, andP(vn ,q) is the self-energy,
namely, the sum of all one-particle irreducible diagram
Thus we obtain

G S1S2~vn ,q!;
~ ivn1H !2

4p

21

vn
21H21Px~vn ,H !

1
~ ivn1H !2

4p

21

vn
21H21Py~vn ,H !

,

~5.12!

wherePx andPy are the self-energy in the Matsubara fo
malism, respectively, for̂ ff&x→z and ^ff&y→z . This
gives, upon the analytic continuation, the retarded Gree
function

G S1S2
R

~v,q!;
~v1H !2

4p

1

v22H22Px
R~v,H !

1
~v1H !2

4p

1

v22H22Py
R~v,H !

,

~5.13!

where the ‘‘self-energy’’Pa
R (a5x,y) is defined by the ana

lytic continuation

Pa
R~ ivn ,q!5Pa~vn ,q! ~5.14!

for vn.0.
First let us check what we obtain in the absence of

perturbation. ThenPx
R5Py

R50 so that the Green’s functio
has a pole atv5H:

GS1S2
R

~v!;
H

p

1

v2H1 i0
. ~5.15!

This means that we have a completely sharp resonance a
Zeeman energyv5H as expected, in agreement with th
equation of motion. The residueH/p at the pole of the
Green’s function gives the intensity of the resonance. Thi
also consistent with the exact result from the original s
chain:

GS1S2
R

~v!52 i E
0

`

dt^@S1~ t !,S2~0!#&5
2m

v2H1 i0
,

~5.16!

wherem is the magnetization. For small fieldH, the magne-
tization is given bym5xuH, where the uniform susceptibil
ity is

xu5
1

2p
~5.17!

in the low-temperature limit, ignoring the effect of the is
tropic marginal operator.29 ~We remind the reader that w
have been settingv51.! Thus we obtain the amplitude 2m
5H/p, in agreement with Eq.~5.15!.
13441
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A symmetry breaking perturbationH8 would give nonva-
nishing boson self-energyPx ,Py . This changes the ESR
line shape. Near the resonancev;H, we can write

G S1S2
R

~v!5
H

2p

1

v2H2
1

2H
Px

R~v,H !

1
H

2p

1

v2H2
1

2H
Py

R~v,H !

. ~5.18!

If the self-energy changes smoothly around the resona
v;H, we may regard the self-energy as being constant
frequency range sufficiently close to the center of resonan
Then, within this range, the line shape is given by a Lore
zian, and the real and imaginary parts of the self-energy g
the shift and width of the ESR, respectively. The linewidth
given by

h5
21

2H
Im Pa

R~H,H !, ~5.19!

while the shift is

Dv5
1

2H
RePa

R~H,H !, ~5.20!

for a5x,y. In general, the signal could be superposition
two Lorentzian spectra corresponding toPx

R andPy
R . How-

ever, in the concrete cases we study in the present paperPx
R

and Py
R are equal; thus a single Lorentzian line shape

predicted.
Therefore we have successfully formulated the theory

ESR without any particular assumption on the line sha
The self-energy is usually a smooth function ofv near v
;H for finite H except for the smooth weak backgroun
discussed below Eq.~5.9!; we have given a microscopi
foundation for the Lorentzian line shape which is assumea
priori in the MK approach. Application of the present se
energy formalism to two cases relevant to experiments
be discussed in the following sections. However, precis
speaking, our approach is only formulated ignoring the i
tropic marginal operator, which is generally present in t
effective theory of the Heisenberg antiferromagnetic cha
Some discussions on the effects of the isotropic marg
operator will be given in Sec. VI C.

Comparing with the assumption, Eq.~2.11! used in our
derivation of the MK formula in the Appendix, it is obviou
that the MK formula and the self-energy approach a
closely related. Namely,S introduced in Eq.~2.11! corre-
sponds toPR/(2H) if they vary smoothly around the reso
nance. The important difference is that it is an assumpt
that the Green’s function can be written as in Eq.~2.11! with
0-12
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a smoothS whereas we can prove Eq.~5.11! using the dia-
grammatic perturbation theory. The self-energyP is given
by the sum of all one-particle irreducible Feynman diagra
as in proven in any book on field theory. In this way, o
self-energy formulation effectively gives a proof of th
Lorentzian form~2.11! which is often assumed without
microscopic foundation. We emphasize that, although
~2.11! may appear innocent, it is a rather strong assump
and is far from trivial.

When the line shape turns out to be Lorentzian, the res
must agree between the MK and self-energy approache
the correlation functions are evaluated correctly. This will
verified for a few cases in Secs. VI B, VIII B, and VIII C. O
the other hand, while the validity of the MK formula is lim
ited to the lowest order perturbation theory, the self-ene
formulation allows us to go beyond that. In fact, we w
make a nonperturbative analysis of the line shape, base
the self-energy formalism, in Sec. VIII E.

We note that assumptions similar to Eq.~2.11! have been
made in literatures30 for different problems; sometimes th
assumedS is referred to as the memory function. For e
ample, Giamarchi30 studied the conductivity of the TL liquid
with the bosonization method. His discussion is rath
closely related to our analysis of ESR in the present pa
~See also Ref. 31.! In fact, he calcuclated the ac conductivi
of a TL liquid by evaluating the memory function with th
field theory. This is quite similar to a field-theory calculatio
of the MK formula for ESR, which we will discuss in late
sections. We could also apply our self-energy approach to
problem discussed in Ref. 30. This might be useful for p
viding a more rigorous foundation and a possibility to
beyond the lowest order perturbation theory. The poss
breakdown of the MK-type formula, in the context of th
conductivity of a TL liquid, was discussed by Giamarchi a
Millis. 51

VI. EXCHANGE ANISOTROPY PERPENDICULAR
TO THE MAGNETIC FIELD

Now we consider the exchange anisotropy with the a
perpendicular to the applied magnetic field. Let us take
axis of the anisotropy as thex axis. In the low-energy effec
tive theory, at zero uniform field, the anisotropy term is
given as

La52lJR
x JL

x52
l

2
~JR

x JL
x2JR

y JL
y !1

l

2
JR

z JL
z1

l

2
JWR•JWL .

~6.1!

Here the parameterl, which is proportional tod for a small
d, is the same as the one introduced in Eq.~4.1!. The last
term JWR•JWL of the second line is the isotropic marginal o
erator, which does not affect the resonance directly and
thus be ignored in the following.

Now let us include the effects~3.8! of the applied uniform
field H. The first and second terms in Eq.~6.1! are trans-
formed into
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La52
l

2
~JR

x JL
x2JR

y JL
y !1

l

2
JR

z JL
z1

lH

2A2
~JR

z 1JL
z !1

lH2

4
.

~6.2!

Fortunately, there is no oscillating factoreiHx here. The last
constant term has no effect in the following, and will b
ignored. The third term represents the additional magn
field of 1plH @compare with Eq.~4.3!#. This is again ab-
sorbed by a renormalization of the uniform fieldH, giving
the shift ofplH.

The shift depends on the sign of the anisotropy. Wh
comparing with experiments or existing literature, it shou
be recalled that we discuss the shift in frequency for a fix
field H, while usually a shift in the resonance field for a fixe
frequency is studied. We also remark that the dipolar in
action corresponds to a negatived ~andl!. Taking these into
account, our results on the shift are qualitatively consist
with the literature.14,46

The remaining problem then is to study the effect of t
perturbation

La852
l

2
~JR

x JL
x2JR

y JL
y2JR

z JL
z !. ~6.3!

The first two terms corresponds to an interaction in terms
the boson fieldf̃, and the problem cannot be reduced to
free field theory. Thus it is not possible to calculate the E
absorption spectrum directly as we have done for the
change anisotropy parallel to the magnetic field in Sec.
Therefore, we will employ the self-energy approach dev
oped in Sec. V.

A. Self-energy approach

Because the anisotropy considered here breaks the
tional symmetry in thexy plane, we expect a polarizatio
dependence. Thus let us consider the correlation functio
Sx andSy separately. Under the magnetic field,Sx,y at zero
momentum are expressed as

Sx5
JR

1~H !1JL
1~2H !1JR

2~2H !1JL
2~H !

2A8p2
, ~6.4!

Sy5
JR

1~H !1JL
1~2H !2JR

2~2H !2JL
2~H !

2iA8p2
. ~6.5!

We emphasize here that, under the magnetic field,Sx is re-
lated to both current operatorsJx and Jy. The original spin
operator and the current operator are quite different obje

Absorbing the third term in Eq.~6.2! as a renormalization
of the magnetic field, the perturbation respects the symm
Jx→Jx,Jy→2Jy,Jz→2Jz. Thus the cross term̂JxJy& van-
ishes in this case, allowing us to proceed with the rotat
trick described in Sec. V. Namely,
0-13
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^SxSx&5
1

32p2
@^JR

x JR
x &1^JR

x JL
x&1^JL

xJR
x &1^JL

xJL
x&1^JR

y JR
y &1^JR

y JL
y&1^JL

yJR
y &1^JL

yJL
y&#~q5H !1

1

32p2
@•••#~q52H !

5
1

32p2
@^JR

z JR
z &x1^JR

z JL
z&x1^JL

zJR
z &x1^JL

zJL
z&x1^JR

z JR
z &y1^JR

z JL
z&y1^JL

zJR
z &y1^JL

zJL
z&y#~q5H !

1
1

32p2
@•••#~q52H !, ~6.6!

^SySy&5@^JR
x JR

x &2^JR
x JL

x&2^JL
xJR

x &1^JL
xJL

x&1^JR
y JR

y &2^JR
y JL

y&2^JL
yJR

y &1^JL
yJL

y&#~q5H !1@•••#~q52H !

5@^JR
z JR

z &x2^JR
z JL

z&x2^JL
zJR

z &x1^JL
zJL

z&x1^JR
z JR

z &y2^JR
z JL

z&y2^JL
zJR

z &y1^JL
zJL

z&y#~q5H !1@•••#~q52H !.

~6.7!

^SxSy&5
1

32p2i
@^JR

x JR
x &2^JR

x JL
x&1^JL

xJR
x &2^JL

xJL
x&1^JR

y JR
y &1^JR

y JL
y&2^JL

yJR
y &2^JL

yJL
y&#~q5H !2@•••#~q52H !

5@^JR
z JR

z &x2^JR
z JL

z&x1^JL
zJR

z &x2^JL
zJL

z&x1^JR
z JR

z &y1^JR
z JL

z&y2^JL
zJR

z &y2^JL
zJL

z&y#~q5H !2@•••#~q52H !.

~6.8!

Here ^&x and ^&y mean the expectation value in the presence of the~rotated! perturbationl/2@JL
zJR

z 2(JL
xJR

x 1JL
yJR

y )# and

l/2@(JL
xJR

x 2JL
yJR

y )2JL
zJR

z #, respectively. Fortunately, these can be written in terms of eitherf or f̃:
it

t
-
o

-

n

p-
JL
zJR

z 2~JL
xJR

x 1JL
yJR

y !52p~]mf!222 cosA8pf,
~6.9!

~JL
xJR

x 2JL
yJR

y !2JL
zJR

z 5p~]mf̃!212 cosA8pf̃.
~6.10!

The (]mf)2 term gives a renormalization of the radiusR.
However, in the lowest order of the perturbation theory,
effect is negligible on the boson correlation function^ff&
and thus will be dropped in the following.

Thus, in evaluatinĝJzJz&x we will represent the curren
operatorJz as a derivative off, so that the problem is re
duced to the correlation function of the fundamental bos
field f in the presence of the interaction in terms off. On
the other hand, in evaluatinĝJzJz&y , we will express the
currentJz by of f̃ for ^JzJz&y .

As a result, we have

G J
R
z J

R
z

R x~v,q!5p
~v2q!2

v22q22PR~v,q!
, ~6.11!

G J
R
z J

L
z

R x~v,q!5p
v22q2

v22q22PR~v,q!
, ~6.12!

G J
L
zJ

L
z

R x~v,q!5p
~v1q!2

v22q22PR~v,q!
, ~6.13!

G J
R
z J

R
z

R y~v,q!5p
~v2q!2

v22q22PR~v,q!
, ~6.14!
13441
s

n

G J
R
z J

L
z

R y~v,q!5p
v22q2

v22q22PR~v,q!
, ~6.15!

G J
L
zJ

L
z

R y~v,q!5p
~v1q!2

v22q22PR~v,q!
, ~6.16!

where G Ra (a5x,y) is the retarded Green’s function de
fined by the expectation valuê•••&a , PR(v,q) is the self-
energy for the boson fieldf in the presence of the interactio
2l cosA8pf ~or the self-energy for the boson fieldf̃ in
the presence ofl cosA8pf̃, but this is identical!. Plugging
these into Eqs.~6.6!, ~6.7!, we obtain

G xx
R ~v!5

H2

2p

1

v22H22PR~v,H !
, ~6.17!

G yy
R ~v!5

v2

2p

1

v22H22PR~v,H !
, ~6.18!

G xy
R 52G yx

R ~v!5 i
vH

2p

1

v22H22PR~v,H !
, ~6.19!

whereG ab
R is the retarded Green’s functions of the spin o

eratorsSa andSb, as defined in Eq.~2.3!.
For a directiona in the xy plane,

G aa
R 5

H2cos2F1v2sin2F

p

1

v22H22PR~v,H !
,

~6.20!
0-14
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whereF is the angle betweenx anda directions, namely, the
angle between the anisotropy axis and the polarization of
electromagnetic wave.

As a result, for any directions of the polarization perpe
dicular to the magnetic field, the ESR line shape is Loren
ian with the width2Im PR(H,H)/(2H). However, the line
shape has some angle dependence through the nume
H2 cos2 u1v2 sin2 u. In fact, the present result is consiste
with the exact and rigorous relation~2.18! for original spin
model. This serves as a consistency check of our field-the
approach.

Now let us calculate the self-energyP of boson fieldf in
the presence of interactionl cosA8pf. It is easy to see the
first order perturbation to the boson correlation function v
ishes due to symmetry. The second order perturbation to
boson correlation function does not vanish and can be ca

FIG. 3. Three types of Feynman diagrams appearing in the
turbative expansion.~a!, ~b!, and~c! correspond to the first, secon
and third terms in Eq.~6.22!, respectively. The disconnected di
gram~c! is canceled by the correction to the partition function; t
‘‘tadpole’’ diagram~b! does not contribute to the imaginary part
the self-energy~i.e., the linewidth!.
13441
e
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-
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he
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lated by the diagrammatic expansion~i.e., Wick’s theorem!.
The second-order term in the boson correlation function
related to

l2

234
^f~1!eiA8pf(2)e2 iA8pf(3)f~4!&

5
l2

8 (
n,m

~ iA8p!n

n!

~2 iA8p!m

m!

3^f~1!:fn~2!::fm~3!:f~4!& ~6.21!

5pl2^f~1!f~2!&^eiA8pf(2)e2 iA8pf(3)&^f~3!f~4!&

1~2↔3!2pl2^f~1!f~2!&^eiA8pf(2)e2 iA8pf(3)&

3^f~2!f~4!&1~2↔3!

1pl2^f~1!f~4!&^eiA8pf(2)e2 iA8pf(3)&. ~6.22!

The three terms here represent contributions from differ
kinds of Feynman diagrams, as shown in Fig. 3. The sec
type of the term 2^f(1)f(2)&^eiA8pf(2)e2 iA8pf(3)&
3^f(2)f(4)&1(2↔3) represents the ‘‘tadpole’’ type
Feynman diagram@Fig. 3~b!#, while the last term corre-
sponds to a disconnected Feynman diagram@Fig. 3~c!#,
which is canceled by the correction to the partition functio

In fact, there is a similar contribution from
e2 iA8pf(2)e1 iA8pf(3) besides the above, and one has to in
grate the coordinates 2 and 3 over Euclidean space-time
a result, we obtain the self-energy in the lowest ord
@O(l2)# of the perturbation as

P~vn ,q!54pl2@G(1,1)~vn ,q!2G(1,1)~0,0!#,
~6.23!

whereG(1,1) is the Matsubara Green’s function of the oper
tor of the conformal weight~1,1! in the free boson theory
These two terms come from type~a! and ~b! Feynman dia-
grams in Fig. 3, respectively. Analytic continuation back
real time leads to

PR~v,q!54pl2@G(1,1)
R ~v,q!2G(1,1)

R ~0,0!#, ~6.24!

whereG(1,1)
R is the retarded Green’s function correspondi

to the Matsubara Green’s functionG(1,1) . Its imaginary part
can be derived by taking the limitD,D̄→1 in Eq. ~3.19!:

Im@2G(1,1)
R ~v,q!#5

p2

8
~v22q2!Fcoth

v1q

4T
1coth

v2q

4T
G .

~6.25!

The imaginary part then reads

2Im PR~H,H !54p3l2HT, ~6.26!

giving the width

h52p3l2T. ~6.27!

r-
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Again, this is consistent with the scaling analysis~4.2!. The
real part is proportional to (v22q2), which corresponds to a
wave function renormalization, and does not lead to any s
at O(l2). In any case, there is a shift ofO(l) discussed
above, which is dominant.

To summarize, the exchange anisotropy with the axis p
pendicular to the applied field gives the following effects
paramagnetic ESR. Shift:1plH}Hd, width: 2p3l2T
}(d/J)2T. Comparing to the result for the exchange anis
ropy with the axis parallel to the applied field, the wid
obtained here is half of the result~4.8! for the parallel case
This can be understood naturally with the MK formula as
will discuss in the next subsection. On the other hand,
shift takes opposite sign and the absolute value is half of
in the parallel case.

B. MK approach

The line shape is shown to be Lorentzian in the two ca
discussed above~exchange anisotropy parallel and perpe
dicular to the applied field!, up to a possible broad back
ground ofO(l2). Thus the MK formula is expected to b
also valid for these cases. In order to check consistenc
our field-theory approach, here we study the same prob
with the MK formula.

Let us consider the exchange anisotropy parallel to
applied field considered in Sec. IV. We may apply the M
formula to the spin chain Hamiltonian and then take the c
tinuum limit, but taking the continuum limit first and the
apply the MK formula turns out to be simpler. Absorbing t
second term of the effective perturbation~4.3! into a renor-
malization of the magnetic field, we need to consider
effect of the perturbationH8;l*dxJL

zJR
z .

First we have to obtain the commutator~2.9! appearing in
the MK formula. The total spin raising/lowering operatorS6

in the continuum limit is given from Eq.~3.27! as

S65
1

A8p2E dx~JR
6e6 iHx1JL

6e7 iHx!. ~6.28!

Using the standard commutation relation among the curre
the commutatorA is given by

A5 i @H8,S1#

5 ilE dx@JL
z~x!JR

1~x!eiHx

1JR
z ~x!JL

1~x!e2 iHx]. ~6.29!

JL
zJR

1 andJR
z JL

1 are primary fields with the conformal weigh
(1,1). Thus, from the MK formula~2.7! we obtain the line-
width

h5
2l2

xuH
Im@2G(1,1)

R ~H,H !#. ~6.30!

The Green’s function is what we have already considere
Eq. ~6.25!, and thus we obtain the width
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h5
2l2

xu
p2T. ~6.31!

Using Eq.~5.17! again~recall we have setv51),

h54p3l2T. ~6.32!

This indeed agrees exactly with the result~4.8! obtained by
quite a different approach. We remark that a similar deri
tion of a similar formula for the ac conductivity of a TL
liquid was given earlier by Giamarchi.30

Next let us consider the exchange anisotropy perpend
lar to the applied field. Absorbing the third term in Eq.~6.2!
into the renormalization of the magnetic field, the perturb
tion to be considered isH85(l/2)*dx(JL

xJR
x 2JL

yJR
y

2JL
zJR

z ). Consequently, the commutator becomes

A5 i @H8,S1#5 i
l

2E dx$@JL
2~x!JR

z ~x!1JL
zJR

1#eiHx

1@JL
z~x!JR

2~x!1JL
1JR

z #e2 iHx%. ~6.33!

This leads to

h5
l2

xuH
Im@2G(1,1)

R ~H,H !#52p3l2T, ~6.34!

where we have used the susceptibility~5.17! in the second
equality. Again we have found an exact agreement with
self-energy approach~6.27!. The ratio 2 of the width be-
tween the parallel case~4.8! and the perpendicular cas
~6.27! is simply understood in this approach. It arises fro
the factor of 1/2 and the presence of twice as many term
Eq. ~6.33! as compared to Eq.~6.29!. In fact, such an angle
dependence also holds at higher temperature and has
discussed in the literature, for example, in Refs. 32, 33.

C. Effect of the marginal isotropic operator:
Logarithmic correction

The Hamiltonian of the Heisenberg antiferromagne
chain with a small anisotropy in thez direction can be
written as

H5H02@gx~JR
x JL

x1JR
y JL

y !1gzJR
z JL

z #, ~6.35!

where we ignored the applied fieldH, which will be consid-
ered later. Here we can rewrite the perturbation as

gxJWL•JWR1~gz2gx!JL
zJR

z , ~6.36!

where the first term is the isotropic marginal operator. T
second term gives the anisotropic interactionl52gz1gx.

As is now well known, the isotropic marginal perturbatio
exists in the low-energy effective theory of the Heisenbe
antiferromagnetic chain, giving several effects such as
logarithmic correction to the magnetic susceptibility29 at low
temperature. While it has a simple formJWL•JWR at H50, it
becomes complicated if we include the effect of the appl
field H. It introduces complications such as the moment
nonconservation in the effective theory and the mixing ofJx

andJy, thereby invalidating the simple self-energy approa
0-16
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discussed in Sec. V. Thus we actually have no microsco
derivation of the Lorentzian line shape in the presence of
isotropic marginal operator, at present. On the other hand
operator by itself, being isotropic, does not directly affect
linewidth. Since the isotropic marginal coupling consta
renormalizes to zero, we may expect the Lorentzian l
shape is basically unaffected by its presence. It does, h
ever, indirectly affect the linewidth through the renormaliz
tion of the anisotropic perturbation as we discuss in
following.

As discussed in Ref. 37, the coupling constantsgx andgz

are renormalized by the Kosterlitz-Thouless type RG flo
The solution of the RG equation~for H50) in the lowest
order gives

gx5
e

4p

1

sinh~e ln r !
, ~6.37!

gz5
e

4p
coth~e ln r !, ~6.38!

where r is the scale variable (}J/T) and e is a constant,
which determines the crossover scale.@This solution is valid
only if the infrared~IR! limit is a massless free boson theor
namely, ifd,0. We proceed by assuming this case; the fi
result on the ESR linewidth should be valid also ford.0.# In
the IR limit r→`, gx50 and

gz~`!5
e

4p
. ~6.39!

This corresponds to a renormalized free boson Lagran
@122pgz(`)#(]mf)2/2, which leads to the critical expo
nenthz5122pgz(`), where^Sz(r )Sz(0)&;r 2hz.

On the other hand, the critical exponent in the low-ene
limit of the HeisenbergXXZ model has been obtained from
the Bethe ansatz exact solution. For the Heisenberg m
with an exchange anisotropy

H5(
j

J~Sj
xSj 11

x 1Sj
ySj 11

y !1~J1d!Sj
zSj 11

z , ~6.40!

it is known that

hz5
1

2pR2
512

1

p
cos21F11

d

JG , ~6.41!

for a negatived. Combining these results, we obtain, f
small e, d,

e5
1

p
A28d

J
. ~6.42!

Since the isotropic partgx(aJL
aJR

a commutes withS1, the
important perturbation is the ‘‘asymmetric part’’gz2gx. In
the intermediate scaler !e1/e, which would be relevant to
ESR for a weak anisotropy,

l52gz1gx5
1

8p
e2ln r 5

ln r

p3

d

J
. ~6.43!
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This corresponds to the coefficientl introduced in Eq.~4.1!.
The larger of the temperatureT or the applied fieldH im-
poses the cutoff of the RG flow, and thus the scale factor
should be replaced byJ/max(T,H).

In the present discussion, the uniform fieldH appears only
as a cutoff scale imposed on the RG flow at zero field. Th
to this order, the renormalization of the coupling constanl
applies to arbitrary direction of the anisotropy relative to t
applied field. Therefore we conclude the low-temperat
asymptotic behavior of the linewidth and shift to be

h5
4

p3 S d

JD 2S ln
J

max~T,H ! D
2

T, ~6.44!

Dv52
2

p2

d

J
ln

J

max~T,H !
, ~6.45!

if the anisotropy axis is parallel to the applied field. They a

h5
2

p3 S d

JD 2S ln
J

max~T,H ! D
2

T, ~6.46!

Dv5
1

p2

d

J
ln

J

max~T,H !
, ~6.47!

if the anisotropy axis is perpendicular to the applied field

D. Comparison with experiments

In this paper, we have not calculated the ESR line sh
for a general relative direction between the anisotropy a
and the magnetic field, let alone more complicated anis
ropy of general form. However, the results~4.8!, ~6.27! to-
gether with the scaling argument~4.2! imply that the line-
width due to the exchange anisotropy~or dipolar interaction!
scales proportionally to the temperatureT in the low tem-
perature regimeT!J ~but above the Ne´el or spin-Peierls
transition temperature!. This, in fact, appears to be observe
in many quasi-one-dimensionalS51/2 antiferromag-
nets38–40,33,35,36 including CPC, KCuF3 , CuGeO3, and

FIG. 4. The temperature dependence of the ESR linewidth
KCuF3 , CuGeO3, and NaV2O5. The data are taken from Refs
33, 35, 36, respectively. The horizontal axis is the temperaturT
normalized by the exchange couplingJ, and the vertical axis is the
normalized linewidth.
0-17
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NaV2O5. In the case of Cu benzoate,10 there is a field-
dependent diverging contribution to the linewidth at lo
temperature due to a staggered field effect, as we will disc
in Sec. VIII. There seems to be another contribution to
linewidth, which is approximatelyT linear and frequency
independent. We presume the latter contribution is due to
exchange anisotropy.

In Fig. 4 we show the observed33,35,36ESR linewidth for
KCuF3 , CuGeO3, and NaV2O5, as a function of the normal
ized temperatureT/J. We note that, these materials exhib
phase transitions~such as Ne´el and spin-Peierls transitions!
at low enough temperatures, where the linewidth appear
diverge. Since we focus on one-dimensional systems in
present work, in Fig. 4 we have omitted such temperat
regimes, above which we may regard the system simply
spin chain. It could be possible that, however, the displa
data are still affected by the interchain interactions, the sp
Peierls instability, etc.

An analysis on the linewidth in NaV2O5 similar to ours
was published previously by Zvyagin.52 However, we also
remark that theT-linear behavior of the linewidth due to a
exchange anisotropy was reported earlier in Ref. 12. In f
Eq. ~3! in Ref. 52 is equivalent to Eq.~11! in Ref. 12. More-
over, in Ref. 52 it was argued that a bond-alternation per
bation leads to a linewidth}(J12J2)2/T2. However, the
argument@leading to Eq.~4! in Ref. 52# cannot be correct pe
se, because the ESR linewidth must remain strictly zero
long as all terms in the Hamiltonian except the Zeeman te
commute with the total spin operators, as we reviewed
Sec. II A. An isotropic bond alternation keeps this prope
It is possible that an isotropic bond-alternation perturbat
J1J2 together with an exchange anisotropic uniform e
change perturbationd might lead to a width, but it would be
suppressed by the factord2/J2, as the width should vanish
whend50. In any case, a reliable derivation seems lack
so far. We point out that the ESR spectrum cannot simply
related to the boson propagator in the field theory, in
presence of a bond alternation.@See remarks below Eq
~5.1!.#

In Fig. 4 we took J5400, 150, and 560 K, respec
tively33,35,36for KCuF3 , CuGeO3, and NaV2O5, while there
are some uncertainties in the estimate. The linewidth
renormalized to be compared withT/J. The low-temperature
asymptotic behavior of the linewidth indeed seems con
tent, although not perfectly, with the universalT-linear be-
havior we have derived. On the other hand, it is difficult
discuss the predicted logarithmic correction in the pres
data. Regarding Fig. 4 as a fitting, the low-temperat
asymptotic behavior reads

h

T
;5

4.231024 ~CuGeO3,Hic!,

4.731024 ~CuGeO3,Hia!,

1731024 ~KCuF3,Hic!,

2231024 ~KCuF3,Hia!,

1.331024 ~NaV2O5,Hic!,

0.6531024 ~NaV2O5,Hib!,

~6.48!
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which are given as dimensionless numbers. In these ma
als, the data forHia andHib are quite similar, and thus only
one set of them is shown for each material.

Comparing with our results~6.44! and ~6.46!, the anisot-
ropy d/J seems to be about a few percent. It w
argued33,35,36that, in these material it is too~up to 10 times!
big compared to what we expect from Moriya’s27 estimate
d;(Dg/g)2J where Dg is the anisotropy of theg-tensor.
~Actually the discussion in Refs. 33–36 was based on
high-temperature limit. See Sec. IX for relation to our low
temperature theory.! However, we believe that Moriya’s for
mula is only valid as an order-of-magnitude estimate. Th
is a room for a factor which is presumably not too mu
different from 1, but could still allow the exchange aniso
ropy that is consistent with the observed linewidth.

The linewidth deviates from the field theory result}T at
higher temperatures. This is not surprising, since the fi
theory is only valid in the low temperatureT!J. We will
give more discussions on the crossover to the hi
temperature regime in Sec. IX. On the other hand, if all
materials can be regarded as a standard Heisenberg an
romagnetic chain with the same type of anisotropy, we wo
expect the linewidth to be a universal function ofT/J. How-
ever, in Fig. 4 it is evident that the linewidth behaves diffe
ently at high temperature, especially in KCuF3. This suggests
that not all of them can be described by the standard Heis
berg antiferromagnetic chain~3.1! with the same type of an
isotropy. We remark that the low-temperature asymptotic
havior should be universal for a certain class
Hamiltonians, but the explicit coefficients obtained in Eq
~6.44! and ~6.46! are specific to the standard Hamiltonia
~3.1!.

Certainly, there are many questions still to be understo
An important problem is the dependence on the direction
the applied field. In the case of NaV2O5, the observed line-
width at low temperature is twice as large whenHic com-
pared as whenH'c. This is consistent with our result, if a
exchange anisotropy with the single anisotropy axis para
to c is assumed. However, in the case of CuGeO3 and
KCuF3, the observed linewidth forHic is smaller than that
for Hia and Hib. This kind of angular dependence cann
be explained with an exchange anisotropy with a single
isotropy axis. This suggests that we have to consider m
general types of anisotropy, or some other effects.

A complete theoretical description of the experimen
data in these materials is left for the future. Nevertheless,
believe that the universal decrease of ESR linewidth at
temperatures inS51/2 antiferromagnetic chains is basical
understood with our theory. Ours is presumably the firs12

microscopic derivation of this approximatelyT-linear line-
width. In Refs. 33–36 a completely different interpretati
was proposed. However, we will argue against it in Sec.

VII. ESR IN AN XXZ ANTIFERROMAGNET

So far in this paper, we have restricted ourselves to
case of small anisotropy. However, in principle ESR can
measured in a system which is far from isotropic. To ap
the self-energy formalism to a not small anisotropy, one
0-18
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to sum up higher orders of the perturbation. In addition,
foundation of our self-energy formalism based on the wea
broken SU~2! symmetry may be questionable in such cas
because the SU~2! symmetry is strongly broken in the spi
Hamiltonian.

However, there is one case in which we can study E
with a strong anisotropy: an easy-planeXXZ antiferromagnet
with a field applied perpendicular to the easy plane. This
nothing but the isotropic Heisenberg antiferromagnet wit
negative exchange anisotropy parallel to the applied fi
~6.40!, with d,0. Here we can apply the direct calculatio
introduced in Sec. IV.

The compactification radiusR for the XXZ model with a
given anisotropyd is known from Bethe ansatz exact sol
tion and is given in Eq.~6.41!. Using this radius, the ESR
absorption spectrum given by the Green’s function~3.19! of
the vertex operator with the conformal weight~3.17!, ~3.18!.
Since d is not small, the spectrum is no longer a simp
Lorentzian, except at low enough temperatureT!H!J
where the spectrum reduces to the Lorentzian~4.7!.

In this Lorentzian case, the width here doesnot reduce to
the previous one~6.44! which was proportional tod2, even
in the limit d→0. The reason of this disagreement is th
they describe different regimes. The result~6.44! is valid
when the energy scale max(T,H) is above the crossover en
ergy Ec5e21/e, while the present result is valid if the re
evant energy scaleT andH are both belowEc . For a small
anisotropy, the crossover scale is exponentially small, m
ing Eq. ~6.44! realistic for the experimentally accessible r
gime.

For a small exchange anisotropy and above the cross
energyEc , the width is proportional tol2 in the leading
order of perturbation theory; the width is insensitive to t
sign of the anisotropy~easy-plane or easy-axis!. However,
when the anisotropy is large orT,H!Ec , this symmetry no
longer holds. In fact, the system in the zero temperature l
is gapless for an easy-plane anisotropy~d,0! while it ac-
quires a gap;Ec for an easy-axis anisotropy~d.0!. In the
gapful cased.0 andT,H!Ec , ESR probes the creation o
the elementary excitation above the ground state; the abs
tion spectrum then has a sharp peak centered at the ener
the gap.

VIII. TRANSVERSE STAGGERED FIELD

As we have discussed in Sec. III B, a staggered field is
most relevant perturbation of the isotropic Heisenberg a
ferromagnet. Breaking the SU~2! symmetry, the staggere
field affects also the ESR spectrum. Here we discuss
effect by the field theory methods described in previous s
tions, and then explain the mysterious observations in E
experiments10,11 on Cu Benzoate in the 1970’s which we
recently confirmed and extended.43

Let us focus on the case of a transverse staggered fie

H85h(
j

~21! jSj
x . ~8.1!
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As we have discussed already, the staggered field is map
to the operator

nx;k cos~2pRf̃ ! ~8.2!

which has scaling dimension 1/2. A standard scaling anal
similar to that in Sec. IV shows that, ignoring the logarithm
correction, the linewidth should be given as

h5TgS Eg

T
,
H

T D , ~8.3!

whereEg is the excitation gap6,7 due to the staggered fiel
proportional toh2/3J1/3. Again, the scaling argument alon
cannot determine the actual form of the scaling functiong.

A. Self-energy approach

As we have discussed, The staggered transverse field~8.1!
is mapped to the field theory operatornx:

H85h(
j

~21! jSj
x;khE nx~r !dr, ~8.4!

where k is a constant, and we normalizenx by
^nx(r )nx(0)&51/r . Namely,k2 gives the correlation ampli-
tude ^S0

xSj
x&;(21) j k2/ j . This form is not affected by the

application of the magnetic fieldH, except for the possible
renormalization of the amplitudek and the exponent, which
we will ignore.

The SU~2! WZW field theory with the perturbationnx has
rotational symmetry about thex axis. While the original spin
problem is not invariant under a rotation about thex axis due
to the applied field, the effective field theory does have t
symmetry. As a consequence, correlation functions of
type ^JxJy& vanishes. Thus we can apply the self-ener
method by reducing the ESR spectrum to Green’s function
the bosonic field, as discussed in Sec. V.

The transverse staggered field in thex direction breaks the
rotational symmetry in thexy plane, leading to polarization
dependence. Calculations similar to those in Sec. VI lead
the same result~6.17!, ~6.18!, and ~6.19!. The polarization
dependence is again consistent with the rigorous rela
~2.18! which can be applied to the present case.

The self-energyP is now replaced by the boson sel
energy in the presence of the perturbationkh cosA2pf.
Again, arguments similar to those in Sec. VI can be appl
to obtain the result

PR~v,q!52p~kh!2@G(1/4,1/4)
R ~v,q!2G(1/4,1/4)

R ~0,0!#,
~8.5!

where the second term comes from the tadpole term.
The self-energy is a smooth function ofv near the reso-

nancev;H. Thus, the line shape is Lorentzian near t
center of the resonance, with the width and shift determin
by the self-energy at (v,q)5(H,H). The imaginary part of
the second, tadpole term vanishes according to Eq.~3.19!.
Using Eq.~5.19!, the linewidth is given by
0-19
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h5
pk2h2

H
Im@2G(1/4,1/4)

R ~H,H !#. ~8.6!

From Eq. ~3.19!, the linewidth shows quite a nontrivia
dependence on the applied fieldH and temperatureT. How-
ever, in the weak field regimeH!T, the formula can be
simplified and linewidth has simpleT22 dependence on th
temperature:

h5
pk2

4 S G~ 1
4 !

G~ 3
4 !
D 2

h2

T2
. ~8.7!

We note that this is consistent with the scaling analysis.~Re-
call that we have setv51.!

The correlation amplitudek2 was recently determined ex
actly for theS51/2 Heisenberg antiferromagnet41,37,42with a
logarithmic correction due to the presence of margi
operators

~21!r^Sz~r !Sz~0!&;
1

~2p!3/2

ln r

r
. ~8.8!

The logarithmic correction is translated into a ln(J/T) factor
in the ESR, where the temperature gives the IR cutoff. T
we obtain~upon reinstatingv5pJ/2)

h5
1

16
Ap

2S G~ 1
4 !

G~ 3
4 !
D 2

Jh2

T2
lnS J

TD;0.685701
Jh2

T2
lnS J

TD .

~8.9!

Implication of this result on the experiments will be di
cussed in Sec. VIII D.

B. MK approach

Since the line shape is Lorentzian, the MK formula sho
be valid also in this case, provided the correlation function
evaluated appropriately. There are two ways to evaluate
commutator~2.9! appearing in the MK formula: to take th
continuum limit before calculating the commutator, or to fi
calculate the commutator in terms of the original spin va
able and then take the continuum limit. We think the form
is generally more reliable, since the field theory only de
with universal low-energy phenomena while the Lorentz
assumption of MK formula would be valid at best in th
long-time limit. In the present case, the two methods give
same result as we will show below.

Taking the continuum limit first, we calculate the comm
tator between the field theory operators~8.4! and~3.27!. The
standard relation between the commutator and OPE lead

A5@H8,S2#

5FhkE nx~r !dr,
1

8p2E JR
2~r !e2 iHr 1JL

2~r !eiHr G
5~hk/2!E @e2 iA2pfe2 iHr 1eiA2pfeiHr #dr. ~8.10!
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On the other hand, in the original spin representation,
commutator is easily evaluated as

A5@H8,S2#5h(
j

~21! jSj
z , ~8.11!

namely, the longitudinal staggered field with the coefficie
h. Taking continuum limit, it agrees with Eq.~8.10!.

Thus, from the MK formula, the linewidth is given by

h5
k2h2

2xuH
Im@2G(1/4,1/4)

R ~H,H !#. ~8.12!

Again using Eq.~5.17!, this agrees exactly with the resu
~8.6! obtained in the self-energy approach.

C. Shift of the resonance frequency

In the present case, there is no shift to first order inh. In
fact, the first term in the MK formula~2.10! vanishes in the
present case. The lowest order shift is thus second orderh.
This is given by either the MK formula~2.10! or by
RePR(H,H)/(2H) in the self-energy approach. Again, bo
approaches give the same result for the frequency shift

Dv5h5
pk2h2

H
Re@2G(1/4,1/4)

R ~0,0!1G(1/4,1/4)
R ~H,H !#.

~8.13!

This is a straightforward consequence of the self-ene
approach. On the other hand, the derivation from the M
approach might need an explanation. While the second t
proportional to2G(1/4,1/4)

R (H,H) just comes fromGAA †
R in

the MK formula ~2.10!, the first term @proportional to
2G(1/4,1/4)

R (0,0)] is less obvious. From Eq.~8.11!, the com-
mutator in the first term of the MK formula~2.10! is given
by

@A,S2#5h(
j

~21! jS2. ~8.14!

Its expectation value vanishes if evaluated in the absenc
the staggered fieldH8. However, taking the staggered fie
perturbation into account,

^@A,S2#&52h2xs1O~h3!, ~8.15!

wherexs is the ~transverse! staggered susceptibility. By th
linear response theory, we have

xs52k2ReG(1/4,1/4)
R ~0,0!, ~8.16!

which leads to Eq.~8.13!, with the replacement ofxu by its
zero-temperature limit~5.17!.

For the standardS51/2 Heisenberg antiferromagnet
chain, we can apply the exact result on the correlation a
plitude as we did for the width. We obtain
0-20
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Dv5
1

8
Ap

2
lnS J

TD Jh2

HT S GS 1

4D
GS 3

4D D
2

3F 12

GS 3

4D
GS 1

4DReH GS 1

4
2 i

H

2pTD
GS 3

4
2 i

H

2pTD J G .

~8.17!

For small fieldH compared to temperatureT, we obtain by
Taylor expansion of the Gamma function

Dv50.344 057
Jh2H

T3
lnS J

TD . ~8.18!

~An incorrect prefactor was given in Ref. 12.! Namely, we
obtain the positive shift which rapidly increases with d
creasing temperature.

The shift in the presence of the staggeredg-tensor was
previously discussed by Nagata44 using the formula

Dv52
1

2xuH
^@@S1,H8#,S2#&. ~8.19!

derived in Refs. 45, 46~also see the Appendix.! In the
present case, it is reduced to the expectation value of
staggered fieldh( j (21) jSj

x . The leading order of the shif
in the perturbationh is thus given by

Dv5
h2

2xuH
xs , ~8.20!

wherexs is the staggered susceptibility.44 The positive fre-
quency shift~i.e., negative field shift! was argued to be con
sistent with the experiment.47,44 On the other hand, the theo
retical result in Ref. 44 is not in quantitative agreeme
partly due to the evaluation ofxs in the high-temperature

FIG. 5. The temperature and frequency dependence of the
linewidth for Hic9 10, after subtracting the frequency independe
part. It is compared our theory~8.9!. See also Fig. 2 of Ref. 12 fo
the same comparison without the subtraction.
13441
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classical limit. However, we believe that Eq.~8.20! itself is
not quite correct even ifxs were evaluated exactly. In fac
Eq. ~8.20! differs from ours~8.13!. Interestingly, Eq.~8.20!
is equivalent to including only the tadpole contribution in t
self-energy approach. The discrepancy becomes particu
important at low magnetic field. In the limit ofH→0 at fixed
h andT ~although this limit is not realistic in experiment! the
MK/self-energy approach predict the shift linear inH but Eq.
~8.20! gives a diverging shift;1/H, which is presumably
unphysical. While Eq.~8.19! captures some physics of th
frequency shift, it fails to include more subtle effects of flu
tuation, presumably because of the oversimplified ansatz
of not including the long-timescale dynamics.

D. Comparison with the experiments

The result~8.9! of the perturbation theory implies an in
teresting behavior of the ESR linewidth in materials such
Cu benzoate. As we have discussed in Sec. III B 1, there
effective transverse staggered field is induced proportion
to the applied field (h5cH), and the proportionality con-
stantc depends strongly on the direction of the applied fie
Thus, the linewidth increases as}T22 as the temperature i
lowered. Furthermore, it depends on the applied field~or the
resonance frequency! H and on the direction of the applie
field. This very characteristic behavior is not expected for
exchange anisotropy. In fact, these features were actu
observed10 nearly 30 years ago in ESR on Cu benzoate a
apparently have not been understood until recently. Our
sults give a natural understanding of these observations.12

The only unknown parameters in Cu benzoate were
components of DM vector. We have chosen12

~Da9 ,Dc9!5~0.13,0.02!J, ~8.21!

which seemed most reasonable to fit ESR data.10 It is also
roughly consistent with other experiments7 such as neutron
scattering, although not perfectly. This choice of DM vec
fit rather nicely the direction dependence~Fig. 1 of Ref. 12!,
temperature and field dependence~Fig. 2 of Ref. 12!. How-
ever, we should note that the determination of the logar
mic correction in a practical fitting is a difficult problem; th
leading log correction is only valid in the low temperatu
limit. Our fittings were done setting the logarithmic factor
unity.

There is some discrepancy between the theory and
experiments. We see, in the experimental data,
field~frequency!-independent contribution which appears
be approximately linear in temperature. This is presuma
due to effects other than the staggered field. A proba
mechanism is the effect of an exchange anisotropy, wh
gives a linewidth which isT-linear and independent of th
field. If we subtract the field-independent contribution fro
the experimental data at the price of introducing additio
fitting parameters, the agreement becomes better as show
Fig. 5.

Recently Asanoet al. made a detailed experimenta
study43 on ESR in Cu benzoate. They also confirmed o
prediction on the linewidth at higher field. In addition, the
found that, when the temperature is small compared toJ but

R
t
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not too low, the shift is consistent with our prediction~8.18!
~see Fig. 2 of Ref. 43!. Moreover, we can read off the pro
portionality constant from their Fig. 2 as

Dv;0.053S H

T D 3

~8.22!

for Hic, whereDv andH are measured in Tesla whileT is
in K. On the other hand, using the DM vector~8.21!, we find
thath50.095H for Hic. Combining this with Eq.~8.18!, we
the theoretical prediction

Dv;0.042S H

T D 3

, ~8.23!

where we have again replaced the logarithm lnJ/T with
unity. Considering the subtlety of the logarithmic correctio
the agreement between the theory and the experimen
rather good.

Thus our perturbative results agrees well with the exp
ments. However, at very low temperatures, the line sh
evolves differently than what we expect from the lowest
der perturbation theory. This will be discussed in the n
subsection.

E. Resonance at very low temperature

So far, our analysis was perturbative in the staggered fi
h. While the perturbation theory seems reasonable for a s
staggered field, it eventually fails at lower temperature wh
the effect of the staggered field is enhanced. In fact,
perturbative expansion turns out to be an expansion
Jh2/T3, which is divergent at low enough temperature.

The effective field theory describing theS51/2 Heisen-
berg antiferromagnetic chain with a staggered field is giv
by Eq.~3.2! perturbed with Eq.~8.2!. As discussed in Ref. 6
this is nothing but the sine-Gordon field theory, which is o
of the best understood strongly interacting field theori
Since the interaction term~8.2! is relevant, the sine-Gordo
field theory is massive, i.e. has a finite excitation gapEg
above the ground state. The elementary excitations of
sine-Gordon model consist of solitons, antisolitons a
breathers which are bound states of a soliton and
antisoliton.

The perturbation theory is expected to be valid only
T@Eg . Here we consider the opposite limitT!Eg , where
the system is essentially in the groundstate. Then we ob
quite a different picture. It is still valid that the ESR spe
trum is given by thêff& Green’s function at frequency an
momentum H. However, we have to consider the zer
temperature Green’s function in a nonperturbative way.

In the present case (b5A2p), the lowest excitations are
1st breather, soliton and antisoliton, which form an SU~2!
triplet. Thus the excitation gapEg is identical to the first
breather massM1. The boson fieldf couples to the first
breather, and thus its propagator is given by

^ff&~v,q!;
Zf

v22q22M1
2

, ~8.24!
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whereZf is the wave function renormalization constant o
tained exactly48 as

Zf5~11n!

pn

2

2sin
pn

2

expS 2
1

pE0

pn t

sin t
dtD , ~8.25!

where n5b2/(8p2b2). For the present case,n51/3 and
thusZf50.978689.

From this, we immediately find that the ESR spectrum
zero temperature is given by a delta function

2Im GS1S2
R

~v!'
~H1AH21M1

2!2

2AH21M1
2

d~v2AH21M1
2!.

~8.26!

Since the wave function renormalizationZf is close to unity,
the intensity is identical to that of a free resonance.

Thus we obtain a rather complicated behavior of ESR
the presence of the staggered field. As the temperatur
lowered, the linewidth increases in the perturbative regi
(T@Eg) as we discussed, but at lower temperatureT
!Eg) we see a revival of a sharp resonance. The width
the resonance vanishes at zero temperature. At small bu
nite temperature 0,T!Eg , the resonance may be broa
ened due to the thermally activated excitations, but pres
ably the effect is only of the order of the density of su
excitations;exp(2Eg /T).

On the other hand, the ESR frequency at zero~or very
low! temperature does receive a shift due to the stagge
field. Namely, the resonance frequencyv is given by

v5AH21M1
2, ~8.27!

compared to the Zeeman frequencyH. For small massM1
!H, the shift is given as

Dv;
M1

2

2H
;1.578 78S ln

J

hD 1/3J2/3h4/3

H
, ~8.28!

where we used the result of the breather mass~field-induced
gap! Eg5M1;1.776 95@ ln(J/h)#1/6(Jh2)1/3 in Refs. 6, 7.
Here we emphasize that our self-energy approach is v
beyond the lowest order of perturbation theory, unlike t
MK formula. Thus it allows us a nonperturbative analys
such as the above.

Our prediction agrees quite well with the experimen
result in Ref. 11, as discussed in Ref. 12. The nontriv
evolution of the line shape was indeed observed in the
periment in 1970’s. Moreover, using the same parame
~8.21! we have used for the perturbative analysis, we are a
to reproduce the direction dependence of the resonance
quency at very low temperature quite well with Eq.~8.27! as
shown in Fig. 3 of Ref. 12. However, the data were on
shown at fixed temperature and fixed frequency in Ref.
Thus several other predictions of our theory could not
compared. After our proposal,12 Asanoet al. studied43 ESR
in Cu benzoate at low temperature and at higher field. T
confirmed the crossover to the nonperturbative regime,
0-22
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that the resonance at very low temperature agreed with
prediction~8.28! for various fields. Moreover, the crossov
between the perturbative and the nonperturbative regime
curs at temperatureT;Eg , consistently with our picture
The broadening at the nonperturbative regime was also
sistent with the picturee2Eg /T.

On the other hand, the precise line shape at the cross
temperature regimeT;Eg requires a nonperturbative calcu
lation of the correlation function of the boson field in th
sine-Gordon field theoryat finite temperature. Despite re-
markably many exact results on the theory based on the
tegrability, calculation of the finite temperature correlati
remains an unsolved problem. The ESR line shape in
benzoate provides a set of rather precise experimental
for the finite temperature correlation function in the sin
Gordon field theory. It is hoped that future theoretic
progress will enable us to compare theoretical nonpertu
tive results with the ESR data in the crossover tempera
regimeT;Eg.

In Ref. 11, the sharp resonance at very low temperatur
considered to be the ‘‘antiferromagnetic resonance,’’ wh
reflects the Ne´el ordering due to the interchain interaction.
particular, they identified the appearance of the sharp re
nance at very low temperature as the Ne´el transition. How-

FIG. 6. Simplest scenario of the temperature dependence o
linewidth in the presence of an exchange anisotropy. TheT-linear
behavior at low temperature predicted by the field theory met
crossovers smoothly to the constant;d2/J predicted by the Kubo-
Tomita theory at the high-temperature limit. The crossover ta
place atT;J, which is the limit of the validity of the field theory
approach.

FIG. 7. Simplest scenario of the temperature dependence o
linewidth in the presence of a staggered field, interpolating the l
temperature field theory resultJh2/T2 and the high-temperature re
sult h2/J.
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ever, a recentmSR experiment on Cu benzoate reveals49 that
a Néel ordering does not occur even down to 20 mK. W
believe that the evolution of the ESR line shape is prima
explained within our one-dimensional theory taking the
fective staggered field into account. On the other hand,
also note that the interpretation in Ref. 11 is not totally d
ferent from ours; the system has a long-range magnetic o
in both theories. The difference is that the order is induc
spontaneouslydue to the interchain interaction in Ref. 1
while it is forced externally by the staggered field in o
picture. Spin-wave theory can also be applied to the ex
nally ordered state; the resonance at very low tempera
would be then identified with the ‘‘upper mode’’E1 @see Eq.
~3.12! of Ref. 7# which has a qualitatively similar depen
dence onh andH to Eq.~8.27! ~we thank Shiba for pointing
this out!. Quantitatively, however, the sine-Gordon fie
theory is expected to work better for a small staggered fi
h.

IX. ESR AT HIGHER TEMPERATURES

In this paper, we have developed a field-theory appro
to ESR in quantum spin chains. The field theory is a lo
energy effective theory, and is only valid at low temperatu
compared to the exchange coupling. Here we would like
consider ESR in the other extreme, namely, the hi
temperature limit using Kubo-Tomita theory. We will als
discuss the crossover between the low-temperature and h
temperature regime.

A. Exchange anisotropy

For the exchange anisotropy~3.34! in a generic direction,
the KT formula~2.12! has been applied to the linewidth i
the literature. The result is

h}
d2

J
, ~9.1!

where we have ignored the direction dependence. It is d
cult to discuss the intermediate temperature regime ei
with the existing theories or with our field theory approac
However, our result can be naturally related to the hig
temperature limit, assuming a smooth crossover at temp
tureT;J, namely if theT-linear behavior~4.8!, ~6.27! is cut
off at T;J as shown in Fig. 6. In fact, this simple scenar
seems to agree with the experimental results38–40,33,35,36on
CPC, KCuF3 , CuGeO3, and NaV2O5, which we think the
exchange anisotropy~including the dipolar interaction! is the
primary mechanism of the broadening. See Fig. 4 for so
of the examples.

We note that, while the low-temperature asymptotic b
havior described by the field theory is universal, the cro
over to the high-temperature regime is expected to be n
universal. The linewidth as a function of the temperatu
would depend, for example, on the next-nearest-nei
bor interaction introduced additionally to the standa
Hamiltonian~3.1!.
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B. Staggered field

No literature on the effect of a staggered field in ES
linewidth is known to us. The application of the KT formu
~2.12! to the staggered field perturbation~8.1! is nevertheless
straightforward, giving the linewidth

h}
h2

J
, ~9.2!

at the high-temperature limit. This is again consistent w
the low-temperature field theory result Eq.~8.9!, assuming a
smooth crossover atT;J, as shown in Fig. 7.

C. Dzyaloshinskii-Moriya interaction

While the effects of a DM interaction~3.32! has been
discussed in the literature,32–34 we believe there is a rathe
serious problem with these previous treatments. A direct
plication of the KT formula~2.12!, as was made previously
yields the width

h}
D2

J
, ~9.3!

where we have again ignored the angle dependence.
On the other hand, a staggered DM interaction can

reduced to an exchange interactiond;D2/J and a transverse
staggered fieldh;DH/J via an exact transformation dis
cussed in Sec. III B 1. If we apply the KT formula after th
transformation, we obtain

h}
D4

J3
1

D2H2

J3
, ~9.4!

where we ignored constants ofO(1). This actually differs
substantially from the result of the direct application~9.3!. In
a typical situation, D/J;0.1 and H!D,J so that h
;0.01J from Eq. ~9.3! while h;1024J from Eq. ~9.4!,
which means a factor of 100 difference.~Actually, we have
to know the numerical coefficient, which has been ignored
far, in order to discuss the absolute value of the width.! In
addition, it is argued28 that there exists an exchange anis
ropy ~before the transformation! which accompanies the DM
interaction, and cancels the anisotropy coming from the D
interaction. The discrepancy would be even greater when
happens.

Obviously, both results cannot be true at the same t
~while they could be both wrong!. What we believe is tha
the latter approach eliminating the DM interaction first
appropriate, and the direct application of the KT formula
the DM interaction is incorrect. A possible reason why t
direct application~9.3! fails is as follows. In the latter ap
proach based on the transformation~9.4!, the physical total
spin operatorSx,y is actually given by a sum of the total sp
operator and the staggered spin operator of the model
the transformation. Thus, the physical absorption spect
of ESR is also given by the sum of contributions from t
uniform and staggered part:
13441
h

p-

e

o

-

is

e

ter
m

xphys9 ~q50,v!;x9~q50,v!1S D

J D 2

x9~q5p,v!,

~9.5!

wherex9 is the imaginary part of the dynamical susceptib
ity for the transformed model. The staggered partx9(q
5p,v) is already broad even in the absence of the an
tropic perturbation, and is further suppressed by the fac
(D/J)2. Thus it would be practically indistinguishable from
the background, especially in the high-temperature regi
The main absorption due to thex9(q50,v) term is presum-
ably Lorentzian with the width given by Eq.~9.4!. According
to this picture, the line shape is not a single Lorentzi
although apparently it is. The direct application of the K
formula misses such a structure, and treats all the effects
the line shape is a single Lorentzian. This presumably le
to the incorrect result~9.3!.

An indirect evidence of our claim is that the eliminatio
seems to work well in the field theory of ESR at low tem
perature. Assuming a smooth crossover atT;J, the latter
result ~9.4! seems more plausible. In addition, a rece
experiment9 on a very good one-dimensionalS51/2 Heisen-
berg antiferromagnet pyrimidine Cu dinitrate strongly su
gests that there is a staggered DM interaction along
chain, resulting in the field-induced gap similar to that o
served in Cu benzoate. An analysis9 of various experimenta
data suggests the staggered DM interaction isD;0.14J,
where the exchange coupling in this compound isJ
;36 K. According to the direct approach~9.3!, the line-
width at high temperature should be of order ofD2/J
;5000 Oe.This might be too large to understand the o
served small linewidth 20 Oe at room temperature,9 which is
quite high compared to the exchange interactionJ. On the
other hand, if we use Eq.~9.4!, the estimate of the linewidth
becomes to be of order ofD4/J3;100 Oe, which is not too
far from the experimental result. We note that we do n
know the numerical coefficients and thus a conclusive qu
titative discussion is difficult. In addition, the exchange a
isotropy ~before the elimination of the DM interaction!,
which is ignored in the above estimate, is not known p
cisely. Nevertheless, considering the significant differen
the observed linewidth in pyrimidine Cu dinitrate cou
serve as an experimental support for our claim that the di
treatment of the DM interaction is inappropriate.

On the other hand, we do not understand at present ho
deal with a uniform DM interaction along the chain. While
can be eliminated by a similar transformation as well, t
result contains the magnetic field rotating in its directi
along the chain. This is a rather unfamiliar problem whi
we do not know how to handle at present.

D. High-temperature expansion of the linewidth

In a series of papers, Yamada and collaborators stud
the temperature dependence of ESR linewidth in one dim
sional magnetic systems experimentally and theoretically
the theoretical study, they discussed the temperature de
dence by a high-temperature expansion of the KT formu
0-24
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More precisely, they attempted a high-temperature expan
of ^AA †& in the numerator of the KT formula, Eq.~2.12!.

They concluded that for an exchange anisotropy the li
width increases as the temperature is lowered, while the
dency is the opposite for a~uniform or staggered! DM inter-
action. Based on this observation, they argued that the
interaction should be dominant in several one-dimensio
antiferromagnets which showed a decreasing linewidth
lower temperature. In some cases the DM interaction is
bidden according to the previously identified crystal symm
try; they went on to the conclusion that the actual symme
is lower than what had been believed, allowing the DM
teraction.

However, their argument is to be criticized on seve
grounds. First, the high-temperature expansion can no
trusted except for very high temperature. AtT!J our field
theory approach should be more reliable, and it gives a ra
opposite result to their claim. Second, they expand only
numerator̂ AA †& in the KT formula to the first order in 1/T,
ignoring other possible contributions of order 1/T. It is not
clear to us whether their scheme makes sense as a 1/T ex-
pansion of the linewidth. Third, perhaps most importan
even in their framework of the calculation, the conclusi
should be reversed because they apparently made a cr
sign mistake as we will show below. Finally, they apply t
KT formula directly to the DM interaction; this is problem
atic as we have pointed out. In any case, the sign prob
persists whether the direct approach or the elimination
proach is taken in dealing with the DM term.

In the following, let us show that the sign should be r
versed within the framework of Refs. 33–36. We consid
S51/2 Heisenberg antiferromagnetic chains with a sm
perturbation. First let us discuss the case of an anisotr
parallel to the applied field. The calculation for general a
isotropy angle should be similar. This gives the commuta

A5@H8,S1#5d(
j

~Sj
1Sj 11

z 1Sj
zSj 11

1 !. ~9.6!

The ‘‘numerator’’ of the KT formula is then given by

^AA †&5d2(
j ,k

^~Sj
1Sj 11

z 1Sj
zSj 11

1 !~Sk
2Sk11

z 1Sk
zSk11

2 !&.

~9.7!

Considering the high-temperature limit we can ignore all
nearest-neighbor correlations. Thus we only consider thj
5k terms in the double sum:

^@H8,S1#@S2,H8#&;d2NF1

4
1

^Sz&
2

1^Sj
xSj 11

x &G ,
~9.8!

where we have used identities forS51/2, such asSj
1Sj

2

5Sj
z11/2 andN is the number of sites. In the limit of infinite

temperature, the width is given by the first term which
d2/J as was already discussed.

As the temperature is lowered from infinity, the leadi
correction is given by the second and third terms. The sec
term proportional to the magnetization̂Sz& is negligible
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compared to the third term in our caseH!J. The third term
represents the nearest-neighbor correlation effect, and sh
be proportional to2J/T at high temperatureT. Note that we
are dealing withan antiferromagnet, so that the nearest
neighbor correlation should be negative. Ignoring other p
sible sources of temperature dependence following Refs.
36, the linewidth in the present case is given by

h5
d2

J Fa2b
J

T
1OS J2

T2D G , ~9.9!

with positive coefficients a,b for an antiferromagnet.
Namely, the linewidth decreases at lower temperature c
trary to the claims made in Refs. 33–36; this is rather natu
from the field theory results at low temperatures as discus
in Sec. IX A. It appears that, they took the nearest-neigh
correlation as positive, which is valid for a ferromagnet50 but
not for an antiferromagnet.

Now let us consider the transverse staggered field per
bation in the same framework. In this case,A5@H8,S1#5
2h( j (21) jSj

z , which gives the ‘‘numerator’’

^AA †&5h2(
j ,k

~21! j 1k^Sj
zSk

z&. ~9.10!

In the high-temperature limit, we may ignore all the corre
tion functions other than the nearest neighbor one. This le
to the formula

^AA †&5h2NF1

4
22^Sj

zSj 11
z &G . ~9.11!

Considering that the nearest-neighbor correlation is n
ative for an antiferromagnet, the linewidth is supposed to
given as

h5
h2

J Fa81b8
J

T
1OS J2

T2D G , ~9.12!

where a8 and b8 are positive constants. Namely, the lin
width increases at lower temperature; again in a qualita
agreement with the field theory.

For a staggered DM interaction, as we have discus
before, presumably we should first eliminate the DM int
action to reduce the problem to the exchange anisotropy
the transverse staggered field. In a typical situationH!D
!J, the staggered fieldh;DH/J and the anisotropyd
;D2/J induced by the transformation satisfyh!d!J. In
this case, the linewidth would initially decrease by loweri
the temperature, then start increasing below the cross
temperature where the staggered field becomes domin
This was actually observed in Cu benzoate, as discusse
ready in Sec. VIII D.

Finally, we consider a direct application of the KT fo
mula to the DM interaction. Although we believe this is n
an adequate approach, the claims in Refs. 33–36 still suf
from the same sign problem even if we accept the dir
approach. Now we have
0-25
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A5@H8,S1#5(
j

D j i ~Sj
zSj 11

1 2Sj
1Sj 11

z !, ~9.13!

giving

^AA †&;D2N@12^Sj
xSj 11

x &#, ~9.14!

ignoring other than next-nearest-neighbor correlation in
high-temperature limit. Because the nearest neighbor co
lation function is negative in an antiferromagnet, we obta

h5
D2

J Fa91b9
J

T
1OS J2

T2D G , ~9.15!

wherea9 andb9 are positive constants, implying the increa
ing linewidth at lower temperatures. The error in Re
33–36 is again apparently due to the identification of
nearest-neighbor correlation as positive.

X. CONCLUSIONS

In this paper, we have developed a new approach ba
on field theory to ESR in quantum spin chains. It is expec
to be exact in the low-energy~low-temperature! limit, pre-
cisely where the traditional calculational methods on E
become invalid. The weakly broken SU~2! symmetry under
an applied field, in the absence of an anisotropic pertur
tion, is represented by the SU~2! symmetric field theory and
an anisotropic mapping between the physical spin opera
and the corresponding field theory operators.

The formulation of the ESR in terms of Feynman-Dys
self-energy gives, at least in some simple cases, a mi
scopic derivation of the Lorentzian line shape up to a p
sible smooth weak background. The spin diffusion pictu
which predicts a non-Lorentzian line shape in one dim
sion, does not apply to theS5 1

2 antiferromagnetic chain a
low temperature. The spin diffusion hypothesis does not h
in the present case, as the spin correlation function is gi
explicitly using Eq.~3.19!. The width and shift are calculate
perturbatively for a transverse staggered field perturba
and an exchange anisotropy parallel or perpendicular to
applied uniform field. They seem to explain many existi
experimental data. Furthermore, the self-energy formula
can be used beyond the perturbation theory. In fact, in
presence of a staggered field, the perturbation theory br
down at a low enough temperature. The ESR spectrum in
zero temperature limit is discussed with a nonperturba
treatment of the sine-Gordon field theory. This again see
to explain the experimentally observed ESR line shape in
benzoate at very low temperature.

While our field theory approach works only at low tem
peratures, we have also discussed a few aspects of ES
higher temperatures. In particular, we have pointed out th
naive application of the standard Kubo-Tomita theory fa
even in the high-temperature limit, in the presence o
Dzyaloshinskii-Moriya interaction.

We hope that the reader is convinced that ESR in
strongly interacting quantum system is quite an interes
problem from the theoretical point of view. It is also a use
13441
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experimental probe because a very precise spectrum ca
obtained.

Obviously, there remain many problems to be investiga
in the future. Even in the simple quantum antiferromagne
chain, the formulation of ESR in terms of self-energy of t
boson fieldf does not hold for generic types of anisotrop
perturbations, because of the mixing of several operat
Extension of the self-energy formulation to the generic ca
is an important open problem; presumably we have to c
sider perturbative expansion of correlation functions of
vertex operators~exponentials of the boson field! in a sys-
tematic way. Moreover, degrees of freedom other than sp
~e.g., charge fluctuation, lattice vibration, etc.! will be rel-
evant in some real materials. While the ESR in a thr
dimensional magnet appears to be understood with the e
ing theory,2,3 we think that the problem should b
reinvestigated with the modern understanding of many-b
physics and critical phenomena. Naturally, the tw
dimensional problem, which is expected to be more sensi
to the fluctuation effects, would also deserve considerat
We hope the present work will stimulate further theoretic
and experimental studies on this fascinating subject.

Note added in proof.After submitting the present paper,
paper by Choukroun, Richard, and Stepanov w
published.53 They made a similar proposal to ours~Sec. IX C
in the present paper! on the treatment of the DM interaction
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APPENDIX: ALTERNATIVE DERIVATION
OF THE MORI-KAWASAKI FORMULA

In this appendix, we describe a simple alternative deri
tion of the MK formula~2.7!,~2.10! suggested to us by Ed
wards. It depends only on the assumption that the line sh
takes a single Lorentzian form, and appears much sim
than that in the original paper.2 On the other hand, it does no
answer the question why~and when! the line shape takes th
Lorentzian form.

We consider ESR in a general spin system given by
Hamiltonian~2.6!. Here and in the following, a spin operato
without a site index is regarded as the total spin opera
Sa5( jSj

a . The equations of motion forS6 are given by

dS1

dt
52 iHS11 iA, ~A1!

dS2

dt
51 iHS22 iA †, ~A2!
0-26
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whereA5@H8,S1#.
The ESR spectrum can be obtained from the Gree

function ofS6. Let us relate this to the Green’s function ofA
andA †, using the equations of motion. Using a partial int
gration and the equations of motion

G S1S2
R

~v!52 i E
0

`

eivt^@S1~ t !,S2~0!#&dt

5
1

v
^@S1~0!,S2~0!#&

1
1

vE0

`

eivtK FdS1

dt
~ t !,S2~0!G L dt

5
2^Sz&

v
1

H

v
G S1S2

R
~v!2

1

v
G AS2

R
~v!. ~A3!

Thus

G S1S2
R

~v!5
2^Sz&2G AS2

R

v2H
. ~A4!

~Precisely speaking we should introduce the converge
factor so thatv2H is replaced byv2H1 i e with a positive
infinitesimal e. Although we omit this for brevity, it can be
recovered when necessary.! Performing similar steps

G AS2
R

~v!52 i E
0

`

eivt^@A~ t !,S2~0!#&dt

5
1

v
^@A~0!,S2~0!#&

2
1

vE0

`

eivtK FA~ t !,
dS2

dt
~0!G L dt

51
^@A~0!,S2~0!#&

v
1

H

v
G AS2

R
~v!

2
1

v
G AA †

R
~v!, ~A5!

where we used the relation

d

dt
^@A~ t !,S2~0!#&52 K FA~ t !,

dS2

dt
~0!G L ~A6!

which holds because the Green’s function depends only
the difference of two time arguments. Thus

G AS2
R

~v!5
^@A~0!,S2~0!#&2G AA †

R
~v!

v2H
. ~A7!
an
ri
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Combining Eqs.~A4! and ~A7!, we obtain

G S1S2
R

~v!5
2^Sz&
v2H

1
2^@A~0!,S2~0!#&1G AA †

R
~v!

~v2H !2
.

~A8!

This should be an exact relation between the full Gree
functions~in which the effect of the perturbationH8 is fully
taken into account!. When H850, we recover the simple
resultG S1S2

R (v)52^Sz&/(v2H).
Now let us assume the perturbationH8 is small, and the

ESR line shape is Lorentzian. Namely, we assume
G S1S2

R (v) is given by Eq.~2.11!, whereS is a smooth func-
tion of v. Near the resonancev;H, S may be regarded as
constant. ReS and 2Im S gives the shift and width of the
resonance, respectively. We assume thatS can be expanded
perturbatively inH8.

Comparing Eqs.~2.11! and~A8!, we obtain,in the lowest
order of perturbation theory

S;
2^@A~0!,S2~0!#&1G AA †

R
~v5H !

2^Sz&
. ~A9!

Here we note that̂ @A(0),S2(0)#& is purely real since
@A,S2# is Hermitean. This gives

h5
21

2^Sz&
Im G AA †

R
~v5H !, ~A10!

Dv5
1

2^Sz&
@2^@A,S2#&1ReG AA †

R
~v5H !#.

~A11!

For a small fieldH, the denominator 2̂Sz& can be written as
2xuH wherexu is the uniform susceptibility. We also not
that the first term in the shift2^@A,S2#&/(2^Sz&) was de-
rived previously by Kanamori and Tachiki,45 and by Nagata
and Tazuke.46 However, their theory did not incorporate th
dynamical effects represented byG AA †

R .
So far, we have defined the expectation value and

Green’s functions with respect to the full HamiltonianH
5H01HZ1H8. However, the present result is only valid
the leading order. Since the Green’s function ofA above
already contains the factorl2 ~l is the small parameter tha
characterizes the perturbationH8), we may replaceG AA †

R

with the unperturbed Green’s functionGAA †
R . This gives the

formulas in Eqs.~2.7! and ~2.10!. We note that, in general
^@A,S2#& must still be evaluated in the presence ofH8 be-
cause@A,S2# is only first order inl.
l,

G.
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