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Ground-state properties of two-dimensional dimerized Heisenberg models
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The purpose of this paper is to investigate the ground-state properties of two-dimensional Heisenberg
models on a square lattice with a given dimerization. Our aim is threefold. First, we want to investigate the
dimensional transition from two to one dimension for three models consisting of weakly coupled chains for
large dimerizations. Simple scaling arguments show that the interchain coupling is always relevant. The ground
states of two of these models therefore have one-dimensional nature only at the decoupling point. The third
considered model is more complicated, because it contains additional relevant intrachain couplings leading to
a gap, as shown by scaling arguments and numerical investigations. Second, we investigate at which point the
dimerization destroys the Ne´el-ordered ground state of the isotropic model. Within a mapping to a nonlinear
sigma model and linear spin-wave theory~LSWT!, we conclude that the stability of the Ne´el-ordered state
depends on the microscopic details of the model. Third, the considered models also can be regarded as
effective models for a spin system with spin-phonon coupling. This leads to the question if a spin-Peierls
transition, i.e., a gain of total energy due to lattice distortion, is possible. LSWT shows that such a transition is
possible under certain conditions, leading to a coexistence of long-range order and spin-Peierls dimerization.
We also find that the gain of magnetic energy is largest for a stairlike distortion of the lattice.

DOI: 10.1103/PhysRevB.65.134409 PACS number~s!: 75.10.Jm, 75.50.Ee, 75.40.Cx
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I. INTRODUCTION

For many years there has been considerable interest,
experimentally and theoretically, in the subject of low
dimensional quantum spin systems, because their prope
are strongly affected by quantum fluctuations. The gen
model to theoretically study such systems is the well-kno
Heisenberg model.

In one spatial dimension the model with nearest-neigh
exchange of spin-1/2 objects, known to be exactly solva
by the Bethe ansatz,1 shows an algebraic decay of its corr
lation functions at zero temperature and constitutes there
quantum critical system. For arbritary spins, Haldane2 has
mapped the spin chain onto a nonlinear sigma (NLs) model
with a topological term for half-integers and without such a
term for integer s. From this result he conjectured that h
integer spin chains are critical whereas integer spin ch
have a gap, a scenario that is well established by now.
other interesting aspect of the spin-1/2 Heisenberg chai
its instability towards a structural transition known as t
spin-Peierls transition.3

Much less is known for the isotropic two-dimension
Heisenberg antiferromagnet with nearest-neighbor excha
on a square lattice. Contrary to one dimension no exact
lution is available in any limit. Linear spin-wave theor
~LSWT!, which does not work in one dimension because
infrared divergencies, is applicable and predicts a Ne´el-
ordered ground state for the spin-1/2 case, but with a m
netic moment reduced to nearly 50% of its classical valu4

This result is also supported, qualitatively and also quant
tively, by numerical work.5,6 For s>1 Dyson, Lieb, and
Simon7 proved a theorem, which shows that the ground s
is Néel ordered. As in one dimension it is also possible
map the system onto a NLs model. From a renormalization
group~RG! treatment it is known8 that this model exhibits in
211 dimensions a nontrivial critical pointgc , which sepa-
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rates a phase with Ne´el-like long-range order (g,gc) from a
quantum disordered phase (g.gc) at T50. It has been
shown that there is excellent agreement between theore
results for this model and experimental measurements
La2CuO4 in the low-temperature regime ifg,gc is
assumed.9 An interesting problem has been the question
whether there is also a topological term in two dimensio
which was finally answered by Haldane10 who concluded
that such a term is always absent if the order parameter
is smooth on the scale of the lattice spacing. However, th
are tunneling events, which are crucial for an understand
of the disordered phase.11

In this work we want to consider two-dimension
Heisenberg models on a square lattice with a given alte
tion of the coupling between nearest-neighbor spins. In e
spatial direction the coupling should be changing from bo
to bond betweenJ(11d) and J(12d) with J.0 and d
P@0,1# so that the coupling is always antiferromagnet
There are three topologically different possibilities~see Figs.
1–3! for arranging such ‘‘dimerized chains’’ on a square la
tice if periodicity in each spatial direction is assumed.

These systems are described by the following Ham
tonian:

H5J(
i

@11~21! i (1 j )d#Si , j•Si 11,j

1J(
j

@11~21! j (1 i )d#Si , j•Si , j 11 , ~1!

whereSi , j denotes the spin operator acting on the lattice s
( i , j ). Choosing both exponents equal toi 1 j leads to the
model shown in Fig. 1, whereas setting the first one equa
i and the second one toi 1 j or vice versa leads to the mode
shown in Fig. 2. The third considered model~see Fig. 3! is
described by Eq.~1! with the first exponent set toi and the
second set toj.
©2002 The American Physical Society09-1
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The models in Figs. 1 and 2, which we will refer to as t
stair model and meander model, decouple into spin chain
d51. This means that there is a transition from two to o
dimension depending on the value of the dimerizationd.
Because a model with a couplingJx in the x direction and a
coupling Jy in the y direction ~see Fig. 4! is the simplest
model showing such a transition, we want to reexamine
model although it has been studied intensively before. T
model in Fig. 3 is different from the other three mode
because it decouples into plaquettes consisting of four s
for d51.

The dimerized models can also be regarded as effec
models for a spin system with a spin-phonon coupl
treated adiabatically. In such a system the exchange coup
J between nearest neighbors depends linearly on their

FIG. 1. ~Stair model!. A thick solid line indicates a strong bon
J(11d) and a dashed line a weak bond with strengthJ(12d). This
distortion of the lattice is caused by one transversal phonon w
wave vector (p,p).

FIG. 2. ~Meander model!. Three phonons, a longitudinal and
transversal (p,p) phonon together with a longitudinal (0,p) pho-
non.
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tance. This is expressed through the deformation param
of the horizontal bond extending from site (i , j ) to the right

dh~ i , j !5
1

J (
k,s

lk,s~^ui , j~k,s!&2^ui 11,j~k,s!&! i ~2!

with the deformation parameter of the vertical bonddv( i , j )
defined analogously. Herelk,s is the microscopic spin-
phonon coupling constant andui , j (k,s) the local displace-
ment of the atom at the position (i , j ) with respect to the
phonon wave vectork and branchs. In the considered mod
elsdh anddv are equal to6d. Note that the lattice distortion
is static due to the mean-field approach leading to a class
elastic energy.

In Sec. II, we study the models, which decouple in
chains atd51. We address the question of whether there
already a transition from two- to one-dimensional behav

th

FIG. 3. ~Plaquette model!. Two longitudinal phonons, one with
wave vector (p,0), the other with (0,p).

FIG. 4. (Jx /Jy model!. Two longitudinal phonons, one with
wave vector (2q,0), the other with (0,1q), whereq is infinitesi-
mal (q52p/ANa).
9-2
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GROUND-STATE PROPERTIES OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW B65 134409
at ad smaller than 1 on the basis of some scaling argume
Because the situation in the meander model is much m
complicated than in the other models due to third-near
neighbor~NNNN! couplings, we show in Sec. III numerica
results from density-matrix renormalization group~DMRG!
and transfer-matrix DMRG~TMRG! to confirm the conclu-
sions drawn from the simple scaling arguments in Sec. II
Sec. IV, we show that it is possible to map all models ont
~211!-dimensional NLs model. We use the known RG re
sults for this model to discuss the magnetic properties of
spin models. In Sec. V, LSWT is applied to support the p
ture from the RG arguments and to determine a value for
critical dimerizationdc , where the magnetic order vanishe
Also from this, we get a condition for the spin-Peierls tra
sition and an answer to the question of which structure
energetically prefered. Sections IV and V consist of sepa
subsections for each model. However, in Sec. V we h
interchanged the order of the first two subsections in co
parison with Sec. IV to keep calculations as simple as p
sible. In Sec. VI we discuss our results and give some c
clusions.

II. SCALING ARGUMENTS

At d512e with e!1, the models in Figs. 1, 2, 4 consi
of weakly coupled Heisenberg chains. Such a Heisenb
chain withs51/2 is a critical system and the additional we
interchain and intrachain couplings are small perturbation
this critical system. If we pick two such chains from ea
model with the corresponding interchain coupling prop
tional to e, we can determine the relevance of the pertur
tion by calculating the energy-energy correlation functi
and from this the scaling dimension of the perturbation
erator. Let us start with the simplest case, theJx /Jy model,
where Jy5J(12d) and Jx5J(11d). The Hamiltonian of
the weak interchain coupling is given by

H̃5Jy(
r

Sr
1Sr

2 , ~3!

where the upper index labels the two chains. The ene
energy correlation function of this perturbation can be cal
lated as follows:

^s0s r&05Jy
2(

a,b
^S0

a,1S0
a,2Sr

b,1Sr
b,2&0

5Jy
2(

a
^S0

a,1Sr
a,1&^S0

a,2Sr
a,2&

5
Jy

2

3
^S0•Sr&

25
Jy

2

3 S ~21!r

r D 2

, ~4!

wheres r5JySr
1
•Sr

2 and a, b label the components of th
spin operator. The subscript ‘‘0’’ represents the calculation
the case of vanishing interchain coupling and in the last
lation the known result for the spin correlation function
the homogenous Heisenberg chain is used.12 From conformal
field theory it is known that this correlation function deca
algebraically as 1/r 2x, wherex is the scaling dimension whe
13440
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we disregard multiplicative logarithmic corrections. W
therefore conclude that the scaling dimension of the in
chain coupling isx51 and represents a relevant perturbati
of the critical system. From scaling relations we find, ag
ignoring logarithmic corrections, the ground-state energyE0
of this system behaving as

E0}Jy
d/(d2x)5Jy

2 ~5!

and a gapD is opening with

D}uJyu1/(d2x)5uJyu, ~6!

whered5111 is the dimension of the corresponding cla
sical model. The existence of a gap for the two-leg ladder
also been shown numerically.13 In general, there seems to b
a gap for an even number of coupled chains, whereas a
tem with an odd number of chains is gapless. However, i
not possible to determine from scaling arguments if there
gap or not for an infinite number of arbitrarily weakl
coupled chains. Nevertheless, the relevance of the interc
coupling clearly shows that the system scales away fr
decoupled chains and therefore even at very large, howe
not perfect dimerization does not behave as decoup
chains. We conclude that the ground state of this model
two-dimensional nature ifJyÞ0 as has been stated before14

Also we can pick two chains out of the stair model a
after smoothing the chains, we get the configuration sho
in Fig. 5. Here the interchain coupling is described by t
Hamiltonian

H̃5 J̃(
r 51

N/2

S2r
1 ~S2r 21

2 1S2r 11
2 ! ~7!

and by calculating again the energy-energy correlation fu
tion, we find that this perturbation also has scaling dimens
x51. That leads to the same conclusions as in theJx /Jy
model. The situation is much more complicated in the me
der model, because there is not only interchain coupling,
also a coupling between third-nearest neighbors within ev
chain as shown in Fig. 6. First, we want to investigate
intrachain coupling. The operator of this perturbation
given by

H̃5 J̃(
r 50

N/2

S2r•S2r 13 ~8!

FIG. 5. Two chains from the stair model with the correspond
interchain coupling

FIG. 6. Two smooth chains from the meander model.
9-3
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and we can calculate the corresponding energy-energy c
lation function

^s0s r&05 J̃2^S0•S3•S2r•S2r 13&0}
~21!2r

2r
, ~9!

where the valuex51/2 of the scaling dimension of the sin
glet operatorS2r•S2r 13 has been employed.12 This means
that the NNNN coupling is relevant. By simply applying th
scaling relations, we conclude that it destroys criticality a
a gap opens withD}uJ̃u2/3. But there might be some doubt
this scenario is correct, because if we suggest a short-ra
Néel order on the critical chain the NNNN coupling is n
frustrating. On the other hand, if the NNNN coupling is
strong as the NN coupling, this chain is equivalent to a tw
leg ladder, which does show a gap. We therefore have u
the transfer-matrix DMRG and the standard DMRG to t
numerically the predictions from scaling. Before we enter
numerical part, we have to analyze the other perturbatio
the meander model caused by the interchain coupling
turns out that this is again relevant with a scaling dimens
x51 as in the other two models.

The conclusion from scaling arguments is therefore t
the Jx /Jy model and the stair model show one-dimensio
behavior only at the decoupling point. Because in the me
der model the intrachain is more relevant than the interch
coupling, the scaling arguments suggest the existence
disordered phase between the decoupling point and the p
with two-dimensional antiferromagnetic long-range ord
This will be further investigated in Secs. III and IV.

III. NUMERICAL INVESTIGATIONS

To prove the scaling argument for the NNNN coupling
the meander model, we have used two numerical meth
The first one is the so-called transfer-matrix DMR
~TMRG!, which combines White’s DMRG idea15 with the
transfer-matrix approach.16 This method has been applied
different quantum chains before17–19and yields very accurate
results for finite temperature. It is particularly suited, beca
the thermodynamic limit in quantum space can be perform
exactly. Before we state the results, we write down the c
sidered Hamiltonian explicitly:

H5J1(
r 50

N

Sr•Sr 111J2(
r 50

N/2

S2r•S2r 13 . ~10!

The relevant case in this context is a NNNN couplingJ2,
which is much smaller than the NN couplingJ1.

The free energy as calculated with the TMRG forJ2 /J1
50.25 is shown in Fig. 7. We can now determine if there
a gap or not, because we know from scaling relations tha
the low-temperature limit the free energy of a gapless, c
cal system scales asf (T)}e02aT2 with e0 being the
ground-state energy, whereasf (T)}e02aT3/2e2D/T if there
is a gap. We tried to fit a quadratic function to the data a
noted that this is impossible, whereas a function as expe
for the gapped case fits perfectly with valuese0
13440
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520.4687360.00002, a50.2960.03, D50.2360.02 and
errors, which are determined by a variation of the fit regi
~see inset of Fig. 7!.

This means that at this strength the NNNN coupling h
really destroyed criticality. To test the scaling argument f
ther, we also applied a standard DMRG program to this pr
lem. When using the same parametersJ2 /J150.25, we find
a gap depending on the length of the chain as shown in
8. An extrapolation L→` then leads to a gapDPBC
50.2365260.00064 and a ground-state energyePBC5
20.4684160.00816 if periodic boundary condition
~PBC’s! are applied. For open boundary conditions~OBC’s!,
we find a gapDOBC50.2383460.00027 and a ground-stat
energyeOBC520.4684360.00003. Consequently, there is
good agreement between the numerical results from the
different methods. Up to now, we have only stated that

FIG. 7. Free energy for the Heisenberg chain with NNNN co
pling calculated by TMRG withJ2 /J150.25, m540 states kept in
the DMRG, and a Trotter parameter ofe5b/M50.05. The inset
shows a low-temperature fit withf }e02aT3/2e2D/T and T
P@0,0.2#.

FIG. 8. DMRG calculation of the gapDE for finite chains with
length L for open and periodic boundary conditions using an e
trapolation in the number of statesm. The lines are guides to the
eye.
9-4



B

rg
ou
ion

ic

e
l
-
l-

t

n

ta
no
h

po

th
ha
r

l t

io
a

ath
ent

nd
e

e

um-

in
amic

GROUND-STATE PROPERTIES OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW B65 134409
system has a gap for one special choice of parameters.
cause the infinite chain withJ250 is a critical system, we
can use the RG to study the behavior of the free ene
depending on the length of the chain and of the NNNN c
pling J2. In general, we can linearize the RG transformat
in the vicinity of a critical Hamiltonian, which is a fixed
point of the RG flow, and find that the free energy per latt
site for a classical system scales asf (g1 , . . . ,gn)
5b2 ld f (bll1g1 , . . . ,bllngn) if the RG is appliedl times.
Heregi denotes a linear scaling field,l i is the eigenvalue of
the RG transformation, andb is the scaling factor. Becaus
the quantum chain with lengthL is equivalent to a classica
system with volumeV5L3b, with b being the inverse tem
perature, the dimensiond is equal to 2 and the relevant sca
ing fields atT50 are 1/L andJ2. It follows that

f ~L,J2!5b2 ld f S bl1l
1

L
,bl2lJ2D ~11!

and by choosingbl1l5L we get

f ~L,J2!5S 1

L D d/l1

f S 1,
J2

L2l2 /l1
D . ~12!

At J250 this reduces tof (L,0)5constL2d/l1 and because
the ground-state energy per lattice site scales asL22, we
conclude thatl151.

By settingbl2l5J2
21 we find the relation

f ~L,J2!5J2
d/l2f ~L21J2

2l1 /l2,1!. ~13!

When inserting the known resultl253/2, we can state tha
there must exist an universal scaling functionF with

J2
24/3f ~L,J2!5F~L21J2

22/3!. ~14!

We can do similar calculations for the gapD and get from
D(L,J2)5b2 lD(bl1lL21,bl2lJ2) the scaling relation

J2
22/3D~L,J2!5F̃~LJ2

2/3!. ~15!

To test this, we have applied the DMRG to 862 differe
chains with lengths up to 122 sites andJ2P@0.00005,0.8#
~see Fig. 9!. By these calculations the scaling relation~15! is
confirmed in a convincing way. Note that practically all da
points collapse on a one-dimensional manifold. Some mi
deviations are noticeable and can be explained by hig
order terms in the finite size scaling and an effective ex
nent 0.662 instead of 2/3~see inset of Fig. 9!. It is also
possible to determine two scaling regions. For large leng
L of the chain the plotted function saturates, indicating t
the relationDE}J2

2/3, derived from scaling arguments fo
the infinite chain, really holds. For smallLJ2

2/3 there is a
linear regime, showing that the finite size gap proportiona
1/L is the dominant contribution in this region.

IV. MAPPING ONTO A NL s MODEL

In this section, we want to discuss the possible transit
from the magnetically ordered phase to a disordered ph
driven by the dimerizationd by using the NLs model as a
13440
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low-energy effective theory. The easiest way to get a p
integral for the considered models is the use of coher
states.20–23 Spin coherent statesun& form an overcomplete
basis set and are generated by a SU~2! rotation of the highest
weight stateus,s&

un&ªeif(n03n)Sus,s., ~16!

wheren0 is an unit vector along the quantization axis a
cos(f)5n•n0. By using the Trotter formula and inserting th
identity operator, the partition function can be written asZ
5*Dne2SE[n] with an Euclidian action given by

SE@n#52 isSWZ1E
0

b

dt^nuHun&. ~17!

SWZ is a topological term~Wess-Zumino term!, which arises
from Berry phases and can be expressed as

SWZ@n#5(
r
E

0

1

dtE
0

b

dt n~] tn3]t n! ~18!

with the boundary conditionsn(t,0)5n(t), n(t,1)5n0, and
n(0,t)5n(b,t).

A. Jx ÕJy model

With a0 being the lattice constant, a site on the latticeG
can be described byi 5o1a0(a51

2 i aea with spatial unit vec-
tors ea. Using this notation, which is more suitable for th
following calculations than Eq.~1!, the Hamiltonian of the
model can be represented as

H5 (
i PG

$JxS~ i !S~ i 1a0ex!1JyS~ i !S~ i 1a0ey!%. ~19!

We assume periodic boundary conditions and an even n
ber of sitesN in each direction. By definingR5Jy /Jx and

FIG. 9. DMRG results for 862 chains with different lengthL and
NNNN couplingJ2. Two scaling regimes are visible as discussed
the text. The inset shows the gap extrapolated to the thermodyn
limit versus couplingJ2.
9-5
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using the coherent state relation^nuSun&5s•n, the second
term in Eq.~17! can now be easily calculated leading to t
Euclidian action

SE@n#52 isSWZ@n#1Jxs
2(

i PG
E

0

b

dt$n~ i !n~ i 1a0ex!

1Rn~ i !n~ i 1a0ey!%. ~20!

Now we use the well-known ansatz8,2

n~ i !5p~ i !m~ i !•A12a0
2dl2~ i !1a0

dl~ i ! ~21!

with

p~ i !5~21!(
a51

2

i a, ~22!

taking into account the short-range Ne´el order due to the
antiferromagnetic exchange. Herem is the order paramete
field andl represents the rapidly varying but small part. T
constraintn251 leads tom251 and m• l50 and we will
expand Eq.~21! up to quadratic order. Because the We
Zumino term is independent of the microscopic details of
spin model, we want to discuss this term more generally id
dimensions. Starting with Eq.~18! and using the ansatz~21!
leads to

isSWZ@n#5 isE
V
ddxE

0

b

dtl~m3] tm!

1 iu (
i 2 , . . . ,i d51

N

~21! i 21•••1 i dk~ i 2 , . . . ,i d!,

~23!

whereu52ps and k( i 2 , . . . ,i d) is the winding number or
Pontryagin index of the fieldm defined by

k~ i 2 , . . . ,i d!5
1

4pE dx1E dt]x1
m~m3] tm!. ~24!

In one spatial dimension the second term in Eq.~23! is re-
sponsible for the different physics of chains with integer a
half-integer spin. If them field is smooth, the integer-value
Pontryagin indexk( i 2 , . . . ,i d) must be a constant and hen
this term cancels out in higher dimensions.10 Note that we
have to treat this term more carefully for the anisotro
models considered here, because them field may no longer
be smooth in each direction. Using the same ansatz~21! for
the part of the action depending on the Hamiltonian of
system and integrating out thel field, results in an effective
action for the low-lying excitations

S@m#5
rs

2 EV
d2xE

0

b

dtH ~]xm!21R~]ym!21
1

vs
2 ~] tm!2J

~25!
13440
-
e
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e

with a spin stiffnessrs5Jxs
2, a transversal magnetic susce

tibility x'54Jxa0
2(11R), and a spin-wave velocityvs

5Arsx'. We now rescale the imaginary time byx05vst
leading to

Snls@m#5
1

2a0g0
E d3x$~]x0

m!21~]xm!21R~]ym!2%,

~26!

where the dimensionless couplingg0 is defined by

g05
2

s
A11R. ~27!

We want to discuss Eq.~26! following some arguments given
by Affleck and Halperin.24 Because the coupling in they
direction may be arbitrarily weak, a continuum represen
tion may not be justified and we therefore rewrite the act
as

Snls@m#5
1

2g0
(

n
E d2xH ~]x0

mn!21~]xmn!2

1
R

a0
2 ~mn112mn!2J . ~28!

After a rescalingy85y/AR the momentum space UV cutof
in the y direction is now smaller than the cutoff in the oth
directions. In a Wilsonian RG step, where the higher mom
tum modes are integrated out, onlyk0 andkx contribute, so
that the RG is essentially two dimensional. Only if the m
mentum scale has been lowered so that alsoky has compo-
nents in the shell, we have to switch to the three-dimensio
RG. During the two-dimensional RG, we also have to co
sider the rescaling of them field which is given bymn
→(L8/L)xmn . HereL is the UV cutoff before renormaliza
tion andL8 the reduced one after a RG step.x is the scaling
dimension of them field which is equal to 1/2 for the
Heisenberg model.

The scaleL8, where we have to switch from two- to
three-dimensional RG, is therefore given by the condition

R~L8/L!2xL2/2g0'L82/2g~L8!. ~29!

Hereg(L8) is the renormalized coupling constant when t
momentum modes have been integrated out down to the
off L8. Note that the assumption that them field is smooth
on the scale of the lattice spacing is no longer justified in
y direction. Instead of canceling out, the second part of
~23! leads to an independent winding number for each ch
with topological angleu5p. Thereforeg flows in two di-
mensions to the marginally stable fixed pointg2(0) of the
s51/2 chain. As a consequenceg0 /g(L8) is always of order
one and Eq.~29! simplifies toL85RL. The coupling con-
stantg(L8) then acts as bare coupling constant for the thr
dimensional RG flow. Therefore the ground state is orde
if g(L8) is smaller than the critical fixed pointgc of the
three-dimensional RG, whereas it is disordered ifg(L8)
.gc . If eveng2(0),gc , the system is always ordered for
nonvanishing R. Numerical calculations using differen
9-6
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methods14,25,26 give strong evidence that this model orde
for arbitrarily weakR, meaning in the language of RG th
g2(0) seems to be smaller thangc ~see the correspondin
flow diagram Fig. 10!.

B. Stair model

We generalize the stair model tod dimensions assuming
hypercubic, bipartite latticeG5A% B with periodic bound-
ary conditions, and an even numberN of sites in each spatia
direction. We do this, because the model reduces in one
mension to a dimerized chain and we want to compare
results, especially the topological terms, for the dimeriz
chain and for the two-dimensional model. Using the sa
notation as for theJx /Jy model with the sum in Eq.~22! now
running up tod, the Hamiltonian can be expressed by

H5J(
i PG

(
a51

d

@11p~ i !d#S~ i !S~ i 1a0ea!. ~30!

Using again relation~17! and also the ansatz~21!, an Euclid-
ian action for this model depending on the unit vector fieldm
and the orthogonal vector fieldl is derived. By the same
arguments given in the chapter before, the Wess-Zum
term vanishes in spatial dimensions greater than 1 unde
assumption thatm is smooth on the scale of the lattice spa
ing, but is important in one dimension. Again, we integra
out the rapidly varying but smalll fields. The result is an
effective action

S@m#5
rs

2 EV
ddxE

0

b

dtFgs
ab~]am!~]bm!1

1

vs
2 ~] tm!2G

~31!

with a spin stiffnessrs5Js2a0
22d(12d2/d), an induced an-

isotropygs
ab5dab2d2(12dab)/(d2d2), a transversal mag

netic susceptibilityx'54Jda0
d and a spinwave velocityvs

5Arsx'. But there arises also an imaginary contributi
proportional tod from the l-field integration, which can be
expressed as

FIG. 10. RG flow for theJx /Jy model.
13440
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d
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he
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iud

d (
i 2 , . . . ,i d

E dx1E dt]x1
m~m3] tm!1•••

1
iud

d (
i 1 ,•••,i d21

E dxdE dt]xd
m~m3] tm!

5
iud

d (
i 2 , . . . ,i d

k1~ i 2 , . . . ,i d!1•••

1
iud

d (
i 1 , . . . ,i d21

kd~ i 1 , . . . ,i d21!. ~32!

If the m field is smooth, everyki must be a constant. Unde
this assumption the topological term simplifies to

Stop5
iud

d
Nd21(

a51

d

ka . ~33!

In one dimension, where the stair model corresponds to
dimerized chain, we find a total topological contribution
Stop5 iu(11d)k as has been calculated before.27 Before we
discuss the two topological terms~23! and ~32! in two di-
mensions, we look at the additional anisotropy in the act
~31! expressed by the matrixgs

ab . This matrix is symmetric
and becomes the identity ifd goes to zero.

In two dimensions a 45° rotation diagonalizes this mat
and withx05vst the action of the two-dimensional model
given by

Seff@m#5
1

2EV
d3x

rs
a

vs
~]am!2. ~34!

There are now different spin stiffnesses in the spatial dir
tions given by

rs
15Js25rs

2

22d2
, rs

25rs

222d2

22d2
, ~35!

andrs
05rs . By a rescaling of the imaginary time, Eq.~34! is

transformed into

S@m#5
1

2a0g0
E d3x̃$~] x̃m!21~12d2!~] ỹm!21~]x0

m!2%

~36!

with a bare coupling given by

g05
2A2

s
. ~37!

Again the coupling inỹ direction may be arbitrarily weak
and we therefore have to use a discrete version of Eq.~36! as
for the Jx /Jy model. As a consequence a two-dimension
RG has to be used until the UV cutoff is lowered toL8
5(12d2)L. The couplingg(L8) is then the bare coupling
for the three-dimensional RG. Now, we have to remem
that there are also two topological terms~23! and ~33!
present. Because we have stated that it is necessary to
discrete representation instead of derivatives for the w
9-7
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couplings, neither the winding number in thex nor the wind-
ing number in they direction is well defined any longer. W
therefore have performed an alternative mapping to a Ns
model starting with a slightly modified version of this mode
where the chains formed by strong bonds are smooth
along thex axis and the weak bonds form zigzag chains~see
Fig. 5!. The result is again an anisotropic NLs model such as
Eq. ~26!, but now without a topological contribution propo
tional tod and with a winding number in the topological pa
of Eq. ~23! calculated along the strong bonds. The situat
is therefore exactly the same as in theJx /Jy-model and if we
acceptg2(0),gc as an universal property, we conclude th
the ground state of this model is always antiferromagn
cally ordered fordP@0,1), and this order only vanishes
d51, where the model consists of uncoupled critical cha

C. Plaquette model

The model is described by the following Hamiltonian:

H5J(
i , j

$@11px~ i !d#Si , j•Si 11,j1@11py~ i !d#Si , j•Si , j 11%,

~38!

where we have definedpx( i )5(21)i x and py( i )5(21)i y.
Substituting Eq.~38! into Eq. ~17!, we derive again a path
integral formulation. By using the same ansatz as before
notice that the dimerizationd does only contribute in
(]am)3

• l and higher orders. This is not surprising, becau
the relevant low energy modes are not only near wave v
tors (p,p) and (0,0) but also near (0,p) and (p,0). We
therefore generalize Eq.~21! in the following way:

n~ i !5p~ i !m~ i !A12a0
2d@ l0~ i !1px~ i !lx~ i !1py~ i !ly~ i !#2

1a0
d@ l0~ i !1px~ i !lx~ i !1py~ i !ly~ i !#. ~39!

The constraintn251 implies m251 andm• l i50, wherel i
denotes any of the three fluctuation fields. By an expans
up to quadratic order inl i , ]am, and] tm, we get again the
effective action~25! but nowR51 and the other paramete
are defined byrs5Js2(12d2), x'58Ja0

2 andvs5Arsx'.
By rescaling the imaginary time axis this is transformed
the standard NLs model

S@m#5
1

2a0g0
E

V
d3x~]mm!~]mm! ~40!

with a bare coupling

g05
2A2

s

1

A12d2
. ~41!

All topological terms vanish for this model and—differe
from the two models considered before—the action is iso
pic in the spatial directions. So the 3D RG has to be u
from the beginning and whether or not the model has
ordered ground state depends on whether or notg0,gc .
Becauseg0→` for d→1, the order vanishes already befo
the plaquettes decouple. The precise value ofdcP(0,1) can-
not be determined within the RG treatment.
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D. Meander model

The Hamiltonian looks quite similar to Eq.~38!, but in-
stead of an alternation withpx( i ) in the x direction there is
one withp( i ). As a result thely field is unnecessary and ca
be left out. By using this reduced form of Eq.~39! and inte-
grating out thel0 and lx fields an effective theory is derived

Seff@m#5
iu

2
d(

i 51

N

kx~ i !1E
V
d2xE

0

b

dtH rs

2 F S 12
d2

2 D ~]xm!2

1~12d2!~]ym!21
1

vs
2 ~] tm!2G J , ~42!

wherers5Js2, x'58Ja0
2, andvs5Arsx'. Like in the stair

model there are different spin stiffnesses in the spatial dir
tions and also a topological contribution proportional tod
such as Eq.~33!, but in this model only the winding numbe
in the x direction is involved. As in the stair model, thi
winding number is not well defined. The same calculatio
within the modified model, where the chains formed
strong bonds are again smooth and along thex axis ~see Fig.
6!, show that the topological term proportional tod vanishes
and the winding number in Eq.~23! is calculated along the
strong bonds. We therefore ignore the topological term in
~42! from now on and use a 2D RG flow withu5p later on.
A rescaling of the imaginary time axis then leads to

S@m#5
1

2a0g0
E

V
d3xH ~]xm!21

222d2

22d2
~]ym!21~] tm!2J ,

~43!

where the bare coupling is given by

g0~d!5
2A2

s
A 2

22d2
. ~44!

Because of the anisotropy in they direction the RG is, as in
the Jx /Jy and stair models, two dimensional at the beg
ning. But here the bare couplingg0(d) is increased with
increasingd. Therefore two scenarios are possible: If adc
exists so thatg0(d).g2(0) if d.dc , the coupling is driven
by the 2D RG flow towards infinity andg(L8) with L8
5(222d2)/(22d2)L, which is the bare coupling for the
3D RG, is then greater thangc . Therefore the ground state i
disordered ford.dc . If, however, even ford→1, g0(d)
remains smaller thang2(0), the ground state is always or
dered for a nonvanishing interchain coupling. In summa
we cannot decide within the RG treatment if an extend
disordered phase exists or if there is long-range order for
dP@0,1) as in theJx /Jy and the stair models.

V. LINEAR SPIN-WAVE THEORY „LSWT …

In the section before, we have mentioned that it is imp
sible to determine a value for the critical couplinggc , or
9-8
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equivalent a value for the criticial dimerizationdc , for the
plaquette and the meander model from RG. This is one
son to apply LSWT onto the considered models. The sec
reason is that we are interested in the question if these m
els can be the result of a dynamical process, i.e., a s
Peierls transition. Because the calculated ground-state en
for the isotropic two-dimensional Heisenberg antiferroma
net ofE0 /NJ'20.6579 deviates less than 3% from the b
numerical results5,6 and also the sublattice magnetizationm
50.3034 agrees very well, we expect that LSWT gives r
able results near the isotropic point. On the other hand,
results for large dimerizations have to be regarded with c
because LSWT fails in one dimension.

We use the Holstein-Primakoff transformation28 to map
the spin operators onto Bose operators

Sz5s2a1a, S25A2sa1A12
a1a

2s
. ~45!

By expanding the square root in 1/s and taking only the
lowest order into account, LSWT is reached.

A. Stair model

As before, we want to consider the stair model gene
ized tod dimensions. Because the latticeG5A% B is bipar-
tite, it is possible to write the Hamiltonian as

H5(
i PA

(
a51

d

@J~11d!S~ i !•S~ i 1a0ea!

1J~12d!S~ i !•S~ i 2a0ea!#, ~46!

which is useful for LSWT. Starting point is again a Ne´el
ordered state, and we therefore apply independent Hols
Primakoff transformations to the two sublatticesA, B:

xPA:Sz~x!5s2a1~x!a~x!, S2~x!5A2sa1~x!,
~47a!

xPB:Sz~x!52s1b1~x!b~x!, S2~x!5A2sb~x!.
~47b!

Taking the Fourier transform the Hamiltonian is bilinear a
given by

H52NJs2d12Jsd(
k

$ak
1ak1bk

1bk1Aakbk1A* ak
1bk

1%,

~48!

where the definitions gk5(1/d)( l 51
d cos(kla0), bk

5( i /d)(m51
d sin(kma0), andA5gk1dbk have been used. By

means of a Bogoliubov transformation this is easily diag
nalized leading to

H52NJds~s11!12Jsd(
k

A12~gk
22d2bk

2!~ck
1ck

1dk
1dk11!. ~49!
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1. Sublattice magnetization

The sublattice magnetizationm is given by

m5^SA
z &5

N

2
s2(

k
^ak

1ak&

5
N

2
s2

1

2 (
k

H 1

A12~gk
22d2bk

2!
21J . ~50!

By replacing the sum by an integral this can be evaluated
principle in any dimensiond. However, in one dimension
this integral is divergent. This is not astonishing due to Co
man’s theorem29 stating that the continuous SU~2! symmetry
cannot be broken in one dimension.

In two dimensions the dimerizationd reduces the magne
tization as expected and atd51 there is again the one
dimensional infrared divergence. Nevertheless, we can
the value of the dimerization wherem vanishes as indication
for the breakdown of Ne´el order. For the stair model we ge
dc50.8286 orRc5(12d)/(11d)50.094~see Fig. 11!.

To check the validity of the LSWT, we want to use a
argument given by Sakai and Takahashi.25 In spin-wave
theory the numbernx of bosons per lattice site is not re
stricted. That means that there are unphysical states in
theory, because in the original spin system the conditionnx
<2S holds. A possible estimation for the validity of LSW
may therefore be given by

^nx&1Dnx,2s⇔^Sx
z&2Dnx.2s. ~51!

This predicts that LSWT is valid for this model fromd50
up tod'0.65~see Fig. 11!. Therefore the calculateddc is in
a region, where LSWT is not reliable. We can only conclu
that dc must be greater than 0.65.

2. Distortion due to spin-phonon coupling

The dimerization leads to a gain in magnetic energy
the one hand, on the other hand it costs elastic energy
answer the question of whether a spin-Peierls transition
wards a distorted lattice is possible, we expand the calcula
ground-state energy up to quadratic order. Because the li
term vanishes for symmetry reasons, we get

FIG. 11. Sublattice magnetization and condition~51! for the
validity of the LSWT, both for the stair model.
9-9
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E~d!

NJ
5e02Ad2 ~52!

with e0520.6579 andA50.261. As mentioned in the Intro
duction, Eq.~2!, the displacement of an atom is proportion
to d and the mean-field treatment of the phonons leads
classical elastic energy proportional tod2. Therefore the lat-
tice is only distorted if

m

2

J2v trans
2 ~p,p!

l trans
2 ~p,p!

,0.261, ~53!

whereas the lattice is unchanged otherwise. Herem is the
mass of the moved atom andv the phonon frequency of th
responsible phonon mode. If this condition is fulfilled, the
is a coexistence of spin-Peierls dimerization and Ne´el-like
long-range order. The situation here is quite different fro
that in one dimension. For the dimerized chain the magn
energy scales asEmag}d 4/3 and because the elastic energy
proportional tod2, there is always a distortion. In the two
dimensional stair model the magnetic and elastic energy
have asd2 and therefore a distortion of the lattice is on
possible if certain conditions are fulfilled. Because we e
pand around the isotropic point where LSWT results ag
well with numerical results, the quantitative results for t
condition of dimerization are expected to be reliable.

B. Jx ÕJy model

Because this model is well known and LSWT has alrea
been applied to it,25 we only want to briefly state the result
The bosonic Hamiltonian is again easily diagonalized b
Bogoliubov transformation and can be written as

H52N~Jx1Jy!s~s11!12sJx~11R!

3(
k

gk~ck
1ck1dk

1dk11! ~54!

with

gk5A12S 1

11RD 2

@cos~kx!1R cos~ky!#2

andR5Jy /Jx .

1. Sublattice magnetization

If we again calculate the sublattice magnetization and t
its vanishing as an indication for the breakdown of Ne´el
order, we find a criticalRc50.0337. We also proved by usin
condition ~51! the reliability of the spin-wave approach.
seems to be valid ifR.0.1 and therefore we only can con
clude that the critical couplingRc must be smaller than 0.1
As mentioned before, numerical studies such as se
expansions14 and Monte Carlo studies26 seem to indicate tha
Rc is equal to zero.

2. Distortion due to spin-phonon coupling

By using the relationd5(12R)/(11R) we switch again
to the description of the model with the parameterd. In the
13440
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expansion of the ground-state energy~52! the parameterA is
now given byA50.146. A spin-Peierls transition is only pos
sible if the gain of magnetic energy is larger than the cos
elastic energy leading to the condition

m
J2

l2
@2clong

2 ~1,0!1ctrans
2 ~1,1!2clong

2 ~1,1!#,0.146,

~55!

wherec(1,0) andc(1,1) are the phonon velocities in direc
tions ~1,0! and ~1,1!.

C. Plaquette model

The situation is more complicated for this model, becau
the unit cell includes four sites. Therefore we have to int
duce four kinds of bosons. This happens as follows:

A: r P~2i ,2j !, Sz5s2ar
1ar , S25A2sar

1 ,

B: r P~2i 11,2j 11!, Sz5s2br
1br , S25A2sbr

1 ,

C: r P~2i ,2j 11!, Sz52s1cr
1cr , S25A2scr ,

D: r P~2i 11,2j !, Sz52s1dr
1dr , S25A2sdr ,

where A, B, C, D enumerate the four sublattices.
In principle it is possible to diagonalize every Ham

tonian of an assembly ofN bilinearly interacting bosons o
fermions what has been well known for a long time.30 But
especially for bosons it is often complicated to construct
transformation matrixT between new and old operators, b
cause the transformation is not unitary. We therefore add
‘‘antiferromagnetic field’’BA

z , which allows us to calculate
the sublattice magnetization without doing this canoni
transformation explicitly. After taking the Fourier transfor
the Hamiltonian with additional field is given by

H522NJs22NBA
z s14Js(

k
H ak

1ak1bk
1bk1ck

1ck1dk
1dk

1Ak
x@akck1bk

1dk
1#1H.c.1Ak

y@akdk1bk
1ck

1#1H.c.

1
BA

z

4Js
@ak

1ak1bk
1bk1ck

1ck1dk
1dk#J , ~56!

where gk
a5 1

2 cos(ka0•ea), bk
a5( i /2)sin(ka0•ea), and Ak

a

5gk
a1dbk

a .
This has to be diagonalized under the subcondition t

the new operators fulfill again Bose commutation relatio
leading to31

~I! T21HJT5HDJ ~57a!

and

~II ! T1JTJ51, ~57b!

whereHD denotes the diagonalized Hamilton matrix andJ is
given by
9-10
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J5S 21 0 0 0

0 21 0 0

0 0 1 0

0 0 0 1

D . ~57c!

From Eq. ~57b! it follows that T is an element of the
pseudounitary group U~2,2!, whereas Eq.~57a! implies the
secular equation

det~HJ2l i1!50 ~58!

for the diagonalization problem. The eigenvalues ofH are
then given byul i u. By solving the secular equation~58! we
get the diagonalized Hamiltonian of the plaquette mode
LSWT:

H522NJs~s11!2NBA
z S s1

1

2D14Js(
k

$lk
1@Ak

1Ak

1Ck
1Ck11#1lk

2@Bk
1Bk1Dk

1Dk11#%, ~59a!

lk
15A~11B̃A

z !22~ uAk
xu1uAk

yu!2,

lk
25A~11B̃A

z !22~ uAk
xu2uAk

yu!2 ~59b!

with the new Bose operatorsAk , Bk , Ck , Dk and B̃A
z

5BA
z /4Js.

1. Sublattice magnetization

The ground-state sublattice magnetization per lattice
is now easily calculated from Eq.~59a! by the derivative
(1/N)^]H/]BA

z &uB
A
z 50. Settings51/2 and replacing the sum

through an integral the sublattice magnetization is given

^Sz&512
1

4p2E2p/2

p/2 E
2p/2

p/2 H 1

l̃k
1

1
1

l̃k
2J , ~60!

wherel̃k
i 5lk

i (B̃A
z 50). This decreases with increasingd and

vanishes atdc50.798 or aquivalentlyRc50.112. This value
agrees with that given in a paper by Koga, Kumada, a
Kawakami.32 The same authors have also used a se
expansion33 starting from uncoupled plaquettes to determ
the critical coupling and getdc'0.3. This value is in good
agreement with results from Monte Carlo calculations, sho
ing again that the results in LSWT at high dimerizations ha
to be considered with care, because of the unphysical s
in this approach.

2. Distortion due to spin-phonon coupling

We setB̃A
z 50 and expand again the ground-state ene

up to quadratic order. For this model the parameterA is equal
0.174. Therefore the lattice is distorted if the condition

m

4 S J2v long
2 ~p,0!

l long
2 ~p,0!

1
J2v long

2 ~0,p!

l long
2 ~0,p!

D ,0.174 ~61!

is fulfilled.
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D. Meander model

The sublattice structure of this model is similar to that
the plaquette model and it is again necessary to introd
four kinds of bosons. With the same definitions as before
Hamiltonian of the model is given by

H522NJs22NBA
z s14Js(

k
H ak

1ak1bk
1bk1ck

1ck1dk
1dk

1Ak
x@akck1bkdk#1H.c. 1Ak

y@akdk1bk
1ck

1#1H.c.

1
BA

z

4Js
@ak

1ak1bk
1bk1ck

1ck1dk
1dk#J . ~62!

By solving the secular equation~58! this is diagonalized
leading to a Hamiltonian in the new Bose operatorsAk , Bk ,
Ck , Dk as in Eq.~59a! but now with eigenvalues

lk
15A~11B̃A

z !22uAk
xu22uAk

yu222uAk
yuRe~Ak

x!, ~63!

lk
25A~11B̃A

z !22uAk
xu22uAk

yu212uAk
yuRe~Ak

x!.

1. Sublattice magnetization

Analogous to the plaquette model the sublattice magn
zation can be calculated by a derivative. The value for
critical dimerization determined by this calculation isdc
50.898 orRc50.054. This is similar to all the other mode
in a region where the spin-wave approach is no longer ju
fied.

2. Distortion due to spin-phonon coupling

The parameter in the expansion is given byA50.160 and
therefore the condition for the spin-Peierls transition is

m

4 S J2v2~p,p!

l2~p,p!
1

J2v long
2 ~0,p!

l long
2 ~0,p!

D ,0.160, ~64!

where we have assumed that the phonon frequencies
spin-phonon coupling constants for the longitudinal a
transversal (p,p) phonon are identical.

VI. CONCLUSIONS

By using simple scaling arguments we have shown t
for the Jx /Jy model and the stair model, which consist
weakly coupled Heisenberg chains for large dimerizatio
the interchain coupling is a relevant operator. Therefore o
at d51 the ground state is of one-dimensional nature. A
in the meander model the interchain coupling is relevant,
there is also a relevant intrachain coupling. By numeri
calculations~DMRG 1 TMRG! we have shown in this more
complicated case that the scaling behavior for the intrach
coupling is predicted correctly by the simple scaling arg
ment. We also showed that it is possible to map all fo
9-11
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models onto a NLs model. By applying the known result
for the RG flow in two and three dimensions we have co
cluded that the ground state of theJx /Jy and the stair models
is Néel-like ordered for alldP@0,1), whereas an extende
disordered phase exists for the plaquette model. Howeve
was not possible to determine the critical dimerizationdc
P(0,1) for the plaquette model within the RG treatment. F
the meander model the RG gave no unique result. A ph
diagram such as for theJx /Jy and stair models, but also a
extended disordered phase as in the plaquette model are
possible scenarios. The second possibility seems to be m
probable, as the intrachain coupling has scaling dimens
x51/2 and is therefore more relevant than the interch
coupling with x51. If we start fromd51 and reduce the
dimerization, we might expect that there arises first a sys
consisting of weakly coupled two-leg ladders. Because
two-leg ladder withs51/2 is a gapped system, a small co
pling between these ladders can be treated within nor
perturbation theory and does not change the global prope
drastically. At lower dimerization the gap closes and the s
tem orders antiferromagnetically. If this picture is correct,dc
must be smaller than 1.

To investigate this further and to determine a value for
critical dimerizationsdc , we also applied LSWT to the mod
els. The following values fordc are derived.

Model dc

Jx /Jy model 0.935
meander model 0.898
stair model 0.829
plaquette model 0.798

All these values have to be regarded with great care,
cause LSWT allows also unphysical states and a simple
gument has shown that there is a large contribution of th
states at such high dimerizations.

This problem does not occur neard50, where LSWT
gives very precise results. We therefore believe that the c
h
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ditions for the spin-Peierls transition, which we have o
tained within LSWT, are qualitatively and quantitatively us
ful. For all models we have found that elastic and magne
energies scale asd2 at small dimerizations. A phase trans
tion leading to a coexistence of spin-Peierls dimerization
antiferromagnetic long-range order is therefore only poss
for certain values of the microscopic coupling constan
From an expansion of the magnetic ground-state ene
E(d)5e02Ad2 we have got the following values for th
parameterA.

Model A

stair model 0.261
plaquette model 0.174
meander model 0.160
Jx /Jy model 0.146

The gain of magnetic energy is therefore largest fo
stairlike distortion of the lattice, which is caused by a tran
versal (p,p) phonon. What kind of distortion is energet
cally prefered, depends also on the elastic energy, whic
general is different for each model. However, if we assu
that the elastic energy is equal for all models, we wo
conclude that the stairlike distortion is energetically prefer
This is in contradiction to a result by Tang and Hirsch,34 who
have studied the plaquettelike and stairlike distortion by
exact diagonalization of a 434 lattice and conclude by usin
the same assumption that the plaquette structure is prefe
However, the lattice they have considered is very small
they have not done any finite size scaling so that we beli
our result is more reliable for the infinite lattice.
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