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Ground-state properties of two-dimensional dimerized Heisenberg models
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The purpose of this paper is to investigate the ground-state properties of two-dimensional Heisenberg
models on a square lattice with a given dimerization. Our aim is threefold. First, we want to investigate the
dimensional transition from two to one dimension for three models consisting of weakly coupled chains for
large dimerizations. Simple scaling arguments show that the interchain coupling is always relevant. The ground
states of two of these models therefore have one-dimensional nature only at the decoupling point. The third
considered model is more complicated, because it contains additional relevant intrachain couplings leading to
a gap, as shown by scaling arguments and numerical investigations. Second, we investigate at which point the
dimerization destroys the eeordered ground state of the isotropic model. Within a mapping to a nonlinear
sigma model and linear spin-wave thedhSWT), we conclude that the stability of the Bleordered state
depends on the microscopic details of the model. Third, the considered models also can be regarded as
effective models for a spin system with spin-phonon coupling. This leads to the question if a spin-Peierls
transition, i.e., a gain of total energy due to lattice distortion, is possible. LSWT shows that such a transition is
possible under certain conditions, leading to a coexistence of long-range order and spin-Peierls dimerization.
We also find that the gain of magnetic energy is largest for a stairlike distortion of the lattice.
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[. INTRODUCTION rates a phase with Nélike long-range orderg<g,) from a
quantum disordered phasg>*g.) at T=0. It has been
For many years there has been considerable interest, boghown that there is excellent agreement between theoretical
experimentally and theoretically, in the subject of low- results for this model and experimental measurements on
dimensional quantum spin systems, because their propertié§2CuQ,_in the low-temperature regime ig<g. is
are strongly affected by quantum fluctuations. The generi@ssumea.An interesting problem has been the question of

model to theoretically study such systems is the well-knownVhether there is also a topological term in two dimensions,
Heisenberg model. which was finally answered by Haldaflewho concluded

In one spatial dimension the model with nearest—neighbofhat such a term is always absent if the order parameter field

exchange of spin-1/2 objects, known to be exactly solvabldS Smooth on the scale of the lattice spacing. However, there
by the Bethe ansafzshows an algebraic decay of its corre- &€ tunneling events, which are crucial for an understanding
lation functions at zero temperature and constitutes thereby & the disordered phase. _ _ _
quantum critical system. For arbritary spnHaldané has In this work we want to consider two-dimensional

mapped the spin chain onto a nonlinear sigma ¢i\Nmodel Heisenberg models on a square lattice with a given alterna-
with a topological term for half-integesand without such a tion of the coupling between nearest-neighbor spins. In each

term for integer s. From this result he conjectured that halfSPatial direction the coupling should be changing from bond

integer spin chains are critical whereas integer spin chain® Pond between)(1+6) and J(1—¢) with J>0 and 6
have a gap, a scenario that is well established by now. AnE[0,1] so that the coupling is always antiferromagnetic.
other interesting aspect of the spin-1/2 Heisenberg chain ighere are three topologically different possibilitisee Figs.

its instability towards a structural transition known as thel=3 for aranging such “dimerized chains” on a square lat-
spin-Peierls transitioR. tice if periodicity in each spatial direction is assumed.

Much less is known for the isotropic two-dimensional  1N"€se systems are described by the following Hamil-

Heisenberg antiferromagnet with nearest-neighbor exchand@nian:

on a square lattice. Contrary to one dimension no exact so- -

lution is available in any limit. Linear spin-wave theory H=JZ [l+(—1)'(+')6]311-~3+1,j

(LSWT), which does not work in one dimension because of :

infrared divergencies, is applicable and predicts aelNe o

ordered ground state for the spin-1/2 case, but with a mag- +32 [1+(—1)08]S ;- S 41, ()
netic moment reduced to nearly 50% of its classical value. J

This result is also supported, qualitatively and also quantitawhere§, ; denotes the spin operator acting on the lattice site
tively, by numerical work:® For s=1 Dyson, Lieb, and (i,j). Choosing both exponents equal it¢j leads to the
Simor proved a theorem, which shows that the ground statenodel shown in Fig. 1, whereas setting the first one equal to
is Neel ordered. As in one dimension it is also possible toj and the second one te-j or vice versa leads to the model
map the system onto a MLmodel. From a renormalization- shown in Fig. 2. The third considered modske Fig. 3 is
group(RG) treatment it is knowhthat this model exhibits in  described by Eq(1) with the first exponent set toand the
2+1 dimensions a nontrivial critical poird,, which sepa- second set t¢.
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FIG. 1. (Stair mode). A thick solid line indicates a strong bond FIG. 3. (Plaguette model Two longitudinal phonons, one with
J(1+ 8) and a dashed line a weak bond with strenifth— §). This wave vector ¢r,0), the other with (G7).
distortion of the lattice is caused by one transversal phonon with
wave vector r, ). tance. This is expressed through the deformation parameter
of the horizontal bond extending from sitg j() to the right
The models in Figs. 1 and 2, which we will refer to as the
stair model and meander model, decouple into spin chains at he o 4
5=1. This means that there is a transition from two to one o'(i=73 kzs Nis((Ui,j(K8) = (Ui 14 (k) (2)
dimension depending on the value of the dimerizatihn '
Because a model with a couplidg in the x direction and a  with the deformation parameter of the vertical bo#idi,])
coupling J in the y direction (see Fig. 4 is the simplest defined analogously. Hera, s is the microscopic spin-
model showing such a transition, we want to reexamine thiphonon coupling constant ang ;(k,s) the local displace-
model although it has been studied intensively before. Thenent of the atom at the position,{) with respect to the
model in Fig. 3 is different from the other three models, phonon wave vectdk and brancts. In the considered mod-
because it decouples into plaguettes consisting of four spinsls 5" and " are equal ta+ 8. Note that the lattice distortion
for 6=1. is static due to the mean-field approach leading to a classical
The dimerized models can also be regarded as effectivelastic energy.
models for a spin system with a spin-phonon coupling In Sec. Il, we study the models, which decouple into
treated adiabatically. In such a system the exchange couplinghains ats=1. We address the question of whether there is
J between nearest neighbors depends linearly on their diglready a transition from two- to one-dimensional behavior

FIG. 2. (Meander model Three phonons, a longitudinal and a FIG. 4. (J4/J, mode). Two longitudinal phonons, one with
transversal £, ) phonon together with a longitudinal @) pho- wave vector (q,0), the other with (0 q), whereq is infinitesi-
non. mal (q=2/\/Na).
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at ad smaller than 1 on the basis of some scaling arguments. LA S S T T . T A
Because the situation in the meander model is much more T
complicated than in the other models due to third-nearest-
neighbor(NNNN) couplings, we show in Sec. Il numerical FIG. 5. Two chains from the stair model with the corresponding
results from density-matrix renormalization grolpMRG)  interchain coupling

and transfer-matrix DMRGTMRG) to confirm the conclu-

sions drawn from the simple scaling arguments in Sec. Il. Inve disregard multiplicative logarithmic corrections. We
Sec. IV, we show that it is possible to map all models onto &herefore conclude that the scaling dimension of the inter-
(2+1)-dimensional Nlo model. We use the known RG re- chain coupling isx=1 and represents a relevant perturbation
sults for this model to discuss the magnetic properties of thef the critical system. From scaling relations we find, again
spin models. In Sec. V, LSWT is applied to support the pic-ignoring logarithmic corrections, the ground-state endtgy
ture from the RG arguments and to determine a value for thef this system behaving as

critical dimerizations,., where the magnetic order vanishes.

Also from this, we get a condition for the spin-Peierls tran- o J9/79 =77 (5)
sition and an answer to the question of which structure is

energetically prefered. Sections IV and V consist of separaténd a gapA is opening with

subsections for each model. However, in Sec. V we have

interchanged the order of the first two subsections in com- Acc|Jy[VE=0 =17, (6)
parison with Sec. IV to keep calculations as simple as pos-

sible. In Sec. VI we discuss our results and give some con/hered=1+1 is the dimension of the corresponding clas-
clusions. sical model. The existence of a gap for the two-leg ladder has

also been shown numericaffyin general, there seems to be
a gap for an even number of coupled chains, whereas a sys-
tem with an odd number of chains is gapless. However, it is
At 6=1— € with e<1, the models in Figs. 1, 2, 4 consist not possible to determine from scaling arguments if there is a
of weakly coupled Heisenberg chains. Such a Heisenbergap or not for an infinite number of arbitrarily weakly
chain withs=1/2 is a critical system and the additional weak coupled chains. Nevertheless, the relevance of the interchain
interchain and intrachain couplings are small perturbations ofoupling clearly shows that the system scales away from
this critical system. If we pick two such chains from eachdecoupled chains and therefore even at very large, however,
model with the corresponding interchain coupling propor-not perfect dimerization does not behave as decoupled
tional to €, we can determine the relevance of the perturbachains. We conclude that the ground state of this model has
tion by calculating the energy-energy correlation functiontwo-dimensional nature i, #0 as has been stated befdfe.
and from this the scaling dimension of the perturbation op- Also we can pick two chains out of the stair model and
erator. Let us start with the simplest case, daéJ, model, after smoothing the chains, we get the configuration shown
where Jy=J(1-6) and J,=J(1+ 6). The Hamiltonian of in Fig. 5. Here the interchain coupling is described by the
the weak interchain coupling is given by Hamiltonian

II. SCALING ARGUMENTS

_ N/2
H=9,2 8¢, (3 A=02 S(S 1+ @

where the upper index labels the two chains. The energy- _ ) )
and by calculating again the energy-energy correlation func-

energy correlation function of this perturbation can be calcu< . | : . . .

lated as follows: tion, we find that this perturbation also has scaling dimension
x=1. That leads to the same conclusions as in &l

model. The situation is much more complicated in the mean-

<UoUr>o:J§2 (S5'S6°5P 15?0 der model, because there is not only interchain coupling, but

“p also a coupling between third-nearest neighbors within every

chain as shown in Fig. 6. First, we want to investigate the

=372 (SESMN(Ss s D) intrachain coupling. The operator of this perturbation is
“ given by
J2 I ((—1)"\2
=gy<so-s>2=§y(7) , 4 L\
H=32, Sy Soria (®)

where o, =J,S"- S and @, S label the components of the
spin operator. The subscript “0” represents the calculation in
the case of vanishing interchain coupling and in the last re-
lation the known result for the spin correlation function of
the homogenous Heisenberg chain is uSgetom conformal
field theory it is known that this correlation function decays
algebraically as 7%, wherex is the scaling dimension when FIG. 6. Two smooth chains from the meander model.
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and we can calculate the corresponding energy-energy corre 0 . . .
lation function pooocs,,
A e,
~5 (__l)Zr OQO
<0'00'r>0::J (So-S3-Spr - Spr 4 3)0™ or 9 ) ‘e

where the valuex=1/2 of the scaling dimension of the sin- = 02

glet operatorS,, - S,, .3 has been employeld. This means S 1
that the NNNN coupling is relevant. By simply applying the © 1

scaling relations, we conclude that it destroys criticality and -4 .

a gap opens with <|J|?. But there might be some doubt if
this scenario is correct, because if we suggest a short-rang _g s s s
Neel order on the critical chain the NNNN coupling is not 0 2 4 6 8
frustrating. On the other hand, if the NNNN coupling is as

strong as the NN coupling, this chain is equivalent to a two- kG, 7. Free energy for the Heisenberg chain with NNNN cou-
leg ladder, which does show a gap. We therefore have usggling calculated by TMRG withl, /J;=0.25, m=40 states kept in
the transfer-matrix DMRG and the standard DMRG to tesithe DMRG, and a Trotter parameter ef 8/M =0.05. The inset

numerically the predictions from scaling. Before we enter theshows a low-temperature fit withfoceg—aT¥%e T and T

numerical part, we have to analyze the other perturbation ir:[0,0.2].

the meander model caused by the interchain coupling. It

turns out that this is again relevant with a scaling dimensiorF —0.46873-0.00002, a=0.29+0.03, A=0.23+0.02 and

x=1 as in the other two models. errors, which are determined by a variation of the fit region
The conclusion from scaling arguments is therefore thatsee inset of Fig.

the J,/J, model and the stair model show one-dimensional This means that at this strength the NNNN coupling has

behavior only at the decoupling point. Because in the meanreally destroyed criticality. To test the scaling argument fur-

der model the intrachain is more relevant than the interchaither, we also applied a standard DMRG program to this prob-

coupling, the scaling arguments suggest the existence of lam. When using the same paramet&s$J, =0.25, we find

disordered phase between the decoupling point and the phasegap depending on the length of the chain as shown in Fig.

with two-dimensional antiferromagnetic long-range order.8. An extrapolationL—o then leads to a gap\pgc

This will be further investigated in Secs. Ill and IV. =0.23652-0.00064 and a ground-state ener@pgc=

—0.46841-0.00816 if periodic boundary conditions

(PBC's) are applied. For open boundary conditi¢@BC’s),

we find a gapA ogc=0.238340.00027 and a ground-state
To prove the scaling argument for the NNNN coupling in energyeggc= —0.46843+ 0.00003. Consequently, there is a

the meander model, we have used two numerical methodgood agreement between the numerical results from the two

The first one is the so-called transfer-matrix DMRG different methods. Up to now, we have only stated that the

(TMRG), which combines White’s DMRG idéawith the

transfer-matrix approactt. This method has been applied to .55 [— ' - - - -

different quantum chains befdfe®and yields very accurate

results for finite temperature. It is particularly suited, because 0.50 ]

the thermodynamic limit in quantum space can be performed 0—0 OBC

exactly. Before we state the results, we write down the con- ¢4s | o—a PBC i

sidered Hamiltonian explicitly:

I1l. NUMERICAL INVESTIGATIONS

0.40 1
N/2

N
[sa]
H=012 S-St SiSrese (100 7 _
r=0 r=0 ..

The relevant case in this context is a NNNN couplihg 0.30 - .
which is much smaller than the NN couplidg.
The free energy as calculated with the TMRG o/ J, 0.25 [ ]

=0.25 is shown in Fig. 7. We can now determine if there is
a gap or not, because we know from scaling relations that in 4,4 [ : . . .

the low-temperature limit the free energy of a gapless, criti- 10 30 50 70 90 110
cal system scales a$§(T)xe,—aT? with e, being the L
ground-state energy, wherefT) xe,—aT¥% 4'T if there FIG. 8. DMRG calculation of the gappE for finite chains with

is a gap. We tried to fit a quadratic function to the data andength L for open and periodic boundary conditions using an ex-
noted that this is impossible, whereas a function as expecteaghpolation in the number of states The lines are guides to the
for the gapped case fits perfectly with valuesy;  eye.
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system has a gap for one special choice of parameters. Be .
cause the infinite chain witll,=0 is a critical system, we 04
can use the RG to study the behavior of the free energy 100  *a 03
depending on the length of the chain and of the NNNN cou- to2r
pling J,. In general, we can linearize the RG transformation

in the vicinity of a critical Hamiltonian, which is a fixed
point of the RG flow, and find that the free energy per lattice g
site for a classical system scales d¢gq,....,9,) 3
=b "f(b™1g,, ... b'*ng,) if the RG is applied times.
Hereg; denotes a linear scaling field; is the eigenvalue of
the RG transformation, anld is the scaling factor. Because
the quantum chain with length is equivalent to a classical |
system with volume&/=L X B, with B8 being the inverse tem-
perature, the dimensiathis equal to 2 and the relevant scal-

ing fields atT=0 are 1L andJ,. It follows that 0.01 0'_1 '1 1'0 100

AE,

0.1—
0.662

— AE=-0588,
10

1 1 L1 | 1
005 01 0203 05 08

J

AEJ,

2

23
LJ,

f(L,J2)=b"df(b"1'E,b“Z'JZ) (12) -
L FIG. 9. DMRG results for 862 chains with different lengtland
NNNN couplingJ,. Two scaling regimes are visible as discussed in
the text. The inset shows the gap extrapolated to the thermodynamic
) limit versus couplingl,.

and by choosind™'=L we get

1 d/Nq J
f(L,Jz)z(E) f(1—2

’L*)\z/kl (12)

low-energy effective theory. The easiest way to get a path
integral for the considered models is the use of coherent
state°2% Spin coherent statel1)) form an overcomplete
basis set and are generated by g BWotation of the highest
weight statds,s)

At J,=0 this reduces td(L,0)=const.~%*1 and because
the ground-state energy per lattice site scaled a$ we
conclude that ;=1.
By settingb*2'=J,* we find the relation
f(L,JZ)=Jg”‘2f(L‘1J2_M”‘2,l). (13 [n):=el¢(N* Mg o> (16)

whereng is an unit vector along the quantization axis and
cos(@)=n-ny. By using the Trotter formula and inserting the
identity operator, the partition function can be writtenZas

When inserting the known result,=3/2, we can state that
there must exist an universal scaling functidnwith

3,486(L,3,) =B (L 13, 23). (14) = [Dne ™ Sel"l with an Euclidian action given by
We can do similar calculations for the gapand get from . B
A(L,3,)=b 'A(bM'L1,b*2'3,) the scaling relation Seln]=—isSuz+ | dt(n|H|n). (17)
J, 2’3A(L,J2) :&)(LJ§/3)_ (15) Swz is a topological term{Wess-Zumino term which arises

, ) ) from Berry phases and can be expressed as
To test this, we have applied the DMRG to 862 different

chains with lengths up to 122 sites adge[0.00005,0.8 1 B

(see Fig. 9. By these calculations the scaling relatid®) is SwAnl=> f de dtn(dnxa, n) (18
confirmed in a convincing way. Note that practically all data r 0 0

pomtslcollapse ona one-dimensional mann‘olt_:i. Some Minofyith the boundary conditiona(t,0)=n(t), n(t,1)=no, and
deviations are noticeable and can be explained by highef(or)=n(g, 7).
order terms in the finite size scaling and an effective expo-

nent 0.662 instead of 2/8ee inset of Fig. P It is also

possible to determine two scaling regions. For large lengths

L of the chain the plotted function saturates, indicating that With a, being the lattice constant, a site on the lattige
the relationAE«J2”, derived from scaling arguments for can be described hiy=o0+ ap22_,i,€® with spatial unit vec-
the infinite chain, really holds. For smleJ%B there is a  tors €. Using this notation, which is more suitable for the

linear regime, showing that the finite size gap proportional tdollowing calculations than Eq(1), the Hamiltonian of the

A. J,/J, model

1/L is the dominant contribution in this region. model can be represented as
IV. MAPPING ONTO ANL o MODEL H:iEG {3,S(i)S(i +aoe?<)+JyS(i)S(i +ape)). (19

In this section, we want to discuss the possible transition
from the magnetically ordered phase to a disordered phas#fe assume periodic boundary conditions and an even num-
driven by the dimerizatio by using the Nlo model as a  ber of sitesN in each direction. By definink=J, /J, and
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using the coherent state relatign|S/n)=s-n, the second With a spin stiffnesp=J,s?, a transversal magnetic suscep-
term in Eq.(17) can now be easily calculated leading to thetibility x.=4J,@5(1+R), and a spin-wave velocity,

Euclidian action =\psx.- We now rescale the imaginary time by=uvt
leading to
B
n]=—isSyz n]+J,s? Jdtnini+ae?< 1
SE[ ] S\NZ[ ] X i;; 0 { ( ) ( 0 ) Sn|(r[m]: o 3 fdsx{(&xom)2+(&xm)2+ R(ﬁym)z},
040

+Rn(i)n(i +aye’)}. (20) (26)

Now we use the well-known ansif where the dimensionless coupligg is defined by

2
n(i)=p(i)m(i)-y1—a2%2(i)+adl(i) (22) Go=gV1+R. (27)
with We want to discuss E@26) following some arguments given

by Affleck and Halperirf* Because the coupling in the

2 direction may be arbitrarily weak, a continuum representa-

p(i)=(— 1);1 ia, (22) ';Zn may not be justified and we therefore rewrite the action
taking into account the short-range @leorder due to the 1
antiferromagnetic exchange. Hemeis the order parameter Sniglm]= 5~ > f d2x[ (dx,Mp)?+ (8,My)?
field andl represents the rapidly varying but small part. The 90 "n
constraintn?=1 leads tom?=1 andm-I=0 and we will
expand Eq.(21) up to quadratic order. Because the Wess- +E(m —m,)? (28)
Zumino term is independent of the microscopic details of the a2 ntlo T

spin model, we want to discuss this term more generally in

dimensions. Starting with E418) and using the ansat21)  After a rescalingy’ =y/\R the momentum space UV cutoff
leads to in they direction is now smaller than the cutoff in the other

directions. In a Wilsonian RG step, where the higher momen-
tum modes are integrated out, orMy andk, contribute, so

isSWZ[n]zisf ddxfﬁdtl(mx dym) that the RG is essentially two dimensional. Only if the mo-
v 0 mentum scale has been lowered so that &lsbas compo-
N nents in the shell, we have to switch to the three-dimensional
+io Y, (=1)2t i tiak(i,, L. i), RG. During the two-dimensional RG, we also have to con-
iy ig=1 sider the rescaling of then field which is given bym,

(23) —(A'/A)*m, . HereA is the UV cutoff before renormaliza-
tion andA’ the reduced one after a RG stegs the scaling
where 6=2ms andKk(i,, ... ,ig) is the winding number or dimension of them field which is equal to 1/2 for the
Pontryagin index of the fieldh defined by Heisenberg model.
The scaleA’, where we have to switch from two- to
1 three-dimensional RG, is therefore given by the condition
k(ip, ....ig) 47Tf dxlf dtd,, m(mxdm).  (24) ROATIA)*A2/2gg~ A "2I2g(A ). 29
In one spatial dimension the second term in E2p) is re-  Hereg(A’) is the renormalized coupling constant when the
sponsible for the different physics of chains with integer andnomentum modes have been integrated out down to the cut-
half-integer spin. If then field is smooth, the integer-valued Off A’. Note that the assumption that thefield is smooth
Pontryagin indeX(i,, . . . i4) must be a constant and hence N j[he s_cale of the lattice spacing is no longer justified in the
this term cancels out in higher dimensidisNote that we Y direction. Instead of canceling out, the second part of Eq.
have to treat this term more carefully for the anisotropic(23) leads to an independent winding number for each chain
models considered here, becauseithéield may no longer With topological anglef= . Thereforeg flows in two di-
be smooth in each direction. Using the same an@ttgfor ~ Mensions to the marginally stable fixed pogy(0) of the
the part of the action depending on the Hamiltonian of theS=1/2 chain. As a consequengg/g(A’) is always of order

system and integrating out thdield, results in an effective ©one and Eq(29) simplifies toA’=RA. The coupling con-
action for the low-lying excitations stantg(A’) then acts as bare coupling constant for the three-
dimensional RG flow. Therefore the ground state is ordered

5 1 if g(A') is smaller than the critical fixed poirg. of the
S[m]:&J dsz- dt{ (9,m)2+ R(3ym)2+ — (9,m)? three-dimensional RG, whereas it is disorderedy(f\ ')
2)v "o x / w2 >g.. If eveng,(0)<g., the system is al dered f

< c- 2 g, the system is always ordered for a

(25 nonvanishing R. Numerical calculations using different
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2(RA) g, 05
0 * X 2 T E Xmf dtg, m(mxgm)+ - - -
106
: T 2 dxdf dta, m(mx d,m)
: d i, g, d
. % ™ 196 . .
0 :Ti Ei k1(|2,...,|d)+~~-
FIG. 10. RG flow for thel, /J, model. 20 d
106 . _
Tq > Kgli, oo oddo1). (32)
i1, ...ig—1

If the m field is smooth, everk; must be a constant. Under

4,25,26 ~; : H
method$ give strong evidence that this model orders,[his assumption the topological term simplifies to

for arbitrarily weakR, meaning in the language of RG that
g,(0) seems to be smaller thayp (see the corresponding

. d

. . 166

flow diagram Fig. 10 stopzTNd*Z Ky . (33
a=1

In one dimension, where the stair model corresponds to the
dimerized chain, we find a total topological contribution of
We generalize the stair model dodimensions assuming a Sip=16(1+ d)k as has been calculated beféfBefore we

hypercubic, bipartite lattic€&s =A® B with periodic bound- dISCUSS the two topological tern{23) and (32) in two di-

ary conditions, and an even numi¢of sites in each spatial mensions, we look at the additional anisotropy in the action
direction. We do this, because the model reduces in one d{31) expressed by the matrig(;‘b, This matrix is symmetric
mension to a dimerized chain and we want to compare thand becomes the identity & goes to zero.

results, especially the topological terms, for the dimerized In two dimensions a 45° rotation diagonalizes this matrix
chain and for the two-dimensional model. Using the samend withxy=uvt the action of the two-dimensional model is
notation as for the, /J, model with the sum in Eq22) now  given by

running up tod, the Hamiltonian can be expressed by

B. Stair model

1 pd
Sel ] =5 f 9= (). (34)
S

d
=32 2 [1+p(i)8]S(i)S(i+age’). (300  There are now different spin stiffnesses in the spatial direc-
1eG et tions given by

Using again relatiori17) and also the ansaf21), an Euclid- N 2 ) 2—-262

ian action for this model depending on the unit vector frald Ps:JSZZPsﬁy Ps=Ps o5 (35
and the orthogonal vector fieldis derived. By the same

arguments given in the chapter before, the Wess-Zumin@ndp2=ps. By a rescaling of the imaginary time, E@4) is
term vanishes in spatial dimensions greater than 1 under tHgansformed into

assumption thatn is smooth on the scale of the lattice spac-

ing, but is important in one dimension. Again, we integrate S[m]=
out the rapidly varying but small fields. The result is an

3y 2 _ 2 2 2
o[ A (1 (g

effective action (36)
with a bare coupling given by
2\2
1 —
S[m]= —f d’x f dt gb(aam)(abmw—z(atm)zl Yo=—5 (37)
US

(31)  Again the coupling iny direction may be arbitrarily weak,
and we therefore have to use a discrete version of &g).as
) ) ) _ 2—d ) ) for the J,/J, model. As a consequence a two-dimensional
with a spin stiffnesps=Js’a; °(1—6%/d), an induced an- R has to be used until the UV cutoff is lowered Ad
isotropy y2°= 62— 6%(1~ 6°°)/(d— &), a transversal mag- = (1— s2)A. The couplingg(A') is then the bare coupling
netic susceptibilityy, =4Jdag and a spinwave velocity,  for the three-dimensional RG. Now, we have to remember
= psx. - But there arises also an imaginary contributionthat there are also two topological terni®3) and (33
proportional toé from thel-field integration, which can be present. Because we have stated that it is necessary to use a
expressed as discrete representation instead of derivatives for the weak
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couplings, neither the winding number in th@or the wind- D. Meander model
ing number in they direction is well defined any longer. We

therefore have performed an alternative mapping t0 @ NL gieqq of an alternation with,(i) in the x direction there is
model starting Wlth a slightly modified version of this model, ;4 withp(i). As a result the, field is unnecessary and can
where the chains formed by strong bonds are smooth ange left out. By using this reduced form of E®9) and inte-

along thex axis and the weak bonds form zigzag chaese g 4ting out the, and|, fields an effective theory is derived:
Fig. 5. The result is again an anisotropic Mlmodel such as

Eq. (26), but now without a topological contribution propor- . N

tional to § and with a winding number in the topological part _ 19 . o [P .] Ps
of Eq. (23) calculated along the strong bonds. The situationse“[m]_ 2 521 K1)+ Vd X 0 dt 2
is therefore exactly the same as in théJ,-model and if we

The Hamiltonian looks quite similar to E¢38), but in-

52
(1— ?) ((9xm)2

acceptg,(0)<g. as an universal property, we conclude that ) , 1 )
the ground state of this model is always antiferromagneti- +(1-6%(9ym)“+ —(am)* |, (42)
cally ordered for6e[0,1), and this order only vanishes at Us

6=1, where the model consists of uncoupled critical chains. 5 o )
wherep,=Js?, x, =8Ja§, andvs= psx, . Like in the stair

model there are different spin stiffnesses in the spatial direc-
tions and also a topological contribution proportional &o
The model is described by the following Hamiltonian:  such as Eq(33), but in this model only the winding number
in the x direction is involved. As in the stair model, this
= i . . i .S winding number is not well defined. The same calculations
: JIEI PSSy + L+ RS- Sk within the modified model, where the chains formed by
(39 strong bonds are again smooth and alongxtheis (see Fig.
where we have definef,(i)=(—1)x and py(i)=(— 1)ly. 6), show that _the topologigal term p_roportional&olanishes
Substituting Eq(39) into Eq. (17), we derive again a path and the winding number |n_Ecq23) is calculate_d along 'ghe
integral formulation. By using the same ansatz as before, w&lrong bonds. We therefore ignore the topological term in Eq.
notice that the dimerizations does only contribute in (42) from now on and use a 2D RG flow with= 7 later on.
(9,m)3-1 and higher orders. This is not surprising, because® rescaling of the imaginary time axis then leads to
the relevant low energy modes are not only near wave vec-

C. Plaguette model

tors (m,7) and (0,0) but also near (®) and (7,0). We 1 — 252
therefore generalize Eq21) in the following way: Sm]= Zaogofﬂdgx[ (am)?+ > 52 (<9ym)2+(é’tm)2],
n(i)=p(i)m(i)V1=agTlo(i) + py(D)Ix(i) + py (D)l (i) 12 (43

+a8[lo(i)+px(i)lx(i)+py(i)ly(i)]. (39)  where the bare coupling is given by

The constrainn®=1 impliesm?=1 andm-1;=0, wherel;
denotes any of the three fluctuation fields. By an expansion 22 2
9o(0)=—— P

up to quadratic order iy, d,m, andd;m, we get again the (44)

effective action(25) but nowR=1 and the other parameters
are defined by =Js?(1—6%), x, =8Ja2 andvs= Vpsx, -

B ing the i ; . i< this is t ¢ dt Because of the anisotropy in tlyedirection the RG is, as in
y rescaiing the imaginary ime axis this 1S transtormed 10y, Jx/J, and stair models, two dimensional at the begin-
the standard N& model

ning. But here the bare couplingy(6) is increased with
increasings. Therefore two scenarios are possible: 1Ba

S m]= 2a1 j d3x(a#m)(o7“m) (40)  exists so thagy(5)>g,(0) if 5> 4;, the coupling is driven
0odoJ o by the 2D RG flow towards infinity angj(A’) with A’
with a bare coupling =(2-26%/(2— 8% A, which is the bare coupling for the
3D RG, is then greater thay, . Therefore the ground state is
22 1 disordered for6>é.. If, however, even for6—1, gq(9)
Yo~ Nera (41)  remains smaller thag,(0), the ground state is always or-

dered for a nonvanishing interchain coupling. In summary,
All topological terms vanish for this model and—different We cannot decide within the RG treatment if an extended
from the two models considered before—the action is isotrodisordered phase exists or if there is long-range order for all
pic in the spatial directions. So the 3D RG has to be used€[0.1) as in thel,/J, and the stair models.
from the beginning and whether or not the model has an

ordered ground state depends on whether orgwtygc. V. LINEAR SPIN-WAVE THEORY (LSWT)
Becausgy,— > for 6—1, the order vanishes already before

the plaquettes decouple. The precise valuéef (0,1) can- In the section before, we have mentioned that it is impos-
not be determined within the RG treatment. sible to determine a value for the critical coupligg, or
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equivalent a value for the criticial dimerizatiofy, for the 0.4
plaquette and the meander model from RG. This is one rea L
son to apply LSWT onto the considered models. The seconc \
reason is that we are interested in the question if these mod 0.2 - T~
els can be the result of a dynamical process, i.e., a spin .
Peierls transition. Because the calculated ground-state enerc o
for the isotropic two-dimensional Heisenberg antiferromag- 0 : : t —t :
net of Eq/NJ~ —0.6579 deviates less than 3% from the best 01 0.3 0.5 Q7 0.9
numerical resulf&® and also the sublattice magnetization
=0.3034 agrees very well, we expect that LSWT gives reli- -0.2 |
able results near the isotropic point. On the other hand, the
results for large dimerizations have to be regarded with care | — __.___
because LSWT fails in one dimension. —0.4
We use the Holstein-Primakoff transformatfdrio map
the spin operators onto Bose operators

FIG. 11. Sublattice magnetization and conditisl) for the
validity of the LSWT, both for the stair model.

[ a’a . —
S=s—a'a, S‘=\/2—sa+ 1— 5e (45) 1. Sublattice magnetization

The sublattice magnetizatian is given by

By expanding the square root insland taking only the

- : N
lowest order into account, LSWT is reached. m=(S)= ES_EK: (ajay)
A. Stai del
alr moade N 1 1
As before, we want to consider the stair model general- =555 \/?2_1 : (50
ized tod dimensions. Because the lattiGe=A®B is bipar- : 1= (=98
tite, it is possible to write the Hamiltonian as By replacing the sum by an integral this can be evaluated in
p principle in any dimensiord. However, in one dimension
_ . . this integral is divergent. This is not astonishing due to Cole-
H —% Z«l [I(1+8)S(i) - S(i +a0e) man’s theorerf? stating that the continuous $2) symmetry
_ ' cannot be broken in one dimension.
+J(1—6)S(i) - S(i —ape) ], (46) In two dimensions the dimerizatiofireduces the magne-

o _ . . tization as expected and &@=1 there is again the one-
which is useful for LSWT. Starting point is again a ée  imensional infrared divergence. Nevertheless, we can take
ordered state, and we therefore apply independent Holsteifrg \4jue of the dimerization where vanishes as indication
Primakoff transformations to the two sublattic&sB: for the breakdown of K&l order. For the stair model we get
, . B N 5.=0.8286 orR,= (1— 8)/(1+ 8)=0.094(see Fig. 11
xe AlSi(x)=s—a*(x)a(x), S (x)=\2sa"(x), To check the validity of the LSWT, we want to use an
(473 argument given by Sakai and TakahaShin spin-wave
theory the numben, of bosons per lattice site is not re-
xeB:F(x)=—s+b*(X)b(x), S (x)=\2sb(x). stricted. That means that there are unphysical states in this
(47b theory, because in the original spin system the conditipn
=<2S holds. A possible estimation for the validity of LSWT

Taking the Fourier transform the Hamiltonian is bilinear and X
may therefore be given by

given by
(N +An,<2s&(S)—An,> —s. (51

_ + + * oo+t
H=—NJS'd+2Jsd>, {agactbibict Aabit A*acbil,  This predicts that LSWT is valid for this model frod=0

(48) up to 5~0.65(see Fig. 11 Therefore the calculated, is in
a region, where LSWT is not reliable. We can only conclude
where the definitions y,= (1/d)2f’: 1€0skag), Bk that 5, must be greater than 0.65.
=(i/d)=29 _,sinkqay), andA= y,+ 5B, have been used. By
means of a Bogoliubov transformation this is easily diago- 2. Distortion due to spin-phonon coupling

nalized leading to The dimerization leads to a gain in magnetic energy on
the one hand, on the other hand it costs elastic energy. To
H=—NJdgs+1)+2Jsd \/1_—272— cre answer thle questlon'of yvhethe_r a spin-Peierls transition to-
Ls+1) Ek (Y= & Bio (e wards a distorted lattice is possible, we expand the calculated
N ground-state energy up to quadratic order. Because the linear
+d, d+1). (49 term vanishes for symmetry reasons, we get
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E(6) ) expansion of the ground-state enet§®) the parameteA is
NG o Ad (52 now given byA=0.146. A spin-Peierls transition is only pos-
sible if the gain of magnetic energy is larger than the cost of
with e;=—0.6579 andA=0.261. As mentioned in the Intro- elastic energy leading to the condition
duction, Eq.(2), the displacement of an atom is proportional
to 6 and the mean-field treatment of the phonons leads to a J? ) ) 5
classical elastic energy proportional 5. Therefore the lat- mﬁ[z%ng(l,o)+Ctrans(1,1)—C|ong(1,1)]<0-146,
tice is only distorted if
(55

wherec(1,0) andc(1,1) are the phonon velocities in direc-
tions (1,0 and(1,1).

T sztzrani ™, )
2
)\trans('”"ﬂ')

whereas the lattice is unchanged otherwise. Haris the
mass of the moved atom anglthe phonon frequency of the o ] ]
responsible phonon mode. If this condition is fulfilled, there ~ The situation is more complicated for this model, because
is a coexistence of spin-Peierls dimerization anceINike the unit ceII_ includes four S|tes_. Therefore we have to intro-
long-range order. The situation here is quite different fromduce four kinds of bosons. This happens as follows:

that in one dimension. For the dimerized chain the magnetic e , N B N

energy scales a8, 6 “* and because the elastic energy isAt re(2i2), S'=s—aja, S =\2sa,

proportional tod?, there is always a distortion. In the two-

dimensional stair model the magnetic and elastic energy bd3: re(2i+1,2+1), S=s-bb,, S =\2sb,

have ass? and therefore a distortion of the lattice is only

possible if certain conditions are fulfilled. Because we ex-C: re(2i,2j+1), S=-s+c, ¢, S*:\/Z_sc,,

pand around the isotropic point where LSWT results agree

well with numerical results, the quantitative results for thep: ¢ (2i+1,2)), S=-s+d'd,, S =\2sd,
condition of dimerization are expected to be reliable.

<0.261, (53

C. Plaquette model

where A, B, C, D enumerate the four sublattices.

B. J,/J, model In principle it is possible to diagonalize every Hamil-
tonian of an assembly dfl bilinearly interacting bosons or
¥ermions what has been well known for a long tifleBut
especially for bosons it is often complicated to construct the
&ransformation matrix between new and old operators, be-
cause the transformation is not unitary. We therefore add an
H=—N(J,+J,)s(s+1)+2sL(1+R) “antiferromagnetic fieId”B,?, which allows us to calculate

the sublattice magnetization without doing this canonical
transformation explicitly. After taking the Fourier transform

Because this model is well known and LSWT has alread
been applied to #> we only want to briefly state the results.
The bosonic Hamiltonian is again easily diagonalized by
Bogoliubov transformation and can be written as

+ +
sz: Y(Cy it A dy+1) (54) the Hamiltonian with additional field is given by
with
2 H= —2NJ§—NB§\S+4Js§k‘, a, a b, b+c, e +d, dy
=1/1-|—=] [cogky)+Rcogk,)]?
7k \/ 1+R/ [0Sk ) + Al ac+ by di ]+ H.c+A)[ad+ b, ¢, ]+H.c.
andR=J,/J,. BZ

+ ayclacact bl bk el et didyd (56)

1. Sublattice magnetization
If we again calculate the sublattice magnetization and takevhere yf=3coskay-€%), Bi=(i/2)sinkay-€*), and Af
its vanishing as an indication for the breakdown ofeNe =2+ 682.
order, we find a criticaR. = 0.0337. We also proved by using  This has to be diagonalized under the subcondition that

condition (51) the reliability of the spin-wave approach. It the new operators fulfill again Bose commutation relations
seems to be valid iR>0.1 and therefore we only can con- |eading td*

clude that the critical couplin®, must be smaller than 0.1.

As mentioned before, numerical studies such as series (1) T YHIT=HpJ (579
expansion¥' and Monte Carlo studié$seem to indicate that
R, is equal to zero. and

2. Distortion due to spin-phonon coupling (n THITI=1, (57b

By using the relatiors=(1—R)/(1+ R) we switch again whereH denotes the diagonalized Hamilton matrix ahid
to the description of the model with the paramefein the  given by
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-1 0 0 O D. Meander model
0 -1 0 O The sublattice structure of this model is similar to that of
J= 0 0 1 0 (579  the plaguette model and it is again necessary to introduce
four kinds of bosons. With the same definitions as before the
0O 0 0 1 Hamiltonian of the model is given by
From Eq. (57b it follows that T is an element of the
pseudounitary group (2,2), whereas Eq(57a implies the
secular equation H=—2NJs*~ NBs+4Js>, {ak*akJr by b+ ¢, ¢+ dy dy
k
de{HJ—\;1)=0 (59

A ac+bdi]+H.c. + Al ady+ by ¢, ]+ H.c.
for the diagonalization problem. The eigenvaluesHofare
then given by|\;|. By solving the secular equatids8) we
get the diagonalized Hamiltonian of the plaquette model in
LSWT:

z

+ a3clacact b b gl et didyd (62)

By solving the secular equatiof68) this is diagonalized

, 1 s leading to a Hamiltonian in the new Bose operatdis By,
H=-2NJs(s+1)-NBj| s+ +4332k {Nd Ay Ag Cx, Dy as in Eq.(59a but now with eigenvalues
+C¢ Ot L]+ N[ By B+ Dy D+ 11}, (593

A= V(1+B2)2— (|AY +|AY))2, Ne=(1+B)2— | A2~ |AY2- 2| AlIRe(AY),  (63)
- A

N2=/(1+B2)%— |AY2— |AY 2+ 2| AY| Re(AY).
)\k_ \/(1+BA)2 (lA |_|Ay| (59b) k \/( A) | | | | | | q
with the new Bose operatorsl,, By, Cx, D and Bj 1. Sublattice magnetization
=Ba/4Js. Analogous to the plaquette model the sublattice magneti-
. o zation can be calculated by a derivative. The value for the
1. Sublattice magnetization critical dimerization determined by this calculation &

The ground-state sublattice magnetization per lattice site” 0.898 orR;=0.054. This is similar to all the other models
is now easily calculated from Eq59a by the derivative in & region where the spin-wave approach is no longer justi-
(1N){aH/4BA >|Bz_0 Settings= 1/2 and replacing the sum fied.

through an mtegral the sublattice magnetization is given by 2. Distortion due to spin-phonon coupling

/2 The parameter in the expansion is givenAwy 0.160 and
()= 1— — /2J L5 ~—2 : (60)  therefore the condition for the spin-Peierls transition is
whereX,=\L(BZ=0). This decreases with increasidgnd
shes aB =0 - : m( 2w?(m,m) Pk 0m)
vanishes at,=0.798 or aquivalenthR,=0.112. This value m( (™ L2 @nd 2T 160 64)
agrees with that given in a paper by Koga, Kumada, and 4\ N, m) )\ﬁmg(om) R

Kawakami®? The same authors have also used a series

expansioft” starting from uncoupled plaquettes to determinewhere we have assumed that the phonon frequencies and
the critical coupling and gef,~0.3. This value is in good SPin-phonon coupling constants for the longitudinal and
agreement with results from Monte Carlo calculations, showiransversal -, ) phonon are identical.

ing again that the results in LSWT at high dimerizations have

to be considered with care, because of the unphysical states VI. CONCLUSIONS

in this approach. ) , i
By using simple scaling arguments we have shown that

2. Distortion due to spin-phonon coupling for the J /J model and the stair model, which consist of

weakly coupled Heisenberg chains for large dimerizations,
We setB;=0 and expand again the ground-state energyhe interchain coupling is a relevant operator. Therefore only
up to quadratic order. For this model the paraméteyequal  at 5=1 the ground state is of one-dimensional nature. Also
0.174. Therefore the lattice is distorted if the condition in the meander model the interchain coupling is relevant, but
there is also a relevant intrachain coupling. By numerical

m( Pop(m0)  JPwk,(0,7) calculations DMRG + TMRG) we have shown in this more

4 2 0 + 0 <0.174 (62) complicated case that the scaling behavior for the intrachain
A Iong( T ) }\Iong( 77) . . . . .
coupling is predicted correctly by the simple scaling argu-
is fulfilled. ment. We also showed that it is possible to map all four
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models onto a Nir model. By applying the known results ditions for the spin-Peierls transition, which we have ob-
for the RG flow in two and three dimensions we have contained within LSWT, are qualitatively and quantitatively use-
cluded that the ground state of thg/J, and the stair models ful. For all models we have found that elastic and magnetic
is Neel-like ordered for allse[0,1), whereas an extended energies scale a§” at small dimerizations. A phase transi-
disordered phase exists for the plaquette model. However, ton leading to a coexistence of spin-Peierls dimerization and
was not possible to determine the critical dimerizati§gn  antiferromagnetic long-range order is therefore only possible
e (0,1) for the plaquette model within the RG treatment. Forfor certain values of the microscopic coupling constants.
the meander model the RG gave no unique result. A phaserom an expansion of the magnetic ground-state energy
diagram such as for th&,/J, and stair models, but also an E(8)=e,—As® we have got the following values for the
extended disordered phase as in the plaquette model are bgiprameter.

possible scenarios. The second possibility seems to be more
probable, as the intrachain coupling has scaling dimension

x=1/2 and is therefore more relevant than the interchain Model A

coupling withx=1. If we start fromé=1 and reduce the stair model 0.261
dimerization, we might expect that there arises first a system plaquette model 0.174
consisting of weakly coupled two-leg ladders. Because a meander model 0.160
two-leg ladder withs=1/2 is a gapped system, a small cou- 3,13, model 0.146

pling between these ladders can be treated within normal
perturbation theory and does not change the global properties The gain of magnetic energy is therefore largest for a
drastically. At lower dimerization the gap closes and the sysstairlike distortion of the lattice, which is caused by a trans-
tem orders antiferromagnetically. If this picture is corré®t, versal (r,7) phonon. What kind of distortion is energeti-
must be smaller than 1. cally prefered, depends also on the elastic energy, which in
To investigate this further and to determine a value for theyeneral is different for each model. However, if we assume
critical dimerizationss, , we also applied LSWT to the mod- that the elastic energy is equal for all models, we would
els. The following values fob, are derived. conclude that the stairlike distortion is energetically prefered.
This is in contradiction to a result by Tang and Hirséhyho
have studied the plaquettelike and stairlike distortion by an

Model s exact diagonalization of a4 lattice and conclude by using
Jy /3y model 0.935 the same assumption that the plaquette structure is prefered.
meander model 0.898 However, the lattice they have considered is very small and
stair model 0.829 they have not done any finite size scaling so that we believe
plaquette model 0.798 our result is more reliable for the infinite lattice.
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