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Ground states of two-dimensionalÁJ Edwards-Anderson spin glasses
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We present an exact algorithm for finding all the ground states of the two-dimensional Edwards-Anderson
6J spin glass and characterize its performance. We investigate how the ground states change with increasing
system size and antiferromagnetic bond ratiox. We find that the ground-state distribution is log normal and that
its dependence onx is nontrivial. We also study the breakdown of ferromagnetic order and show how perco-
lating paths are created by the overlap of different ground-state solutions.
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I. INTRODUCTION

The Edwards-Anderson~EA! 6J spin glass1 is a canoni-
cal example of a system with competing interactions t
give rise to large numbers of low-energy states. Des
extensive investigation, the low-energy landscape of
model is still controversial in both three2–10 and two
dimensions.11–28

Although the two-dimensional~2D! 6J Edwards-
Anderson model is much simpler than the three-dimensio
case ~it does not have a phase transition at nonz
temperature29 and individual ground states can be found in
time that scales as a polynomial of the system size30!, it still
has many metastable states and a complex energy lands
At low temperatures spin glass relaxation times become v
long, complicating investigations using standard Mon
Carlo sampling techniques31 and also to varying extent mor
sophisticated sampling methods such as clu
algorithms21,32 and multicanonical methods.33–35

For ground-state properties, exploiting optimization alg
rithms that find exact ground states has proved a powe
approach.13,18,36,37However, these algorithms find a sing
ground state of a single realization, and one must sam
appropriately from the ground states of each realization3,38,39

and also perform a reliable realization average to obtain
rect results.

In this paper we investigate the low-energy properties
the two-dimensional6J EA model by finding exactlyall the
ground states of each realization. We check that our e
meration is exhaustive by comparing the number of grou
states that are found to exact results for the partition func
obtained using the method of Saul and Kardar.11,40

In the course of developing our algorithm, we made
series of studies of the distribution of ground states. We fi
that the the ground-state distribution is consistent with a l
normal distribution and that the mean of the distribution
creases with increasingx ~the fraction of antiferromagnetic
bonds in the system! until it saturates for 0.3,x,0.5.

Though our algorithm is based on an existing polynom
time algorithm that finds individual ground states,41 it does
not run in polynomial time. This is impossible because
time just to enumerate the ground states grows exponent
with system size. Nonetheless, the number of ground stat
vastly smaller than the number of spin configurations, a
0163-1829/2002/65~13!/134404~15!/$20.00 65 1344
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empirically we find that our algorithm runs in a time rough
linear in the number of ground states. Memory issues li
our current implementation to about 23106 ground states.
Because there are huge variations in the number of gro
states among realizations, the system sizes that we inv
gate are rather small. Though the median number of gro
states of a 10310 system in which half the bonds are an
ferromagnetic is 104, at this system size 3% of the realiza
tions have greater than 23106 ground states. Therefore
most of the data presented here is for systems of size
310 and less.

The advantage of our method is that it produces qual
tively new information because all the ground states
known explicitly and exactly, so that one can compute
detail the relationships between them. Moreover, these e
results can be used to validate sampling methods approp
for larger systems.

We use our method to investigate the paramagne
ferromagnetic phase transition that occurs asx, the fraction
of antiferromagnetic bonds in the system, is increased.13,30,42

Quantitative analysis is complicated greatly by the fact t
many quantities exhibit large, non-Gaussian variability b
tween realizations. Nonetheless, we are able to show
readily identifiable groups of spins in the various grou
states together create a percolating path that destroys the
romagnetic order of the system.

The paper is organized as follows. Section II presents
algorithm, Sec. III presents data on the distribution of grou
states, and Sec. IV describes our investigation of the dest
tion of ferromagnetic order as the fraction of antiferroma
netic bonds is increased. The results are discussed in Se
Appendix A gives a detailed presentation of the algorith
while Appendix B discusses the performance of the al
rithm in detail.

II. MODEL AND METHODS

A. Edwards-Anderson model

We study the two-dimensional Edwards-Anders
model,1 in which nearest-neighbor Ising spins (s i561) on
an L3L square lattice interact either via a ferromagnetic
an antiferromagnetic coupling. The Hamiltonian is

H52(̂
i j &

Ji j s is j , ~1!
©2002 The American Physical Society04-1



r

f
t
ic

A
nt
ex
re

in

g
to
th

o

y
t

t

le

fie
ev
at
e
te
tt

at
av

ap
r
i

g
os

ises

de,

e

pin-
hing
phs
e
ob-

in-

nd
lanar
d in
em
olu-
ion
on-

-
nt

ob-
all
the

an-

u
a

uc
o

ted
bond

tion
the

J. W. LANDRY AND S. N. COPPERSMITH PHYSICAL REVIEW B65 134404
where the sum̂ i j & is over all pairs of nearest-neighbo
spins. Each bondJi j is chosen to be either11 ~ferromagnet-
ic! or 21 ~antiferromagnetic!. We designate the fraction o
antiferromagnetic bonds asx; x50 is the Ising ferromagne
~no disorder!, x50.5 ~with equal numbers of ferromagnet
and antiferromagnetic bonds! is the maximally frustrated
spin glass~maximum disorder!, andx51 is the Ising anti-
ferromagnet~no disorder!. Our systems range fromx50.05
to x50.5 and have periodic boundary conditions.

B. Calculating all the ground states of the EA model

Our algorithm for finding all the ground states of the E
model first converts the problem of finding ground states i
a graphical matching problem, as in Refs. 30 and 43. N
all possible optimal matching solutions of this problem a
found, and finally, these matchings are converted back
spin configurations.

1. Conversion of energy minimization to a matching problem

References 30 and 43 show that the problem of findin
ground state for this spin glass model can be converted
matching problem in graph theory. Here, we sketch out
conversion and discuss some subtleties that arise from
use of periodic boundary conditions.

A ground state of a spin glass can be described not onl
terms of spins and bonds, but also as frustrated plaque
and paths of broken bonds.30 In a frustrated system, it is no
possible for all bonds to be satisfied simultaneously,43 which
leads to a natural degeneracy of states. A simple examp
shown in Fig. 1.

We denote plaquettes with an odd number of unsatis
bonds as frustrated, while satisfied plaquettes have an
number of unsatisfied bonds. Frustrated bonds form p
that connect frustrated plaquettes to each other. Becaus
ery frustrated plaquette has an odd number of frustra
bonds, it must be the end point of a path. Satisfied plaque
either have no path through them or are midpoints in a p
This can be seen in Fig. 2, where perpendicular lines h
been added to frustrated bonds to show the paths.

We identify the frustrated plaquettes as nodes of a gr
and the paths as edges with a weight equal to the numbe
broken bonds along the path. Ground states have the m
mum number of frustrated bonds, so the problem of findin
spin-glass ground state is also the problem of finding th

FIG. 1. Two ground states of a frustrated plaquette with fo
bonds. Ferromagnetic bonds are black lines, while antiferrom
netic bonds are dashed lines. Every configuration of spins prod
at least one unsatisfied bond~denoted with a line perpendicular t
the bond!, and there are four minimum energy configurations.
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edges that have the shortest total length. This problem ar
in the context of graph theory and is called theminimum-
weight perfect matching problem.41 In solutions of this prob-
lem, each node is joined to one and only one other no
with the smallest possible total weight~which corresponds to
the lowest possible energy!. Figure 3 illustrates a sampl
ground state and its equivalent matching solution.

2. Boundary conditions

References 30 and 44 discuss the relation between s
glass ground states and solutions to a graphical matc
problem and prove a number of results for planar gra
~e.g., free boundary conditions!. In these references, th
ground-state problem is first converted to a matching pr
lem that can be solved in polynomial time.45,46 This match-
ing solution is then shown to correspond always to a sp
glass ground state.

For a periodic lattice, the transformation from spins a
bonds to nodes and edges proceeds exactly as in the p
case, and the resulting matching problem can be solve
polynomial time. The issue that distinguishes this probl
from the planar case is the conversion of the matching s
tion back to a ground-state solution. The matching solut
found will not always correspond to a ground-state spin c
figuration for a given toroidal boundary condition. This com
plication arises because four lattices with four differe
boundary conditions will produce the same matching pr
lem. These four boundary conditions are periodic on
sides, antiperiodic on the top and bottom, antiperiodic on
left and right, and antiperiodic on all sides.

Boundary conditions can be changed from periodic to
tiperiodic on anL3L system either by settingJiL

new52JiL

r
g-
es FIG. 2. Sample ground state of a spin glass, showing frustra
plaquettes, unsatisfied bonds, and the corresponding spin and
configuration.

FIG. 3. Correspondence of a spin-glass ground state to solu
of the matching problem. The numbers along each edge of
matching solution indicate the weight of that edge.
4-2
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FIG. 4. The four different boundary conditions for a sample lattice. Ferromagnetic bonds are solid lines and antiferromagnetic b
dashed lines. Bonds on the right and bottom sides wrap around the lattice to reconnect on the other side. Each boundary condit
same set of frustrated plaquettes, shown as solid circles.
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along the desired edge or by flipping the spins so thatSi1
new

52Si1 along the desired edge. In this study, we flip t
bonds. A sample lattice with the four different boundary co
ditions is shown in Fig. 4.

These four lattices have exactly the same frustra
plaquettes, so they produce the same matching problem
this sense, the matching problem does not understand bo
ary conditions. When a matching solution is converted b
into spins and bonds, it may not correspond to a ground s
for a given boundary condition.

We resolve this ambiguity by converting explicitly eac
matching into a spin configuration and checking the viabi
of each spin configuration for each boundary condition
ground state is only accepted for a given boundary condi
if it has a consistent spin configuration. We find numerica
that a matching solution always corresponds to a grou
state solution of at least one boundary condition.

This subsubsection has described the necessary p
dures for generating all the ground states in the case of
riodic boundary conditions. The algorithm works perfec
for planar graphs without these procedures.

3. Generating all optimal matchings

Our algorithm for finding all the optimal matchings ha
three parts. The first part finds all edges that make up
optimal solutions. This part exploits the structure of t
edges, since the number of edges appearing in the gro
states is a small subset of the total number of edges.
second part takes this subset of edges and combines the
find all optimal matchings. The third part converts the op
mal matchings into ground-state configurations. The n
section describes our algorithm briefly. More detail, inclu
ing an example, is in Appendix A.

The algorithm uses Edmonds’ blossom algorithm,45,46

which finds a single optimal solution to a matching proble
in polynomial time. We use the Concorde implementation
the algorithm.41,47

C. Finding all edges in all solutions

The algorithm begins by making a list of nodes and p
sible edges. All frustrated plaquettes are found and de
nated as nodes. Pairs of nodes that are within a distance
are considered to have edges between them. This restri
controls the combinatorial explosion of possible edges,
optimal solutions involving weights larger than 5 are incre
13440
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ibly rare. Moreover, any errors introduced by this truncati
are identified and eliminated at a later stage when the t
number of ground states found for a realization is compa
to an independent determination of the ground-state deg
eracy.

To construct a list of edges that exist in at least o
minimal-weight matching, which we designate as viab
edges, we start with an empty list. The blossom algorithm
run on the unmodified matching problem and a single mat
ing solution is found. Each edge in this solution is added
the list of viable edges.

To find more viable edges, the nodes are considered
cessively. For each node, a modified list of edges is crea
from the original list by deleting those known viable edg
connecting to the current node. The blossom algorithm is
on this modified list to find an optimal solution for this ne
problem. If the solution has the correct path length~i.e., cor-
responds to a ground state!, then the new viable edges tha
have been found are added to the list of viable edges.
process continues for this node. If the path length of the n
solution is too large~i.e., does not correspond to a groun
state!, then we know that we have found all the viable edg
associated with this node. The algorithm then proceeds to
next node in the list. By moving sequentially through t
nodes, all viable edges are found.

D. Determining optimal matchings

The next part of the algorithm uses the list of viable edg
to find all of the optimal matchings. It picks edges syste
atically from the list of viable edges until each node is co
nected by a given edge to one and only one other node.
possible combinations of viable edges in which each nod
incident on exactly one edge are examined.

Whenever there is this kind of combination of elemen
there is a danger of a combinatorial explosion. In this ca
the number of matchings~combinations of edges! is rela-
tively controlled. Section II B discusses this issue in deta

E. Converting matchings to ground states

All optimal solutions to the matching problem must b
converted back into ground-state spin configurations. T
conversion is nontrivial because one matching solution
correspond to many different ground states and the s
ground state can be represented by different matchin
Simple examples of this phenomenon can be seen in Fig
4-3



ta

a

d
W
tc

o
d

w
t
o
ar
’s
or

l

ice
s
if

re
n

e
th
on

rs
di

d
ted
-
iza-

nd
re-

fit
-

re

in
or-
g-
re-
able
o,
our

to
ith
s
o-
an

ces-

All
lly

ies

ge

a

r
tri-

t
n
n,
nd
ed
p
s

J. W. LANDRY AND S. N. COPPERSMITH PHYSICAL REVIEW B65 134404
To resolve these complications, we keep every ground s
we find in memory. Any proposed ground state is checked
see that it does not correspond to a ground state we h
already found.

The other important issue is the role of boundary con
tions in this conversion from matchings to ground states.
determine the ground state or ground states from the ma
ing by fixing the value of a single spin~in our case, we fix
the upper left-hand spin as11). Every other spin follows
from this initial spin, because we know the specific bonds
the current boundary condition and their status as satisfie
unsatisfied.

F. Partition function

To check that our algorithm finds every ground state,
also generate the partition function of the realization aT
50. This partition function gives the number and energy
the ground states of a given realization. We generate a p
tion function in polynomial time using Saul and Kardar
technique,11,40 which is a generalization of methods used f
finding the partition function atT50 for the two-
dimensional Ising model.48–51 For reasons of computationa
efficiency, we consider onlyL3L lattices whereL is even.
Because our methods yield ground states not only for latt
with regular periodic boundary conditions but also for tho
with antiperiodic boundary conditions, we generate four d
ferent partition functions for each possible lattice, cor
sponding to the four different boundary conditions me
tioned above.

We are confident that our algorithm works properly b
cause the number of ground states found by our algori
agrees with the partition function result for every realizati
and boundary condition that we have examined.

III. GROUND-STATE DISTRIBUTION

Before presenting the results from our algorithm, we fi
discuss the distribution of numbers of ground states for

FIG. 5. The relationship between matching solution is not one
one. As shown in the top diagram, two or more different grou
states can correspond to the same matching solution. In additio
seen in the bottom diagram, a single ground state can correspo
multiple matching solutions. The solid circles are frustrat
plaquettes, the thick dark lines are unsatisfied bonds, the o
circles are nodes, and the thin dark lines are edges with length
shown.
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ferent realizations with varying system sizeL and antiferro-
magnetic bond ratiox. All of these results were obtaine
from the partition functions of these realizations, genera
using Saul and Kardar’s method.40 These ground-state distri
butions show large sample-to-sample variations for real
tions with the sameL andx.

Figure 6 shows four histograms of the number of grou
states for the four different boundary conditions of 3006
alizations ofL510 lattices withx50.5. The solid lines on
the figure are fits to a log-normal distribution,52–54where the
number of realizations with betweenm andm1dm ground
states isG(m;m,s)d„log10(m)…, with

G~m;m,s!5
A

sA2p
expF2@ log10~m!2m#2

2s2 G . ~2!

Here,m is the most probable value of log10(m), s describes
the width of the distribution, andA is a normalization con-
stant. Table I gives the parameter values from ax2 fit with
the errors for the bin heights taken to beANb, whereNb is
the number of realizations in a given bin. The distributions
a log-normal distribution extremely well, and all the param
eters of the fit for the four different boundary conditions a
consistent with each other within error bars.

This log-normal distribution means that the variations
the number of ground states of different realizations are en
mous. Sampling a few realizations will not give a meanin
ful picture of the behavior of the system. Averages over
alizations need significant numbers to produce reason
results, and still may not give sufficient information. Als
because the distribution of ground states is so wide,
methods to find ground states and apply perturbations
them have wildly varying performance on realizations w
the sameL and x. A few outliers with many ground state
will completely dominate the computation time of all alg
rithms. A change in thinking is necessary—the concept of
average realization or number of ground states is not ne
sarily useful in considering the physics of this system.

Figure 6 also demonstrates that atx50.5 the boundary
condition does not affect the ground-state distribution.
future results in this section will be presented for the fu
periodic boundary condition.

Next we study how the distribution of ground states var
with x. Figures 7 and 8 show how the parametersm ands
characterizing the mean and width of the distribution chan

TABLE I. Fits of the boundary condition distributions to
Gaussian with meanm, standard deviations, and amplitudeA. m
ands are given in terms ofz, the base-10 logarithm of the numbe
of ground states. Boundary condition has little effect on the dis
bution on ground states.

Boundary condition m s A

Periodic all 3.9160.066 1.19160.047 589632
Antiperiodic NS 3.9460.065 1.19960.044 588631
Antiperiodic EW 3.9560.056 1.18960.040 591628
Antiperiodic All 3.9060.057 1.20160.040 591628
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d
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FIG. 6. Histograms of the number of ground states for 3006 realizations withL510 and x50.5 for the four different boundary
conditions. The solid lines arex2 fits to the log-normal distribution, Eq.~2!, with parameters are given in Table I. At this value ofx, changing
boundary conditions have very little effect on the distribution of ground states.
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asx is varied between 0 and 0.5. Both the mean and wi
tend to increase withx until they saturate betweenx50.25
andx50.3.

The saturation of the ground-state distribution atx50.3
appears to be completely distinct from the breakdown
ferromagnetic order atx'0.1 and seems to be relatively in
sensitive to changes in system size. Since the distributio
ground states is essentially unchanged fromx50.3 to x
50.5, this suggests that systems in this range of parame
have no essential physical differences.

Finally, we present the variation of the distribution
13440
h
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ground states withL at x50.5. As Fig. 9 shows, increasin
the system size moves the ground-state distribution ove
larger numbers of ground states but does not change the
normal distribution of the states. Again we fit these distrib
tions to the form of Eq.~2!. As seen in Fig. 10, the mean o
the ground-state distributions atx50.5 scales exponentially
with lattice areaL2, m}a1bL2, with b'0.03. It is because
b! ln 2 that our algorithm finds all ground states much mo
efficiently than an exhaustive search of all configurations

We also investigate whether the distribution of grou
states is self-averaging,55 that is, whether the ratio of the
4-5
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width of the distribution to its mean vanishes in the therm
dynamic limit L→`. Figure 11, a plot ofs/m as a function
of L, shows thats/m actually increases withL up toL58 ~a
cautionary note for higher dimensions, where studies oL
.8 are extremely difficult!, but that s/m decreases asL
increases forL.8, consistent with self-averaging behavi
for the limit L→`. Data for larger lattices would be ex
tremely helpful in determining the behavior ofs/m as the
system size increases.

The wide distribution in numbers of ground states can
rationalized in terms of the matching problem by noting th
random arrangements of bonds produce relatively rand
arrangements of frustrated plaquettes. If we treat the num
of possible edge choices for different plaquettes as rand

FIG. 7. Plot of the parameterm defined in Eq.~2! ~which is the
base-10 logarithm of the maximum of the ground-state distributi!
vs x, the fraction of antiferromagnetic bonds. Data for systems w
L56,8,10 are shown; the qualitative features do not exhibit a str
L dependence, except for the overall exponential scaling of
number of ground states with system size.

FIG. 8. Plot of the parameters defined in Eq.~2!, which is a
measure of the width of the log-normal distribution of grou
states, vsx, the fraction of antiferromagnetic bonds. Data for sy
tems withL56,8,10 are shown; the qualitative features do not
hibit a strongL dependence, except for the overall exponential sc
ing of the number of ground states with system size.
13440
-

e
t
m
er
mvariables and assume that they are essentially indepen
from plaquette to plaquette, then the number of total po
bilities is multiplicative, and it is well known that multipli-
cative random processes lead to log-normal distri
tions.52–54 Moreover, since entropy is the logarithm of th
number of accessible configurations, it is natural to exp
log10(m) to be normally distributed. This simple argume
would also suggest thats}L2, but our system sizes are no
large enough to address this question definitively.

IV. DESTRUCTION OF FERROMAGNETIC ORDER

In this section we investigate the destruction of ferroma
netic order that occurs asx, the fraction of antiferromagnetic
bonds, is increased.13,42,56–61

As Bendisch and collaborators discuss,59–61 investigating
how the ground-state energy depends on boundary cond
is a powerful method for locating the transition at whic
ferromagnetic order is destroyed. In a system of infinite s
whenx is less than the transition pointxc'0.1, one expects
all the lowest-energy states to occur when the boundary c
ditions are consistent with ferromagnetic order, while forx
.xc , there should be no preference for this type of bound
condition. References 59–61 present calculations suppor

h
g
e

-
-
l-

FIG. 9. Histograms of the number of ground states for reali
tions of different system sizesL54, 6, 8, 10, 12, and 14 atx
50.5. The solid lines arex2 fits to log-normal distributions. The
parametersm ~which describes the mean! and s ~which describes
the width! are defined in Eq.~2!; they are given in terms of the
base-10 logarithm of the number of ground states. Increasing
tem size increases bothm ands.
4-6
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GROUND STATES OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 65 134404
this picture for different nontoroidal boundary condition
Our results obtained by computing the partition function
toroidal boundary conditions also support this picture. Ho
ever, because of our relatively small system sizes, finite-
effects in our calculations are large. We did not do a fini

FIG. 10. The parameterm of the ground-state distribution, de
fined in Eq.~2!, vs system areaL2 for systems withx50.5. The
solid line on the graph is a fit to the formm5(a1bL2), with a
50.87460.025 andb50.030 5860.000 23. The most probabl
number of ground states, 10m, increases exponentially withL2.

FIG. 11. Plot of the ratios/m vs L. This is a test of self-
averaging for the free energy. Note thats/m increases initially and
then begins to fall off asL increases in a roughly linear way.
13440
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e
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size scaling analysis of our data because we do not expe
to yield qualitatively new information about the destructio
of ferromagnetic order.

Our algorithm enables us to investigate in detail how
ground states change when ferromagnetic order is destro
Barahonaet al.42 present evidence that long-range order
the system is related to whether a set of spins with the s
relative orientation inall the ground states spans the syste
We can refine this picture further by noting that the set
ground states can naturally be subdivided into cluster62

where a cluster is a group of ground states related by a
quence of single spin flips, each of which leaves the ene
the same. By definition, all states in the same cluster can
reached from each other by single spin flips without rais
the energy, whereas ground states in different clusters
only be reached from each other without raising the ene
by making cooperative flips of multiple spins. A realization
ground states may all fall into a single cluster or popul
many distinct clusters. For our systems, the number of c
ters is moderate—we have observed up to 12 clusters
single 10310 realization. It is natural to ask whether th
destruction of ferromagnetic order corresponds to growth
the number of spins contributing to the individual clusters
whether the relationship between the clusters plays a v
role.

To address this question, it is useful to focus on the spa
relations between the ground states in each cluster. To
this, we first define a flippable spin as one with an eq
number of satisfied and unsatisfied bonds; all the states
cluster are related by sequential flips of flippable spins.
now introduce the concept of a bunch and define it to b
group of flippable spins in a given cluster whose flippabil
does not depend on the state of other flippable spins in
system. Figure 12 shows three spin bunches.

The first bunch, spinA, is just a single isolated spin. Th
second bunch consists of spinsB andC. Note that if spinB is
flipped, then spinC is no longer flippable, and conversel

FIG. 12. Three bunches of flippable spins. The flippable sp
are denoted by solid circles and the frustrated bonds by thick lin
4-7
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FIG. 13. Three different 10
310 realizations atx50.05, x
50.1'xc , and x50.5. All
bunches in each cluster are show
with hatched marks, with differen
angles signifying different clus-
ters. Multiple clusters allow
bunches to combine to span th
space and destroy ferromagnet
order.
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The third bunch consists of spinsD, E, F, andG. The bunch
contains all four spins, because ifG is flipped, thenF be-
comes flippable. IfD and F are both then flipped, thenE
becomes flippable.

Identification of bunches gives a complete picture of
clusters. Different clusters cannot have all the same bunc
though a given bunch can appear in more than one clu
Bunches are useful because within a given cluster they
independent, so their contribution to the ground-state deg
eracy is multiplicative.

We extract from the complete set of ground states all
bunches of a system using an algorithm described in Ref.
Figure 13 shows bunches from three realizations withx
50.05,xc , x50.1.xc , and one withx50.15.xc . One
can see that the bunch structure for a single cluster does
change drastically as one crosses the transition, but whx
.xc multiple clusters exist and the overlap of all the bunch
from the different clusters spans the system. We believe
the key element governing the destruction of ferromagnet
is whether the overlap between the different bunches in
ferent clusters is such that the union of all the bunches fo
a path that percolates across the system. Thus, the ‘‘rigid
transition discussed by Barahonaet al.42 is governed by
overlap of the bunches composing different clusters.

Figure 14 shows the single cluster fraction as a funct
of x for L56, 8, and 10. The number of realizations used
generate this figure is shown in Table II. The presence
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multiple clusters is strongly correlated with the destructi
of ferromagnetism.

We can investigate further the bunch overlap asx is in-
creased through the spin-glass transition. We do this by
fining an overlap fraction for our realizations. To do this, w

FIG. 14. Plot of the single cluster fraction vsx for L56, 8, and
10. Error bars are estimated asANr , whereNr is the number of
realizations. Atx50.05, in the spin-glass phase, the single-clus
fraction is essentially 1. Asx increases and passes throu
the ferromagnetic transition, the single-cluster fraction dro
precipitously.
4-8



ste
a
in

ers,
t

r.

l-
also
bil-

re-
s of
de-

nal
is

wo-
m
l is

nd
gle

GROUND STATES OF TWO-DIMENSIONAL . . . PHYSICAL REVIEW B 65 134404
first sum up the number of spins in bunches for each clu
in the realization,nsb . Then, all bunches in all clusters of
given realization are overlaid, and the total number of sp
covered by bunches is counted,osb . We define the overlap
fraction of as

TABLE II. Runs used to generate Fig. 14.Nl is the number of
distinct lattices,Nr is the number of ground-state realizations, a
Nscr is the number of ground-state realizations with a sin
ground-state cluster.

L x Nl Nr Nscr

6 0.0556 500 515 515
6 0.0972 500 729 719
6 0.1528 500 1212 940
6 0.1944 500 1386 888
8 0.0547 500 507 506
8 0.1016 500 754 661
8 0.1484 500 1187 738
8 0.2031 281 775 364
10 0.05 500 504 503
10 0.1 200 317 249
10 0.15 199 452 207
10 0.2 18 54 16
13440
r

s

of5
nsb2osb

nsb
. ~3!

If no spins overlap between the bunches in different clust
osb5nsb and of50. If all the spins between differen
bunches inN different clusters overlapped~an impossibility!,
thenof would tend toward 1 asN→`. The overlap fraction
of is not defined for a realization with only a single cluste

Figure 15 shows histograms ofof for variousx values for
lattices withL58. As the number of realizations with mu
tiple clusters rises, the overlap fraction for these clusters
increases. Not only are there more clusters, but the varia
ity of the bunches in these clusters also increases.

Thus, the appearance of multiple clusters for a single
alization and the increase of overlaps between the bunche
these clusters both seem to be closely correlated to the
struction of ferromagnetic order. We believe these additio
markers of the transition will aid in the understanding of th
transition.

V. DISCUSSION

This paper investigates the ground states of the t
dimensional6J Edwards-Anderson spin glass. An algorith
that finds systematically all the ground states of this mode
re of
FIG. 15. Plots of the overlap fractionof for L58 realizations. As the number of multiple-cluster realizations increases, the structu
the bunches also grows increasingly complicated as the overlap fraction increases.
4-9
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presented. This algorithm is used to investigate the natur
the destruction of long-range ferromagnetic order as the f
tion of antiferromagnetic bonds is increased.

The running time of our algorithm for a given realizatio
is found empirically to scale roughly linearly in the numb
of ground states for the range that we study~up to 107

ground states!. Memory is the most serious limitation, be
cause to avoid duplication each new ground state mus
compared to those already found. Our method enables
examination of significantly larger systems than would
accessible by exhaustive enumeration of all states—for
ample, a system withL510 has 2100–1030 configurations,
but only 102–107 ground states. The advantage of our tec
nique is even greater when we introduce quant
tunneling,63 where the full Hamiltonian of a system withL
510 is a 210032100 matrix.

We use our method to investigate the transition at wh
ferromagnetism is destroyed as the fractionx of antiferro-
magnetic bonds is increased. By comparing the ‘‘rigidity’’
bonds between different ground-state configurations,
show how the appearance of ground-state clusters and
overlap of bunches is intimately connected to the percola
nature of the ferromagnetic-paramagnetic phase transitio

In general, we find that many quantities exhibit larg
non-Gaussian variability between realizations. For exam
the number of ground states is well described by a l
normal distribution, with the ratio of the width to the mea
of the distribution increasing with system sizeL up to the
relatively large valueL;8. This relatively large length scal
is unsettling when one keeps in mind the relatively sm
sizes that can be investigated numerically in high
dimensions.5,64–67

The availability of complete information about all th
ground states provides a new avenue for probing the na
of the system at low temperatures, and our work can
extended in many directions. We have investigated how
introduction of quantum tunneling and of coupling to a d
formable lattice affect the low-energy landscape of
model,63 and the effects of other physical perturbatio
should be examined. Our work also provides a means
stringent validation of other sampling methods that can
used to study larger systems. We also note that in the co
of this work we have shown that one can adapt the stand
matching algorithm to study systems with fully toroidal p
riodic and/or antiperiodic boundary conditions. It would
interesting to compare the effects of changing boundary c
ditions of this type to those in Ref. 24.
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APPENDIX A: DETAILED DESCRIPTION
OF THE GROUND-STATE ALGORITHM

1. Goals of the algorithm

These notes are a short description of our algorithm t
generates all of the ground states of an Edwards-Ande
2D spin glass. This algorithm was designed with seve
goals in mind.

The algorithm should be relatively simple, so that it
easy to understand and implement.

The algorithm should proceed in a completely determ
istic and systematic way, so there is no way to get off tra
or lose information.

The algorithm should be exhaustive. Given infinite tim
and memory, it should be able to find all the ground states
an arbitrary lattice.

The algorithm should use as much information as p
sible. It should use the fact that selecting one edge autom
cally eliminates many other edges, simply because the
plaquettes joined by the edge cannot be linked by any o
edges. It should also use the fact that the number of edge
at least one ground state is a small subset of the total num
of edges.

2. Short description

The algorithm has two parts. The first is preliminary a
the second uses the results of the first to generate all
ground states.

The first part finds all the viable edges: edges that exis
matching solutions of the correct energy. This list of viab
edges is then the only thing that needs to be studied, s
the other edges do not exist in matchings with the corr
ground-state energy.

The second part takes the list of viable edges and syst
atically goes through the possible combinations~those that
connect each plaquette to one and only one other plaqu!
and tests them to see if they correspond to ground sta
Once all the combinations are exhausted, all the gro
states will have been found.

3. Detailed outline of the algorithm

~1! Given L and x, generate realization with randoml
placed bonds.

~2! Find the partition function of this realization:
~a! gives number of ground states,
~b! gives energy of ground states.
~3! Convert this lattice to a matching problem in grap

theory:
~a! frustrated plaquettes→ nodes,
~b! path of unsatisfied bonds between frustrated plaque

→edges.
~4! Construct the list of viable edges~edges that appear in

at least one ground-state matching!:
4-10
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~a! run blossom algorithm to find a matching solution
the correct energy.

~b! add the edges in this matching solution to the list
viable edges.

~c! build up the list of viable edges, one plaquette a
time, until all the edges corresponding to ground states
found.

~i! remove all edges in the list for the current plaque
from the problem.

~ii ! run blossom algorithm to get a new matching solutio
~iii ! if the new matching has the correct energy, add

new edges to the list of viable edges, return to~i! and do it
again.

~iv! if it does not, there are no new edges for th
plaquette. Go to the next plaquette.

~5! Take the list of viable edges and pair up the plaque
until all ground states are found.

~a! sequentially go through the various combinations
edges until every ground state is found.

~i! pick series of edges until each plaquette is matched
with one and only one other plaquette.

~ii ! if matching solution does not have the correct ener
go to ~i!.

~iii ! convert this matching solution to a set of spins a
bonds for each boundary condition. If this corresponds t
ground state, enter it for that boundary condition only.

~iv! return to~i! if some edge combinations remain.
~b! number of possible combinations is manageable,

cause each pick of an edge removes two plaquettes from
list that need to be matched.

~6! When a matching solution is found, it does not nec
sarily correspond to a ground state, so all ground states
kept in memory.

~a! one matching can represent several ground states~A
simple example is a plaquette diagonally separated by
from another plaquette joined by an edge. This repres
two ground states.!

~b! multiple matchings can represent one ground st
~Take the example of four plaquettes in a1 formation linked
together. Many possible matchings represent the s
ground state.!

~c! all ground states are kept in memory, and when a n
matching solution is found, this is compared to ground sta
already found in the system. If it is new, it is added to t
list.

~7! Once the algorithm is done, the number of grou
states found is compared to the number found in step~2! as
a check.

a. Finding all the viable edges

This part of the algorithm uses removal of edges from
matching problem~cutting! to find all the viable edges. I
works by repeatedly cutting all the edges involving a spec
plaquette until all matchings generated are higher energy
that point, all viable matchings contain one of the edges
ready cut.

As an example, suppose we have a 434 lattice with 12
plaquettes and 66 edges. The arrangement of bonds and
trated plaquettes is shown in Fig. 16.
13440
f

a
re

.
e

s

f

p

,

a

e-
he

-
re

ne
ts

e.

e

w
s

e

c
At
l-

us-

We run the blossom program without cutting any edg
and get a ground-state matching with edg
(9,20,23,34,46,63). Edge 9 links plaquettes 1 and 10, so
put edge 9 in our list under both plaquette 1 and plaqu
10. We would do the same for the five other edges in
matching.

We want to find all the edges that appear in ground-s
matchings that connect to plaquette 1. We thus cut edg
and feed the problem back into the blossom algorithm.
get the ground-state matching (1,23,34,49,55,63). Edg
links plaquettes 1 and 2, so we put edge 1 in our list un
both plaquette 1 and plaquette 2. We do the same for
other five edges.

We now cut both edge 9 and edge 1 and feed the re
into the blossom algorithm. We get out the res
(8,20,23,34,49,56), a matching with an energy larger th
the ground-state energy. This means that every ground-s
matching contains either edge 1 or edge 9. We can then
the same for plaquette 2, 3, etc., until we have all the ed
that appear in ground-state matchings, what we call via
edges.

b. Generating all the ground states

Now that we have the list of viable edges, we restrict o
attention to it. All ground states can be found by combini
these edges. We combine these edges such every plaq
has one and only one other plaquette connected to it by
edge.

As an example, consider the 434 example from above.
The set of possible edges, grouped by plaquette, lo

like this
plaquette 1: (1,9)
plaquette 2: (1,20)
plaquette 3: (22,23)
plaquette 4: (22,34)
plaquette 5: (23,39,41,42)
plaquette 6: (39,46,49)
plaquette 7: (46,52,55)
plaquette 8: (34,41,52,60)
plaquette 9: (42,61,63)

FIG. 16. 434 lattice for the algorithm example. Ferromagne
bonds are dark lines and antiferromagnetic bonds are dashed
Frustrated plaquettes are represented by open circles and label
number.
4-11



tin
st
p
s
2
t

he
in

in
io
co
lis
w
h
w

lve
oo
ed

6
6

ne

e
ow
pr
or
an

m
rt
at

w
ca
nc
t
t

h
d
un
o
ll

r.
tl
th

nd
o

al-
or
h
log-
ize
ot

to
ch
um-
ckly
l

n.
n

s
fits
r is
es

und
, we
-

rize
un
-
ree

ood
of
In

m-
ause
the

me
ed

s.
with

J. W. LANDRY AND S. N. COPPERSMITH PHYSICAL REVIEW B65 134404
plaquette 10: (9,49,61,64)
plaquette 11: (20,55,64,66)
plaquette 12: (60,63,66)
We want to generate a matching with six edges. Star

off is easy. We merely pick the first one in plaquette 1’s li
edge 1. Edge 1 involves plaquettes 1 and 2, so we ski
plaquette 3’s list and select edge 22. That involves edge
and 4, so the next highest plaquette is 5. We select edge
but that involves plaquette 3 and is forbidden, so we skip
the next one, which is 39. This continues until all t
plaquettes are accounted for and we get the match
(1,22,39,52,61,66). We would then convert this match
into possible ground states for each boundary condit
Those potential ground states that have consistent spin
figurations and energes are entered into the ground-state

Now we go to the next state. We remove the last t
edges from our current state, giving us (1,22,39,52). T
second to last plaquette list we looked at was 9, so
choose the edge after edge 61. We get 63, which invo
plaquettes 9 and 12. We then skip to plaquette 10 and ch
edge 9. That involves plaquette 1, which is already link
Edge 49 involves plaquette 6 which is taken, and edge
involves plaquette 9 which is already taken. Only edge
involves the empty plaquettes 10 and 11, so we get the
state (1,22,39,52,63,64).

We continue in this manner to get all of the ground stat
If we reach the end of a list for a specific plaquette, we kn
to erase that entry in the current state and move to the
vious plaquette list. If we reach the end of the list f
plaquette 1, we know we have completed the algorithm
found all the ground states.

4. Notes on the algorithm

The algorithm currently is memory limited. The blosso
algorithm and selection of edges for each matching in pa
are both very fast. Eventually, as the number of ground st
grows with the size of the system and the value ofx, the
available memory of the computer is exhausted.

The reason every ground state is stored in memory no
that in certain circumstances, distinct matching solutions
correspond to the same ground state. If these circumsta
were determined and recorded, then only a small subse
relevant ground states would have to be kept, while the o
ers are written to a file. Whenever a matching solution wit
‘‘dangerous’’ edge or edges came up, it could be compare
the small subset of comparable matching solutions or gro
states. It is not clear if this approach is really feasible or n

Finally, certain combinations of edges that automatica
lead to higher-energy matching solutions constantly recu
a list of these could be quickly generated, it should grea
decrease the number of combinations of viable edges
must be explored.

APPENDIX B: GROUND-STATE ALGORITHM
PERFORMANCE

In this section we present the performance of our grou
state algorithm and discuss the steps limiting its perf
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mance. One typically investigates the performance of an
gorithm on a finite lattice by showing its scaling behavi
relative to system size.40 In this instance, such an approac
does not provide much understanding because of the
normal distribution of ground states for a given system s
andx. Any average over such a broad distribution would n
convey much information.

We instead study our algorithm’s performance relative
the number of ground states, which we believe is a mu
better measure of performance. In addition, because the n
ber of ground states of a realization can be generated qui
from the partition function,40 this measure gives a usefu
predictor of time to completion before the algorithm is ru

For all of the following results, the algorithm was run o
a Pentium III 800 MHz machine, with 512 MB of RAM.69

Figure 17 is a plot of the algorithm’s run time versu
number of ground states. The plot also shows power law
of the results for different system sizes. Though the scatte
substantial, it can be seen from the plot that the run tim
remain reasonably well behaved as the number of gro
states increases. Assuming enough memory is available
expect that systems with 108 ground states could be com
pleted in a week of running time.

Figure 18 demonstrates a more useful way to characte
the scaling behavior of our algorithm. Here we plot the r
time versus the number of matchings~sets of edge combina
tions! explored. Results from different system sizes ag
and scale as'O(nm

4/5), wherenm is the number of match-
ings. This measure of system performance is not a very g
predictor, because it is difficult to determine the number
matchings before running the first part of the algorithm.
the fits for both Figs. 17 and 18, runs with very small nu
bers of matches and ground states are not included, bec
there is an initial overhead in computation irrespective of
scale of the problem.

Figures 17 and 18 show data for different lattice sizesL
with the samex50.5. Figure 19 demonstrates that the sa
scaling of algorithm run time with ground states is observ

FIG. 17. Algorithm run time vs the number of ground state
The fits are power law fits to each of the separate data sets
more than 100 ground states.
4-12
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if we vary x and keepL fixed.
The algorithm scales as a power law with number

matchings, because the core of the algorithm~its second
part! runs sequentially through all possible matchings
edges in ground states. We thus expect it to scale asO(nm),
wherenm is the number of matchings.

The algorithm’s scaling with ground states is more co
plicated, precisely because the algorithm deals with ma
ings instead of ground states, except when inserting into
list of ground states, which should go likeO(ngsbc

3/2 ), where
ngsbc is the number of ground states for a given bound
condition. In practice, the number of ground states is sma
than the number of matchings by about an order of mag
tude. Also, since we observe that ground states are split
tively evenly among the boundary conditions in realizatio
with large numbers of ground states, we expectngsbc to be
about one and a half orders of magnitude smaller thannm .

FIG. 18. Algorithm run time vs the number of matchings. T
power law fits yield exponents that agree and give a scaling
O(n4/5). Lattices with less than 100 matchings were excluded fr
the fit because of start-up time costs.

FIG. 19. Algorithm run time as a function of the number
ground states forL510 realizations with variousx values. The
power law fits are to each of the separate data sets.
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Since significantly more work is done only on the groun
state matchings, which require an additional investmen
searches, the interplay between the time for matchings
for the ground-state conversions is nontrivial.

FIG. 20. Algorithm run time vs the fraction of all matching
constructed from viable edges that are ground-state matchi
Small ratios imply long run times.

FIG. 21. Histograms of the ground-state matching ratios for
alizations withL56, 8, and 10. In all cases, at least half of th
realizations had ground-state matching fractions equal to 1. N
the decreasing ground-state matching fractions as the system
increases.

f
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The algorithm performs well only if the ground-stat
matchings are a significant fraction of all possible combin
tions of viable edges. If two distinct systems have the sa
number of ground states, but one has 10 times as m
matchings as the other, their run time will be very differen
We denote those matchings that lead to a ground state
ground-state matchings, and the ratio of ground-state ma
ings to the number of total matchings of viable edges
inversely correlated with the run time of the algorithm. Th
is shown in Fig. 20, a plot of run time versus ground-sta
matching ratio. Realizations with small ground-state matc
ing ratios have large run times, because the algorithm spe
most of its time cycling through matchings that do not yie
ground states.

To illustrate the behavior of the ground-state matchin
we present in Fig. 21 a histogram of the ground-state mat
ing ratios for different lattice sizesL. Realizations with small
ground-state matching ratios occur rarely, but increase in
N

s

G

.

i
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quency with increasing system size. However, even foL
510, over 78% of the configurations have matching rat
greater than 0.1. We thus expect this ratio to remain ap
ciable for somewhat larger system sizes.

The above plots do not show ground-state numbers hig
than 23106, because of memory limitations of our har
ware. The code currently stores all of the ground states w
running to prevent duplication of ground states. With mo
memory, much larger numbers of ground states could be
vestigated relatively quickly with this algorithm, as seen
the scaling above. In addition, if the algorithm could
modified so that it did not require all the ground states to
stored, this memory constraint would be removed. T
would require some cleverness about how matchings
converted into ground states. One could conceive of keep
only a list of ‘‘problematic’’ ground states that correspond
multiple matchings, if they could be determined easily.
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