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Ground states of two-dimensional*=J Edwards-Anderson spin glasses
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We present an exact algorithm for finding all the ground states of the two-dimensional Edwards-Anderson
+J spin glass and characterize its performance. We investigate how the ground states change with increasing
system size and antiferromagnetic bond ratid/e find that the ground-state distribution is log normal and that
its dependence oxis nontrivial. We also study the breakdown of ferromagnetic order and show how perco-
lating paths are created by the overlap of different ground-state solutions.
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[. INTRODUCTION empirically we find that our algorithm runs in a time roughly
linear in the number of ground states. Memory issues limit
The Edwards-AndersofEA) +J spin glas$is a canoni- our current implementation to aboutx2.C® ground states.
cal example of a system with competing interactions thaBecause there are huge variations in the number of ground
give rise to |arge numbers of |0\N-energy states. Despitétates among realizations, the system sizes that we investi-

extensive investigation, the low-energy landscape of thigate are rather small. Though the median number of ground
model is still controversial in both thréd® and two States of a 1810 system in which half the bonds are anti-

dimensiondl-28 ferromagnetic is 19 at this system size 3% of the realiza-
Although the two-dimensional(2D) *+J Edwards- tions have greater than 1P ground states. Therefore,

Anderson model is much simpler than the three-dimensiond'0St of the data presented here is for systems of size 10
case (it does not have a phase transition at nonzerg® 1_|9handdless. ¢ hod is that i d i
temperatur® and individual ground states can be found in a e advantage of our method is that It produces qualita-

time that scales as a polynomial of the system®jzé still tively new information because all the ground states are

has many metastable states and a complex energy Iandscagown explicitly and exactly, so that one can compute in

) L detail the relationships between them. Moreover, these exact
At low temperatures spin glass relaxation times become ver

S ; o : Yesults can be used to validate sampling methods appropriate
long, complicating investigations using standard Montey larger systems

Carlq sgmpling techniqu%’sand also to varying extent more  \ve” use” our method to investigate the paramagnetic-
soph[stlcatlegz sampling ~ methods 5“‘332 as  clustefgrromagnetic phase transition that occurscathe fraction
algorithms™**and multicanonical met_h_od‘ - of antiferromagnetic bonds in the system, is incredsgg*?

For ground-state properties, exploiting optimization algo-Quantitative analysis is complicated greatly by the fact that
rithms that find exact ground states has proved a powerfuhany quantities exhibit large, non-Gaussian variability be-
approach>'#%*3"However, these algorithms find a single tween realizations. Nonetheless, we are able to show how
ground state of a single realization, and one must samplgeadily identifiable groups of spins in the various ground
appropriately from the ground states of each realizafidf®  states together create a percolating path that destroys the fer-
and also perform a reliable realization average to obtain coromagnetic order of the system.
rect results. The paper is organized as follows. Section Il presents the

In this paper we investigate the low-energy properties ofalgorithm, Sec. Il presents data on the distribution of ground
the two-dimensionat- J EA model by finding exacthall the  states, and Sec. IV describes our investigation of the destruc-
ground states of each realization. We check that our enution of ferromagnetic order as the fraction of antiferromag-
meration is exhaustive by comparing the number of groundietic bonds is increased. The results are discussed in Sec. V.
states that are found to exact results for the partition functiof\ppendix A gives a detailed presentation of the algorithm,
obtained using the method of Saul and Kard4f. while Appendix B discusses the performance of the algo-

In the course of developing our algorithm, we made arithm in detail.
series of studies of the distribution of ground states. We find
that the the ground-state distribution is consistent with a log- Il. MODEL AND METHODS
normal distribution and that the mean of the distribution in-
creases with increasing (the fraction of antiferromagnetic
bonds in the systejruntil it saturates for 0.8 x<<0.5. We study the two-dimensional Edwards-Anderson

Though our algorithm is based on an existing polynomial-model! in which nearest-neighbor Ising sping;& +1) on
time algorithm that finds individual ground stafést does  anL XL square lattice interact either via a ferromagnetic or
not run in polynomial time. This is impossible because thean antiferromagnetic coupling. The Hamiltonian is
time just to enumerate the ground states grows exponentially
with system size. Nonetheless, the number of ground states is H=— J. o0 0
vastly smaller than the number of spin configurations, and U

A. Edwards-Anderson model
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FIG. 1. Two ground states of a frustrated plaquette with four
bonds. Ferromagnetic bonds are black lines, while antiferromag-
netic bonds are dashed lines. Every configuration of spins produces FIG. 2. Sample ground state of a spin glass, showing frustrated
at least one unsatisfied boridenoted with a line perpendicular to Plaquettes, unsatisfied bonds, and the corresponding spin and bond
the bond, and there are four minimum energy configurations. configuration.

where the sum(ij) is over all pairs of nearest-neighbor gdges that have the shortest total Ier)gth. This pr_oplem arises
spins. Each bondj; is chosen to be either 1 (ferromagnet- " the context of graph theory and is called tmnimum-
ic) or —1 (antiferromagnetic We designate the fraction of Weight perfect matching problethin solutions of this prob-
antiferromagnetic bonds as x=0 is the Ising ferromagnet €M, €ach node is joined to one and only one other node,
(no disordey, x=0.5 (with equal numbers of ferromagnetic with the smallest_ possible tota_ll W€|g¢W_h|Ch corresponds to
and antiferromagnetic bondss the maximally frustrated (he lowest possible energyFigure 3 illustrates a sample
spin glassimaximum disorder andx=1 is the Ising anti- ground state and its equivalent matching solution.
ferromagnet(no disordey. Our systems range from=0.05 -
to x=0.5 and have periodic boundary conditions. 2. Boundary conditions

References 30 and 44 discuss the relation between spin-
glass ground states and solutions to a graphical matching

) o problem and prove a number of results for planar graphs
Our algorithm for finding all the ground states of the EA e.g., free boundary conditionsin these references, the

model first converts the problem of finding ground states im(ground-state problem is first converted to a matching prob-
a graphical matching problem, as in Refs. 30 and 43. Nextier that can be solved in polynomial tirfi&? This match-
all possible optimal matching solutions of this problem areéjng solution is then shown to correspond always to a spin-
found, and finally, these matchings are converted back im%lass ground state.
spin configurations. For a periodic lattice, the transformation from spins and
bonds to nodes and edges proceeds exactly as in the planar
1. Conversion of energy minimization to a matching problem  case. and the resulting matching problem can be solved in

References 30 and 43 show that the problem of finding #0lynomial time. The issue that distinguishes this problem
ground state for this spin glass model can be converted to om the planar case is the conversion of the matching solu-
matching problem in graph theory. Here, we sketch out thigion back to a ground-state solution. The matching solution
conversion and discuss some subtleties that arise from odipund will not always correspond to a ground-state spin con-
use of periodic boundary conditions. figuration for a given toroidal boundary condition. This com-

A ground state of a spin glass can be described not only iRlication arises because four lattices with four different
terms of spins and bonds, but also as frustrated plaquetté9undary conditions will produce the same matching prob-
and paths of broken bond8In a frustrated system, it is not lem. These four boundary conditions are periodic on all
possible for all bonds to be satisfied simultaneoftyhich ~ sides, antiperiodic on the top and bottom, antiperiodic on the

leads to a natural degeneracy of states. A simple example I8ft and right, and antiperiodic on all sides.

shown in Fig. 1. Boundary conditions can be changed from periodic to an-

We denote plaquettes with an odd number of unsatisfie@iperiodic on anL XL system either by setting;*"= —J;_

bonds as frustrated, while satisfied plaguettes have an even

number of unsatisfied bonds. Frustrated bonds form paths 1 () o

that connect frustrated plaquettes to each other. Because ev- 2
ery frustrated plaquette has an odd number of frustrated L '4 .\.

bonds, it must be the end point of a path. Satisfied plaquettes

either have no path through them or are midpoints in a path. 5 — (5)
This can be seen in Fig. 2, where perpendicular lines have . 5
been added to frustrated bonds to show the paths. [l I 1

o’ O

We identify the frustrated plaquettes as nodes of a graph 3 ()
and the paths as edges with a weight equal to the number of
broken bonds along the path. Ground states have the mini- F|G. 3. Correspondence of a spin-glass ground state to solution
mum number of frustrated bonds, so the problem of finding &f the matching problem. The numbers along each edge of the
spin-glass ground state is also the problem of finding thosenatching solution indicate the weight of that edge.

B. Calculating all the ground states of the EA model
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FIG. 4. The four different boundary conditions for a sample lattice. Ferromagnetic bonds are solid lines and antiferromagnetic bonds are
dashed lines. Bonds on the right and bottom sides wrap around the lattice to reconnect on the other side. Each boundary condition has the
same set of frustrated plaquettes, shown as solid circles.

along the desired edge or by flipping the spins so 8igt’  ibly rare. Moreover, any errors introduced by this truncation
=—S; along the desired edge. In this study, we flip theare identified and eliminated at a later stage when the total
bonds. A sample lattice with the four different boundary con-number of ground states found for a realization is compared
ditions is shown in Fig. 4. to an independent determination of the ground-state degen-

These four lattices have exactly the same frustrategracy.
plaquettes, so they produce the same matching problem. In To construct a list of edges that exist in at least one
this sense, the matching problem does not understand boungminimal-weight matching, which we designate as viable
ary conditions. When a matching solution is converted bacledges, we start with an empty list. The blossom algorithm is
into spins and bonds, it may not correspond to a ground statéin on the unmodified matching problem and a single match-
for a given boundary condition. ing solution is found. Each edge in this solution is added to

We resolve this ambiguity by converting explicitly each the list of viable edges.
matching into a spin configuration and checking the viability ~ To find more viable edges, the nodes are considered suc-
of each spin configuration for each boundary condition. Acessively. For each node, a modified list of edges is created
ground state is only accepted for a given boundary conditiofirom the original list by deleting those known viable edges
if it has a consistent spin configuration. We find numericallyconnecting to the current node. The blossom algorithm is run
that a matching solution always corresponds to a grounden this modified list to find an optimal solution for this new
state solution of at least one boundary condition. problem. If the solution has the correct path len@té., cor-

This subsubsection has described the necessary procesponds to a ground statéhen the new viable edges that
dures for generating all the ground states in the case of péave been found are added to the list of viable edges. The
riodic boundary conditions. The algorithm works perfectly process continues for this node. If the path length of the new

for planar graphs without these procedures. solution is too largd(i.e., does not correspond to a ground
statg, then we know that we have found all the viable edges
3. Generating all optimal matchings associated with this node. The algorithm then proceeds to the

next node in the list. By moving sequentially through the

Our algorithm for finding all the optimal matchings has godes, all viable edges are found.

three parts. The first part finds all edges that make up th
optimal solutions. This part exploits the structure of the o ) )
edges, since the number of edges appearing in the ground D. Determining optimal matchings

states is a small subset of the total number of edges. The The next part of the algorithm uses the list of viable edges
second part takes this subset of edges and combines themttofind all of the optimal matchings. It picks edges system-

find all optimal matchings. The third part converts the opti-atically from the list of viable edges until each node is con-

mal matchings into ground-state configurations. The nexhected by a given edge to one and only one other node. All
section describes our algorithm briefly. More detail, includ-possible combinations of viable edges in which each node is
ing an example, is in Appendix A. incident on exactly one edge are examined.

The algorithm uses Edmonds’ blossom algorittiff Whenever there is this kind of combination of elements,
which finds a single optimal solution to a matching problemthere is a danger of a combinatorial explosion. In this case,
in polynomial time. We use the Concorde implementation ofthe number of matchingécombinations of edgess rela-
the algorithmf4 tively controlled. Section Il B discusses this issue in detail.

C. Finding all edges in all solutions E. Converting matchings to ground states

The algorithm begins by making a list of nodes and pos- All optimal solutions to the matching problem must be
sible edges. All frustrated plaquettes are found and desigsonverted back into ground-state spin configurations. This
nated as nodes. Pairs of nodes that are within a distance ofconversion is nontrivial because one matching solution can
are considered to have edges between them. This restrictimorrespond to many different ground states and the same
controls the combinatorial explosion of possible edges, andround state can be represented by different matchings.
optimal solutions involving weights larger than 5 are incred-Simple examples of this phenomenon can be seen in Fig. 5.
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) o ferent realizations with varying system sizeand antiferro-
L —I -— %O magnetic bond rati. All of these results were obtained
o o from the partition functions of these realizations, generated
using Saul and Kardar’s meth8§These ground-state distri-

® 2 2 butions show large sample-to-sample variations for realiza-
._I_. PR tions with the samé. andx.
% C/) Figure 6 shows four histograms of the number of ground
o @ states for the four different boundary conditions of 3006 re-
alizations ofL =10 lattices withx=0.5. The solid lines on
o the figure are fits to a log-normal distributicfi,>*where the
®; 275 number of realizations with between and m+dm ground
2 states iSG(m; w,o)d(log;o(m)), with

2

2
FIG. 5. The relationship between matching solution is not one to G(Mm;u,0)= A ex [10gso(m) ~ 1] )
one. As shown in the top diagram, two or more different ground a-\/% 207
states can correspond to the same matching solution. In addition, as
seen in the bottom diagram, a single ground state can correspond Kere, i is the most probable value of lggm), o describes
multiple matching solutions. The solid circles are frustratedthe width of the distribution, and is a normalization con-
plagquettes, the thick dark lines are unsatisfied bonds, the opestant. Table | gives the parameter values fronaza‘it with

circles are nodes, and the thin dark lines are edges with lengths a8e errors for the bin heights taken to b(BT whereN,, is
shown. the number of realizations in a given bin. The distributions fit

To resolve these complications, we keep every ground stafe 0g-normal distribution extremely well, and all the param-
we find in memory. Any proposed ground state is checked t&ters of the fit for the four different boundary conditions are
see that it does not correspond to a ground state we ha@nsistent with each other within error bars. o

already found. This log-normal distribution means that the variations in

The other important issue is the role of boundary condithe number of ground states of different realizations are enor-
tions in this conversion from matchings to ground states. Wanous. Sampling a few realizations will not give a meaning-
determine the ground state or ground states from the matcll picture of the behavior of the system. Averages over re-
ing by fixing the value of a single spifin our case, we fix alizations need significant numbers to produce reasonable
the upper left-hand spin as 1). Every other spin follows results, and still may not give sufficient information. Also,
from this initial spin, because we know the specific bonds obhecause the distribution of ground states is so wide, our
the current boundary condition and their status as satisfied @hethods to find ground states and apply perturbations to
unsatisfied. them have wildly varying performance on realizations with
the sameL and x. A few outliers with many ground states
will completely dominate the computation time of all algo-

To check that our algorithm finds every ground state, werithms. A change in thinking is necessary—the concept of an
also generate the partition function of the realizationTat average realization or number of ground states is not neces-
=0. This partition function gives the number and energy ofsarily useful in considering the physics of this system.
the ground states of a given realization. We generate a parti- Figure 6 also demonstrates that»xat 0.5 the boundary
tion function in polynomial time using Saul and Kardar’s condition does not affect the ground-state distribution. All
technique:*°which is a generalization of methods used for future results in this section will be presented for the fully
finding the partition function atT=0 for the two- periodic boundary condition.
dimensional Ising modéf~5! For reasons of computational Next we study how the distribution of ground states varies
efficiency, we consider only. XL lattices whereL is even.  with x. Figures 7 and 8 show how the parameterand o
Because our methods yield ground states not only for latticesharacterizing the mean and width of the distribution change
with regular periodic boundary conditions but also for those
with antiperiodic boundary conditions, we generate four dif- TABLE I. Fits of the boundary condition distributions to a
ferent partition functions for each possible lattice, corre-Gaussian with meap, standard deviatiomr, and amplitudeA. u
sponding to the four different boundary conditions men-ando are given in terms of, the base-10 logarithm of the number
tioned above. of ground states. Boundary condition has little effect on the distri-

We are confident that our algorithm works properly be-bution on ground states.
cause the number of ground states found by our algorithra

F. Partition function

agrees with the partition function result for every realizationBoundary condition % o A
and boundary condition that we have examined. Periodic all 3010.066 1.19%0.047 589 32
IIl. GROUND-STATE DISTRIBUTION Antfper!od!c NS 3.940.065 1.1990.044 58831
Antiperiodic EW 3.950.056 1.18%0.040 59128
Before presenting the results from our algorithm, we firstantiperiodic Al 3.90+0.057 1.20%+0.040 59128

discuss the distribution of numbers of ground states for dif
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FIG. 6. Histograms of the number of ground states for 3006 realizations withO andx=0.5 for the four different boundary
conditions. The solid lines arg? fits to the log-normal distribution, Eq2), with parameters are given in Table I. At this valuexpthanging
boundary conditions have very little effect on the distribution of ground states.

asx is varied between 0 and 0.5. Both the mean and widtlground states witl. at x=0.5. As Fig. 9 shows, increasing
tend to increase witk until they saturate betweex=0.25 the system size moves the ground-state distribution over to
andx=0.3. larger numbers of ground states but does not change the log-
The saturation of the ground-state distributionxat0.3  normal distribution of the states. Again we fit these distribu-
appears to be completely distinct from the breakdown otions to the form of Eq(2). As seen in Fig. 10, the mean of
ferromagnetic order at~0.1 and seems to be relatively in- the ground-state distributions &t=0.5 scales exponentially
sensitive to changes in system size. Since the distribution ofith lattice area.?, u>=a+bL?, with b~0.03. It is because
ground states is essentially unchanged frem0.3 to x b<In 2 that our algorithm finds all ground states much more
=0.5, this suggests that systems in this range of parameteedficiently than an exhaustive search of all configurations.
have no essential physical differences. We also investigate whether the distribution of ground
Finally, we present the variation of the distribution of states is self-averaging,that is, whether the ratio of the
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cautionary note for higher dimensions, where studie4 of Number of ground stotes

>8 are extremely difficujt but thato/u decreases ak . ,
increases folL>8, consistent with self-averaging behavior FIG. 9.. Histograms of th_e number of ground states for realiza-
for the limit L—c°. Data for larger lattices would be ex- Uons of different system sizes=4, 6, 8, 10, 12, and 14 at

- . g ! TR
tremely helpful in determining the behavior of . as the =0.5. The solid ]lnes arg’ fits to log-normal dlst_rlbutlons._The

L parametersu (which describes the mepand o (which describes
system size increases.

the width are defined in Eq(2); they are given in terms of the

. . . . . Sase-10 logarithm of the number of ground states. Increasing sys-
rationalized in terms of the matching problem by noting that, . «i-e increases bofl and .

random arrangements of bonds produce relatively random

arrangements of frustrated plaquettes. If we treat the number_ . : .
of possible edge choices for different plaquettes as rando ariables and assume that they are essentially mdepende_:nt
rom plaquette to plaquette, then the number of total possi-

o bilities is multiplicative, and it is well known that multipli-

- cative random processes lead to log-normal distribu-

tions>2~5* Moreover, since entropy is the logarithm of the

number of accessible configurations, it is natural to expect

logio(m) to be normally distributed. This simple argument

; J ] would also suggest thatL2, but our system sizes are not
large enough to address this question definitively.

o x O
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Pt

, k |
ob ¢ ; % % %% EIJ % qTJ i IV. DESTRUCTION OF FERROMAGNETIC ORDER

¥ ] In this section we investigate the destruction of ferromag-
b . netic order that occurs as the fraction of antiferromagnetic
1 bonds, is increaseld:*2:°6-61

°5 ‘ oo ' oz ‘ 0.6 As Bendisch and collaborators discd8s®! investigating
how the ground-state energy depends on boundary condition
is a powerful method for locating the transition at which

FIG. 8. Plot of the parameter defined in Eq.(2), which is a  f€ffomagnetic order is destroyed. In a system of infinite size,
measure of the width of the log-normal distribution of ground Whenx is less than the transition poirt~0.1, one expects

states, v, the fraction of antiferromagnetic bonds. Data for sys- a!l'the Iowest-engrgy states to occur Wh?n the boundary con-
tems withL =6,8,10 are shown; the qualitative features do not ex-ditions are consistent with ferromagnetic order, while xor

hibit a strongL dependence, except for the overall exponential scal-=>X. , there should be no preference for this type of boundary
ing of the number of ground states with system size. condition. References 59—61 present calculations supporting

o (standard deviation)

x (bond ratio)
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FIG. 12. Three bunches of flippable spins. The flippable spins
are denoted by solid circles and the frustrated bonds by thick lines.

size scaling analysis of our data because we do not expect it
to yield qualitatively new information about the destruction
of ferromagnetic order.

Our algorithm enables us to investigate in detail how the
ground states change when ferromagnetic order is destroyed.
Barahonaet al*? present evidence that long-range order in
the system is related to whether a set of spins with the same

this picture for different nontoroidal boundary conditions. relative orientation irall the ground states spans the system.
Our results obtained by computing the partition function forWe can refine this picture further by noting that the set of
toroidal boundary conditions also support this picture. How-ground states can naturally be subdivided into cluters,
ever, because of our relatively small system sizes, finite-sizashere a cluster is a group of ground states related by a se-
effects in our calculations are large. We did not do a finite-quence of single spin flips, each of which leaves the energy
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L (lattice size)

FIG. 11. Plot of the ratioo/u vs L. This is a test of self-
averaging for the free energy. Note thaftu increases initially and
then begins to fall off ag increases in a roughly linear way.

the same. By definition, all states in the same cluster can be
reached from each other by single spin flips without raising
the energy, whereas ground states in different clusters can
only be reached from each other without raising the energy
by making cooperative flips of multiple spins. A realization’s
ground states may all fall into a single cluster or populate
many distinct clusters. For our systems, the number of clus-
ters is moderate—we have observed up to 12 clusters in a
single 10< 10 realization. It is natural to ask whether the
destruction of ferromagnetic order corresponds to growth of
the number of spins contributing to the individual clusters or
whether the relationship between the clusters plays a vital
role.

To address this question, it is useful to focus on the spatial
relations between the ground states in each cluster. To do
this, we first define a flippable spin as one with an equal
number of satisfied and unsatisfied bonds; all the states in a
cluster are related by sequential flips of flippable spins. We
now introduce the concept of a bunch and define it to be a
group of flippable spins in a given cluster whose flippability
does not depend on the state of other flippable spins in the
system. Figure 12 shows three spin bunches.

The first bunch, spim, is just a single isolated spin. The
second bunch consists of spiBgndC. Note that if spirB is
flipped, then spinC is no longer flippable, and conversely.
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L=10 x = 0.05 L=10 x = 0.1
| L i 2 | _
| ) Y
7. | 1 17
— 7 ’
=T 2
=7
2z ‘ FIG. 13. Three different 10
‘ X 10 realizations atx=0.05, x
! . =0.1=x., and x=0.5. All
! 22 c’
bunches in each cluster are shown

with hatched marks, with different

angles signifying different clus-

ters. Multiple clusters allow

bunches to combine to span the
space and destroy ferromagnetic
order.

7

i

The third bunch consists of spiy E, F, andG. The bunch  multiple clusters is strongly correlated with the destruction
contains all four spins, because is flipped, thenF be-  of ferromagnetism.
comes flippable. IfD and F are both then flipped, thek We can investigate further the bunch overlapxas in-
becomes flippable. creased through the spin-glass transition. We do this by de-
Identification of bunches gives a complete picture of thefining an overlap fraction for our realizations. To do this, we
clusters. Different clusters cannot have all the same bunches. _ o
though a given bunch can appear in more than one clustel LT Y
Bunches are useful because within a given cluster they art I ¥
independent, so their contribution to the ground-state degenc 1 E )
eracy is multiplicative. 2 |
We extract from the complete set of ground states all theZ | x ®
bunches of a system using an algorithm described in Ref. 635
Figure 13 shows bunches from three realizations with
=0.05<X., x=0.1=x., and one withx=0.15>x.. One
can see that the bunch structure for a single cluster does ncc ¢ %
change drastically as one crosses the transition, but when @
>X. multiple clusters exist and the overlap of all the bunches
from the different clusters spans the system. We believe tha
the key element governing the destruction of ferromagnetism <~ 0{1 - oﬁz T T s
is whether the overlap between the different bunches in dif-
ferent clusters is such that the union of all the bunches forms

a path that percolates across the system. Thus, the “rigidity” gG. 14. Plot of the single cluster fraction xsor L=6, 8, and
transition discussed by Barahorea al™ is governed by 10, Error bars are estimated a®,, whereN, is the number of
overlap of the bunches composing different clusters. realizations. Atx=0.05, in the spin-glass phase, the single-cluster

Figure 14 shows the single cluster fraction as a functiorfraction is essentially 1. Asx increases and passes through
of x for L=6, 8, and 10. The number of realizations used tothe ferromagnetic transition, the single-cluster fraction drops
generate this figure is shown in Table Il. The presence oprecipitously.

act

0.5
T
I

e Clust

Q X 0O

-

oo
[00]

x — bond ratio
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TABLE Il. Runs used to generate Fig. 1M, is the number of Nsp— Osp
distinct latticesN, is the number of ground-state realizations, and 0f=n—. 3
Nser is the number of ground-state realizations with a single sb

ground-state cluster. If no spins overlap between the bunches in different clusters,

Osp=Ng, and o;=0. If all the spins between different

- X N Ne Nsor bunches irN different clusters overlappgan impossibility,

6 0.0556 500 515 515 theno; would tend toward 1 abl—oc. The overlap fraction

6 0.0972 500 729 719 0¢ is not defined for a realization with only a single cluster.

6 0.1528 500 1212 940 Figure 15 shows histograms of for variousx values for

6 0.1944 500 1386 888 lattices withL=38. As the number of realizations with mul-

3 0.0547 500 507 506 tiple clusters rises, the overlap fraction for these clusters also

8 0.1016 500 754 661 increases. Not only are there more clusters, but the variabil-

8 0.1484 500 1187 738 ity of the bunches in these clusters also increases.

8 0.2031 281 775 364 Thus, the appearance of multiple clusters for a single re-

10 0.05 500 504 503 alization and the increase of overlaps between the bunches of

10 01 200 317 249 these.clusters both seem to be closely_ correlated to t.he de-

10 0.15 199 452 207 struction of ferromagnetlc Qrder. We believe these_ addltlor_lal

10 02 18 54 16 mark_e_rs of the transition will aid in the understanding of this
transition.

first sum up the number of spins in bunches for each cluster V. DISCUSSION

in the realizationng,. Then, all bunches in all clusters of a hi . . h £ 1h
given realization are overlaid, and the total number of spins, 'S _Paper investigates the ground states of the two-
covered by bunches is counteal,,. We define the overlap d|me|_'1$|onaIiJ Edv_vards—Anderson spin glass. An glgonthm.

fraction o; as that finds systematically all the ground states of this model is

o o
o . : . . S : : . . :
L=8 I L=28
x = 0.0546 | x = 0.1015
o = 1 Realizations . o Sr 93 Realizations 4
.0 .0
S G
N o Noo
© © [ B o © [ 7
[0} 0]
o4 o2
© o | i G oL |
o ¥ o ¥
Nej e}
3 :
; o | z O L .
Y I
o = | . | . | . | o — | . |
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
o o
=) ‘ ; S - - - . ! . ! ;
L =28 L L=28 |
x = 0.1484 | x = 0.2031
0 2+ 449 Realizations 4 o SE 411 Realizations
o £ ]
S o
S NS
o © [ ] 7 o © [ 7
[0 I— — [}
@ 4
5ol ] ® i
5" g
g € ]
= -
z O | | =z -
[e\}
o =/
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

Overlap Fraction

FIG. 15. Plots of the overlap fractiomy for L =8 realizations. As the number of multiple-cluster realizations increases, the structure of
the bunches also grows increasingly complicated as the overlap fraction increases.
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presented. This algorithm is used to investigate the nature d?hysics for hospitality during the preparation of this manu-

the destruction of long-range ferromagnetic order as the fracscript. This work was supported by MRSEC Program of the

tion of antiferromagnetic bonds is increased. National Science Foundation under Award No. DMR-
The running time of our algorithm for a given realization 9808595.

is found empirically to scale roughly linearly in the number

of ground states for the range that we studyp to 10 APPENDIX A: DETAILED DESCRIPTION

ground states Memory is the most serious limitation, be- OF THE GROUND-STATE ALGORITHM

cause to avoid duplication each new ground state must be

compared to those already found. Our method enables the

examination of significantly larger systems than would be These notes are a short description of our algorithm that

accessible by exhaustive enumeration of all states—for exgenerates all of the ground states of an Edwards-Anderson

ample, a system with. =10 has 2°°-10% configurations, 2D spin glass. This algorithm was designed with several

but only 16¢—10 ground states. The advantage of our tech-goals in mind.

nique is even greater when we introduce quantum The algorithm should be relatively simple, so that it is

tunneling®® where the full Hamiltonian of a system with  easy to understand and implement.

=10 is a 2°°x 219 matrix. The algorithm should proceed in a completely determin-
We use our method to investigate the transition at whichstic and systematic way, so there is no way to get off track

ferromagnetism is destroyed as the fractiolof antiferro-  or lose information.

magnetic bonds is increased. By comparing the “rigidity” of ~ The algorithm should be exhaustive. Given infinite time

bonds between different ground-state configurations, weand memory, it should be able to find all the ground states of

show how the appearance of ground-state clusters and tlan arbitrary lattice.

overlap of bunches is intimately connected to the percolative The algorithm should use as much information as pos-

nature of the ferromagnetic-paramagnetic phase transition. sible. It should use the fact that selecting one edge automati-
In general, we find that many quantities exhibit large,cally eliminates many other edges, simply because the two

non-Gaussian variability between realizations. For exampleplaquettes joined by the edge cannot be linked by any other

the number of ground states is well described by a logedges. It should also use the fact that the number of edges in

normal distribution, with the ratio of the width to the mean at least one ground state is a small subset of the total number

of the distribution increasing with system sikeup to the  of edges.

relatively large valug.~8. This relatively large length scale

1. Goals of the algorithm

is unsettling when one keeps in mind the relatively small 2. Short description
sizes that can be investigated numerically in higher . _— -
dimension<:64-67 ¢ y ¢ The algorithm has two parts. The first is preliminary and

The availability of complete information about all the the second uses the results of the first to generate all the

round states provides a new avenue for probing the natu@ound states. _ o
gf the systempat low temperatures, and %ur w%rk can be The first part finds all the viable edges: edges that exist in

extended in many directions. We have investigated how th@atChing solutions of the.correct energy. This list O.f viaple
introduction of quantum tunneling and of coupling to a de_edges is then the only thing that needs to be studied, since

formable lattice affect the low-energy landscape of thethe other edges do not exist in matchings with the correct

model®® and the effects of other physical perturbationsdround-state energy. . .
should be examined. Our work also provides a means for '€ sécond part takes the list of viable edges and system-

stringent validation of other sampling methods that can bé&tically goes through the possible combinatigtiose that
nnect each plaquette to one and only one other plaguette

used to study larger systems. We also note that in the cours® :
of this work we have shown that one can adapt the standa nd tests them to see .'f they correspond to ground states.
matching algorithm to study systems with fully toroidal pe- nce al! the combinations are exhausted, all the ground
riodic and/or antiperiodic boundary conditions. It would be States will have been found.

interesting to compare the effects of changing boundary con-

ditions of this type to those in Ref. 24. 3. Detailed outline of the algorithm

(1) Given L and x, generate realization with randomly
placed bonds.

(2) Find the partition function of this realization:

We gratefully acknowledge L. Saul for providing us with (8 gives number of ground states,
the code of his program for finding the partition function of  (b) gives energy of ground states.
a two-dimensional spin glass and J. Cook and A. Rohe for (3) Convert this lattice to a matching problem in graph
putting the Concorde version of the blossom algorithm in thetheory:
public domain. We also wish to thank Scot Shaw for putting (&) frustrated plaquettes> nodes,
his ARPACKC+ + routines in the public domain. We thank J.  (b) path of unsatisfied bonds between frustrated plaquettes
Brooke, B. DiDonna, S.R. Nagel, T.F. Rosenbaum, and S—edges.
Venkataramani for enlightening conversations and J. Bogan (4) Construct the list of viable edgésdges that appear in
for computer assistance. S.N.C. thanks the Aspen Center fat least one ground-state matching

ACKNOWLEDGMENTS
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(@) run blossom algorithm to find a matching solution of

the correct energy. l @ I @
(b) add the edges in this matching solution to the list of | I
viable edges. e I B

(c) build up the list of viable edges, one plaquette at a E
time, until all the edges corresponding to ground states are : @ @ @

found. b
(2)

(i) remove all edges in the list for the current plaquette i E
from the problem. @ ! @ !
(i) run blossom algorithm to get a new matching solution. ~ }b---—-d4 - !

(iii) if the new matching has the correct energy, add the
new edges to the list of viable edges, returr(ijoand do it
again.

(iv) if it does not, there are no new edges for this
plaquette. Go to the next plaquette.

(5) Take the list of viable edges and pair up the plaquette
until all ground states are found.

(a) sequentially go through the various combinations of
edges until every ground state is found.

(i) pick series of edges until each plaquette is matched up,
with one and only one other plaquette.

(i) if matching solution does not have the correct energy,
go to (i).

(iif) convert this matching solution to a set of spins an

bonds for each boundary condition. If this corresponds to ) .
ground state, enter it for that boundary condition only. We.want to find all the edges that appear in ground-state
(iv) return to(i) if some edge combinations remain. matchings that connect to p_Iaquette 1. We thus cut edge 9
(b) number of possible combinations is manageable, bez_and feed the problem back _mto the blossom algorithm. We
cause each pick of an edge removes two plaquettes from tt t the ground-state matching (1'23'34’49’_55’63) : Edge 1
inks plaquettes 1 and 2, so we put edge 1 in our list under

list that need to be matched.
(6) When a matching solution is found, it does not neces-bOth p_Iaquette 1 and plaquette 2. We do the same for the
sarily correspond to a ground state, so all ground states a&}her five edges.
kept in memory. _ We now cut both edge _9 and edge 1 and feed the result
into the blossom algorithm. We get out the result

(a) one matching can represent several ground stéfes. . .
simple example is a plaquette diagonally separated by on ,20,23,34,49,56), a matchlng with an energy larger than
e ground-state energy. This means that every ground-state

from another plaquette joined by an edge. This represen
two ground sta?te}?. J y g P matching contains either edge 1 or edge 9. We can then do

(b) multiple matchings can represent one ground statethe same for.plaquette 2, 3, etc,, u.ntil we have all the e.dges
(Take the example of four plaquettes inraformation linked that appear in ground-state matchings, what we call viable
together. Many possible matchings represent the sam@d9es:
ground state.

(c) all ground states are kept in memory, and when a new b. Generating all the ground states
matching solution is found, this is compared to ground states Now that we have the list of viable edges, we restrict our
already found in the system. If it is new, it is added to theattention to it. All ground states can be found by combining
list. these edges. We combine these edges such every plaguette

(7) Once the algorithm is done, the number of groundhas one and only one other plaquette connected to it by an
states found is compared to the number found in s2&@s edge.

a check. As an example, consider thex#4 example from above.

o _ The set of possible edges, grouped by plaquette, looks
a. Finding all the viable edges like this

=
®

FIG. 16. 4x 4 lattice for the algorithm example. Ferromagnetic
bonds are dark lines and antiferromagnetic bonds are dashed lines.
Frustrated plaquettes are represented by open circles and labeled by
number.

We run the blossom program without cutting any edges

d get a ground-state matching with edges

(9,20,23,34,46,63). Edge 9 links plaquettes 1 and 10, so we
put edge 9 in our list under both plaquette 1 and plaquette
d10. We would do the same for the five other edges in the
énatching.

This part of the algorithm uses removal of edges from the plaquette 1: (1,9)
matching problem(cutting) to find all the viable edges. It plaguette 2: (1,20)
works by repeatedly cutting all the edges involving a specific plaquette 3: (22,23)
plaquette until all matchings generated are higher energy. At plaquette 4: (22,34)
that point, all viable matchings contain one of the edges al- plaquette 5: (23,39,41,42)

ready cut. plaguette 6: (39,46,49)
As an example, suppose we have &4} lattice with 12 plaquette 7: (46,52,55)
plaquettes and 66 edges. The arrangement of bonds and frus- plaquette 8: (34,41,52,60)

trated plaquettes is shown in Fig. 16. plaguette 9: (42,61,63)
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plaquette 10: (9,49,61,64)
plaquette 11: (20,55,64,66)
plaquette 12: (60,63,66)

10°

10%

PHYSICAL REVIEW B5 134404

R R R
x x=0.5, fit slope 0.71, 300 configurations
o x=0.5, fit slope 0.85, 200 configurations

| & x=0.5, fit slope 1.16,

135 configurations A

We want to generate a matching with six edges. Starting
off is easy. We merely pick the first one in plaquette 1's list, ©
edge 1. Edge 1 involves plaquettes 1 and 2, so we skip tc2
plagquette 3's list and select edge 22. That involves edges ‘<
and 4, so the next highest plaquette is 5. We select edge 2:
but that involves plaquette 3 and is forbidden, so we skip to:
the next one, which is 39. This continues until all the
plaquettes are accounted for and we get the matching
(1,22,39,52,61,66). We would then convert this matching ¢
into possible ground states for each boundary condition.
Those potential ground states that have consistent spin cor g ===
figurations and energes are entered into the ground-state list:

Now we go to the next state. We remove the last two
edges from our current state, giving us (1,22,39,52). The FIG. 17. Algorithm run time vs the number of ground states.
second to last plaquette list we looked at was 9, so wé&he fits are power law fits to each of the separate data sets with
choose the edge after edge 61. We get 63, which involvegiore than 100 ground states.
plaquettes 9 and 12. We then skip to plaquette 10 and choose
edge 9. That involves plaquette 1, which is already linked.

Edge 49 involves plaquette 6 which is taken, and edge 6inance. One typically investigates the performance of an al-
involves plaquette 9 which is already taken. Only edge 64yorithm on a finite lattice by showing its scaling behavior
involves the empty plaquettes 10 and 11, so we get the nevelative to system siz&. In this instance, such an approach
state (1,22,39,52,63,64). does not provide much understanding because of the log-

We continue in this manner to get all of the ground statesnormal distribution of ground states for a given system size
If we reach the end of a list for a specific plaquette, we knowandx. Any average over such a broad distribution would not
to erase that entry in the current state and move to the preonvey much information.
vious plaquette list. If we reach the end of the list for We instead study our algorithm’s performance relative to
plaguette 1, we know we have completed the algorithm anghe number of ground states, which we believe is a much
found all the ground states. better measure of performance. In addition, because the num-
ber of ground states of a realization can be generated quickly
from the partition functiof? this measure gives a useful
predictor of time to completion before the algorithm is run.

The algorithm currently is memory limited. The blossom  For all of the following results, the algorithm was run on
algorithm and selection of edges for each matching in part & Pentium 11l 800 MHz machine, with 512 MB of RAR.
are both very fast. Eventually, as the number of ground states Figure 17 is a plot of the algorithm’s run time versus
grows with the size of the system and the valuexpthe  number of ground states. The plot also shows power law fits
available memory of the computer is exhausted. of the results for different system sizes. Though the scatter is

The reason every ground state is stored in memory now isubstantial, it can be seen from the plot that the run times
that in certain circumstances, distinct matching solutions caremain reasonably well behaved as the number of ground
correspond to the same ground state. If these circumstancegates increases. Assuming enough memory is available, we
were determined and recorded, then only a small subset @fxpect that systems with 4@round states could be com-
relevant ground states would have to be kept, while the othpleted in a week of running time.
ers are written to a file. Whenever a matching solution with a  Figure 18 demonstrates a more useful way to characterize
“dangerous” edge or edges came up, it could be compared tthe scaling behavior of our algorithm. Here we plot the run
the small subset of comparable matching solutions or grountime versus the number of matchingets of edge combina-
states. It is not clear if this approach is really feasible or nottions) explored. Results from different system sizes agree

Finally, certain combinations of edges that automaticallyand scale as- o(nﬁ]/f’), wheren,, is the number of match-
lead to higher-energy matching solutions constantly recur. Ifngs. This measure of system performance is not a very good
a list of these could be quickly generated, it should greatlypredictor, because it is difficult to determine the number of
decrease the number of combinations of viable edges thahatchings before running the first part of the algorithm. In
must be explored. the fits for both Figs. 17 and 18, runs with very small num-
bers of matches and ground states are not included, because
there is an initial overhead in computation irrespective of the
scale of the problem.

Figures 17 and 18 show data for different lattice sikes

In this section we present the performance of our groundwith the samex=0.5. Figure 19 demonstrates that the same
state algorithm and discuss the steps limiting its perforscaling of algorithm run time with ground states is observed

1000

Algorithm Run T
10 100

| Lol Lol Lol L
1000 10* 10° 108 107

0
S
o
S

Number of ground states

4. Notes on the algorithm

APPENDIX B: GROUND-STATE ALGORITHM
PERFORMANCE
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FIG. 18. Algorithm run time vs the number of matchings. The  FIG. 20. Algorithm run time vs the fraction of all matchings
power law fits yield exponents that agree and give a scaling ofonstructed from viable edges that are ground-state matchings.
O(n*9). Lattices with less than 100 matchings were excluded fromSmall ratios imply long run times.
the fit because of start-up time costs.

Since significantly more work is done only on the ground-
state matchings, which require an additional investment of

if we vary x and keepl fixed. , searches, the interplay between the time for matchings and
The algorithm scales as a power law with number oftr the ground-state conversions is nontrivial.

matchings, because the core of the algoritfim second
pard runs sequentially through all possible matchings of

edges in ground states. We thus expect it to scal@(as,), e = [ U _ ¢ 300 reaimatons ' " ™
Wherenm iS the number Of matChingS. % 270 realizations in bin centered at 1
. . . . Nol ]
The algorithm’s scaling with ground states is more com- § =
plicated, precisely because the algorithm deals with match-s ]
. . . . . o0 -
ings instead of ground states, except when inserting into theé’
. : : 312 5
list of_ground states, which should go I|I@(ng§bc), where = O e B e D )
Ngsbc IS the number of ground states for a given boundary 107 0.01 1
condition. In practice, the number of ground states is smaller Ground state matching fraction
than the number of matchings by about an order of magni-
tude. Also, since we observe that ground states are split rela-
. .y . . . ~— T T T T
tively evenly among the boundary conditions in realizations g L = 8, 200 realizations ]
with large numbers of ground states, we expegl,cto be [ o reeteetons o bin centered a1 3
about one and a half orders of magnitude smaller than 8 ]
mS T T T T _E ]
x x=0.1, fit slope 0.54, 200 configurat'ons 2
o x=0.1, fit slope 0.85, 200 configurations o o PR ! ""'_3 MR W 1l
W, |2 x=0.2, fit slope 1, 172 configurations 1 i 10 0.01 1
— & x=0.3, fit slope 1.04, 26 configurations g Ground state motching fraction
© x=0.4, fit slope 1.04, 53 configuraticns = o& 9
> o [0 x=0.5, f1 slope 1.16, 135 configurations X x|
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o O
.E 4 i”s » o U T T T T 7 T
- c L = 10, 135 realizations
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S " 40 100 1000 10* 10° 10° 107
Number of grouad stotes FIG. 21. Histograms of the ground-state matching ratios for re-

alizations withL=6, 8, and 10. In all cases, at least half of the
FIG. 19. Algorithm run time as a function of the number of realizations had ground-state matching fractions equal to 1. Note
ground states fol =10 realizations with varioux values. The the decreasing ground-state matching fractions as the system size
power law fits are to each of the separate data sets. increases.
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The algorithm performs well only if the ground-state quency with increasing system size. However, evenlfor
matchings are a significant fraction of all possible combina= 10, over 78% of the configurations have matching ratios
tions of viable edges. If two distinct systems have the samgreater than 0.1. We thus expect this ratio to remain appre-
number of ground states, but one has 10 times as maryable for somewnhat larger system sizes.
matchings as the other, t_he|r run time will be very different.  The above plots do not show ground-state numbers higher
We denote those matchings that lead to a ground state @8an 2< 10, because of memory limitations of our hard-
ground-state matchings, and the ratio of ground-state maiClyare The code currently stores all of the ground states while
ings to the number of total matchings of viable edges iSnning to prevent duplication of ground states. With more
inversely correlated with the run time of the algorithm. This memory, much larger numbers of ground states could be in-
IS ShO_W” n Flg. 20,_a p_Iot of run time versus grour‘d'St""t";’vestigated relatively quickly with this algorithm, as seen in
matching ratio. Realizations with small ground-state match- ; . . .
ing ratios have large run times, because the algorithm s enége scaling above. In addition, if the algorithm could be

9 g ’ g P modified so that it did not require all the ground states to be

most of its time cycling through matchings that do not yield : . .
ground states. stored, this memory constraint would be removed. This

To illustrate the behavior of the ground-state matchings/ould require some cleverness about how matchings are
we present in Fig. 21 a histogram of the ground-state matcHzonverted into ground states. One could conceive of keeping
ing ratios for different lattice sizels. Realizations with small  Only @ list of “problematic” ground states that correspond to

ground-state matching ratios occur rarely, but increase in freNultiple matchings, if they could be determined easily.
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