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Phase separation and stripes in a boson version of a doped quantum antiferromagnet

Massimo Boninsegni
Department of Physics, San Diego State University, San Diego, California 92182

~Received 29 October 2001; published 12 March 2002!

A theoretical investigation of boson versions of thet-J and t-Jz models on the square lattice is carried out,
by means of Green’s function Monte Carlo simulations. Accurate ground-state energy estimates as a function
of hole doping are obtained, allowing one to investigate the stability of the uniform phase against separation of
the system into hole-rich and hole-free phases. In the bosont-Jz model, such a separation is found to occur for
arbitrarily small values ofJz , at sufficiently low hole doping. Phase separation is suppressed in the bosont-J
model, which features a uniform ground state at any doping, forJ/t&1.5. Relevance of this study to the
corresponding fermion models is discussed. Fermi statisticsenhancesthe tendency toward phase separation; in
particular, phase separation at low doping is predicted in the fermiont-Jz model at anyJz.0. The possible
formation of stripes of holes is investigated for systems featuring both periodic and cylindrical boundary
conditions. No evidence of a striped ground state is found in either thet-J or t-Jz boson models.
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I. INTRODUCTION

The fermiont-J Hamiltonian is defined as

Ĥt-J52t (
^ i j &s

~ ĉi ,s
† ĉ j ,s1H.c.!1J(̂

i j &
~si•sj2

1
4 n̂i n̂ j !. ~1!

The sums run over all pairs of nearest-neighboring~NN! lat-
tice sites;ĉi ,s

† creates an electron with spin projections at

lattice sitei, andsi5
1
2 (abĉia

† sabĉib is the spin operator a
lattice sitei (s is a vector of Pauli matrices!; t is an electron-
hopping matrix element; andn̂i5(sĉi ,s

† ĉi ,s . There is a re-
striction in the Hamiltonian~1! of no double occupation o
any lattice site.

The t-J model describes mobile holes in a quantum an
ferromagnet; in two dimensions, it is believed by some
capture the essential physics of the copper-oxide plane
the doped high-Tc compounds.1 Also intensely studied, in the
same context, is thet-Jz model,2 obtained by replacingsi

•sj by si
zsj

z in Eq. ~1!. The problem of phase separation~PS!
in the ground state of these models is relevant to vari
theories of high-Tc superconductivity, and is also of consid
erable fundamental interest.

The suggestion was made for thet-J model that forJ/t
.0, a state featuring uniform hole density should be u
stable against separation into two phases: one rich in ho
the other hole-free.3 Numerous theoretical calculations ha
been carried out, purporting to provide a quantitative tes
such a prediction; remarkably, however, a decade of inte
work has produced no definite agreement. In spite of its
ceivingly simple appearance, thet-J model has proven be
yond the capability of essentiallyall available quantum
many-body methods. A combination of factors, including t
fermion character of the model, its strong correlation, and
need to obtain ground-state estimates in the thermodyna
limit, limits the effectiveness of even the most powerful tec
niques, including high-temperature expansions,4 Lanczos,5

and stochastic projection methods,6–8 as well as the density
matrix renormalization group.9 This point can be illustrated
0163-1829/2002/65~13!/134403~8!/$20.00 65 1344
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by noting how not only results obtained with different com
putational approaches,4–6,9but even those produced by sim
lar calculations6–8 have given rise to conflicting
interpretations.10

It is sometimes possible to make progress on an intr
table problem, by studying a simplified version of it, with th
aim of gaining qualitative insight; one might then use phy
cal intuition, analogy, and existing theoretical results,
draw at least some general conclusions for the problem
interest. There are, of course, many possible ways of ren
ing thet-J model more tractable, by eliminating one or mo
complicating features; for example, one may resort to
mean-field type description of some of the underlying d
grees of freedom. In this work, the simplification arises fro
a change of quantum statistics of the particles in the mo

Generalized versions of the fermiont-J model, with holes
of arbitrary statistics coupled to fermion spin systems, ha
been investigated by other authors;11 here, however,fully
bosonicversions of both thet-J andt-Jz models are consid-
ered. That a change of quantum statistics, from Ferm
Bose, should simplify a strongly correlated quantum ma
body problem is not obvious; it is so, however, becaus
powerful computational method exists, known as Gree
function Monte Carlo12 ~GFMC!, which allows one to com-
pute ground-state thermodynamic properties of interac
Bose systems, with essentially no approximations. T
method has been utilized, over the past three decade
investigate a wide variety of quantum many-bo
problems.13 While it provides virtually exact results for Bos
systems, its application to fermions is hampered by the w
known sign problem, for which, presently, som
workarounds are available,14 but, it seems fair to state, n
definite solution.

A study is presented here of PS in the ground state
boson versions of thet-J and t-Jz models. The formation of
stripes of holes, a scenario proposed by some authors fo
fermion t-J model,9 is also explored in these Bose Hamilto
nians. Accurate numerical results are obtained using
GFMC method, on square lattices of relatively large size~up
to 1024 sites!. The boson models incorporate much of t
©2002 The American Physical Society03-1
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MASSIMO BONINSEGNI PHYSICAL REVIEW B65 134403
same physics of their fermion counterparts; the theoret
issue is to extract information on the fermion models, ba
on results obtained for the boson systems.

The main conclusions of this work are the following:15

~a! Fermion Hamiltonians are closer to a PS instabil
than their boson counterparts.

~b! In the boson version of thet-Jz model, separation into
hole-rich and hole-free phases occurs, at sufficiently l
hole doping, for arbitrarily small values ofJz /t. It is pro-
posed, based on point~a!, that this conclusiona fortiori
should hold for the fermiont-Jz model.

~c! Phase separation is suppressed in the bosont-J model,
which features a uniform ground state forJ/t&1.5. Contrary
to what is commonly assumed, the physics of thet-J andt-Jz
models differ significantly in the low-doping limit.

~d! No evidence of a striped ground state is ever found
either boson model.

Although the conclusions about PS or stripe format
cannot be directly extended to the fermiont-J model~at least
not in any obvious way!, they show that, if PS or stripes d
indeed occur, Fermi statistics must play a crucial role, i
these effects are not merely the result of a simple ene
interplay.

This paper is organized as follows: in the next section,
models of interest are introduced and motivated; in Sec.
the computational methodology utilized is briefly reviewe
in Secs. IV and V results are presented for PS in the bo
t-Jz and t-J models. In Sec. VI, the basic energetics of fe
mion and boson models are compared, and arguments
offered to the effect that fermion models are closer to a ph
separation instability; this allows one to draw a definite co
clusion on PS in the fermiont-Jz model. The search fo
stripes in both boson models is described in Sec. VII, a
conclusions are presented in the last section.

II. THE MODEL

The goal is to define a boson equivalent of the fermiont-J
~and t-Jz) model. Because thet-J Hamiltonian can be ob-
tained via a strong-coupling expansion of the fermion Hu
bard model,16 a reasonable starting point seems the follo
ing, Hubbard-like Hamiltonian of a mixture of two differen
species of bosons, of equal masses, interacting via an on
repulsive potential:

Ĥo52t(̂
i j &

~ âi
†â j1b̂i

†b̂ j1H.c.!

1V(
i

~ n̂i
21m̂i

2!1U(
i

n̂i m̂i , ~2!

where Ĥo is defined on a square lattice ofN5L3L sites,
with periodic boundary conditions. The hopping integralt, as
well as the on-site potential energiesV and U, are all posi-
tive; âi

† and b̂i
† , are boson creation operators for speciesA

andB at sitei, andn̂i5âi
†âi andm̂i5b̂i

†b̂i are corresponding
number operators. LetNA andNB be the number of particle
for the two species. For definiteness, it is assumed
throughout thatNA5NB<N/2. The particle density is de
13440
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fined asx5(NA1NB)/N, where the hole densityh512x.
The two Bose species play the role of electrons of spin
and down in the fermion Hubbard model; in that case, Pa
principle limits site occupation to up to one particle of
given spin. The same effect can be obtained in Eq.~2! by
settingV5`, i.e., by assuming a hard-core, on-site repuls
between bosons of the same species. Thus, a lattice site
only be doubly occupied by two different bosons. Note th
while there is no clear relationship to high-Tc superconduc-
tivity, Ĥo is neither unphysical nor implausible. WithV5`,
and in the strong-coupling limit (U@t), it reduces to the
following effective Hamiltonian:

Ĥ52t(̂
i j &

~ âi
†â j1b̂i

†b̂ j1H.c.!

2
1

2 (̂
i j &

~Jz@ n̂i m̂j1m̂i n̂ j #1J'P̂i j !, ~3!

whereJz5J'54t2/U and whereP̂i j is an operator exchang
ing a particle of typeA ~B! at sitei with a particle of typeB
~A! at sitej. The Hamiltonian~3! is defined in the subspac
in which no double occupation of sites is possible. This p
cedure, applied to the fermion Hubbard model, leads to
standard fermiont-J model, Eq.~1!, upon neglecting a three
site term, also neglected here. The energy scale is taken
t, henceforth set equal to one. Of interest here is the gro
state of a generalized version of Eq.~3!, in which Jz andJ'

are treated as independent parameters. Specifically, two
ferent cases are considered:~a! Jz5J andJ'50, referred to
as the bosont-Jz model, and~b! Jz5J'5J, referred to as
bosont-J model.

As mentioned above, the fermion versions of these m
els describe the motion of holes in an antiferromagnetic s
background; in thet-Jz model, the spin background is rigid
whereas quantum fluctuations are present in thet-J model.
The t-Jz model is often studied as a simplified version of t
t-J, on the assumption that it should retain most of its ess
tial physics.2,17 This is particularly expected to be the case
the J→0 limit, in which quantum spin fluctuations may no
play too important a role.

III. COMPUTATIONAL METHODOLOGY

The study of the Hamiltonian~3!, for different values of
the parameterJ and as a function of the hole densityh, has
been carried out in this work using standard GFMC. Beca
this is a rather well-established technique, extensively d
cussed in a number of articles,13 implementational details
will not be reviewed here.

The projection operator used isĜ5E2Ĥ, whereE is a
constant which must be>EM , the largest eigenvalue ofĤ;
an upper bound forEM is easily determined. A population o
typically 300 walkers was utilized, which was found to giv
undetectable bias in the estimates, within the statistical
certainties of our calculation.

Just as for any Bose system, no sign problem arises w
the Hamiltonian~3!, as all off-diagonal elements of the pro
3-2
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PHASE SEPARATION AND STRIPES IN A BOSON . . . PHYSICAL REVIEW B65 134403
jection operatorĜ are positive. This allows for a stable a
gorithm and projection times long enough that reliab
ground state estimates can be obtained. A Jastrow m
body wave function was utilized, both as trial and guidan
function:13

C~c!5expF2u(̂
i j &

~ninj1mimj !G , ~4!

whereuc&[un1n2•••nNm1m2•••mN& is a generic configura
tion of the system, specified by the number~0 or 1! of bosons
of either species at every lattice site, andu is a variational
parameter, whose optimal value was adjusted by minimiz
the variational energy estimate provided by the trial sta
Eq. ~4!. Unbiased estimators18 were used for all observables
This is an important aspect, as estimates for observa
other than the energy can often have a significant bias, if
usual ‘‘mixed estimators’’ are adopted.

In order to investigate the occurrence of PS in the grou
state of Eq.~3!, accurate estimates are needed of the grou
state energy per siteE(h) of the uniform phase, as a functio
of the hole concentrationh. Specifically, the system is un
stable against PS below a critical hole concentrationhc if

E~h!>
~hc2h!E~0!1hE~hc!

hc
~5!

for 0<h<hc . If condition ~5! holds for any hole concentra
tion belowhc the system will separate into two phases, o
with hole concentrationhc , the other with no holes. Condi
tion ~5! is clearly equivalent to the presence of a minimu
at hc , of the energy per holee(h), defined as

e~h!5
E~h!2E~0!

h
. ~6!

GFMC simulations are suitable to investigate PS based
Eq. ~5!, for they allow the computation ofE(h) on finite
lattices, where the ground state of Eq.~3! necessarily fea-
tures a uniform hole density.

IV. RESULTS FOR THE t-Jz MODEL

Let us consider first the results obtained withJ'50,
namely for thet-Jz model. This is the simplest Hamiltonia
of a mixture of hard-core bosons, with a NN attraction b
tween unlike species.

Figure 1 shows results for the ground-state energy
hole e(h) ~in units of t) in the bosont-Jz model, as a func-
tion of the hole density, on an 838 lattice, at different values
of Jz5J. With the sole exception of theJ50 case, thee(h)
curves feature a well-defined minimum at a finite hole co
centration, signaling the instability of the homogeneo
phase, which is stable at allh only at exactlyJ50.

Calculations on lattices of different sizes were carried o
32332 being the largest. Figure 2 shows estimates fore(h)
on various lattices, atJ50.1 andJ50.05. Although finite-
size effects are apparent, the presence and the position o
minimum for e(h) at low hole density can be establishe
rather comfortably on an 838 lattice. Extrapolation of the
13440
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results to the thermodynamic limit (L→`) yields estimates
indistinguishable, within statistical errors, from those o
tained on a 32332 lattice.

The lowest value ofJ considered here isJ50.05; asJ
→0, calculations on larger lattices are needed, in orde
establish whether PS occurs. This is because the critical
centration also approaches zero, and reliable numerical
ergy estimates require a sufficient number of holes in
system.

Figure 3 shows the phase diagram of the bosont-Jz
model, constructed using the data obtained in this work. T
dashed line is a fit to the values of the critical concentrat
hc , based on the expressionhc(J)5aAJ, which can be jus-

FIG. 1. Ground-state energy per holee(h), as a function of the
hole densityh, for the Hamiltonian~3!, with J'50 andJz5J ~bo-
son t-Jz model!, at different values ofJ on an 838 lattice. Statis-
tical errors are smaller than symbol sizes. There is a minimum
finite hole density, for all nonzero values ofJ, which signals the
separation of the system into hole-rich and hole-free phases.

FIG. 2. Ground-state energy per holee(h), as a function of the
hole densityh, for the Hamiltonian~3!, with J'50 andJz5J ~bo-
son t-Jz model!, at J50.1 ~upper data points! andJ50.05 ~lower
data points!, and on square lattices of different sizes. Statisti
errors are smaller than symbol sizes.
3-3
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MASSIMO BONINSEGNI PHYSICAL REVIEW B65 134403
tified theoretically in the low doping limit.3 The excellent fit
to the data provides support to the PS scenario.

Of course, all of this evidence is, to some extent, circu
stantial. A numerical calculation such as the one perform
here cannot prove, in a strict mathematical sense, tha
occurs at arbitrarily low values ofJ. At the same time, the
results furnished here arguably provide as robust an evide
of such a conclusion as can be obtained numerically,
strongly correlated many-body Hamiltonians such as
ones considered here.

More important, is that the occurrence of PS at arbitra
low values ofJ can be physically explained based on t
following, simple physical argument: For an arbitrari
small, but finite, value ofJ, the system finds it energeticall
favorable, at sufficiently low-hole doping, to separate in
two phases: one features ‘‘antiferromagnetic’’ order, each
with a boson of typeA (B) being surrounded by NN site
occupied by bosons of typeB (A) and no holes; the othe
phase is rich in holes, which frustrate the staggered o
with their motion. These considerations are completely in
pendent of quantum statistics, and it is therefore reason
to expect a similar scenario in the fermiont-Jz model~more
on this point in Sec. VI!.

V. RESULTS FOR THE t-J MODEL

Let us now examine the physics of the bosont-J model,
that is, the system described by Eq.~3! with J'5Jz5J. The
presence of the exchange term (J') does not complicate sig
nificantly the GFMC calculation; the same wave functio
Eq. ~4!, is used.

PS in this model can be easily observed at relatively la
values ofJ, much like in the fermion model. In this limit, the
system attempts to lower its energy by minimizing the nu
ber of broken antiferromagnetic bonds, and quantum sta
tics is essentially irrelevant.

Figure 4 shows results fore(h) at J53.8; the minimum

FIG. 3. Proposed phase diagram of the bosont-Jz model. Dia-
monds show critical hole densities as a function ofJ. Below the
dashed curve, the system separates into hole-rich and hole
phases. The dashed curve is a fit to the diamonds, obtained u
the expressionhc(J)5aAJ.
13440
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of the curve is ath51 ~no holes!, i.e., there is complete
separation between holes and particles at any hole den
Analytical calculations19 for the fermiont-J model yield a
value of J53.4367 above which such complete PS occu
Such an estimate is based on a comparison of the gro
state energy of the fully phase separated state, with that
gas of bound pairs of electrons (s-wave singlets!. The same
argument carries over to the bosont-J model, withs-wave
pairs formed by two bosons of different species. Numeri
results obtained in this work are consistent with the abo
value ofJ as the threshold for complete PS in the bosont-J
model as well.

As J is decreased, however, there is strong a suppres
of PS in the bosont-J model, both with respect to the boso
t-Jz as well as the fermiont-J models. For example, Fig. 5
shows results atJ52.5; the curve has a minimum at aroun
h'0.08, though its precise location is difficult to pinpoint,
the minimum becomes less and less well defined, as the

ee
ing

FIG. 4. Ground-state energy per holee(h) as a function of the
hole densityh, for the bosont-J Hamiltonian, withJ53.8 on an
838 lattice.

FIG. 5. Ground-state energy per holee(h) as a function of the
hole densityh, for the bosont-J Hamiltonian, withJ52.5 on an
838 ~filled diamonds! and on a 32332 ~open circles! lattice.
3-4
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PHASE SEPARATION AND STRIPES IN A BOSON . . . PHYSICAL REVIEW B65 134403
tice size is increased.21 In order to find a similar value ofhc
for the bosont-Jz model, one needs to consider values oJ
as low as 0.05~see Fig. 2!, confirming the strong suppressio
of PS in the bosont-J model, with respect to the bosont-Jz .
In the fermion model, the critical hole density atJ52.5 is
estimated6 at '70%, i.e., the suppression of PS in the bos
t-J model is clear and significant even in comparison to
fermion equivalent. In Fig. 6 the quantitye(h) is shown for
both the bosont-J and t-Jz models, atJ50.8 andJ50.1.
Whereas, in thet-Jz model, PS occurs at lowh, the mono-
tonic behavior ofe(h) for the t-J model indicates that the
uniform phase is stable at all hole concentrations.

Note how, forJ50.1, ath*0.2 the estimate fore(h) is
essentially identical in both models. This is in agreem
with the generally held belief that, at low values ofJ, quan-
tum fluctuations associated to the exchange part of Eq.~3!
should not play an important role. However, at sufficien
low hole density the presence of the exchange term ren
the physics of the two modelsqualitatively different.

One may understand the different behavior of thet-Jz and
t-J models, in the low doping limit, based on the ‘‘string
picture.2 In the t-Jz model, a hole leaves behind, in its m
tion, a string of bosons of either species, displaced by
lattice site. Thus, in thet-Jz model the separation of th
system into hole-rich and hole-free phases becomes ener
cally advantageous, at low hole density, as a way to limit
damage caused by the holes to the antiferromagnetic o
In the t-J model, however, quantum fluctuations associa
with the J' term of Eq.~3! mend the damage due the ho
motion, restoring local order.20 Again, these consideration
are completely independent of quantum statistics, i.e., ap
to the fermion models as well.

An analysis of the results obtained on an 838 lattice
suggests that the ground state of the bosont-J model should
feature a uniform phase~no PS! at all h for J&1.5. In other
words, a finite valueJcr of J exists, approximately equal t
1.5, below which the ground state is uniform at all dopin
In principle, of course, this result should be confirmed b

FIG. 6. Ground-state energy per holee(h) as a function of the
hole densityh, for the bosont-Jz ~boxes! and bosont-J model
~diamonds!, with J50.8 ~upper curves! andJ50.1 ~lower curves!,
on an 838 lattice. Statistical errors are smaller than symbol siz
13440
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set of calculations carried out for much larger lattices. T
was not pursued in this work, however, because the case
a strong suppression of PS in the bosont-J model, with
respect to both the bosont-Jz and the fermiont-J models
seems solid, regardless of whetherJcr is finite or not; this is,
in our view, the relevant physical conclusion.22 It should also
be noted that the accurate computation ofe(h) at low h
becomes problematic on large lattices, even in the absenc
the sign problem. This is because the subtraction of two la
numbers is required, each one with a relatively large ass
ated uncertainty.

VI. COMPARISON OF FERMI AND BOSE HAMILTONIANS
AND IMPLICATIONS FOR PHASE SEPARATION

What do these results suggest, regarding PS in the
mion t-Jz and t-J models ? Obviously, great care must b
exercised in assessing the relevance of any boson mod
its fermion counterpart.

Let us begin with thet-J model. Broadly speaking, PS
between hole-rich and hole-free phases is clearly obser
at hole densities*0.05, only at relatively large values o
J (*2.0). This is in contrast with the fermiont-J model, for
which practically all theoretical studies predict PS, at the
low hole densities, at considerably lower values ofJ ~for J
less than 1 in most numerical studies!.

Furthermore, numerical results obtained here suggest
the uniform phase is thermodynamically stable, in the bo
model, for J,1.5. On the other hand, for the fermiont-J
model most theoretical investigations7,8 yield estimates of
Jcr,1, the highest4 being;1.2, the lowest being zero.6 All
of this suggests that in the fermion model the tendency
hole PS is enhanced, with respect to the boson model.

This point can be illustrated by comparing estimates
the ground-state energy per site,EB(h) andEF(h), as a func-
tion of hole concentration, for the Bose and Fermi cases.
is signalled by a negative curvature of this function.23 For
both thet-J and thet-Jz case, it isEB(h)<EF(h), i.e., the
Bose energies are strict lower bounds for the Fermi energ
Also, EB(0)5EF(0) and EB(1)5EF(1), i.e., at zero and
full doping the distinction between Fermi and Bose statist
disappears, in these models. An upper bound for bothEB(h)
and EF(h) is provided by the energy of the fully separate
state @EPS(h)#, in which the two phases contain, respe
tively, no holes and no particles. BecauseEPS(h) has zero
curvature, in general the curvature ofEB(h), at low h, will
be greater than that ofEF(h), i.e., the fermion model will be
closer than the boson to a PS instability. This is notewort
as it seems counterintuitive. Fermi statistics, which cause
effective repulsion among particles, is normally assumed
favor mixing, i.e., demote PS.

As an example, Fig. 7 shows bothEB(h) andEF(h), for
the t-J model, atJ51, as well as the energy of the full
separated state~dotted line!. Estimates for the fermion cas
are taken from several numerical studies, all based
GFMC.6,8,24 The curvature at lowh is clearly very different
for the two cases, much greater for bosons than for fermio
It seems reasonable to expect that this should be the ca
any value ofJ. In both cases~boson and fermion! there is a

.

3-5
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MASSIMO BONINSEGNI PHYSICAL REVIEW B65 134403
competition between the minimization of the number of b
ken ‘‘antiferromagnetic’’ bonds, which promotes hole clu
tering, and thus PS at largeJ, and the delocalization of the
holes, which favors the uniform phase. However, the
change energy increases, in the fermion case, the energy
of injecting holes in the antiferromagnetic backgroun
thereby rendering the uniform phase less competitive tha
the boson system, for a given value ofJ.

The above considerations do not allow one to draw a
finitive quantitative conclusion regarding PS in the fermi
t-J model. Let us, however, consider the fermiont-Jz model.
No quantitative study of its energetics, at finite hole conc
tration, has been carried out so far. Because PS, at s
ciently low h, is observed for arbitrarily small values ofJ, in
the boson Hamiltonian, it willa fortiori occur in the fermion
t-Jz model, at the same physical conditions. Moreover,
values of the critical hole concentrations below which
occurs in the boson model should provide lower bounds
the corresponding concentrations in the fermion case.
example, looking at Fig. 1 one may expect that, atJ50.4,
the uniform phase will be stable at hole concentratio
*0.25; atJ50.2, the critical hole concentration is*0.15.
These values ofJ and hole concentrations are well within th
so-called physical range, in which thet-Jz model is believed
to capture some of the essential physics of the cuprate su
conductors. Based on the results presented here, only at
small values ofJ (&0.05) is the uniform phase expected
be stable, in the fermiont-Jz model, at values of hole dopin
(;0.1) for which superconductivity is experimentally o
served.

VII. STRIPES

The formation of ‘‘stripes’’ of holes along a lattice row~or
column! has been observed in numerical simulations of
t-J model based on density-matrix renormalization gro

FIG. 7. Ground-state energy per siteE(h), as a function of the
hole densityh, for the boson~solid line! and fermion~diamonds!
t-J Hamiltonian, withJ51. Results for the fermion case are fro
Refs. 6 and 24. The dotted line corresponds to a fully phase s
rated system. Statistical errors are smaller than the diamonds
are of the order of 0.001 for the solid line.
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~DMRG!.9 Some analytical studies of the fermiont-Jz model
have also supported the stripe hypothesis.25 Other numerical
studies, however, based upon different methods, have fa
to provide the same evidence,26 and this prediction remains
controversial.

There is no agreement as to what energy mechan
should promote the formation of stripes of holes, nor wh
the specific role of quantum statistics should be. It appe
appropriate, therefore, to investigate stripe formation in
boson models as well.

An extensive search for stripes was carried out, in t
work, for both the bosonict-J and t-Jz models, at hole con-
centrationsh50.125 andh50.250. A simple way of detect
ing the occurrence of stripes, is to histogram the hole oc
pation of rows~columns! in the ground state, and compare
with what one would expect based on random hole pla
ment. Generally speaking, stripe formation should be s
naled by a significantly greater than random probability t
~a! empty rows are present, and~b! numbers of holes greate
than average occupy the same row. This procedure rende
possible, in principle, to observe stripe formation even
periodic boundary are utilized.

Figure 8 shows histograms of occupation, by number
holes, of the rows~columns! of a 32332 lattice, with peri-
odic boundary conditions, in the bosont-J model, at a hole
density of 0.125. Results are shown for two values ofJ,
namely J51,2; for comparison, the fractional occupatio
that one would observe if holes were randomly plac
throughout the lattice is also shown. The first thing to
noticed is the similarity of the results for the two differe
values ofJ. In fact, results for several other values ofJ, in
the interval 0.5<J<2.5 were obtained, essentially identic
to those shown in the figure. Also, results for thet-Jz model
are found to be practically indistinguishable than those
the t-J.

The probabilityP( l ), for a cluster ofl holes to occupy the
same row~column!, is found to be significantly greater tha

a-
nd

FIG. 8. Fractional occupation by holes of rows~columns! of a
32332 lattice, in the ground state of the bosont-J model. The hole
density is 0.125~128 holes!, andJ51 ~white columns! and 2~gray
columns!. Statistical errors are typically of the order of 1%. Da
columns correspond to random placement of holes in the lattic
3-6
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random for l 53,4,5, and lower than random for all othe
values ofl. This does not seem to support the stripe scena
given that the average numbers of holes per row~column!, in
the case considered, is 4; also noteworthy is the fact tha
probability of observing empty rows~columns! is actually
lower than random. The results of Fig. 8 suggest a ra
uniform hole distribution, with small fluctuations around th
average of the number of holes per row, or column. T
results obtained ath50.250 are qualitatively similar, i.e.
they provide no evidence of stripe formation.

In order to compare results more directly with those o
tained in Ref. 9, simulations on rectangular lattices~e.g., 4
324) with cylindrical boundary conditions were also carri
out. Because translational invariance is broken, one can
this case, observe directly the formation of stripes by look
at the hole density along the direction in which open bou
ary conditions are applied.9 It is interesting to note that thes
simulations too failed to provide any evidence of stripe f
mation. On the one hand, this supports the conclusion
the ground state of the bosonic models is not striped. At
same time, it suggests that the mere use of open boun
conditions along one direction is insufficient to stabili
stripes.

VIII. CONCLUSIONS

Boson versions of thet-J andt-Jz models have been stud
ied in this work. Although the main motivation was to extra
some information about PS and stripes in the correspon
fermion models, it should be remarked that the phase
gram of isotopic Bose mixtures is certainly of fundamen
interest and relevance to various areas of physics.

The Bose Hamiltonians studied here are not directly
lated to any known high-Tc compound ~to the author’s
knowledge!, but can be studied by means of Green’s funct
Monte Carlo without sign problem. This allows one to obta
robust numerical results, difficult to obtain for the fermio
models, which have been studied extensively, during the
decade, as simple archetypal models of high-Tc supercon-
ductivity.

By studying the physics of the boson systems, interes
physical conclusions may be inferred, some relevant to
fermion models as well. Perhaps the most important con
sion is that a commonly held assumption, namely that thet-J
andt-Jz models should feature qualitatively similar behavi
is in fact not valid at low hole density, where the two mode
display rather different behavior. In particular, PS is mu
more prominent in thet-Jz than in thet-J model.

Another interesting conclusion is that the fermion mod
are closer to a PS instability than their boson counterpa
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This allows one to predict that PS between hole-rich a
hole-free phases will occur, in the fermiont-Jz model, at
arbitrarily small values ofJz , for sufficiently low hole con-
centration. The critical hole concentrations found in the b
son t-Jz Hamiltonian, which are lower bounds for the corr
sponding hole concentrations in the fermiont-Jz , suggest
that PS is very robust in this model, including at values oJ
and hole concentrations considered appropriate to highTc
superconductivity. This may therefore raise some questi
about the fermiont-Jz model as a realistic model of the high
Tc compounds. On the other hand, this study provides
definitive conclusion for the fermiont-J model, regarding PS
in the physically relevant region.

An aspect of the boson models that was not conside
here, but may have some relevance in the understandin
the phase diagram of the fermion models as well, is the
mation of pairs of holes. There is in principle no reason w
two holes may not form a bound state in the bosont-J
model, in some range of values ofJ; an interesting issue
arises of whether an intermediate phase of hole pairs m
exist, between the uniform and phase separated phases.
problem, relevant to some proposed theoretical scenario
high-Tc superconductivity,10 will be addressed in future
work. A study of hole binding must be carried out in theh
→0 limit, and is therefore more challenging than one
finite hole density.

An extensive search for stripe formation in the bos
models has been carried out, at hole concentrations of 0
and 0.250. None of the simulations performed in this wo
have provided any evidence of stripes, in a wide range
model parameters. Thus, if stripes do indeed form in
fermion models, they are, much like PS, a direct con
quence of Fermi statistics, and not of a simpler energy in
play. In particular, stripes have been alleged to form, in
fermion models, as a result of the attraction of bound pairs
holes.27

A final remark: since the bosonict-J model can be studied
by GFMC with no sign problem, it may be worthwhile t
obtain results for it also using the other methods that h
been used to investigate the fermion model, such as h
temperature expansion, or DMRG. This may provide an
biased comparison of the reliability of the various tec
niques.
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