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Phase separation and stripes in a boson version of a doped quantum antiferromagnet
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A theoretical investigation of boson versions of thé andt-J, models on the square lattice is carried out,
by means of Green’s function Monte Carlo simulations. Accurate ground-state energy estimates as a function
of hole doping are obtained, allowing one to investigate the stability of the uniform phase against separation of
the system into hole-rich and hole-free phases. In the bbSgmodel, such a separation is found to occur for
arbitrarily small values 08,, at sufficiently low hole doping. Phase separation is suppressed in the bdson
model, which features a uniform ground state at any dopingJfos1.5. Relevance of this study to the
corresponding fermion models is discussed. Fermi statistibanceshe tendency toward phase separation; in
particular, phase separation at low doping is predicted in the fertalgrmodel at anyJ,>0. The possible
formation of stripes of holes is investigated for systems featuring both periodic and cylindrical boundary
conditions. No evidence of a striped ground state is found in eithet-gher t-J, boson models.
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[. INTRODUCTION by noting how not only results obtained with different com-
putational approachés®°but even those produced by simi-
The fermiont-J Hamiltonian is defined as lar calculation§® have given rise to conflicting

interpretationg?
- At oA 1a A It is sometimes possible to make progress on an intrac-
Mo _t<;>s (CisCjsTH.C) +J<i2j) (s-s=znin)). () taple problem, by studying a simplified version of it, with the
aim of gaining qualitative insight; one might then use physi-
The sums run over all pairs of nearest-neighbofity) lat-  cal intuition, analogy, and existing 'theoretical results, to
tice sites;f:iTs creates an electron with spin projectisrat Qraw at least some general conclusmns_for the problem of
. Lo 1 ~t ~A . interest. There are, of course, many possible ways of render-
lattice sitei, ands =32 ,4C;,0,4Cig IS the spin operator at

latti A Pauli ) ; | ing thet-J model more tractable, by eliminating one or more
attice sitei (o is a vector of Pauli matricgst is an electron- complicating features; for example, one may resort to a

hopping matrix element; and; ==l C; 5. There is a re- mean-field type description of some of the underlying de-
striction in the Hamiltoniar(1) of no double occupation of grees of freedom. In this work, the simplification arises from
any lattice site. a change of quantum statistics of the particles in the model.
Thet-J model describes mobile holes in a quantum anti- ~ Generalized versions of the fermitl model, with holes
ferromagnet; in two dimensions, it is believed by some toof arbitrary statistics coupled to fermion spin systems, have
capture the essential physics of the copper-oxide planes @feen investigated by other authdtshere, howeverfully
the doped higtF, compounds.Also intensely studied, in the pbosonicversions of both the-J andt-J, models are consid-
same context, is the-J, model? obtained by replacing  ered. That a change of quantum statistics, from Fermi to
-5 by s{s in Eq. (1). The problem of phase separati®S  Bose, should simplify a strongly correlated quantum many-
in the ground state of these models is relevant to variousody problem is not obvious; it is so, however, because a
theories of hight, superconductivity, and is also of consid- powerful computational method exists, known as Green’s
erable fundamental interest. function Monte Carl®& (GFMC), which allows one to com-
The suggestion was made for thd model that forJ/t pute ground-state thermodynamic properties of interacting
>0, a state featuring uniform hole density should be un-Bose systems, with essentially no approximations. This
stable against separation into two phases: one rich in holesjethod has been utilized, over the past three decades, to
the other hole-freé Numerous theoretical calculations have investigate a wide variety of quantum many-body
been carried out, purporting to provide a quantitative test oproblems:® While it provides virtually exact results for Bose
such a prediction; remarkably, however, a decade of intensgystems, its application to fermions is hampered by the well-
work has produced no definite agreement. In spite of its deknown sign problem, for which, presently, some
ceivingly simple appearance, thel model has proven be- workarounds are availabfé,but, it seems fair to state, no
yond the capability of essentiallpll available quantum definite solution.
many-body methods. A combination of factors, including the A study is presented here of PS in the ground state of
fermion character of the model, its strong correlation, and théoson versions of theJ andt-J, models. The formation of
need to obtain ground-state estimates in the thermodynamatripes of holes, a scenario proposed by some authors for the
limit, limits the effectiveness of even the most powerful tech-fermion t-J model? is also explored in these Bose Hamilto-
niques, including high-temperature expansibrisanczos,  nians. Accurate numerical results are obtained using the
and stochastic projection methdtid as well as the density- GFMC method, on square lattices of relatively large iz
matrix renormalization groupThis point can be illustrated to 1024 sites The boson models incorporate much of the
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same physics of their fermion counterparts; the theoreticdined asy=(Na+Ng)/N, where the hole densithi=1— y.
issue is to extract information on the fermion models, based’he two Bose species play the role of electrons of spin up

on results obtained for the boson systems. and down in the fermion Hubbard model; in that case, Pauli
The main conclusions of this work are the followity: principle limits site occupation to up to one particle of a
(a) Fermion Hamiltonians are closer to a PS instabilitygiven spin. The same effect can be obtained in &.by

than their boson counterparts. settingV =, i.e., by assuming a hard-core, on-site repulsion

(b) In the boson version of thied, model, separation into between bosons of the same species. Thus, a lattice site can
hole-rich and hole-free phases occurs, at sufficiently lowonly be doubly occupied by two different bosons. Note that,
hole doping, for arbitrarily small values &, /t. It is pro-  while there is no clear relationship to high-superconduc-

posed, based on poire), that this conclusiora fortiori  tjvity, H, is neither unphysical nor implausible. With= o,

should hold for the fermion-J, model. - and in the strong-coupling limitl{>t), it reduces to the
(c) Phase separation is suppressed in the bosbmodel,  following effective Hamiltonian:

which features a uniform ground state fht=<1.5. Contrary
to what is commonly assumed, the physics ofttdeandt-J,

models differ significantly in the low-doping limit. H= —tz (EAi;rEAiﬁBiTB,--I- H.c)
(d) No evidence of a striped ground state is ever found in )
either boson model. 1 . R
Although the conclusions about PS or stripe formation 3 % (I nim;+min; ]+ 3, Pyy), 3

cannot be directly extended to the fermied model(at least

not in any obvious way they show that, if PS or stripes do
indeed occur, Fermi statistics must play a crucial role, i.e.
these effects are not merely the result of a simple energ
interplay.

whereJ,=J, =4t?/U and Wherdsij is an operator exchang-

ing a particle of typeA (B) at sitei with a particle of typeB

A) at sitej. The Hamiltonian(3) is defined in the subspace
This paper is organized as follows: in the next section, thdn Which no QOubIe occupati_on of sites is possible. This pro-

models of interest are introduced and motivated; in Sec. ”l,cedure, apphgd o the fermion Hubbard mode!, leads to the

the computational methodology utilized is briefly reviewed;s.tano'"’erI fermion-J model, Eq(1), upon neglectlng a three-

in Secs. IV and V results are presented for PS in the bosofite term, also neglected here. The energy scale is taken to be

t-J, andt-J models. In Sec. VI, the basic energetics of fer-b henceforth set equal to one. Of interest here is the ground

mion and boson models are compared, and arguments aféte Of a generalized version of H§), in whichJ; andJ,
offered to the effect that fermion models are closer to a phasg'® treated as independent parameters. Specifically, two dif-
separation instability: this allows one to draw a definite con-/€"€Nt cases are consideréd JZ:‘]_a”d;]izo' referred to
clusion on PS in the fermion-J, model. The search for S the bosori-J, model, and(b) J,=J, =J, referred to as

stripes in both boson models is described in Sec. ViI, and©Sont-J model. , _
conclusions are presented in the last section. As mentioned above, the fermion versions of these mod-

els describe the motion of holes in an antiferromagnetic spin
background; in the-J, model, the spin background is rigid,
whereas quantum fluctuations are present inttdemodel.
The goal is to define a boson equivalent of the ferntidn ~ Thet-J, model is often studied as a simplified version of the
(andt-J,) model. Because the-J Hamiltonian can be ob- t-J, on the assumption that it should retain most of its essen-
tained via a strong-coupling expansion of the fermion Hub-ial physics®” This is particularly expected to be the case in
bard modef® a reasonable starting point seems the follow-the J—0 limit, in which quantum spin fluctuations may not
ing, Hubbard-like Hamiltonian of a mixture of two different play too important a role.
species of bosons, of equal masses, interacting via an on-site

repulsive potential: 1. COMPUTATIONAL METHODOLOGY

Il. THE MODEL

N 2ta L RTR The study of the Hamiltoniak3), for different values of
Ho= t(ij) (73, +bib;+H.c) the parameted and as a function of the hole denstty has
been carried out in this work using standard GFMC. Because
this is a rather well-established technique, extensively dis-
cussed in a number of articlédimplementational details

~ will not be reviewed here.

whereH, is defined on a square lattice bf=L XL sites, The projection operator used G=E—H, whereE is a
with periodic boundary conditions. The hopping intedrals constant which must be-E,, , the largest eigenvalue ét:

well as the on-site potential energi¥sand U, are all posi- : . ) :

At ~t , an upper bound foE,, is easily determined. A population of
tive; aj andbj’, are boson creation operators for spedles  ypjcally 300 walkers was utilized, which was found to give
andB at sitei, andni:ai’rai andmizb?bi are corresponding undetectable bias in the estimates, within the statistical un-
number operators. L&, andNg be the number of particles certainties of our calculation.

for the two species. For definiteness, it is assumed all Just as for any Bose system, no sign problem arises with

throughout thatNy,=Ng=<N/2. The particle density is de- the Hamiltonian(3), as all off-diagonal elements of the pro-

VS R+ U A, @
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jection operatoré are positive. This allows for a stable al- 1 -
gorithm and projection times long enough that reliable - _-'E-
ground state estimates can be obtained. A Jastrow many- 4| _-" .:.E'g.
. s . . - gd §
body wave function was utilized, both as trial and guidance L Ehy 3
. 13 L n ] EE §§ o
function: at m2ed
A _...II.. gun” o? §§
= [ F T L L) g0 o] e §§
= (o] [
‘I’(c)zexr{—uz (minj+mmy) |, (4) ° LIPS 30 20 o
i -2 'EEEEEEEEEEEEO:)C:(:)?’ 8% |;
where|c)=|n;n,- - -nym;m,- - -my) is a generic configura- oo, . .;39.‘ 08 m
tion of the system, specified by the numk@or 1) of bosons 3 ®e ‘;oe‘f o
of either species at every lattice site, amds a variational 0009 4
parameter, whose optimal value was adjusted by minimizing [ e ¢
the variational energy estimate provided by the trial state, -4 La2a . . . : . 4 4
Eq. (4). Unbiased estimatof¥were used for all observables. 00 01 02 03 04 05 06 07 08 09 10
This is an important aspect, as estimates for observables Hole Density

other than the energy can often have a significant bias, if the
usual “mixed estimators” are adopted. FIG. 1. Ground-state energy per halgn), as a function of the

In order to investigate the occurrence of PS in the groundhole densityh, for the Hamiltonian(3), with J, =0 andJ,=J (bo-
state of Eq(3), accurate estimates are needed of the groundsont-J, mode), at different values of on an 8<8 lattice. Statis-
state energy per si(h) of the uniform phase, as a function tical errors are smaller than symbol sizes. There is a minimum at
of the hole concentratioh. Specifically, the system is un- finite hole density, for all nonzero values &f which signals the

stable against PS below a critical hole concentratigif separation of the system into hole-rich and hole-free phases.
Elh= (h¢=h)E(0) +hE(h,) . results to the thermodynamic limit.(~=) yields estimates
(h)= h, 5 indistinguishable, within statistical errors, from those ob-

» tained on a 3X 32 lattice.
for 0O<hs<nh,. If condition (5) holds for any hole concentra- The lowest value ofl considered here i9=0.05: asJ

tion belowh, the system will separate into two phases, one_, g calculations on larger lattices are needed, in order to
with hole concentratiot, the other with no holes. Condi- ggtaplish whether PS occurs. This is because the critical con-
tion (5) is clearly equivalent to the presence of a minimum, cenration also approaches zero, and reliable numerical en-

athc, of the energy per hole(h), defined as ergy estimates require a sufficient number of holes in the
_ system.
e(h):w_ (6) Figure 3 shows the phase diagram of the bosalh
h model, constructed using the data obtained in this work. The

GFMC simulations are suitable to investigate PS based OHashed line is a fit to the values of the critical concentration
Eq. (5), for they allow the computation oE(h) on finite . Pasedon the expressibg(J) = a\J, which can be jus-

lattices, where the ground state of H§) necessarily fea-

tures a uniform hole density. 29 5% o 6x16 0 " 2x2o
IV. RESULTS FOR THE t-J, MODEL 3.0 2
o]
. . . . 4
Let us consider first the results obtained wilh=0, 311 Iy g
namely for thet-J, model. This is the simplest Hamiltonian = ® e 8 o B
of a mixture of hard-core bosons, with a NN attraction be- 3 35 | 3 8 o ]

tween unlike species. @
Figure 1 shows results for the ground-state energy per ;41
hole e(h) (in units oft) in the bosort-J, model, as a func-

| 20]

tion of the hole density, on an>88 lattice, at different values a4} =005 g
of J,=J. With the sole exception of thé=0 case, the(h) ' 9 8 g e
curves feature a well-defined minimum at a finite hole con- 58 8

centration, signaling the instability of the homogeneous '3":6,05 0.'10 0.'15 0_;30 0.25
phase, which is stable at dilonly at exactlyJ=0.

Calculations on lattices of different sizes were carried out,
32x 32 being the largest. Figure 2 shows estimatess(t) FIG. 2. Ground-state energy per hagh), as a function of the
on various lattices, al=0.1 andJ=0.05. Although finite-  hole densityh, for the Hamiltonian(3), with J, =0 andJ,=J (bo-
size effects are apparent, the presence and the position of tggnt-J, mode), at J=0.1 (upper data poinisand J=0.05 (lower
minimum for e(h) at low hole density can be established data points and on square lattices of different sizes. Statistical
rather comfortably on an 88 lattice. Extrapolation of the errors are smaller than symbol sizes.

Hole Density
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> Uniform 511 ]
a 4 .
I ] —~ J=38
° 0.2 z49 1, 1
I o .
-(3 01 | i | 4.7 + '.-o.... b
¥ Phase Separated | ""--...,““ i
“ i 5| 0.'00.0.0..'........
0-0 f 1 1 1 1 1 L 1 1 1 1 1 1 1
0.0 0.2 0.4 0.6 0.8 1 0.0 0.2 0.4 0.6 0.8 1.0
J Hole Density
FIG. 3. Proposed phase diagram of the bosdp model. Dia- FIG. 4. Ground-state energy per halgh) as a function of the

monds show critical hole densities as a functionJoBelow the  pgle densityh, for the bosont-J Hamiltonian, withJ=3.8 on an
dashed curve, the system separates into hole-rich and hole-frgg. g |attice.
phases. The dashed curve is a fit to the diamonds, obtained using

the expressio (J) = a+/J. ) . )

of the curve is ath=1 (no holes, i.e., there is complete
o . . L .. Separation between holes and particles at any hole density.
tified theoretically in the low doping limit.The excellent fit Analytical calculation® for the fermiont-J model yield a

to the data provides support to the PS scenario. . value of J=3.4367 above which such complete PS occurs.
Of course, all of this evidence is, to some extent, circum-,

stantial. A numerical calculation such as the one performe uch an estimate is based on a comparison of the ground-
: . ) . P ate energy of the fully phase separated state, with that of a
here cannot prove, in a strict mathematical sense, that P

occurs at arbitrarily low values af. At the same time, the gas of bound pairs of electrons-ave singlets The same

results furnished here arguably provide as robust an evidené”‘ergument carries over to the bosbd model, withswave

- . . Pairs formed by two bosons of different species. Numerical
of such a conclusion as can be obtained numerically, fo ; S . .
results obtained in this work are consistent with the above

strongly cprrelated many-body Hamiltonians such as th'?/alue ofJ as the threshold for complete PS in the bosdh
ones considered here.

More important, is that the occurrence of PS at arbitrarily
low values ofJ can be physically explained based on the
following, simple physical argument: For an arbitrarily
small, but finite, value o8, the system finds it energetically
favorable, at sufficiently low-hole doping, to separate into
two phases: one features “antiferromagnetic” order, each sit
with a boson of typeA (B) being surrounded by NN sites
occupied by bosons of typB (A) and no holes; the other
phase is rich in holes, which frustrate the staggered order " T 8x8 o T a3x32 ©
with their motion. These considerations are completely inde- 206 }
pendent of quantum statistics, and it is therefore reasonable
to expect a similar scenario in the fermio®d, model(more
on this point in Sec. VI 202}

model as well.

As J is decreased, however, there is strong a suppression
of PS in the bosom-J model, both with respect to the boson
t-J, as well as the fermion-J models. For example, Fig. 5
shows results al=2.5; the curve has a minimum at around

~0.08, though its precise location is difficult to pinpoint, as
e minimum becomes less and less well defined, as the lat-

e (h)

V. RESULTS FOR THE t-J MODEL 108 b %

Let us now examine the physics of the bosah model, B {) ¢

that is, the system described by Eg) with J, =J,=J. The 104 | ‘{3

presence of the exchange terdh J does not complicate sig- ) % 3 {, b % $ 3

nificantly the GFMC calculation; the same wave function, - % ¢

Eq. (4), is used. 1.90 : . N N . , ;
PS in this model can be easily observed at relatively large 0.04 0.08 0.12 0.16

values ofJ, much like in the fermion model. In this limit, the

system attempts to lower its energy by minimizing the num-

ber of broken antiferromagnetic bonds, and quantum statis- FIG. 5. Ground-state energy per hal¢h) as a function of the

tics is essentially irrelevant. hole densityh, for the bosort-J Hamiltonian, withJ=2.5 on an
Figure 4 shows results fax(h) at J=3.8; the minimum  8x8 (filled diamond$ and on a 3X 32 (open circle lattice.

Hole Density
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0 ' ' ' ' ' v set of calculations carried out for much larger lattices. This

was not pursued in this work, however, because the case for
Wt E ] a strong suppression of PS in the boged model, with
respect to both the bosdnl], and the fermiornt-J models
seems solid, regardless of whetldgris finite or not; this is,
. o =01 in our view, the relevant physical conclusiémit should also
,..w“’ !,u!’ ] be noted that the accurate computatione¢h) at low h

g becomes problematic on large lattices, even in the absence of

,n"mu t-J @ 1 the sign problem. This is because the subtraction of two large

S ‘ numbers is required, each one with a relatively large associ-

alo @ | )
® Eﬂnagu e ated uncertainty.
*

E'E'E
o]
1} EEEDEEE‘G’U’!

e (h)

2

. . . . . . VI. COMPARISON OF FERMI AND BOSE HAMILTONIANS
0.0 0.1 0.2 03 0.4 05 0.6 0.7 AND IMPLICATIONS FOR PHASE SEPARATION

Hole Density

What do these results suggest, regarding PS in the fer-

FIG. 6. Ground-state energy per halgh) as a function of the ~Mion t-J; andt-J models ? Obviously, great care must be
hole densityh, for the bosont-J, (boxe$ and bosont-J model ~ €xercised in assessing the relevance of any boson model to
(diamonds, with J=0.8 (upper curvesandJ=0.1 (lower curvey,  its fermion counterpart.
on an 8x 8 lattice. Statistical errors are smaller than symbol sizes. Let us begin with thet-J model. Broadly speaking, PS

between hole-rich and hole-free phases is clearly observed,

tice size is increaseth.In order to find a similar value di,  at hole densities=0.05, only at relatively large values of
for the bosort-J, model, one needs to consider valueslof J (=2.0). This is in contrast with the fermidaJ model, for

as low as 0.0%see Fig. 2, confirming the strong suppression which practically all theoretical studies predict PS, at these
of PS in the bosot-J model, with respect to the boso+l, . low hole densities, at considerably lower valuesigfor J

In the fermion model, the critical hole density &2.5 is  less than 1 in most numerical studies

estimatefl at ~70%, i.e., the suppression of PS in the boson Furthermore, numerical results obtained here suggest that
t-J model is clear and significant even in comparison to thehe uniform phase is thermodynamically stable, in the boson
fermion equivalent. In Fig. 6 the quantig(h) is shown for model, forJ<1.5. On the other hand, for the fermianl
both the bosort-J andt-J, models, atJ=0.8 andJ=0.1. model most theoretical investigatidifsyield estimates of
Whereas, in the-J, model, PS occurs at low, the mono-  J,<1, the highedtbeing~1.2, the lowest being zefoAll
tonic behavior ofe(h) for the t-J model indicates that the of this suggests that in the fermion model the tendency to
uniform phase is stable at all hole concentrations. hole PS is enhanced, with respect to the boson model.

Note how, forJ=0.1, ath=0.2 the estimate foe(h) is This point can be illustrated by comparing estimates for
essentially identical in both models. This is in agreementhe ground-state energy per sifg(h) andEg(h), as a func-
with the generally held belief that, at low valuesbhfquan-  tion of hole concentration, for the Bose and Fermi cases. PS
tum fluctuations associated to the exchange part of(Bq. is signalled by a negative curvature of this functidrzor
should not play an important role. However, at sufficientlyboth thet-J and thet-J, case, it isEg(h)<Eg(h), i.e., the
low hole density the presence of the exchange term rendeBose energies are strict lower bounds for the Fermi energies.
the physics of the two modebgualitatively different Also, Eg(0)=Eg(0) andEg(1)=Eg(1), i.e., at zero and

One may understand the different behavior oftille and  full doping the distinction between Fermi and Bose statistics
t-J models, in the low doping limit, based on the “string” disappears, in these models. An upper bound for Bgith)
picture? In the t-J, model, a hole leaves behind, in its mo- and Ex(h) is provided by the energy of the fully separated
tion, a string of bosons of either species, displaced by onetate [Epgh)], in which the two phases contain, respec-
lattice site. Thus, in the-J, model the separation of the tively, no holes and no particles. Becausgg(h) has zero
system into hole-rich and hole-free phases becomes energeturvature, in general the curvature Bg(h), at low h, will
cally advantageous, at low hole density, as a way to limit thebe greater than that &g(h), i.e., the fermion model will be
damage caused by the holes to the antiferromagnetic orderloser than the boson to a PS instability. This is noteworthy,
In the t-J model, however, quantum fluctuations associatedas it seems counterintuitive. Fermi statistics, which causes an
with the J, term of Eq.(3) mend the damage due the hole effective repulsion among particles, is normally assumed to
motion, restoring local ordéf. Again, these considerations favor mixing, i.e., demote PS.
are completely independent of quantum statistics, i.e., apply As an example, Fig. 7 shows bolg(h) andEg(h), for
to the fermion models as well. the t-J model, atJ=1, as well as the energy of the fully

An analysis of the results obtained on ax8 lattice  separated stat@lotted ling. Estimates for the fermion case
suggests that the ground state of the basdrmodel should are taken from several numerical studies, all based on
feature a uniform phas@o PS at all h for J<1.5. In other GFMCZS882*The curvature at lovh is clearly very different
words, a finite valuel,, of J exists, approximately equal to for the two cases, much greater for bosons than for fermions.
1.5, below which the ground state is uniform at all dopings.It seems reasonable to expect that this should be the case at
In principle, of course, this result should be confirmed by aany value ofl. In both casegboson and fermionthere is a
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0.0
0.21 random —
02} o . L J=1 _
""" & o.18}
04 F Bosont —— . "g J=2 ———
FermiontJ o - 2 0.15
o06f 3
€ O o0.12
w -08 g ]
o* o 0.09
1.0 ]
L w7 S 0.6
. BRI Daad _
12 J=1 0.03
1.4}
16 ) . ) . 0 1 2 3 4 5 6 7 8 9 10
“0.0 0.2 0.4 0.6 0.8 1.0 Number of Holes
Hole Density FIG. 8. Fractional occupation by holes of roeolumns of a

. 32X 32 lattice, in the ground state of the boged model. The hole
FIG. 7. Ground-state energy per sk¢h), as a function of the  yensity is 0.125128 holeg, andJ=1 (white columns and 2(gray
hole densityh, for the boson(solid line) and fermion(diamond$ ¢, mng. Statistical errors are typically of the order of 1%. Dark
t-J Hamiltonian, withJ=1. Results for the fermion case are from .. ;mns correspond to random placement of holes in the lattice.
Refs. 6 and 24. The dotted line corresponds to a fully phase sepa-
rated system. Statistical errors are smaller than the diamonds, and
are of the order of 0.001 for the solid line. (DMRG).° Some analytical studies of the fermiod, model
have also supported the stripe hypothé&si®ther numerical
competition between the minimization of the number of bro-studies, however, based upon different methods, have failed
ken “antiferromagnetic” bonds, which promotes hole clus-to provide the same eviden&and this prediction remains
tering, and thus PS at largk and the delocalization of the ¢ontroversial.
holes, which favors the uniform phase. However, the ex- Tnere is no agreement as to what energy mechanism
change energy increases, in the fermion case, the energy cQ§jould promote the formation of stripes of holes, nor what
of injecting holes in the antiferromagnetic background,ihe gpecific role of quantum statistics should be. It appears

thereby rendering the uniform phase less competitive than ig,, o nriate, therefore, to investigate stripe formation in the
the boson system, for a given value bf boson models as well

i oo oo e e o A7 EXEnSive Search fo spes was caried out i (i
q g 9 work, for both the bosonit-J andt-J, models, at hole con-

t-J model. Let us, however, consider the fermief, model. . N -~ :
No quantitative study of its energetics, at finite hole concen-f:emr":‘t'onsh_0'125 anch=0.250. A simple way of detect-

tration, has been carried out so far. Because PS, at suffitd the occurrence of stripes, is to histogram the hole occu-
ciently low h, is observed for arbitrarily small values afin  Pation of rows(columng in the ground state, and compare it
the boson Hamiltonian, it wilk fortiori occur in the fermion  With what one would expect based on random hole place-
t-J, model, at the same physical conditions. Moreover, thénent. Generally speaking, stripe formation should be sig-
values of the critical hole concentrations below which pshaled by a significantly greater than random probability that
occurs in the boson model should provide lower bounds fof@ empty rows are present, afio) numbers of holes greater
the corresponding concentrations in the fermion case. Fdhan average occupy the same row. This procedure renders it
example, looking at Fig. 1 one may expect thatJat0.4, possible, in principle, to observe stripe formation even if
the uniform phase will be stable at hole concentrationgeriodic boundary are utilized.

=0.25; atJ=0.2, the critical hole concentration i50.15. Figure 8 shows histograms of occupation, by number of
These values af and hole concentrations are well within the holes, of the rowscolumng of a 32<32 lattice, with peri-
so-called physical range, in which thel, model is believed odic boundary conditions, in the bostd model, at a hole

to capture some of the essential physics of the cuprate supe¥ensity of 0.125. Results are shown for two valuesJpf
conductors. Based on the results presented here, only at veigmely J=1,2; for comparison, the fractional occupation
small values of] (<0.05) is the uniform phase expected to that one would observe if holes were randomly placed
be stable, in the fermionrJ, model, at values of hole doping throughout the lattice is also shown. The first thing to be

(~0.1) for which superconductivity is experimentally ob- noticed is the similarity of the results for the two different
served. values ofJ. In fact, results for several other values hfin

the interval 0.5<J<2.5 were obtained, essentially identical

to those shown in the figure. Also, results for thé, model

are found to be practically indistinguishable than those for
The formation of “stripes” of holes along a lattice rof@r  the t-J.

column has been observed in numerical simulations of the The probabilityP (1), for a cluster of holes to occupy the

t-J model based on density-matrix renormalization groupsame row(column), is found to be significantly greater than

VII. STRIPES
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random forl =3,4,5, and lower than random for all other This allows one to predict that PS between hole-rich and
values ofl. This does not seem to support the stripe scenaridhole-free phases will occur, in the fermidnl, model, at
given that the average numbers of holes per foglumn), in  arbitrarily small values of,, for sufficiently low hole con-
the case considered, is 4; also noteworthy is the fact that theentration. The critical hole concentrations found in the bo-
probability of observing empty rowé&olumng is actually  sont-J, Hamiltonian, which are lower bounds for the corre-
lower than random. The results of Fig. 8 suggest a rathesponding hole concentrations in the fermibd,, suggest
uniform hole distribution, with small fluctuations around the that PS is very robust in this model, including at values of
average of the number of holes per row, or column. Theand hole concentrations considered appropriate to Tgh-
results obtained ah=0.250 are qualitatively similar, i.e., superconductivity. This may therefore raise some questions
they provide no evidence of stripe formation. about the fermion-J, model as a realistic model of the high-
In order to compare results more directly with those ob-T. compounds. On the other hand, this study provides no
tained in Ref. 9, simulations on rectangular lattices., 4  definitive conclusion for the fermiortJ model, regarding PS
X 24) with cylindrical boundary conditions were also carriedin the physically relevant region.
out. Because translational invariance is broken, one can, in An aspect of the boson models that was not considered
this case, observe directly the formation of stripes by lookinghere, but may have some relevance in the understanding of
at the hole density along the direction in which open boundthe phase diagram of the fermion models as well, is the for-
ary conditions are applietilt is interesting to note that these mation of pairs of holes. There is in principle no reason why
simulations too failed to provide any evidence of stripe for-two holes may not form a bound state in the bogeh
mation. On the one hand, this supports the conclusion thahodel, in some range of values df an interesting issue
the ground state of the bosonic models is not striped. At tharises of whether an intermediate phase of hole pairs may
same time, it suggests that the mere use of open boundagxist, between the uniform and phase separated phases. This
conditions along one direction is insufficient to stabilize problem, relevant to some proposed theoretical scenarios of
stripes. high-T, superconductivity’ will be addressed in future
work. A study of hole binding must be carried out in the
VIIl. CONCLUSIONS —0 limit, and is therefore more challenging than one at

_ finite hole density.
Boson versions of theJ andt-J, models have been stud- s extensive search for stripe formation in the boson

ied in this work. Although the main motivation was to extract ., J jels has been carried out, at hole concentrations of 0.125
some information about PS and stripes in the corresponding,y o 250, None of the simulations performed in this work
fermion models, it should be remarked that the phase digq,e provided any evidence of stripes, in a wide range of
gram of isotopic Bose mixtures is certainly of fundamental , ,4q| parameters. Thus, if stripes do indeed form in the
interest and releva_mce_to variou_s areas of physics: fermion models, they are, much like PS, a direct conse-
The Bose Hamﬂtomans studied here are not d|rectI,y "®4quence of Fermi statistics, and not of a simpler energy inter-
lated to any known higff:; compound (to the author's gy |0 particular, stripes have been alleged to form, in the

knowledge, but can be studied by means of Green’s functiongemion models, as a result of the attraction of bound pairs of
Monte Carlo without sign problem. This allows one to obtainy, 4527

robust numerical results, difficult to obtain for the fermion A fin51 remark: since the bosoniel model can be studied
models, which have been studied extensively, during the paﬁy GFMC with no sign problem, it may be worthwhile to
decade, as simple archetypal models of Highsupercon-  giyain results for it also using the other methods that have

ductivity. been used to investigate the fermion model, such as high-

By studying th_e physics of t_he boson systems, interestinggemperature expansion, or DMRG. This may provide an un-
physical conclusions may be inferred, some relevant to thgjaseq comparison of the reliability of the various tech-
fermion models as well. Perhaps the most important CO”CIUhiques.

sion is that a commonly held assumption, namely thatthe
andt-J, models should feature qualitatively similar behavior,
is in fact not valid at low hole density, where the two models
display rather different behavior. In particular, PS is much This work was supported in part by the National Science
more prominent in theé-J, than in thet-J model. Foundation under research Grant No. DMR-9802803, and by

Another interesting conclusion is that the fermion modelsthe Petroleum Research Fund of the American Chemical So-
are closer to a PS instability than their boson counterpartgiety under Grant No. 31641-AC5.
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