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Anisotropic nuclear spin relaxation in single-crystal xenon

N. N. Kuzma, D. Babich, and W. Happer
Department of Physics, Princeton University, Princeton, New Jersey 08544

~Received 29 May 2001; published 8 March 2002!

We extend the theory of longitudinal spin relaxation of129Xe nuclei in frozen xenon to the case of single-
crystal samples, where the relaxation rate depends on the direction of the applied magnetic field with respect
to the crystalline axes. For sufficiently large magnetic fields, the relaxation is dominated by spin-flip Raman
scattering of lattice phonons. Two closely related interactions couple the lattice phonons to the spins of129Xe
nuclei: the nuclear spin-rotation interaction between nearest-neighbor atoms, which leads to an isotropic,
field-independent relaxation rate, and the paramagnetic antishielding of the externally applied field at the site
of 129Xe nuclei by the electrons of neighboring Xe atoms. The latter interaction, also known as the chemical
shift anisotropy~CSA! interaction, leads to an anisotropic relaxation rate proportional to the square of the
applied field. This mechanism dominates spin relaxation at fields of the order of the Debye fieldBD

5kBTD /mB582 T.

DOI: 10.1103/PhysRevB.65.134301 PACS number~s!: 63.20.2e, 76.60.2k
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I. INTRODUCTION

The nuclear spin relaxation of129Xe in cold xenon crys-
tals is of considerable current interest because the cryog
condensation of gaseous xenon is used to accumulate
quantities of hyperpolarized129Xe for medical imaging and
other applications.1,2 There is good experimental and theore
ical evidence3,4 that nuclear spin relaxation in solid xenon —
at temperatures between 20 and 100 K, and at magn
fields above 0.1 T and less than a few T — is dominated
phonon-induced fluctuations of the spin-rotation interacti

v5
cK

\
K•I•v5cKK•N. ~1.1!

HereK is the nuclear spin of a129Xe atom, and the angula
momentumN of the pair of atoms is related to the angul
velocity v of their relative rotation about each other by

\N5I•v. ~1.2!

The inertial tensorI of the pair is

I5
M

2
~R212RR!. ~1.3!

The mass of a xenon atom isM, and R is the internuclear
displacement of the pair. As indicated in Fig. 1, the u
vectorsx1 , x2, and x3 point along the fourfold symmetry
axes of the crystal. We use the notation of Ramsey
co-workers5,6 for the coupling coefficientcK5cK(R), which
will depend on the internuclear separationR of the pair of
atoms.

For externally applied magnetic fieldsB0 exceeding a few
T, there will be a substantial contribution to the relaxati
rate from phonon-induced fluctuations of the paramagn
antishielding interaction

v85
cK

\
K•I•v0 . ~1.4!
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Here the Larmor frequency of an electron of massm is v0
5eB0/2mc, and the coupling coefficientcK is the same as
that in Eq.~1.1!. The chemical shifts produced by the inte
actionsv andv8, and their relationship to the spin-relaxatio
rates, were discussed for the case of linear molecules
liquid by Spiesset al.7

Fitzgerald et al.4 ~henceforth referred to as Fitzgerald!
showed how the interactionsv andv8 of Eqs.~1.1! and~1.4!
cause spin relaxation by the Raman scattering of phon
The relaxation due to emission or absorption of sin
phonons was shown4 to be completely negligible compare
to Raman scattering. Fitzgerald4 considered polycrystalline
samples of xenon, and assumed that the observed relax
rates could be obtained by averaging over all possible or
tations of the crystallites. This procedure can be justified
samples with crystallites much smaller than the spin dif
sion length during the longitudinal relaxation timeT1. As we
shall show in this paper, the relaxation rate due to fluct
tions in the paramagnetic antishielding depends strongly
the direction of the magnetic field with respect to the cry
talline axes. For coarse-grained polycrystalline samp
where the size of the individual crystallites is much larg
than the spin-diffusion length, a nonexponential decay can
expected at high magnetic fields, as discussed by Wolf8 and
by Barton and Sholl9 for the angular dependence of the r
laxation induced by the magnetic dipole-dipole interacti
and the translational diffusion of nuclear spins in single cr
tals.

In this paper we extend the theory of Fitzgerald4 to the
case of single-crystal xenon. The simple, face-centered-c
structure of the xenon crystal allows us to use group the
to simplify the calculational details, which can be found
the subsequent sections of this paper. Here we summariz
results.

The predicted longitudinal spin-relaxation rate 1/T1
S , due

to fluctuations in the spin-rotation interaction of Eq.~1.1!, is
the same for single-crystal samples of xenon as for polyc
talline samples, and it is therefore given by Eq.~1.5! of
Fitzgerald.4

The relaxation rate 1/T1
P due to fluctuations in the para
©2002 The American Physical Society01-1
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magnetic antishielding interaction of Eq.~1.4! differs from
that in polycrystalline samples. The single-crystal rate
given by

1

T1
P 5

9pcK0
2 T* 2B* 2@hP1kPY#

4\2vD

. ~1.5!

HerecK05cK(R0) is the spin-rotation coupling coefficient a
the equilibrium separationR0 of adjacent xenon atoms in th
crystal. The Debye frequency isvD5kBTD /\, where kB
51.38310216 erg K21 is the Boltzmann constant. The De
bye temperature of the xenon crystal isTD555 K, andT*
5T/TD is the relative temperature. The relative magne
field is defined asB* 5B0 /BD , where the Debye field for
solid xenon isBD5kBTD /mB582 T. The Bohr magneton is
mB50.9272310220 erg G21.

The dependence on the field direction@see Fig. 1~b!#,

FIG. 1. ~a! The 12 nearest neighbors of a129Xe atoma, sepa-
rated from it by a distanceR0. The 144 ordered pairs of the neare
neighbor atoms can be partitioned into five setsLm , with m50, 1,
2, 3, and 4. If we label one of the neighbor atoms as ‘‘0,’’ then pa
of atoms labeled~0,0!, (0,1), . . . ,(0,4) will be representatives o
the setsLm for m50,1, . . . ,4, respectively. For all pairs in a give
setLm , the two atoms are separated by the same distance,R0Am,
and subtend the same angleum at the central atoma. Angle u2 is
shown for pair~0,2!. ~b! Orientation of the externally applied mag
netic fieldB0 is shown with respect to the crystal basis vectorsx1 ,
x2, andx3 ~left!, and the basis vectorsb1 , b2, andb3, described in
the text~right!.
13430
s

c

b35
B0

B0
5x1 sinu cosf1x2 sinu sinf1x3 cosu,

~1.6!

is given by the function

Y5Y~u,f!5(
i 51

3

~xi•b3!42
3

5

5sin4u~cos4f1sin4f!1cos4u2
3

5
. ~1.7!

Note that*0
p sinudu*0

2pdfY(u,f)50. In 1963, Eisenstadt an
Redfield10 pointed out that the orientation dependence of
laxation rates in cubic crystals will always have the form
Eq. ~1.7!.

The isotropic efficiencyhP5hP(e0 ,T* ) of the paramag-
netic antishielding relaxation is

hP~e0 ,T* !5 (
p51

5

(
q51

5

e0
52pEpq

P Dq218 ~T* !, ~1.8!

where the coefficientsEpq
P are elements of the matrix

EP5
1

20F 8 21 0 21 8

64 58 216 58 64

272 395 88 395 272

288 1152 576 1152 288

240 960 480 960 240

G , ~1.9!

and the phonon freeze-out functions, defined by Eq.~2.48! of
Fitzgerald,4 are

Dm8 5
1

T* 2E0

1

duu2
eu/T*

~eu/T* 21!2
Jm

2 ~u!. ~1.10!

Here the integration parameteru5k/kD is the ratio of the
phonon momentum\k to the Debye momentum\kD
5\vD /cs , where we assume a common speed of soundcs
for the longitudinal and transverse modes. The functio
Dm8 (T* ) are spectral averages of the phonon response fu
tions Jm(u), given by Eq.~2.36! of Fitzgerald4 as

Jm~u!511 j 0~ufDAm!22 j 0~ufD!, ~1.11!

where j 0(x)5x21 sinx denotes a spherical Bessel functio
of zeroth order~or a ‘‘sinc’’ function!. The Debye phase is
fD5(6p2A2)1/3. For an emitted or absorbed phonon of re
tive momentumu, the functionJm(u) defines the contribu-
tion to the relaxation from membersb andd of the nearest-
neighbor pairs in the setLm , for which cosum512(m/2).
The set index can take on the valuesm50, 1, 2, 3, and 4.

The anisotropic efficiencykP5kP(e0 ,T* ) is

kP~e0 ,T* !5 (
p51

4

(
q51

5

e0
52pKpq

P Dq218 ~T* !, ~1.12!

where the coefficientsKpq
P are elements of the matrix

s
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KP5
1

8F 2 1 0 1 2

16 22 224 22 16

28 85 2188 85 28

28 232 216 232 28

G . ~1.13!

The efficiencieshP and kP, given by Eqs.~1.8! and
~1.12!, parametrize relaxation~1.5! caused by fluctuations in
the paramagnetic antishielding interaction~1.4! in a similar
way that the efficiencyhS, given by Eq. ~2.42! of
Fitzgerald,4 parametrizes relaxation caused by the sp
rotation interation@Eq. ~1.1!#. All three efficiencies are plot-
ted as a function of relative temperatureT* 5T/TD in Fig. 2.
The efficiencies are nearly independent of temperature ab
the Debye temperature (T* .1), but they diminish rapidly
below the Debye temperature (T* ,1), because the mea
number of phononsnv in modes of frequencyv;vD begins
to freeze out, and is no longer well approximated bynv

5kT/\v.
Let R be the ratio of the total relaxation rate

1/T1
S11/T1

P , to the field-independent rate 1/T1
S . Then we

have

R5F 1

T1
S1

1

T1
PGT1

S511S hP

hS 1
kP

hSYDB* 2. ~1.14!

For T>TD555 K, Fitzgerald4 showed that the efficiency
parameters are close to their infinite-temperature limits,hS

52686.8 andhP58874.1. For the same radial dependen
of the antishielding used by Fitzgerald4 (e05211.8), we
find that the anisotropic efficiency has the high-temperat
limit kP56033.1, so the relative rateR in Eq. ~1.14! has the
numerical value

FIG. 2. The efficiency functionkP(e0 ,T* ) ~solid line! of Eq.
~1.5! parametrizes the anisotropic part of129Xe spin relaxation due
to spin-flip Raman scattering of phonons through the paramagn
antishielding interaction@Eq. ~1.4!#. For comparison, the efficienc
functions hP(e0 ,T* ) ~dashed line! and hS(e0 ,T* ) ~dash-dotted
line! are also shown—they parametrize the orientation-average
laxation due to interaction~1.4! and the field-independent relaxatio
due to spin-flip Raman scattering of phonons through the s
rotation interaction~1.1!, respectively.T* 5T/TD is the ratio of the
crystal temperatureT to the Debye temperatureTD555 K. For all
three functions, an estimate~Ref. 4! of e05211.8 was used. The
functionshP, kP, and hS approach the constants 8874.1, 6033
and 2686.8, respectively, forT* @1.
13430
-

ve
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e

R511@3.30312.245Y~u,f!#B* 2. ~1.15!

In Fig. 3 the magnitude of the relative relaxation rateR is
plotted versus the applied field direction for several relat

field values B* . Y(u,f) attains its maximum value (2
5 )

when b3 points toward one of the six faces of the cube
Fig. 1, and it attains its minimum value (2 4

15) when b3

points toward one of the eight corners of the cube. T
corresponding maximum and minimum values ofR are
114.201B* 2 and 112.704B* 2. In the high-field limit, the
maximum relaxation rate is a factor of 1.554 faster than
minimum relaxation rate.

Measuring the relaxation rate of129Xe spins in single
crystals of xenon at fields of some tens of T would be
most direct test of the predictions of this paper. Howev
referees of this paper kindly pointed out that for polycryst
line samples with sufficiently large crystallites, the anis
ropy effects should be observable as a nonexponential
relaxation.8,9 A similar dependence of the relaxation rate
the direction of the magnetic field should be observable
crystals containing the spin-1/2 isotope207Pb. These may be
more convenient for experimental studies. The methods
lined below can be modified in a straightforward way
predict relaxation rates for other crystals with the same
different symmetry groups.

tic

e-

-

,

FIG. 3. The relative relaxation rateR, given in Eq.~1.15!, is
plotted as a function of the direction of the applied magnetic fi
B0 with respect to the crystalline basis vectorsx1 , x2, andx3, for
three different values ofB0: ~a! B050, ~b! B05

1
2 BD , and ~c! B0

5BD , whereBD5kBTD /mB582 T for solid xenon.
1-3
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II. SINGLE-CRYSTAL SYMMETRY

As illustrated in Fig. 1~a!, the 12 nearest-neighbor atom
of a 129Xe atom can be located on the edges of a cube, w
the 129Xe atom~labeleda) in the center. A unit vector from
the 129Xe atoma to one of its nearest-neighbor atomsb is
denoted bynb . From inspection, we find that the locations
the 12 nearest-neighbor atoms are transformed into e
other, leaving the129Xe atoma fixed, by the operations o
the symmetry groupOh of the cube.11 The groupOh hasg
548 elements and ten classes, and thereforer 510 irreduc-
ible representationsGi j

(a) . The representations are labeled
the superscript (a). The representations ofOh are gerade
andungeradeversions of the five irreducible representatio
of the octahedral groupO. Following the convention of Lan-
dau and Lifshitz,11 we will label the irreducible representa
tions of O by the symbolsa5A1 , A2 , E, F2, andF1. The
dimensionsf (a) of these representations are 1, 1, 2, 3, and
respectively.

Since the irreducible representationsGi j
(a) of Oh can be

chosen to be real, we can write the fundamental orthogo
ity relation for irreducible representationsa and b of the
groupOh @see Eq.~94.8! in Landau and Lifshitz11# as

1

g (
G

Gri
(a)Gs j

(b)5
1

f (a)
dabd rsd i j . ~2.1!

The sum extends over allg548 elementsG of the groupOh.
As illustrated in Fig. 1~b!, we let the externally applied

magnetic fieldB0 define a set of orthonormal basis vecto
bi , such thatb35B0 /B0, and (bi3bj )•bk5e i jk with e i jk
being the antisymmetric unit tensor. The unit vectorsb1 and
b2 can be any orthogonal pair that spans the plane per
dicular toB0. We can define the unnormalized circular ba
vectors as

b65b16 ib2 . ~2.2!

According to Eq.~2.29! of Fitzgerald,4 the fluctuation of
the paramagnetic antishielding field is proportional to

wb85
1

2vD
v0•$@bj e

bj a
1bj a

bj e
#1e0@nb•bj e

~nbbj a
1bj a

nb!

1nb•bj a
~nbbj e

1bj e
nb!#1e0@bj e

•bj a
1~e021!

3~nb•bj e
!~nb•bj a

!#nbnb%. ~2.3!

The field results from the motion of atomb when a phonon
of polarizationbj e

is emitted~with j e51,2,3) and a phonon

of polarizationbj a
is absorbed.

Since the ‘‘field’’ @Eq. ~2.3!# must be squared to calcula
relaxation rates, the rates will be functions, which we den
by f (nb ,nd), of the unit vectorsnb andnd , pointing to two
nearest-neighbor atomsb andd. Since there are 12 neare
neighbors, the values off will have to be summed for 144
nearest-neighbor pairs. To avoid summing such a large n
ber of terms, we make use of the symmetry of the nea
neighbors under the groupOh to reduce each sum to fiv
terms, one for each of the five setsLm .
13430
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An elementG of the groupOh will transform nb into
another unit vectornb85Gnb . Let the group transformation
G rotate~or invert! the unit vectorsxi , so that

Gnb5nb85G(
i

nb ixi5(
i j

nb ixjGi j
(F1) . ~2.4!

As implied in Eq.~2.4!, xi form a basis for the three dimen
sional irreducible representationF1.

The transformation of a functionf 5 f (nb ,nd) into a func-
tion G f5G f(nb ,nd), by an elementG of the group, is de-
fined by11

G f~nb ,nd!5 f ~G21nb ,G21nd!. ~2.5!

Here G21 is the inverse group element toG. It is obvious
that

(
(bd)PLm

f ~nb ,nd!5gm^ f &m , ~2.6!

wheregm is the number of ordered pairs inLm. The angular
brackets indicate a group average

^ f &m5
1

g (
G

G f~nb ,nd!. ~2.7!

Applying each elementG to f (nb ,nd) for any representative
pair (bd)PLm , we will generate values off for g548 pairs,
all members of the setLm . Each pair will occurg/gm times.

III. SPIN-ROTATION INTERACTION

As discussed in connection with Eq.~A1! of Fitzgerald,4

to evaluate the relaxation due to Raman scattering
phonons through the spin-rotation interaction, we need
average values of a few simple dyads and tetrads. For a d
of the formnbnd we find

^nbnd&m5
1

g (
G

Gnbnd5(
i j rs

nb ind jxrxs

1

g (
G

Gri
(F1)Gs j

(F1)

5
1

3
nb•nd5

1

3
cosum . ~3.1!

We use the notationnb i5nb•xi . The average@Eq. ~3.1!#
over the groupOh is exactly the same as the average over
full rotation group given by Eq.~A7! of Fitzgerald. Similarly,
we can write

^~nb3nd!~nb3nd!&m

5 (
abcd

nbandbnbcndd(
i j rs

eabiecd jxrxs

1

g (
G

Gri
(F1)Gs j

(F1)

5
1

3
~nb•nbnd•nd2nb•ndnb•nd!5

1

3
sin2um . ~3.2!

To simplify the evaluation of Eq.~3.2!, we ignored the fact
that cross products are pseudovectors, not true vectors.
makes no difference when an even number of vectors is
volved, as in Eq.~3.2!. The average@Eq. ~3.2!# over the
1-4
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group Oh is exactly the same as the average over the
rotation group given by Eq.~A9! of Fitzerald.4 Thus, expres-
sion ~1.5! of Fitzgerald,4 derived for a polycrystalline
sample, remains valid for a single crystal. For Raman s
tering of phonons by the spin-rotation interaction@Eq. ~1.1!#,
there is no dependence of the rate on the direction of
externally applied magnetic field.

IV. PARAMAGNETIC ANTISHIELDING

Using Eq.~A12! of Fitzgerald,4 we write

b1•(
j ej a

wb8wd8•b25B* 2(
i 51

6

Xi , ~4.1!

where

X15b1•
1

2
~11b3b3!•b251, ~4.2!

X25
e0

2
b1•@~nbnb1ndnd!1$b3•~nbnb1ndnd!•b3%1#•b2 ,

~4.3!

X35
e0

2

2
b1•@~nb•nd!~$b3•nbnd•b3%11nbnd!

1b3•~nbnbndnd1ndndnbnb1nbndndnb

1ndnbnbnd!•b3#•b2 , ~4.4!

X45
e0~e021!

2
b1•@b3•~nbnbnbnb1ndndndnd!•b3#•b2 ,

~4.5!

X55
e0

2

2
b1•@~4b3•~nbnbndnd!•b3

1~e021!~nb•nd!b3•~nbnbnbnd1nbnbndnb

1ndnbndnd1nbndndnd!•b3#•b2 , ~4.6!

X65
e0

2

4
b1•@b3•~nbnbndnd!•b3$312~e021!

1~e021!2~nb•nd!2%#•b2 . ~4.7!

In Eqs. ~4.2!–~4.7!, the unit vectorsnb andnd occur in the
following combinations:~a! as scalar products likenb•nd ,
which are invariant under group operations;~b! as dyadics
like nbnd , which were averaged in the previous section; a
~c! as tetrads of the formnknlnrns . The indicesklrs are
some combination ofb and d; for example we might have
klrs5bbdd or klrs5bbbd. The group average of a
tetrad is
13430
ll

t-

e

d

^nknlnrns&m5(
i jkl

nk inl jnrkns l(
rstu

xrxsxtxu

3
1

g (
G

Gri
(F1)Gs j

(F1)Gtk
(F1)Gul

(F1) . ~4.8!

There is no general way, analogous to Eq.~2.1!, to evaluate
the sum in Eq.~4.8!. However it is not hard to solve the
problem by coupling the unit vectors in pairs to form dyad
irreducible representations ofOh . The group average of the
tetrads, products of the pairs, can then be evaluated with
~2.1!. This is similar to the pairwise coupling of unit vecto
used in Appendix A of Fitzgerald4 to evaluate the average o
tetrads over the full rotation group.

Consider the reducible representation formed by the n
dyads xixj . We denote linear combinations of the simp
dyadsxixj with the symbolD ~for dyadic!. We can choose
nine orthonormal linear combinations of dyadsxixj that span
four irreducible subspaces, as follows.

A1: This subspace generates the one-dimensional, ide
representationA1. It has the single basis dyadic

D 1
(A1)

5
1

A3
. ~4.9!

E: This subspace generates the two-dimensional repre
tation E. The two basis dyadics can be chosen to be

D 1
(E)5

1

A6
~3x3x321!, ~4.10!

D 2
(E)5

1

A2
~x1x12x2x2!. ~4.11!

F2: This subspace generates the three-dimensional, a
symmetric representationF2. The three basis dyadics can b
chosen to be

D 1
(F2)

5
1

A2
~x2x32x3x2!, ~4.12!

D 2
(F2)

5
1

A2
~x3x12x1x3!, ~4.13!

D 3
(F2)

5
1

A2
~x1x22x2x1!. ~4.14!

F1: This subspace generates three-dimensional, symm
ric representationF1. The three basis dyadics can be chos
to be

D 1
(F1)

5
1

A2
~x2x31x3x2!, ~4.15!
1-5
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TABLE I. Coupling coefficients@nknl#m
(a) , defined in Eq.~4.19!.

a m51 m52 m53

A1 nb•nd /A3
E (3nb3nd32nb•nd)/A6 (nb1nd12nb2nd2)/A2
F2 (nb2nd32nb3nd2)/A2 (nb3nd12nb1nd3)/A2 (nb1nd22nb2nd1)/A2
F1 (nb2nd31nb3nd2)/A2 (nb3nd11nb1nd3)/A2 (nb1nd21nb2nd1)/A2
c

n

,
oup

q.

q.

d

he
D 2
(F1)

5
1

A2
~x3x11x1x3!, ~4.16!

D 3
(F1)

5
1

A2
~x1x21x2x1!. ~4.17!

Writing the simple product dyads in terms of the irredu
ible dyadsD m

(a) defined above, we find

nknl5(
am

@nknl#m
(a)D m

(a) , ~4.18!

where

@nknl#m
(a)5(

i j
nk inl jC~am;F1i ,F1 j !5nk•D m

(a)
•nl .

~4.19!

The Clebsch-Gordan coefficients12 C(am;F1i ,F1 j ) can be
found from an inspection of Eqs.~4.9!–~4.17!. For future
reference, explicit expressions for the coefficients@nknl#m

(a)

are summarized in Table I.
Using Eq.~4.18!, we can write Eq.~4.8! as

^nknlnrns&m5
1

g (
G

G (
ambn

@nknl#m
(a)D m

(a)@nrns#n
(b)D n

(b)

5 (
abmnm8n8

@nknl#m
(a)@nrns#n

(b)D m8
(a)D n8

(b)

3
1

g (
G

Gm8m
(a) Gn8n

(b)

5(
a

T (a)(
l

Nl
(a)~klrs!Pl . ~4.20!

The sum ona extends over the irreducible representatio
A1 , E, F2, and F1. The representationA2 does not occur.
The tetradic is

TABLE II. CoefficientsNl
(a)(bbdd), given in Eq.~4.22!.

a l 50 l 52 l 54

E 21/180 24/63 16/105
F2 0 0 0
F1 1/270 50/189 232/315
13430
-

s

T (a)5(
n

D n
(a)D n

(a) , ~4.21!

and the coefficient is

(
l

Nl
(a)~klrs!Pl5

1

f a
(
m

@nknl#m
(a)@nrns#m

(a) .

~4.22!

To facilitate a comparison with the results of Fitzgerald4

where it was natural to describe the dependence of gr
averages onm by means of Legendre polynomialsPl
5Pl(cosum), we use Legendre polynomial expansions in E
~4.22!.

As we shall show below, there is no contribution to E
~4.1! from terms of Eq.~4.20! with a5A1, so we will ignore
the coefficientsNl

(A1)(klrs). The values ofNl
(a)(bddd),

Nl
(a)(dbdd), Nl

(a)(ddbd), and Nl
(a)(dddb) are all equal,

and the nonzero values withaÞA1 are

N1
(E)~bddd!5

1

12
, N1

(F1)
~bddd!5

1

6
. ~4.23!

The other coefficientsNl
(a) that we will need are summarize

in Tables II and III.

V. GROUP AVERAGES ŠXi‹m

With the results of Sec. IV, we can now evaluate t
group averageŝXi&m of quantities~4.2!–~4.7!. We will have
to evaluate the quantities of the form

b1•$b3•^nknlnrns&m•b3%•b2

5(
a

t (a)(
l

Nl
(a)~klrs!Pl , ~5.1!

where we used Eq.~4.20! to define

t (a)5b1•$b3•T (a)
•b3%•b2 . ~5.2!

We define matrix elements in the basisbi by

TABLE III. CoefficientsNl
(a)(bddb), given in Eq.~4.22!.

a l 50 l 52 l 54

E 19/180 211/63 16/105
F2 21/9 1/9 0
F1 31/270 29/189 232/315
1-6
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Dn; i j
(a) 5bi•D n

(a)
•bj . ~5.3!

From inspection of Eqs.~4.9!–~4.17!, we see that

Dn; i j
(a) 5Dn; j i

(a) if a5A1 ,E,F1 , ~5.4!

and

Dn; i j
(a) 52Dn; j i

(a) if a5F2 . ~5.5!

Using Eqs.~5.3!–~5.5!, we can write Eq.~5.2! as

t (a)5b1•$b3•T (a)
•b3%•b25(

n
b3•D n

(a)
•b1b2•D n

(a)
•b3

5(
n

$D n;31
(a) 1 iD n;32

(a) %$D n;13
(a) 2 iD n;23

(a) %

5(
n

$Dn;31
(a) Dn;13

(a) 1Dn;32
(a) Dn;23

(a) %

2 i(
n

$Dn;31
(a) Dn;23

(a) 2Dn;32
(a) Dn;13

(a) %. ~5.6!

From Eqs.~5.4! and~5.5! we can see that the last term of E
~5.6! vanishes, so we have

t (a)5(
n

$Dn;31
(a) Dn;13

(a) 1Dn;32
(a) Dn;23

(a)

1Dn;33
(a) Dn;33

(a) 2Dn;33
(a) Dn;33

(a) %

5b3•H(
n

D n
(a)D n

(a)J •b32(
n

$Dn;33
(a) %2. ~5.7!

One can readily verify from Eqs.~4.9!–~4.17! that

(
n

D n
(a)D n

(a)5M (a)1, ~5.8!

where

M (A1)5
1

3
, M (E)5

2

3
, M (F2)521, M (F1)51.

~5.9!

Hence, Eq.~5.7! becomes

t (a)5M (a)2(
n

$b3•Dn
(a)

•b3%
2. ~5.10!

Substituting values from Eqs.~5.9! and~4.9!–~4.17! into Eq.
~5.10! and usingb5b3, we find

t (A1)50, ~5.11!

t (E)52@~b•x2!2~b•x3!21~b•x3!2~b•x1!2

1~b•x1!2~b•x2!2#

52~sin2u cos2u1sin4u sin2f cos2f!, ~5.12!

t (F2)521, ~5.13!
13430
t (F1)5~b•x1!41~b•x2!41~b•x3!4

5sin4u~cos4f1sin4f!1cos4u. ~5.14!

We note that

t (E)1t (F1)51. ~5.15!

Using Eqs.~5.11!–~5.15!, we can rewrite Eq.~5.1! as

b1•$b3•^nknlnrns&•b3%•b2

5(
l

@al~klrs!1t (E)bl~klrs!#Pl ,

~5.16!

with

al~klrs!5Nl
(F1)

~klrs!2Nl
(F2)

~klrs!, ~5.17!

bl~klrs!5Nl
(E)~klrs!2Nl

(F1)
~klrs!. ~5.18!

Explicit values of the coefficientsal and bl follow from
Tables II and III; the nonzero values are

F a0~bbdd!

a2~bbdd!

a4~bbdd!
G5F 1/270

50/189

232/315
G ,

F b0~bbdd!

b2~bbdd!

b4~bbdd!
G5F 21/108

262/189

16/63
G . ~5.19!

We find thatbl(bddb)5bl(bbdd), and

F a0~bddb!

a2~bddb!

a4~bddb!
G5F 61/270

8/189

232/315
G . ~5.20!

Values ofal for klmn5bbbd, bbdb, bdbb, or dbbb
are identical, and the same is true forbl . The nonzero values
are

a1~bbbd!51/6 and b1~bbbd!521/12.
~5.21!

We are now in a position to evaluate the quantities^Xi&m
from Eqs. ~4.2!–~4.7!. For convenience in comparing wit
the work of Fitzgerald,4 we will write

^Xi&m5(
l

~pil 1t (E)qil !Pl . ~5.22!

Using Eqs.~3.1!, ~4.2!, and~4.3!, we find

^X1&m5p1051, ~5.23!

^X2&m5p205
4e0

3
. ~5.24!
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As an example of how to average quantities containing f
tors ~5.1!, we sketch the evaluation of^X3&m . From Eqs.
~3.1!, ~4.4!, and~5.16! we find

^X3&m5
e0

2

2 F4

3
cos2um1(

l
$2al~bbdd!12al~bddb!

14t (E)bl~bbdd!%Pl~cosum!G . ~5.25!

Noting the simple Legendre identityx25(2/3)P2(x)1(1/3),
and using coefficients~5.19! and~5.20! in Eq. ~5.25!, we find
the nonzero coefficients of Eq.~5.22! for i 53,

F p30

p32

p34

G5e0
2F 61/135

142/189

264/315
G , F q30

q32

q34

G5e0
2F 21/54

2124/189

32/63
G .

~5.26!

The remaining nonzero coefficients fori 54, 5, and 6 can be
calculated in a similar way, and they are

p405
e0~e021!

6
and q4052

e0~e021!

12
; ~5.27!

F p50

p52

p54

G5e0
2F ~15e0214!/135

~42e0158!/189

264/315
G , ~5.28!

F q50

q52

q54

G5e0
2F ~23e012!/54

~221e02103!/189

32/63
G , ~5.29!

F p60

p62

p64

p66

G5
e0

2

4 F ~138e0
22248e01152!/3780

~46e0
21108e01146!/378

~136e0
22976e02216!/3465

~264e0
21128e0264!/2079

G , ~5.30!

F q60

q62

q64

q66

G5
e0

2

4 F ~2177e0
21284e02212!/3780

~249e0
22150e02173!/378

~56e0
211648e01936!/3465

~160e0
22320e01160!/2079

G .

~5.31!

Using Eqs.~5.22!, ~4.1!, and~2.6!, and omitting constan
factors, we can write Eq.~2.44! of Fitzgerald4 as

(
m

Dm8 (
(bd)PLm

b1•(
j ej a

^wb8wd8&•b25B* 2~hP1kPY!,

~5.32!
13430
-where, in agreement with Eq.~2.47! of Fitzgerald,4 the iso-
tropic efficiency coefficient is

hP5hP~e0 ,T* !5(
ml

gmcl8PlDm8 . ~5.33!

The sum extends over the set indicesm50, 1, 2, 3, and 4
with gm512, 48, 24, 48, and 12, respectively, in accordan
with Table I of Fitzgerald.4 The sum on Legendre polynom
als includes the indicesl 50, 2, and 4. The Legendre poly
nomialsPl5Pl(cosum) are implicit functions ofm. The co-
efficients cl85( i(pil 1

2
5 qil ) are identical to those of Eq

~5.34! of Fitzgerald.4

The anisotropic efficiency of Eq.~5.32! is

kP5kP~e0 ,T* !5(
lm

gmdl8PlDm8 . ~5.34!

The sum on Legendre polynomials now includes the indi
l 50, 2, 4, and 6. The nonzero coefficientsdl852( iqil are

F d08

d28

d48

d68

G5F ~177e0
41556e0

311192e0
221260e0!/15120

~49e0
41318e0

311989e0
2!/1512

~214e0
42412e0

323754e0
2!/3465

240e0
2~e021!2/2079

G .

~5.35!

The function that describes how the relaxation rate depe
on the directionb of the applied field relative to the crysta
axes is

Y5Y~b!5
2

5
2t (E), ~5.36!

which together with Eqs.~5.14! and ~5.15!, gives Eq.~1.5!.
Summing Eqs.~5.33! and ~5.34! over l gives expressions
~1.8! and ~1.12!.

VI. DIRECT SUMMATION WITHOUT USING GROUP
AVERAGES

To check the results of calculations presented in Sec
and V, term-by-term evaluations of the sums needed to
tain the relaxation rates were carried out using the symb
calculation packageMATHEMATICA , version 3.0. The coeffi-
cients presented in Eqs.~1.9! and ~1.13! were thus indepen-
dently verified without resorting to group theory.
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