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Anisotropic nuclear spin relaxation in single-crystal xenon
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We extend the theory of longitudinal spin relaxation’é#Xe nuclei in frozen xenon to the case of single-
crystal samples, where the relaxation rate depends on the direction of the applied magnetic field with respect
to the crystalline axes. For sufficiently large magnetic fields, the relaxation is dominated by spin-flip Raman
scattering of lattice phonons. Two closely related interactions couple the lattice phonons to the $piKs of
nuclei: the nuclear spin-rotation interaction between nearest-neighbor atoms, which leads to an isotropic,
field-independent relaxation rate, and the paramagnetic antishielding of the externally applied field at the site
of 12%Xe nuclei by the electrons of neighboring Xe atoms. The latter interaction, also known as the chemical
shift anisotropy(CSA) interaction, leads to an anisotropic relaxation rate proportional to the square of the
applied field. This mechanism dominates spin relaxation at fields of the order of the DebyeBfield
=kgTp/ug=82 T.
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[. INTRODUCTION Here the Larmor frequency of an electron of masss w
=eBy/2mc, and the coupling coefficiertk is the same as
The nuclear spin relaxation df%e in cold xenon crys- that in Eq.(1.1). The chemical shifts produced by the inter-
tals is of considerable current interest because the cryogenactionsv andv’, and their relationship to the spin-relaxation
condensation of gaseous xenon is used to accumulate largates, were discussed for the case of linear molecules in a
quantities of hyperpolarized?®Xe for medical imaging and liquid by Spiesset al.’
other applicationd? There is good experimental and theoret-  Fitzgerald et al* (henceforth referred to as Fitzgerald
ical evidencd* that nuclear spin relaxation in solid xenon — showed how the interactionsandv’ of Egs.(1.1) and(1.4)
at temperatures between 20 and 100 K, and at magnetitause spin relaxation by the Raman scattering of phonons.
fields above 0.1 T and less than a few T — is dominated byrhe relaxation due to emission or absorption of single
phonon-induced fluctuations of the spin-rotation interaction phonons was showirto be completely negligible compared
to Raman scattering. Fitzger&ldonsidered polycrystalline
Cx,, samples of xenon, and assumed that the observed relaxation
v= zK -J-@=CkK-N. (1.D)  rates could be obtained by averaging over all possible orien-
tations of the crystallites. This procedure can be justified for
HereK is the nuclear spin of 8°°Xe atom, and the angular samples with crystallites much smaller than the spin diffu-
momentumN of the pair of atoms is related to the angular sion length during the longitudinal relaxation tirig. As we
velocity @ of their relative rotation about each other by shall show in this paper, the relaxation rate due to fluctua-
tions in the paramagnetic antishielding depends strongly on
AIN=T w. (1.2  the direction of the magnetic field with respect to the crys-
talline axes. For coarse-grained polycrystalline samples,
where the size of the individual crystallites is much larger
than the spin-diffusion length, a nonexponential decay can be
y— M(Rzl_ RR) (1.3 expected at high magnetic fields, as discussed by &/oifl
2 ' ' by Barton and Shdllfor the angular dependence of the re-
laxation induced by the magnetic dipole-dipole interaction
The mass of a xenon atom M, andR is the internuclear and the translational diffusion of nuclear spins in single crys-
displacement of the pair. As indicated in Fig. 1, the unitig|s.
vectorsx;, Xp, and Xz point along the fourfold symmetry  |n this paper we extend the theory of Fitzgefald the
axes of the crystal. We use the notation of Ramsey angase of single-crystal xenon. The simple, face-centered-cubic
co-workers® for the coupling coefficient, =cy(R), which  structure of the xenon crystal allows us to use group theory
will depend on the internuclear separatiBnof the pair of  to simplify the calculational details, which can be found in
atoms. the subsequent sections of this paper. Here we summarize the
For externally applied magnetic fiel& exceeding a few results.
T, there will be a substantial contribution to the relaxation The predicted |ongitudina| Spin_re|axation raté’ﬁ_/ due
rate from phonon-induced fluctuations of the paramagnetig fluctuations in the spin-rotation interaction of Ed.1), is
antishielding interaction the same for single-crystal samples of xenon as for polycrys-
talline sa:ijles, and it is therefore given by EG.5 of
, Ok, o Fitzgerald:
v K-3- . (14 The relaxation rate TF due to fluctuations in the para-

The inertial tensof of the pair is
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FIG. 1. (a) The 12 nearest neighbors of'aXe atoma, sepa-
rated from it by a distancB,. The 144 ordered pairs of the nearest
neighbor atoms can be partitioned into five s&ts, with m=0, 1,

2, 3, and 4. If we label one of the neighbor atoms as “0,” then pairs
of atoms labeled0,0), (0,1),...,(0,4) will be representatives of
the setsA,, for m=0,1, . . . 4, respectively. For all pairs in a given
setA,, the two atoms are separated by the same distaRigém,

and subtend the same andlg at the central atona. Angle 6, is
shown for pair(0,2). (b) Orientation of the externally applied mag-
netic fieldBg is shown with respect to the crystal basis vectars

X,, andx; (left), and the basis vectois, b,, andb;, described in
the text(right).

magnetic antishielding interaction of E¢l.4) differs from
that in polycrystalline samples. The single-crystal rate i
given by

1
i

9mc o T*2B*2[ 7P+ kPY]
a 4ﬁ2wD .

(1.9
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B
b3=B—0=xl Sin 6 cos¢ + X, Sin @ sin ¢+ X5 c0SH,
0
(1.9
is given by the function
° 3
Y=Y(8,¢)=2 (x-by)*~ ¢
i=1
. . 3
=sin*d(cos ¢+ sin'p) + cos o— £ (1.7

Note thatf J sin 6d6/37d¢Y(6,4)=0. In 1963, Eisenstadt and
Redfield® pointed out that the orientation dependence of re-
laxation rates in cubic crystals will always have the form of
Eq. (1.7).

The isotropic efficiencyy”= 5" (ey,T*) of the paramag-
netic antishielding relaxation is

5

(€0, T*)= 2

p=1q=

5
p

A egipqu q—l(T*)y (1-8)

where the coefficientEFF,’q are elements of the matrix

-8 -1 0 -1 8-
64 58 —16 58 64
EP:% 272 395 88 395 272, (1.9
288 1152 576 1152 288
| 240 960 480 960 24(

and the phonon freeze-out functions, defined by(Edl8 of
Fitzgerald? are

1
T*Z

u/T*
SJIm(u).

Lot 27
0 (e" )

D)= =

(1.10
Here the integration parametar=k/kp is the ratio of the

phonon momentumik to the Debye momentunfikp
=hwp/cg, Where we assume a common speed of saund

Sfor the longitudinal and transverse modes. The functions

D, (T*) are spectral averages of the phonon response func-
tions J,(u), given by Eq.(2.36) of Fitzgerald as

Im(W=1+]o(ugpym)—2jo(udp),  (1.10

where jo(x)=x"1sinx denotes a spherical Bessel function

of zeroth order(or a “sinc” function). The Debye phase is
ép=(67%\2)"3. For an emitted or absorbed phonon of rela-

Herecyo=ck(Ry) is the spin-rotation coupling coefficient at tive momentumu, the functionJ(u) defines the contribu-
the equilibrium separatioR,, of adjacent xenon atoms in the tion to the relaxation from membeys and 6 of the nearest-

crystal. The Debye frequency iep=kgTp /%, wherekg

neighbor pairs in the set,,, for which co®9,,=1—(m/2).

=1.38<10 1% erg K 1 is the Boltzmann constant. The De- The set index can take on the values-0, 1, 2, 3, and 4.

bye temperature of the xenon crystalTig=55 K, andT*
=T/Tp is the relative temperature. The relative magnetic
field is defined aB* =B,/Bp, where the Debye field for
solid xenon iBp=kgTp/ug=82 T. The Bohr magneton is
up=0.9272<10"%° erg G 1.

The dependence on the field directi@ee Fig. 1b)],

The anisotropic efficiency”= (e, T*) is

4 5
KP(EO,T*)=§1 q; €5 PKp Dy 1(T%), (112

where the coefficientlligq are elements of the matrix
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(a) X, (b) X,

FIG. 2. The efficiency functionc”(ey,T*) (solid line) of Eq.
(1.5 parametrizes the anisotropic part BPXe spin relaxation due
to spin-flip Raman scattering of phonons through the paramagnetic
antishielding interactiofEq. (1.4)]. For comparison, the efficiency
functions %" (ey,T*) (dashed ling and 7%(e,,T*) (dash-dotted
line) are also shown—they parametrize the orientation-averaged re-
laxation due to interactiofiL.4) and the field-independent relaxation
due to spin-flip Raman scattering of phonons through the spin-
rotation interactior(1.1), respectivelyT* =T/Ty is the ratio of the
crystal temperatur@ to the Debye temperatuig,=55 K. For all
three functions, an estimat®ef. 4 of ¢;=—11.8 was used. The
functions 7, «P, and #° approach the constants 8874.1, 6033.1,
and 2686.8, respectively, far>1.

2 1 0 1 2 FIG. 3. The relative relaxation rat®, given in Eq.(1.19, is
plotted as a function of the direction of the applied magnetic field
16 22 24 22 16 By with respect to the crystalline basis vectess x,, andxs, for

28 85 —188 85 28| (1.13 three different values dB: (a) B;=0, (b) BozéBD, and(c) By
8 _32 16 -32 -8 =Bp, whereBp=kgTp/ug=82 T for solid xenon.

The efficienciesy” and «F, given by Egs.(1.8) and R=1+[3.303+2.245(( 0, ) |B*2. (1.15
(1.12, parametrize relaxatio(l.5) caused by fluctuations in
the paramagnetic antishielding interactidnd) in a similar
way that the efficiency s, given by Egq. (2.42 of In Fig. 3 the magnitude of the relative relaxation r&eis
Fitzgerald; parametrizes relaxation caused by the spin-plotted versus the applied field direction for several relative
rotation interatior{Eq. (1.1)]. All three efficiencies are plot-  fja|d valuesB*. Y(6,4) attains its maximum valueZ2)

ted as a function of relative temperatdreé=T/T in Fig. 2. when b, points toward one of the six faces of the cube of
The efficiencies are nearly independent of temperature abovll_.eIg 1, and it attains its minimum value—(%) when b
. ] 15 3

the Debye temperaturelt >1), but they diminish rapidly points toward one of the eight corners of the cube. The

below the Debye temperaturd{<1), because the mean . . O
corresponding maximum and minimum values Bf are

number of phonona,, in modes of frequency, ~ wp BegINS & >4 a2 21411 2 7082, In the high-field limit, the

to freeze out, and is no longer well approximated i . .
kT ow. g PP oy maximum relaxation rate is a factor of 1.554 faster than the

minimum relaxation rate.

Measuring the relaxation rate df®e spins in single
crystals of xenon at fields of some tens of T would be the
most direct test of the predictions of this paper. However,
referees of this paper kindly pointed out that for polycrystal-
B*2. (114  Jine samples with sufficiently large crystallites, the anisot-

ropy effects should be observable as a nonexponential spin
For T=Tp=55 K, Fitzgerald showed that the efficiency relaxation®® A similar dependence of the relaxation rate on
parameters are close to their infinite-temperature limjfs, the direction of the magnetic field should be observable in
=2686.8 and;"=8874.1. For the same radial dependencecrystals containing the spin-1/2 isotop¥Ph. These may be
of the antishielding used by Fitzgeralde,=—11.8), we  more convenient for experimental studies. The methods out-
find that the anisotropic efficiency has the high-temperaturéined below can be modified in a straightforward way to
limit x”=6033.1, so the relative raf in Eq.(1.14 has the  predict relaxation rates for other crystals with the same or
numerical value different symmetry groups.

Let R be the ratio of the total relaxation rate,
UTS+TY, to the field-independent rate TH. Then we
have

R=| gt 2|T5=14 77P+KPY
- Tf T]F_’ 1~ 778 778
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[l. SINGLE-CRYSTAL SYMMETRY An elementG of the groupOy, will transform ng into
another unit vectons, = Gng. Let the group transformations

As illustrated in Fig. 1a), the 12 nearest-neighbor atomsﬁ3 rotate(or inverd the unit vectorsc , so that

of a 12%Xe atom can be located on the edges of a cube, wit

the 1?°Xe atom(labeleda) in the center. A unit vector from

the 1?°Xe atoma to one of its nearest-neighbor atorsis Gng=ng =G, ngx=_>, nBinGi(jFl)' (2.4

denoted byng. From inspection, we find that the locations of ' !

the 12 nearest-neighbor atoms are transformed into eacks implied in Eq.(2.4), x; form a basis for the three dimen-

other, leaving the*?*Xe atom« fixed, by the operations of sjonal irreducible representatich.

the symmetry grouf,, of the cube'! The groupO,, hasg The transformation of a functioff(ng,n;) into a func-

=48 elements and ten classes, and thereferd0 irreduc-  tion Gf=Gf(ng,n;), by an elemenG of the group, is de-

ible representation@i(j“) . The representations are labeled by fined by

the superscript ¢). The representations @,, are gerade

andungeradeversions of the five irreducible representations Gf(ng.ny) = f(GflnB .G ny). (2.9

of the octa_hed_ral grou@: Following the conyention ofLan- HereG!is the inverse group element @. It is obvious

dau and Lifshitz," we will label the irreducible representa-

tions of O by the symbolse=A,, A,, E, F,, andF;. The

dimensions (*) of these representations are 1, 1, 2, 3, and 3,

respectively. ( (S)EA f(ng,Ns)=gm(f)m, (2.6
Since the irreducible representatio@q%“) of Oy can be PO

chosen to be real, we can write the fundamental orthogonawhereg,, is the number of ordered pairs ia,,. The angular

ity relation for irreducible representations and 8 of the  brackets indicate a group average

group Oy, [see Eq(94.9 in Landau and Lifshit?] as

1

1 1 (fhm=g % Gf(ng.ny). 2.7
=2 GG == 8,405 (2.
9°c f Applying each element to f(ngz,n;) for anyrepresentative
The sum extends over ajl= 48 elementsS of the groupO,,. ~ Pair (86) € A, we will generate values dffor g=48 pairs,

As illustrated in Fig. 1b), we let the externally applied all members of the set,,. Each pair will occulg/g,, times.
magnetic fieldB, define a set of orthonormal basis vectors
bi, such thatby=B,/By, and (©;Xb;) b= € with € ll. SPIN-ROTATION INTERACTION
being the antisymmetric unit tensor. The unit vectorsand
b, can be any orthogonal pair that spans the plane perpens
dicular toB,. We can define the unnormalized circular basis
vectors as

As discussed in connection with E¢A1) of Fitzgerald?
evaluate the relaxation due to Raman scattering of
phonons through the spin-rotation interaction, we need to
average values of a few simple dyads and tetrads. For a dyad
b.=b,*ib,. 2.2 of the formngn,; we find

, : , 1 1
According to Eq.(2.29 of Fitzgerald? the fluctuation of Nans =— GNan=S NN e XXe cFugFY
the paramagnetic antishielding field is proportional to {nghs)m g % pe uzrs Ao s g EG: noTs

1 1 1
W’B=2—%woo{[bjebja+bjabje]+eo[nﬁ~bje(nﬁbja+bjanﬁ) = 3N Ns=75 COSOy. (3.1
+ng-b; (Ngb; +b;j np)l+e€glb; -bj +(€—1) We use the notatiomg=ngs-x . The averagdEq. (3.1)]
@ e e e e over the groufy, is exactly the same as the average over the
X(ng- bJe)(nﬁ' bja)]nﬁn[o’}' (2.3 full rotation group given by Eq(A7) of Fitzgerald. Similarly,

we can write
The field results from the motion of atog when a phonon

of polarizationb;_is emitted(with je=1,2,3) and a phonon ((ngXng)(NgXng))m
of poIarizatioan-a is absorbed.

1 Fi) ~(F
Since the “field”[Eq. (2.3)] must be squared to calculate = ;d N gal 50N e 50 €abi€caXiXs g % G| 1)G(sj v
relaxation rates, the rates will be functions, which we denote ¢ irs
by f(ng,n,), of the unit vectorsi; andn,, pointing to two 1 1
nearest-neighbor atom@ and 8. Since there are 12 nearest = 3(Ng-NgNs Ns—Ng-NsNg-Ns) = §Sln20m- (3.2

neighbors, the values dfwill have to be summed for 144

nearest-neighbor pairs. To avoid summing such a large numro simplify the evaluation of Eq(3.2), we ignored the fact

ber of terms, we make use of the symmetry of the neareshat cross products are pseudovectors, not true vectors. This
neighbors under the grouP,, to reduce each sum to five makes no difference when an even number of vectors is in-
terms, one for each of the five sets,. volved, as in Eq.(3.2. The averagdEqg. (3.2)] over the
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group Oy, is exactly the same as the average over the full
rotation group given by EqA9) of Fitzerald? Thus, expres-
sion (1.5 of Fitzgerald; derived for a polycrystalline
sample, remains valid for a single crystal. For Raman scat-

tering of phonons by the spin-rotation interact|dy. (1.1)],

there is no dependence of the rate on the direction of the

externally applied magnetic field.
IV. PARAMAGNETIC ANTISHIELDING
Using Eq.(A12) of Fitzgerald‘,1 we write
6

by X wuwj-b_=B*2> X, (4.2)
el i=1

Jela

where

1
X1:b+'§(1+b3b3)'b7:1’ (4.2

€
X2:§b+[(nﬂnﬁ+ n5n5)+{b3(n'3nﬂ+ n5n5)'b3}l]' b7 y

(4.3
2
€0
X3=7b+ [(ng-ng)({bs-ngns-bs}t1+ngnys)
+ b3 (NgNgNsNs+NsNsNgNg+NgNsNsN 4
+ngngngns)-bsl-b_, (4.4
€o(€o—1)
4:Tb+ . [b3 (nﬁnﬁnﬁnﬁ+ n,;n,;n,;nﬁ) . b3] -b_ f
(4.9
2
€o
X5:§b+ -[(4bs- (ngngnsny) - bs

+(€0—1)(ng-nys)bs- (NgNgngns+ngngnsng

+NsNgNsNs+NgNaNaN5) - bsl-b_, (4.6)
€
X6:Zb+ -[bs- (ngnﬁngng) ‘b3{3+2(ep—1)
(e 1)} b @

PHYSICAL REVIEW B35 134301
<nKn}\npn0'>m: I]% nKin}\jnpkn(ﬂgu XXXt Xy

1
X352 ciYeiYeivelY. (1.9

There is no general way, analogous to E2j1), to evaluate

the sum in Eq.(4.8. However it is not hard to solve the
problem by coupling the unit vectors in pairs to form dyadic
irreducible representations @f,. The group average of the
tetrads, products of the pairs, can then be evaluated with Eq.
(2.1). This is similar to the pairwise coupling of unit vectors
used in Appendix A of Fitzgerafdo evaluate the average of
tetrads over the full rotation group.

Consider the reducible representation formed by the nine
dyadsx;x;. We denote linear combinations of the simple
dyadsx;x; with the symbolD (for dyadig. We can choose
nine orthonormal linear combinations of dyaqs; that span
four irreducible subspaces, as follows.

A;: This subspace generates the one-dimensional, identity
representatiod\;. It has the single basis dyadic

1
pP= . (4.9

V3

E: This subspace generates the two-dimensional represen-
tation E. The two basis dyadics can be chosen to be

D =i(3x3x3— 1), (4.10
J6
D(E):i _ 4.1
2 (X1X1 = X9Xo). (4.11)

V2

F,: This subspace generates the three-dimensional, anti-
symmetric representatidf,. The three basis dyadics can be
chosen to be

1
p{?= —=(XoX3— X3Xy),

4.1
1 \/5 ( 2
D= (xax xa), (413
V2
DéFZ): i(X]_Xz_)(le). (414)
V2

In Egs. (4.2—(4.7), the unit vectors; andn, occur in the

following combinations:(a) as scalar products likeg-ns, F1: This subspace generates three-dimensional, symmet-

which are invariant under group operatiorib) as dyadics (ic representatioif;. The three basis dyadics can be chosen
like ngn;s, which were averaged in the previous section; angg pe

(c) as tetrads of the form,n,n,n,. The indiceskApo are
some combination oB and &; for example we might have
k\po=pBB356 or khpo=pBBBS. The group average of a

D(F1)=i(x X3+ X3X5)
tetrad is . 278 Tt

A (4.15

134301-5
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TABLE I. Coupling coefficient§n,n,1{*), defined in Eq(4.19.

a u=1 n=2 u=3
A, Ng-ns/\3
E (3nganss—nNg: ns)/\6 (Ngins— n/szntsz)/\/z
Fs (nﬁ2n§3_nﬁ3n§2)/\/§ (n,BSnél_nﬂlnzSS)/\/z (nﬁlnzSZ_nBZné‘l)/\/E
Fi (NgaN szt nﬁsn(sz)/\/E (Ngsns: + "‘;;1”53)/\/z (NpiNgt ”ﬁzn(n)/\/E
1
= @) (&) (a)
D(Z l)zﬁ(X?,Xl‘}_Xng), (41@ T( EV DV DV ! (421)

1
=
D(S 1): _(X1X2+X2X1).

% (4.17)

Writing the simple product dyads in terms of the irreduc-

ible dyadsD () defined above, we find

N =2 [ I,

ap

(4.18

where

(15 =3 iy Clawi i Faf) =n, DE-n
(4.19

The Clebsch-Gordan coefficiettsC(au;F,i,F;j) can be
found from an inspection of Eqg4.9—(4.17). For future
reference, explicit expressions for the coefficie[m§nk]§f“)
are summarized in Table 1.

Using Eq.(4.18), we can write Eq(4.8) as

1

(nmnnIn=g X 6 3 [ 2D n,n, ] DY

= 2 [nnIPnn 1P
aBuvu’ v’

vy

1
= () »(B)
><g EG GM,MG

=> ﬂ“’El N((kNpa)P,. (4.20

The sum ona extends over the irreducible representations
A., E, F,, andF,. The representatioA, does not occur.

The tetradic is

TABLE II. CoefficientsN{®(B8B56), given in Eq.(4.22.

and the coefficient is

1
2 NP (ehpo)Py== 3 [nem i Ingn, 1.
(4.22

To facilitate a comparison with the results of Fitzgerald,
where it was natural to describe the dependence of group
averages onm by means of Legendre polynomialB,
=P,(cosb,,), we use Legendre polynomial expansions in Eq.
(4.22.

As we shall show below, there is no contribution to Eq.
(4.1) from terms of Eq(4.20 with a=A;, so we will ignore
the coefficientsN?(k\pa). The values ofN{®(B855),
N(9(5B65), N{(55B6), and N{*(555B) are all equal,
and the nonzero values with# A, are

NE (8365 = =, NF)(goso)==. (423
Bi(psos)=15, N(psso)=z. @,

The other coefficientsl(® that we will need are summarized
in Tables Il and IlI.
V. GROUP AVERAGES (Xi)m

With the results of Sec. IV, we can now evaluate the
group averageéX;), of quantities(4.2—(4.7). We will have
to evaluate the quantities of the form

b+ {b3 <nKn)\npn0'>m' b3} b

=2t NI (khpo)Py, (5.9
@ |
where we used Ed4.20 to define
t@=p, -{by-7(¥.by}-b_. (5.2

We define matrix elements in the basisby

TABLE llI. CoefficientsN{¥(8858), given in Eq.(4.22.

a =0 =2 =4 a =0 =2 =4
E ~1/180 —4/63 16/105 E 19/180 —11/63 16/105
F, 0 0 0 F, —1/9 1/9 0

Fi 1/270 50/189 —32/315 F, 31/270 29/189 —32/315
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D{%=b;-D{-b;. (5.3

From inspection of Eq94.9—(4.17), we see that

D@ =p(a)

viij v;ji

|f a=A1,E,F1, (54)
and

D(a_)_ — _ D(a)

v;ij v;]i

Using Eqgs.(5.3—(5.5), we can write Eq(5.2) as

t@=p, {bs-T-bg}-b_=>, by- Db, b_-D(¥. by
=2, (DB iDIEHD e DI
=2, {D{D{+ DD

~i2 {D{}D{e~ iDL (5.6)

From Eqgs.(5.4) and(5.5) we can see that the last term of Eq.

(5.6) vanishes, so we have
t0=2 {D{D{+ DD,
+D{D e~ DD}
~bs| S 200003 (0l 67
One can readily verify from Eq$4.9—(4.17) that

> DD =My, (5.9

v

where

1 2
(A)=_ (B)—_— (Fp)—
M 3 M 3 M 1.

(5.9

MF2=_1,

Hence, Eq(5.7) becomes

=M@= (b D b2 (.10

Substituting values from Eq$5.9) and(4.9—(4.17) into Eq.

(5.10 and usingb= b3, we find

tA)=0, (5.11
tE)=2[(b-x,)2(b-X3)%+ (b-x3)2(b-x;)?
+(b-x1)%(b-x,)?]
=2(sirf@ cogd+sintdsirfpcose), (5.12
tFa)=—1, (5.13

PHYSICAL REVIEW B65 134301

t(FI=(b-x,)*+ (b-x,)*+ (b-x5)*
=sin*d(cos ¢+ sin¢) + cos' 6. (5.19
We note that
t® +tFl=1, (5.15
Using Egs.(5.1)—(5.15, we can rewrite Eq(5.1) as

b+ : {b3 <nKn)\npn(r> : b3} b
:2. [a(k\pa) +tEb(khpo)]P,

(5.1
with
a(k\po)= Nl(Fl)(K)\pO') - Nl(FZ)(K)\pO'), (5.17

(5.18

Explicit values of the coefficients, and b, follow from
Tables Il and lll; the nonzero values are

by (k\po)=NE(krpo)— NI(Fl)(K)\pO').

[ ag(8B56)] 1/270 ]
a,(BBss) | =| 50/189
L a,(BBS8S)| | —32/315
[bo(BBSS)| [ —1/108]
b,(BBSS) | =| —62/189| . (5.19
| ba(BBSF) | 16/63 |
We find thatb,(8668)=b,(B8B6565), and
ao(B388B) 61/270
a,(B8sB) | =| 8/189 (5.20
a,(B85B) —32/315

Values ofa, for kA uv=pBBB35, BBSB, BSBB, or BB

are identical, and the same is true pr The nonzero values
are

a,(BBBS=1/6 and by(BBBS)=—1/12.
(5.21)

We are now in a position to evaluate the quanti{i¥s,
from Eqgs.(4.2—(4.7). For convenience in comparing with
the work of Fitzgerald, we will write

(Xidm=25 (pi+ 1Py (522

Using Eqs.(3.1), (4.2, and(4.3), we find
(Xp)m=P10=1, (5.23
(X2)m= 92024?60- (5.24

134301-7
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As an example of how to average quantities containing facwhere, in agreement with E2.47 of Fitzgerald? the iso-
tors (5.1), we sketch the evaluation diX3),,. From Egs. tropic efficiency coefficient is
(3.2, (4.4), and(5.16) we find

2
0

X nP=nP(eo,T*>=% gmc| PiD/,. (5.33
X3 m-— 5
2

4
§co§am+§|} {2a,(BBSS)+2a,(BSSB)
The sum extends over the set indices-0, 1, 2, 3, and 4
) with g,,=12, 48, 24, 48, and 12, respectively, in accordance
+ 4t (BBES)} P (cosby,) |. (5.29  \ith Table | of Fitzgerald. The sum on Legendre polynomi-
als includes the indicel=0, 2, and 4. The Legendre poly-
Noting the simple Legendre identif = (2/3)P,(x) +(1/3),  nomialsP,= P,(cos#,,) are implicit functions ofm. The co-
and using coefficient.19 and(5.20 in Eq.(5.29, we find  efficients ¢/ =3;(p; + 2q;) are identical to those of Eq.
the nonzero coefficients of E¢5.22 for i =3, (5.34 of Fitzgerald®

The anisotropic efficiency of Eq5.32) is

Pag 61/135 Us0 —1/54
_ 2| 142/189 _ 2| —124/189
ESZ K 641315 332 K 32063 | KP:KP(GO’T*):% Il P1Dr- (53
34 - 34.
(5.26

o o The sum on Legendre polynomials now includes the indices
The remaining nonzero coefficients for 4, 5, and 6 canbe |- 2 4 and 6. The nonzero coefficients= — =,q; are

calculated in a similar way, and they are

’ 4 3 2_
cole—1) eoleo—1) dg (177e3+556e5+ 11925 — 1260¢,)/1512
Pa=—— and du=———5>—; (527 d} (49€4+ 3183+ 198%2)/1512
d, | (—14ej— 41263 — 3754€5)/3465
Pso (15¢,—14)/135 )
5 dg —40e5(eo—1)2/2079
Ps2 | = €5| (42€0+58)/189] (5.28 (5.395
Psa —64/315 The function that describes how the relaxation rate depends
9o (—3ey+2)/54 on the directionb of the applied field relative to the crystal
axes is
Usz | = €2| (—21ep—103)/189], (5.29
2
Gse 32/63 Y=Y(b)= £~ t®), (5.39
Pso (138¢5— 248ey+ 152)/3780

) 5 which together with Eqs(5.14) and (5.15, gives Eq.(1.5).
Pe2| €0 (46€5+ 108ep+ 146)/378 Summing Eqgs.(5.33 and (5.34 over | gives expressions

=5 ,5.3
Pea| 4| (136e3—976¢,—216)/3465 (539 (1.8 and(1.12.

Pes (— 643+ 128¢,— 64)/2079
VI. DIRECT SUMMATION WITHOUT USING GROUP
J6o (— 1772+ 284ey—212)/378 AVERAGES
Je2| € (—49e2—150¢,— 173)/378 To check the results of calculations presented in Secs. |
=— ) ) and V, term-by-term evaluations of the sums needed to ob-
Jea| 4| (56ep+ 1648+ 936)/3465 tain the relaxation rates were carried out using the symbolic
Jes (160e3— 320¢,+ 160)/2079 calculation packag®ATHEMATICA, version 3.0. The coeffi-

(5.3 cients presented in Eg€L.9) and(1.13 were thus indepen-

dently verified without resorting to group theory.
Using Egs.(5.22, (4.1), and(2.6), and omitting constant
factors, we can write Eq2.44) of Fitzgerald as
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