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Trace map and eigenstates of a Thue-Morse chain in a general model
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By the standard method proposed by Kolar and NBtys. Rev. B42, 1062 (1990], a rigorous eight-
dimensional8D) trace map for a general model of Thue-Mot3&/1) sequences is obtained. Using this trace
map, the characteristics of electronic eigenstates in TM lattices are explored in a very broad way. Simulta-
neously, a constraint condition for energy parameters, under which the complex 8D trace map can be simplified
into the ordinary form, is found. It is also proved analytically that all eigenstates of TM lattices are extended
when this constraint conditon is fulfilled. Furthermore, the properties of eigenstates beyond this constraint are
investigated and some wave functions with critical features are discovered by the multifractal analysis. Our
results support the previous viewpoint that a TM lattice is an intermediate stage between periodic and Fi-
bonacci structures.
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[. INTRODUCTION there is doubt whether their conclusion can be proved or
generalized by rigorous deduction. In fact, to seek the trace
Since the discovery of a quasicrystalline phase in rapidlynap of an aperiodic sequence, a useful approach based on
quenched Al-Mn alloy$,many efforts have been devoted to the matrix operation was proposed by Kolar and Nori more
the research of quasiperiodic structufe¥As we know cur-  than ten years agd.This approach requires that all matrices
rent'y’ the physica' properties of these Systems are very inentenng iterations are unimodular. For the TM sequence In
triguing and they have provided us with an approach to unihe general model there are four basic transfer matrices;
derstand the intermediate phases between periodic arftPwever, two of them are not unimodulaee Sec. Ill. Thus
disordered structures. For simplicity, most of the research ha Seems intuitively that the matrix operation method is inap-
been done with one-dimensional lattices and focused oflicable in this situation. Luckily, we eventually find a way
characteristics of electrons and acoustic phonons. As a ref@ bypass this difficulty by adopting matrix combinations and
resentative structure, the Fibonacci chain has been studidthally attest that there exists an eight-dimensidgal) trace
for many years and many authors have reported meaningfiidap. Under a constraint condition for the energy parameters,
results>~® Meanwhile, investigative interest has also turnedthis trace map can be simplified to the ordinary form and
to other aperiodic but yet deterministic structures, one offore surprisingly in this case all eigenstates are rigorously
which is the so-called Thue-Mors@M) sequence. Some gxtended. Fur_ther, based on the 8D trace map, we also inves-
early papers started the study on the physical properties fdigate other eigenstates of TM (_:halns beyond this constraint
the TM sequence and its special features in comparison, fgnd some new results are obtained.
instance, to the well-known Fibonacci sequeficé.After The paper is organized as follows. In the next section the
several years, it has been made clear that there exist extendg@neral model for TM sequences is given. Then the trace
states in TM latticed® that the energy spectra are similar to Map in this model and its simplified form are derived in Sec.
Cantor set$? and that the Fourier transformation of TM lat- !ll. In Secs. IV and V, we use this trace map to calculate the
tices is singular continuous. eigenenergies and then to discuss the properties of eigen-
To analyze the physical behavior in deterministic aperi-States in the general model of TM chains. Finally, a brief
odic systems, many techniques have been developed, inclugonclusion is presented.
ing transfer matrix, dynamic map, and renormalization
group. Among these methods, the first two, which will be Il. THE MODEL AND FORMULATION
used mainly in this paper, are simple and very suitable for ] o
calculating the eigenenergies and for studying the features of With two building blocks denoted by andS a TM
relevant eigenstates. In general, the first step used to sohR€dueénce can be constructed by the successive substitu-
the problem is finding out the trace maps, because most s#9nSL—LS andS—SL. ChoosingL as the starting block,
quences can be created by the so-called inflation or iteratioftiS process will give L—LS—LSSL>LSSLSLLS
method, i.e., the higher generations of sequences can be con:L SSLSLLSSLLSLSSL: - -. On the other hand, we can
structed through a rule by lower generations. For the TMRISO begin withS then the growing sequences will be
sequence, the trace map in the on-site model has been ré=>SL—SLLS—>SLLSLSSE-SLLSLSSLLSSLSLES--. To
transfer, the mixed, and even more general models were offansfer matrix method is widely used, so hereafter we use
tained by Ghosh and Karmakar using a real-space renormal; to denote the global transfer matiistefined later of the
ization group(RSRG technique'’*® But the RSRG method former sequence anMl; to denote that of the latter one,
depends on the concrete form of basic transfer matrices, ssherej=0,1,2,3... denote the generation number of the
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TM sequences. Replacifg(S) in M; by S(L), MJ. will be 01=_Is~ss-_sl in addiFion toM;=Is-sl, now the recursion
obtained; so in this regard we s&; is the complement to relation (4) is turned into
M

j- . o ) ) ) M., ,=P.O;,
Under the tight-binding approximation, an electron in a LI
TM chain can be described by the equation P..=M.
j+1 ]
tn,nfl‘/’nfl+tn,n+l¢n+l+fn‘/fn:E'pna () Oj+1: PijOj , (5)

wheret’s are the nearest-neighbor hopping integrals,are
the on-site potentials)’s are the electronic amplitudeR,is
the electronic energy, andis the site index. Now there are
two kinds of bonds, one of which is denoted byand the
other by S. The bondL has a hopping integral and the
bondS hastg. The bonds are arranged ag:cording to thg ™ i =TrM;, szzTrOJ- , Xingrpj , xLzTerOj ,
sequence. Thus there are four types of sites characterized by

the bond paird L, LS, SL, andSS respectively. He_re we x{;=TerPj ,x’é=TrOij, x%:TerOj Pj,x{;:TerPjOj.
usea, B, v, andd to represent these four types of sites and (6)

€., €3, €,, ande; to denote the corresponding on-site po- )

tentials. Thus we get the general model for a TM chain withnThen from Eq.(6) we have obtained an 8D trace map as
six energy parameters, and the conventional on-site an®llows

transfer models are just its simplified forms. In the general _;_,

for j=1. EvidentlyM;, P;, andO; are all unimodular, im-
plying that the standard method can be applied now. This is
a three-letter dynamic map problem. To find the trace map, it
needs eight coordinates:

j+1_ j+1_ j+1

| i j — vy
case there exist four basic transfer matrices as follows: X1 7= Xer X TEXq, X3 TEXL, Xg T XeX7T X,
o PR
| ((E—ea)/tL —1) ((E—eﬁ)/ts —tL/tS) XE =g, xg T =xhxb+xg—xbxg,
1 0 ! 0 b= xbxh — (x)) 2= (x})2— (xL) 2+ xi xhxL+ 2,
(E—e)lt, —tglt (E—eplts —1 U
Is=( St el [Tl T, X1 xbh— ()2 ()= (X 2 xxbh+ 2. (7

(2)  This is the exact trace map of TM sequences in the general
) ic vibraf model. With its use, one can calculate the eigenenergies very
We can also treat the classical elastic vibratione TM  ofectively and accurately. Also from this 8D trace map, we

structures in a similar way. , _find that for the general model there exists an invariant
We now take the basic transfer matrices for electrons in
Eq. (2) for further study. Under Born—von Kaan boundary I =x5"2—xL (x4 xb ) + xL L (xd)2. (8)
conditions, the global transfer matrid; can be obtained by
the recursion relations Interestingly, it can be found thatalways equals 2 exactly
o - - from the basic transfer matrices defined in E2).
Mi+1=N;N;, M;.1=NN;, The above 8D trace map is very complex. Fortunately, we
have found a way to simplify it. Our algebraic operations
Nj:1=MN;, N, 1=MNj, 3) strictly show that if and only if the constraint condition
for j=0 and withMo=I1, My=ss Ny=Is andNy=sl. A €.t es=epte, ©
few initial global transfer matrices aé;=Is-sl, My=Il " for the on-site potentials is satisfied, the following five equa-
‘Is-ss-sl, and Mz=ls-sl-Il -Is-sl-Is-ss:sl. It is impor-  tjgng,
tant to note that the above recursion relations are equivalent
to the following matrix transformations: xj7—x£3=0,
l—ls-sl;  ss—sl-Is; xhxk— xL(xk* 1= 2) = (x})2=0,
Is—ll-Is; sl—ss-sl. (4)

xb+xh—2x} (x5—1)=0,

Ill. THE GENERAL TRACE MAP AND ITS XL+ (xb) 24 (xb)2— xI xbx —2=0,

SIMPLIFICATION

_ - N

Although M; and M; can be confirmed as unimodular X+ (X5) " (X5) "= XyXexs = 2=0, (10
matrices, it is impossible to get the trace map from the rehold for j=1. In this case one can simplify the 8D trace map
cursion relations(3) or (4) by the Kolar-Nori standard to the well-known form &
method® because of the nonunimodularity &f and N; . o
But we find a way to evade this trouble. DefiniRg=1l and X6 2= (xg)%(xs = 2)+2, 11
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If we note thatx, "=x}=TrM; and definey;=3TrM, then
the trace map can be rewritten in the ordinary form .00 \
c
Xj+1=4xF-1(x;—D+1. (12 ; \
©
Recalling the energy parameters for the conventional on-site §°'75'
model,e,= ez# €,= €, and t_ =tg, for the transfer model, %
€,~€g=€,= €5 andt #tg, and for the mixed modele, £ 0.501
=ez#€,=€s andt, #tg. In all these cases the constraint g
condition (9) is met, so naturally the trace maps for these ]
three special models is just formu(d2), which was also 2025 ﬂ} }' )
found in Ref. 17 using the RSRG scheme. il | | | V\v Pt
Furthermore we have also studied the classical vibrating 0.00 LA Mo st st T W, W”’. LN
0 100 200 300 400 500

problent®?°of a TM atomic chain in the general model and
found that it has one-to-one correspondence with the elec-
tronic case. If we definen,, mg, m,, andm, to denote the FIG. 1. Electronic wave function witk= —4.284 827 042 441
four kinds of atomic masses, ag andkg to denote two  from x,=0, wheree,=0, €;=0.4, €,=0.8, €;,=1.2,t = 3.0, and
kinds of different stiffness constants. A similar constraintts=2.0.
condition for the classical vibrations to simplify the trace
map into the ordinary form isn,+ms=mgz+m,, which jclike NN, array mixed with the identity matrixo,.
completely resembles E¢9) here. This result is true even for a infinite TM chain. For
example, Mk+1:Nka, Mk+2:0-INk0-INk! and Mk+3
=NNyo NN No Ny, etc. In this way the aperiodic TM
chain turns into a periodiclike chain by neglecting the clus-
Under the Born—von Kmanan boundary conditions, the ters giving the identity matrix. So, naturally, the eigenstates
eigenvalues of gth generation TM chain can be calculated given by Eq.(14) are all extended. A numerical example is
by the equation illustrated in Fig. 1, which shows an extended eigenstate as
expected. Besides being extended, the eigenstate is also
xj=1. (13 latticelike, which means that the distribution of the elec-
tronic amplitudes forms a TM arrangement. Our further
analysis shows that it originates from the fact that when

Xk—»=0 the fourth matrix elements of, andN, equal zero,
which leads tQﬂlz l//2k+1: ¢2><2k+1: (ﬂ3>< o2kp1= . These
Xj-2=Xj-3=" " =x1=0 (14)  relations are thoroughly proved by our numerical computa-
tions and can also be discerned from Fig. 1, wHete5.
and On the other hand, except for the eigenvalues above that
1 (15) support delocalized eigenstates, the remaining four eigenval-
X2= 4

ues coming from Eq(15) do not lead toM; and M; being
(2) The eigenvalues of lower generations of TM sequence#ie unit matrix and they actually correspond to eigenstates
are preserved in higher generations. The reason ishat With linear growing amplitudes as the chain length
=1 gives increase$? The numerical calculations further show that
these four eigenvalues determine the global wave functions
Xj+1=Xj+2= =1 (16) at band edges. By the way, we have also investigated the

, ) eigenmode features of classical vibrations in TM lattices and
To prove analytically that all the eigenvalues from EfH) ¢ g that they are very similar to those of electronic wave
give extendedwave functions, we should invoke the three ¢,nctions.

Pauli matricesr, , oy ,0, and the 2<2 identity matrixo, to

resolve the matrice™,, My, Ny, andN.1"?>2Then af-

ter a great deal of algebra, one can find that the eigenenergié’s

from equationy,_,=0 strictly renderM =M= o, and si- A. A rigorous latticelike wave function

multaneously lead to the finding that the fourth matrix ele- We have proved that all the eigenstates of a TM chain,

ments ofNy and Ny are zero. It should be emphasized thatynder the constraint conditioa, + € ;= €+ e, in the well-

the unique requirement to obtain these results is(Bgand  studied on-site, transfer, or mixed models, are extended. We

the on-site, transfer, and mixed models are only its specialould like to ask about beyond the constraint condition, or if

examples. . there are localized or critical states in TM chains; thus we
When M=M= 0o,, combining the recursion relations return to the general model. A natural extension of the topic

(3) and (4), it is easy to see that the global transfer matrixis to investigate the eigenstates for which E9).is not sat-

for a higher generation=k) of TM sequences is a period- isfied. So far it is difficult for us to solve the problem thor-

Site Number

IV. EXTENDED EIGENSTATES UNDER THE
CONSTRAINT

Combining it with Eq.(12), i.e., under the constraint, we can
find two obvious facts{1) The solutions of Eq(13) are just
equivalent to the solutions of the following equations:

FURTHER DISCUSSIONS BEYOND THE CONSTRAINT
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delocalized eigenstates in aperiodic structures were found in
many situations with correlated disord&mtHowever, except

for the special energy,; above, other eigenenergies will lead
to eigenstates with a more chaotic nature, according to our
numerical computations.

_‘
>

_‘
i

B. Critical states and multifractal analysis

By a minor analytic treatment, we consider another spe-
cial case, wheree,=e€;#€z=€, and t =tg=t. Thus |

Absolute Amplitude (arb. unit)
o
o]

04 =ssandls=sl, so the recursion relatiof8) can be written
as
0.0- _ _
0 50 100 150 200 250 M 1=N;N;,  Nji1=M;N;. (20)
Site Number Defining

FIG. 2. Electronic wave function witkE=0.6, wheree,=1.2,
€5=0.6, ,=0.6, €,=0.9,t, =5.0, andts=3.0. Xj=TrMj,  Yj=TiN;,  Z;=TrM;N;, 1)
] o we have a simplified three-dimensional trace map
oughly because of the complexity of the original 8D trace
map. As a special example, it is assumed that two of the four x].H:sz_z, Yi1=2;, sz:Yszj_zj -X;Y;.
on-site potentials satisfy an equalieg=¢,. Defining (e, (22
—€p)/ts=p, (e,— €5)/ts=q, andt_ /ts=R, we have found

that for a special energy = € the four basic transfer matri- The invariant for this map is

ces are I=X;Y;~Z;, (23
ne|” p/R -1 Sl 0 -R which is also equal to 2. Thus E(R2) turns into
L1 o) T l1 o) )
Xj+l:Yj_2! Yj+1:Xij—2, (24)
T el IR s R (177 With initial conditionsXo=(E~ ,)/t andYo=(E~ eg)/t.
1 (O 1 0/ Using Eq.(24) one can calculate the eigenvalues, and in

. . this caseX;=2 can lead to three independent equations
Then it can be proved that the global transfer matrices are ! P q

—1/R 0 ) 1 —(QR2+D)/R Yj*ZZYj*3:"':Yo:0, (25)

M=l o —r) MeTlo 1 ’ X;j_2=0, (26)
_(1 —[A]-(p+qR4)+Bj(p+q)R2]/R3) 9 Xi—2Yj—2=4 (Xj_2#Y|_2). (27
1o 1 It can be seen that the roots coming from E2p) preserve

the eigenvalues of higher generationsj) of TM se-
quences, and the remainder coming from the other two equa-
tions does not have this character. This difference may be
2B;—1, if j iseven observed in their distinguighing eigenstates.
2B,+1, if | isodd, (19 We can provi tﬁat_the eigenvalues extrac_ted frpm(Eﬁ).
also lead toM;=M;j=a,, so the correponding eigenstates
with B;=0. In this case the energy; is always the eigen- are strictly extended too. The numerical result for a twelfth-
value of any generations<3) of TM sequences, and a cor- order TM chain is given in Fig. 3, with eigenenergy satisfy-
responding eigenstate for the twelfth order is shown in Figing Y;=0 andX,=2. It is also a latticelike amplitude pro-
2. It is also an extended and latticelike eigenstate, just likdile with obvious extended nature. Our multifractal analysis
those(see Fig. 1 under the constraint condition, although of the wave function confirms this conclusion, namely in the
there are differences between them in the details. multifractal spectrunif (a) ~ «] there is only one multifrac-

A further analysis reveals that the eletronic amplitudes intal point: f(a=1)=1. We calculate the multifractal spectra
Fig. 2 are arranged strictly according to the TM sequencewith the prescription proposed by Kohmoto and co-workers
The possible origin of this rigorous latticelike wave function and Halseyet al?® Since the finite size effect has been re-
is that for the energy; the cluster-type correlation appears moved by extrapolation, we believe the results are convinc-
in TM sequences, and transfer matrices for these clusteigg.
equal identity. Their contributions to the global transfer ma- On the other hand, the eigenenergies determined by Eqgs.
trix can be neglected and the remaining host lattice become @6) and(27) may lead to eigenstates withcaitical nature.
periodic one. Naturally the relevant state is extended. In facTwo illustrating wave functions are shown in Figgajand

for j=3. The coefficientsA;=2!"2 andB; (j=3) are de-
termined by the recursion equation

Bj+1:
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FIG. 3. Electronic wave function witie=0.007 342 808 757

from Y;=0, where the energy parameters ae=0.6, €5=0.3,

6,},: 03, €s= 06, andtL:tS: 1.0.

4(b). The corresponding eigenenergies satiXfyy=0 and

X10Y10=4 (X10# Y1), respectively. To understand the char-
acteristics of these eigenstates, we perform a multifract
analysis. In this case we find the extrapolation is necessary

f(o)
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FIG. 5. Multifractal spectra for the wave functions in Figéa)4
and 4b).

We have examined all the eigenstatesjfer7 and found
dpat the eigenvalues determined by E2p) support the wave
fyinctions with the character shown in Fig. 3 and those deter-

obtain reliable results, which are shown in Fig. 5. They aremined by Egs.(26) and (27) lead to the eigenstates with

all clearly smooth curves, which reveal the critical feature ofmore disordered and chaotic features as in Fig. 4. But we
the eigenstates. For the electronic amplitude distributions imlso find some exceptions in the latter case, which is illus-
Figs. 4a) and 4b), the numerical result gives for the former trated in Fig. 6. The eigenstates in Figéa)éand Gb) corre-
amin=0.75, ana=3.04, fa{a)=1.0 ata=1.05 and for spond to the eigenenergies satisfying=0 and X5Ys

the latteray,,,=4.07, f 1a{a)=1.0 ata=1.24. Due to the =4 (X5#Ys), respectively. They all resemble thH&gloch

fact that the numerical convergence is not very good, wavavesand can be considered as extended eigenstates, which
cannot get the accurate valuesaj;, for the wave function are also confirmed by our multifractal spectrum calculations.

in Fig. 4(b).
0.9 (a) (@)
0.94
0.6
0.6
£ 0.3 503
p=} ‘
g 5
: : |
o 0.05 ; : . ; S 0.0t +~UM Al
S 0 1000 2000 3000 4000 2 0 30 60 20 120
s £
< 0.94 (b) T |®
g g
= S 0.9
[=] (5]
g £
< 0.6
0.6
0.0 AM T r T 0.0- H
0 1000 2000 3000 4000 0 30 60 90 120
Site Number Site Number
FIG. 4. Electronic wave function with (@) E= FIG. 6. Electronic wave function with (8 E

—1.351 634 360 223 fronX,,=0 and(b) E=—1.486 066 084 521

=0.258099418 891 fromXs=0 and (b) E=0.181843863 681

from X;0Y10=4 (Y10#2), where the energy parameters are thefrom XsYs=4 (Y5#2), where the energy parameters are the same
same as in Fig. 3.

as in Fig. 3.
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VI. SUMMARY in the Fibonacci sequence. Our investigation indicates that

the TM sequence is the intermediate stage linking the perfect

. By the .transfer matrix approach and Pauli matrix resov- eriodic and Fibonacci structures. Our results also indicate
ling technique, we have studied the trace map and the elec:

T L hat the classical vibrations are completely correspondent to
tronic eigenstates of a TM chain in the general model. Weelectrons in TM structures.

Egvig?;::g danTingaicse ;n?:%nfsrt?gnvtmégz dei;igeerlreneigles can Finally, it should be noted that, recently, a similar conclu-
e forth .n- it tentials. When it i atis?ieofﬁt; Ef: rn_sion about the constraint condition for extended states was
€y € on-site po >- WHEN 1t 1s s d the com-q i ained by Chattopadhyay and Chakrabarti using the renor-
plex 8[? trace map can he S|mpI|f|eq into an ordinary form’malization group approacii.However, the relation between
wh|c.h is applicable to _aII weII-stud|ed_ cases, such as th he constraint condition and the trace map is elucidated here.
on-site, transfer, and mixed models. It is justified that in th'SFurthermore we have used an alternative way to confirm the

case that all the electronic eigenstates, except four Whos;j‘xistence of delocalized eigenstates under the constraint and

€lgenenergies are I_ocated at ban_d edges, have a fgorougs, reported some analytic and numerical results beyond
extendedand latticelike nature. It is also found that if an this constraint

eigenvalue of lower-order TM sequence is preserved to tha
of a higher-order sequence, it gives rise to the obvious delo-
calized eigenstates. Moreover, beyond the constraint, i.e.,
when the trace map does not take the ordinary form, the
extendedand critical eigenstates can coexist in the general This work was supported by the National Natural Science
model of TM sequences, according to our numerical compufFoundation of China and the State Key Program for Basic
tations and multifractal analysis. Note that there are onlyResearch from the Ministry of Science and Technology of
Bloch wavesn periodic structures andritical eigenstates China(Grant No. 001CB610602
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