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Trace map and eigenstates of a Thue-Morse chain in a general model
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By the standard method proposed by Kolar and Nori@Phys. Rev. B42, 1062 ~1990!#, a rigorous eight-
dimensional~8D! trace map for a general model of Thue-Morse~TM! sequences is obtained. Using this trace
map, the characteristics of electronic eigenstates in TM lattices are explored in a very broad way. Simulta-
neously, a constraint condition for energy parameters, under which the complex 8D trace map can be simplified
into the ordinary form, is found. It is also proved analytically that all eigenstates of TM lattices are extended
when this constraint conditon is fulfilled. Furthermore, the properties of eigenstates beyond this constraint are
investigated and some wave functions with critical features are discovered by the multifractal analysis. Our
results support the previous viewpoint that a TM lattice is an intermediate stage between periodic and Fi-
bonacci structures.

DOI: 10.1103/PhysRevB.65.134206 PACS number~s!: 71.23.An, 71.23.Ft, 61.44.Br, 63.22.1m
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I. INTRODUCTION

Since the discovery of a quasicrystalline phase in rap
quenched Al-Mn alloys,1 many efforts have been devoted
the research of quasiperiodic structures.2–5 As we know cur-
rently, the physical properties of these systems are very
triguing and they have provided us with an approach to
derstand the intermediate phases between periodic
disordered structures. For simplicity, most of the research
been done with one-dimensional lattices and focused
characteristics of electrons and acoustic phonons. As a
resentative structure, the Fibonacci chain has been stu
for many years and many authors have reported meanin
results.5–8 Meanwhile, investigative interest has also turn
to other aperiodic but yet deterministic structures, one
which is the so-called Thue-Morse~TM! sequence. Some
early papers started the study on the physical properties
the TM sequence and its special features in comparison
instance, to the well-known Fibonacci sequence.9–12 After
several years, it has been made clear that there exist exte
states in TM lattices,13 that the energy spectra are similar
Cantor sets,14 and that the Fourier transformation of TM la
tices is singular continuous.15

To analyze the physical behavior in deterministic ape
odic systems, many techniques have been developed, in
ing transfer matrix, dynamic map, and renormalizati
group. Among these methods, the first two, which will
used mainly in this paper, are simple and very suitable
calculating the eigenenergies and for studying the feature
relevant eigenstates. In general, the first step used to s
the problem is finding out the trace maps, because mos
quences can be created by the so-called inflation or itera
method, i.e., the higher generations of sequences can be
structed through a rule by lower generations. For the T
sequence, the trace map in the on-site model has bee
vealed for many years,16 and recently the trace maps for th
transfer, the mixed, and even more general models were
tained by Ghosh and Karmakar using a real-space renor
ization group~RSRG! technique.17,18 But the RSRG method
depends on the concrete form of basic transfer matrices
0163-1829/2002/65~13!/134206~6!/$20.00 65 1342
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there is doubt whether their conclusion can be proved
generalized by rigorous deduction. In fact, to seek the tr
map of an aperiodic sequence, a useful approach base
the matrix operation was proposed by Kolar and Nori mo
than ten years ago.19 This approach requires that all matrice
entering iterations are unimodular. For the TM sequence
the general model there are four basic transfer matric
however, two of them are not unimodular~see Sec. III!. Thus
it seems intuitively that the matrix operation method is ina
plicable in this situation. Luckily, we eventually find a wa
to bypass this difficulty by adopting matrix combinations a
finally attest that there exists an eight-dimensional~8D! trace
map. Under a constraint condition for the energy paramet
this trace map can be simplified to the ordinary form a
more surprisingly in this case all eigenstates are rigorou
extended. Further, based on the 8D trace map, we also in
tigate other eigenstates of TM chains beyond this constr
and some new results are obtained.

The paper is organized as follows. In the next section
general model for TM sequences is given. Then the tr
map in this model and its simplified form are derived in Se
III. In Secs. IV and V, we use this trace map to calculate
eigenenergies and then to discuss the properties of ei
states in the general model of TM chains. Finally, a br
conclusion is presented.

II. THE MODEL AND FORMULATION

With two building blocks denoted byL and S, a TM
sequence can be constructed by the successive sub
tions L→LS andS→SL. ChoosingL as the starting block,
this process will give L→LS→LSSL→LSSLSLLS
→LSSLSLLSSLLSLSSL→•••. On the other hand, we ca
also begin with S; then the growing sequences will b
S→SL→SLLS→SLLSLSSL→SLLSLSSLLSSLSLLS→•••. To
explore the physical properties of the TM structures,
transfer matrix method is widely used, so hereafter we
M j to denote the global transfer matrix~defined later! of the
former sequence andM̄ j to denote that of the latter one
where j 50,1,2,3, . . . denote the generation number of th
©2002 The American Physical Society06-1
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TM sequences. ReplacingL(S) in M j by S(L), M̄ j will be
obtained; so in this regard we sayM̄ j is the complement to
M j .

Under the tight-binding approximation, an electron in
TM chain can be described by the equation

tn,n21cn211tn,n11cn111encn5Ecn , ~1!

wheret ’s are the nearest-neighbor hopping integrals,e ’s are
the on-site potentials,c ’s are the electronic amplitudes,E is
the electronic energy, andn is the site index. Now there ar
two kinds of bonds, one of which is denoted byL and the
other by S. The bondL has a hopping integraltL and the
bondS hastS . The bonds are arranged according to the T
sequence. Thus there are four types of sites characterize
the bond pairsLL, LS, SL, andSS, respectively. Here we
usea, b, g, andd to represent these four types of sites a
ea , eb , eg , anded to denote the corresponding on-site p
tentials. Thus we get the general model for a TM chain w
six energy parameters, and the conventional on-site
transfer models are just its simplified forms. In the gene
case there exist four basic transfer matrices as follows:

l l 5S ~E2ea!/tL 21

1 0 D , sl5S ~E2eb!/tS 2tL /tS

1 0 D ,

ls5S ~E2eg!/tL 2tS /tL

1 0 D , ss5S ~E2ed!/tS 21

1 0 D .

~2!

We can also treat the classical elastic vibrations20 in TM
structures in a similar way.

We now take the basic transfer matrices for electrons
Eq. ~2! for further study. Under Born–von Ka´rmán boundary
conditions, the global transfer matrixM j can be obtained by
the recursion relations

M j 115NjN̄j , M̄ j 115N̄jNj ,

Nj 115M jNj , N̄j 115M̄ j N̄j , ~3!

for j >0 and withM05 l l , M̄05ss, N05 ls and N̄05sl. A
few initial global transfer matrices areM15 ls•sl, M25 l l
• ls•ss•sl, and M35 ls•sl• l l • ls•sl• ls•ss•sl. It is impor-
tant to note that the above recursion relations are equiva
to the following matrix transformations:

l l → ls•sl; ss→sl• ls;

ls→ l l • ls; sl→ss•sl. ~4!

III. THE GENERAL TRACE MAP AND ITS
SIMPLIFICATION

Although M j and M̄ j can be confirmed as unimodula
matrices, it is impossible to get the trace map from the
cursion relations~3! or ~4! by the Kolar-Nori standard
method19 because of the nonunimodularity ofNj and N̄j .
But we find a way to evade this trouble. DefiningP15 l l and
13420
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O15 ls•ss•sl in addition toM15 ls•sl, now the recursion
relation ~4! is turned into

M j 115PjOj ,

Pj 115M j ,

Oj 115PjM jOj , ~5!

for j >1. EvidentlyM j , Pj , andOj are all unimodular, im-
plying that the standard method can be applied now. Thi
a three-letter dynamic map problem. To find the trace map
needs eight coordinates:

x1
j 5TrM j , x2

j 5TrOj , x3
j 5TrPj , x4

j 5TrM jOj ,

x5
j 5TrM j Pj ,x6

j 5TrOj Pj , x7
j 5TrM jOj Pj ,x8

j 5TrM j PjOj .
~6!

Then from Eq.~6! we have obtained an 8D trace map
follows

x1
j 115x6

j , x2
j 115x7

j , x3
j 115x1

j , x4
j 115x6

j x7
j 2x1

j ,

x5
j 115x8

j , x6
j 115x4

j x5
j 1x6

j 2x2
j x3

j ,

x7
j 115x7

j x8
j 2~x1

j !22~x3
j !22~x5

j !21x1
j x3

j x5
j 12,

x8
j 115x7

j x8
j 2~x1

j !22~x2
j !22~x4

j !21x1
j x2

j x4
j 12. ~7!

This is the exact trace map of TM sequences in the gen
model. With its use, one can calculate the eigenenergies
effectively and accurately. Also from this 8D trace map, w
find that for the general model there exists an invariant

I 5x6
j 122x6

j ~x7
j 111x8

j 11!1x6
j 11~x6

j !2. ~8!

Interestingly, it can be found thatI always equals 2 exactly
from the basic transfer matrices defined in Eq.~2!.

The above 8D trace map is very complex. Fortunately,
have found a way to simplify it. Our algebraic operatio
strictly show that if and only if the constraint condition

ea1ed5eb1eg ~9!

for the on-site potentials is satisfied, the following five equ
tions,

x7
j 2x8

j 50,

x7
j x8

j 2x6
j ~x6

j 1122!2~x1
j !250,

x7
j 1x8

j 22x1
j ~x6

j 21!50,

x6
j 1~x4

j !21~x2
j !22x1

j x2
j x4

j 2250,

x6
j 1~x5

j !21~x3
j !22x1

j x3
j x5

j 2250, ~10!

hold for j >1. In this case one can simplify the 8D trace m
to the well-known form as21

x6
j 125~x6

j !2~x6
j 1122!12. ~11!
6-2
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If we note thatx6
j 215x1

j 5TrM j and definex j5
1
2 TrM j , then

the trace map can be rewritten in the ordinary form

x j 1154x j 21
2 ~x j21!11. ~12!

Recalling the energy parameters for the conventional on-
model,ea5ebÞeg5ed and tL5tS , for the transfer model
ea5eb5eg5ed and tLÞtS , and for the mixed model,ea
5ebÞeg5ed and tLÞtS . In all these cases the constrai
condition ~9! is met, so naturally the trace maps for the
three special models is just formula~12!, which was also
found in Ref. 17 using the RSRG scheme.

Furthermore we have also studied the classical vibra
problem18,20 of a TM atomic chain in the general model an
found that it has one-to-one correspondence with the e
tronic case. If we definema , mb , mg , andmd to denote the
four kinds of atomic masses, andkL and kS to denote two
kinds of different stiffness constants. A similar constra
condition for the classical vibrations to simplify the tra
map into the ordinary form isma1md5mb1mg , which
completely resembles Eq.~9! here.

IV. EXTENDED EIGENSTATES UNDER THE
CONSTRAINT

Under the Born–von Ka´rmán boundary conditions, the
eigenvalues of aj th generation TM chain can be calculate
by the equation

x j51. ~13!

Combining it with Eq.~12!, i.e., under the constraint, we ca
find two obvious facts:~1! The solutions of Eq.~13! are just
equivalent to the solutions of the following equations:

x j 225x j 235•••5x150 ~14!

and

x251. ~15!

~2! The eigenvalues of lower generations of TM sequen
are preserved in higher generations. The reason is thax j
51 gives

x j 115x j 125•••51. ~16!

To prove analytically that all the eigenvalues from Eq.~14!
give extendedwave functions, we should invoke the thre
Pauli matricessx ,sy ,sz and the 232 identity matrixs I to
resolve the matricesMk , M̄ k , Nk , andN̄k .17,22,23Then af-
ter a great deal of algebra, one can find that the eigenene
from equationxk2250 strictly renderMk5M̄ k5s I and si-
multaneously lead to the finding that the fourth matrix e
ments ofNk and N̄k are zero. It should be emphasized th
the unique requirement to obtain these results is Eq.~9! and
the on-site, transfer, and mixed models are only its spe
examples.

When Mk5M̄ k5s I , combining the recursion relation
~3! and ~4!, it is easy to see that the global transfer mat
for a higher generation (>k) of TM sequences is a period
13420
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iclike NkN̄k array mixed with the identity matrixs I .
This result is true even for a infinite TM chain. Fo
example, Mk115NkN̄k , Mk125s INks I N̄k , and Mk13

5NkN̄ks INkN̄kNks I N̄k , etc. In this way the aperiodic TM
chain turns into a periodiclike chain by neglecting the clu
ters giving the identity matrix. So, naturally, the eigensta
given by Eq.~14! are all extended. A numerical example
illustrated in Fig. 1, which shows an extended eigenstate
expected. Besides being extended, the eigenstate is
latt icelike, which means that the distribution of the ele
tronic amplitudes forms a TM arrangement. Our furth
analysis shows that it originates from the fact that wh
xk2250 the fourth matrix elements ofNk andN̄k equal zero,
which leads toc15c2k115c232k115c332k115•••. These
relations are thoroughly proved by our numerical compu
tions and can also be discerned from Fig. 1, wherek56.

On the other hand, except for the eigenvalues above
support delocalized eigenstates, the remaining four eigen
ues coming from Eq.~15! do not lead toM j and M̄ j being
the unit matrix and they actually correspond to eigensta
with linear growing amplitudes as the chain leng
increases.22 The numerical calculations further show th
these four eigenvalues determine the global wave functi
at band edges. By the way, we have also investigated
eigenmode features of classical vibrations in TM lattices a
found that they are very similar to those of electronic wa
functions.

V. FURTHER DISCUSSIONS BEYOND THE CONSTRAINT

A. A rigorous latticelike wave function

We have proved that all the eigenstates of a TM cha
under the constraint conditionea1ed5eb1eg in the well-
studied on-site, transfer, or mixed models, are extended.
would like to ask about beyond the constraint condition, o
there are localized or critical states in TM chains; thus
return to the general model. A natural extension of the to
is to investigate the eigenstates for which Eq.~9! is not sat-
isfied. So far it is difficult for us to solve the problem tho

FIG. 1. Electronic wave function withE524.284 827 042 441
from x450, whereea50, eb50.4, eg50.8, ed51.2, tL53.0, and
tS52.0.
6-3
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oughly because of the complexity of the original 8D tra
map. As a special example, it is assumed that two of the
on-site potentials satisfy an equalityeb5eg . Defining (ea
2eb)/tS5p, (ed2eb)/tS5q, andtL /tS5R, we have found
that for a special energyE5eb the four basic transfer matri
ces are

l l 5S 2p/R 21

1 0 D , sl5S 0 2R

1 0 D ,

ls5S 0 21/R

1 0 D , ss5S 2q 21

1 0 D . ~17!

Then it can be proved that the global transfer matrices a

M15S 21/R 0

0 2RD , M25S 1 2~qR21p!/R

0 1 D ,

M j5S 1 2@Aj~p1qR4!1Bj~p1q!R2#/R3

0 1 D ~18!

for j >3. The coefficientsAj52 j 23 and Bj ( j >3) are de-
termined by the recursion equation

Bj 115H 2Bj21, if j is even

2Bj11, if j is odd,
~19!

with B350. In this case the energyeb is always the eigen-
value of any generations (>3) of TM sequences, and a co
responding eigenstate for the twelfth order is shown in F
2. It is also an extended and latticelike eigenstate, just
those ~see Fig. 1! under the constraint condition, althoug
there are differences between them in the details.

A further analysis reveals that the eletronic amplitudes
Fig. 2 are arranged strictly according to the TM sequen
The possible origin of this rigorous latticelike wave functio
is that for the energyeb the cluster-type correlation appea
in TM sequences, and transfer matrices for these clus
equal identity. Their contributions to the global transfer m
trix can be neglected and the remaining host lattice becom
periodic one. Naturally the relevant state is extended. In

FIG. 2. Electronic wave function withE50.6, whereea51.2,
eb50.6, eg50.6, ed50.9, tL55.0, andtS53.0.
13420
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delocalized eigenstates in aperiodic structures were foun
many situations with correlated disorder.24 However, except
for the special energyeb above, other eigenenergies will lea
to eigenstates with a more chaotic nature, according to
numerical computations.

B. Critical states and multifractal analysis

By a minor analytic treatment, we consider another s
cial case, whereea5edÞeb5eg and tL5tS5t. Thus l l
5ss and ls5sl, so the recursion relation~3! can be written
as

M j 115NjNj , Nj 115M jNj . ~20!

Defining

Xj5TrM j , Yj5TrNj , Zj5TrM jNj , ~21!

we have a simplified three-dimensional trace map

Xj 115Yj
222, Yj 115Zj , Zj 115Yj

2Zj2Zj2XjYj .
~22!

The invariant for this map is

I 5XjYj2Zj , ~23!

which is also equal to 2. Thus Eq.~22! turns into

Xj 115Yj
222, Yj 115XjYj22, ~24!

with initial conditionsX05(E2ea)/t andY05(E2eb)/t.
Using Eq.~24! one can calculate the eigenvalues, and

this caseXj52 can lead to three independent equations

Yj 225Yj 235•••5Y050, ~25!

Xj 2250, ~26!

Xj 22Yj 2254 ~Xj 22ÞYj 22!. ~27!

It can be seen that the roots coming from Eq.~25! preserve
the eigenvalues of higher generations (. j ) of TM se-
quences, and the remainder coming from the other two eq
tions does not have this character. This difference may
observed in their distinguishing eigenstates.

We can prove that the eigenvalues extracted from Eq.~25!

also lead toM j5M̄ j5s I , so the correponding eigenstate
are strictly extended too. The numerical result for a twelf
order TM chain is given in Fig. 3, with eigenenergy satisf
ing Y350 andX1252. It is also a latticelike amplitude pro
file with obvious extended nature. Our multifractal analy
of the wave function confirms this conclusion, namely in t
multifractal spectrum@ f (a);a# there is only one multifrac-
tal point: f (a51)51. We calculate the multifractal spectr
with the prescription proposed by Kohmoto and co-work
and Halseyet al.25 Since the finite size effect has been r
moved by extrapolation, we believe the results are convi
ing.

On the other hand, the eigenenergies determined by
~26! and~27! may lead to eigenstates with acrit ical nature.
Two illustrating wave functions are shown in Figs. 4~a! and
6-4
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4~b!. The corresponding eigenenergies satisfyX1050 and
X10Y1054 (X10ÞY10), respectively. To understand the cha
acteristics of these eigenstates, we perform a multifra
analysis. In this case we find the extrapolation is necessa
obtain reliable results, which are shown in Fig. 5. They
all clearly smooth curves, which reveal the critical feature
the eigenstates. For the electronic amplitude distribution
Figs. 4~a! and 4~b!, the numerical result gives for the forme
amin50.75, amax53.04, f max(a)51.0 at a51.05 and for
the latteramax54.07, f max(a)51.0 ata51.24. Due to the
fact that the numerical convergence is not very good,
cannot get the accurate values ofamin for the wave function
in Fig. 4~b!.

FIG. 3. Electronic wave function withE50.007 342 808 757
from Y350, where the energy parameters areea50.6, eb50.3,
eg50.3, ed50.6, andtL5tS51.0.

FIG. 4. Electronic wave function with ~a! E5
21.351 634 360 223 fromX1050 and~b! E521.486 066 084 521
from X10Y1054 (Y10Þ2), where the energy parameters are t
same as in Fig. 3.
13420
al
to
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We have examined all the eigenstates forj 57 and found
that the eigenvalues determined by Eq.~25! support the wave
functions with the character shown in Fig. 3 and those de
mined by Eqs.~26! and ~27! lead to the eigenstates wit
more disordered and chaotic features as in Fig. 4. But
also find some exceptions in the latter case, which is ill
trated in Fig. 6. The eigenstates in Figs. 6~a! and 6~b! corre-
spond to the eigenenergies satisfyingX550 and X5Y5

54 (X5ÞY5), respectively. They all resemble theBloch
wavesand can be considered as extended eigenstates, w
are also confirmed by our multifractal spectrum calculatio

FIG. 5. Multifractal spectra for the wave functions in Figs. 4~a!
and 4~b!.

FIG. 6. Electronic wave function with ~a! E
50.258 099 418 891 fromX550 and ~b! E50.181 843 863 681
from X5Y554 (Y5Þ2), where the energy parameters are the sa
as in Fig. 3.
6-5
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VI. SUMMARY

By the transfer matrix approach and Pauli matrix reso
ling technique, we have studied the trace map and the e
tronic eigenstates of a TM chain in the general model.
have found an 8D trace map, from which eigenenergies
be obtained. There is a constraint conditionea1ed5eb
1eg for the on-site potentials. When it is satisfied the co
plex 8D trace map can be simplified into an ordinary for
which is applicable to all well-studied cases, such as
on-site, transfer, and mixed models. It is justified that in t
case that all the electronic eigenstates, except four wh
eigenenergies are located at band edges, have a rigoro
extendedand latticelike nature. It is also found that if an
eigenvalue of lower-order TM sequence is preserved to
of a higher-order sequence, it gives rise to the obvious d
calized eigenstates. Moreover, beyond the constraint,
when the trace map does not take the ordinary form,
extendedand critical eigenstates can coexist in the gene
model of TM sequences, according to our numerical com
tations and multifractal analysis. Note that there are o
Bloch wavesin periodic structures andcrit ical eigenstates
ta

1342
-
c-
e
an

-
,
e
s
se
sly

at
o-
e.,
e
l

u-
ly

in the Fibonacci sequence. Our investigation indicates
the TM sequence is the intermediate stage linking the per
periodic and Fibonacci structures. Our results also indic
that the classical vibrations are completely corresponden
electrons in TM structures.

Finally, it should be noted that, recently, a similar conc
sion about the constraint condition for extended states
obtained by Chattopadhyay and Chakrabarti using the re
malization group approach.26 However, the relation betwee
the constraint condition and the trace map is elucidated h
Furthermore, we have used an alternative way to confirm
existence of delocalized eigenstates under the constraint
also reported some analytic and numerical results bey
this constraint.
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