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Splitting rules for the electronic spectra of two-dimensional Fibonacci-class quasicrystals
with one kind of atom and two bond lengths
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On the basis of the substitution rules for a one-dimensional Fibonacci-class chain, we construct two-
dimensional Fibonacci-class quasicrystals with one kind of atom and two bond lengths. In the framework of
the single-electron tight-binding nearest-interaction transfer model, we study the splitting rules of the electronic
energy spectra for two-dimensional Fibonacci-class quasicrystals by means of a decomposition-decimation
method based on a renormalization-group technique, and we also calculate the electronic energy spectra
numerically. It is found that there exist only three kinds of clusters—n3n, n3(n11), and (n11)3(n
11)—for all classes of two-dimensional quasilattices, and that the electronic energy bands split asYm2n2 l .
The general formula of the number for energy levels is obtained. We discover that there is a kind of so-called
Fibonacci-class-number set for the parameters used to describe the energy-level number, and we obtain the set
formulas. The experienced formula are sought out. The analytical results are confirmed by numerical simula-
tions.

DOI: 10.1103/PhysRevB.65.134205 PACS number~s!: 71.23.Ft, 63.90.1t, 33.70.Jg
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I. INTRODUCTION

There has been a large number of studies on the prope
of quasicrystals and quasiperiodic systems since the ex
mental discovery of fivefold symmetry in the diffraction pa
tern of metallic alloys, found by Shechtmanet al.1 in 1984.
In general, to study an aperiodic system one will face t
problems: self-similarity and quasiperiodicity.2 A self-similar
structure is produced by the substitution rule, and a qua
eriodic lattice is constructed by the projection method.3 The
former reflects the inflation symmetry, while the latter ch
acterizes that its Fourier spectrum consists of Bragg pe
Several groups studied the relationship between these
sides.4–10 Before 1992, the one-dimensional~1D! quasiperi-
odic Fibonacci chain@FC~1!# was a unique perfect quasiper
odic model with the above two properties. Since then,
FC~1! quasilattices, or the superlatice systems construc
following the FC~1! sequence, attracted much attention fro
both physicists and mathematicians for many years,11–24 be-
cause its structure is not only relatively very simple but a
possesses the main characteristics of quasicrystals. In 1
Merlin et al.20 reported a realization of a quasiperiodic s
perlattice grown by molecular-beam epitaxy, and presen
the x-ray and Raman-scattering measurements of the sam
consisting of alternating layers of GaAs and AlAs, to form
FC~1! sequence in which the ratio of incommensurate p
ods is equal to the golden meant. To exhibit the localization
of classical waves, the authors of Ref. 18 suggested an i
experiment. They studied the transmission of light throu
dielectric multilayers consisting of two kinds of layer
which are arranged following a 1D FC~1! sequence; their
theoretical results were confirmed by a dielectric multilay
experiment.21 Afterwards, Tamura and Wolfe22 studied
acoustic-phonon transmission through a realistic FC~1! sup-
perlattice theoretically, and obtained some results for
transmission spectra. Zhu and Ming23 analyzed a FC~1! op-
tical superlattice made from a single crystal with quasipe
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odic laminar ferroelectric domain structures, and studied
second-harmonic-generation~SHG! light in this system. Zhu
et al.24 fabricated a nonlinear optical superlattice of LiTaO3

in which two building blocksA and B were arranged as a
FC~1! sequence, and measured the quasi-phase-mat
SHG spectrum of it.

Trying to find a consummate quasiperiodic superlattic

like FC~1!, Huang and co-workers25–30 proposed a so-called
intergrowth quasiperiodic model@FC~2!# in 1992, and inves-
tigated the main characteristics of it in detail. Based on
searches concerning FC~1! and FC~2!, Fu et al.2 designed a
class of flawless quasiperiodic models which contain FC~1!
and FC~2! in 1997, and called them ‘‘Fibonacci-class qua
lattices’’ @FC(n)#. They studied the energy spectra splittin
rules and gap-labeling properties of a 1D FC(n). Recently
we31–33 obtained results for the transmission properties
light through multilayers constructed following a 1D FC(n)
sequence, and found the laws for the output power of S
light derived from ferroelectric multidomains arranged
1D FC(n) orders. Being the theoretical basis for researc
into the optical properties of materials, naturally it is a ve
interesting problem to investigate the splitting rules for ele
tronic energy spectra of the two-dimensional FC(n) quasic-
rystals, which comprise a general quasilattice model.

During the past 17 years, much attention has been pai
studies of the electronic properties of quasilattices, espec
the energy spectrum structure, which is an important asp
in the physical properties of quasicrystals. It is genera
known that for the 1D FC~1! quasicrystals, the band struc
ture, which is a Cantor-like set, shows a peculiar se
similarity because of its hierarchical geometric structure. B
for 2D Penrose lattices, its topological structure is mu
more complicated than its 1D counterparts; there was no
usual self-similarity to be found for its energy spectra.34–36

As for a 2D FC~1! quasicrystal with one kind of atoms an
two bond lengths, this is quite different from the case of 2
Penrose tiling. The energy spectrum of this w
©2002 The American Physical Society05-1
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researched,37–40and Fuet al.40 found that its spectrum has
variety of multifurcating structures. By means of th
decomposition-decimation~DD! method, based on th
renormalization-group technique, we41 studied the rules of
energy spectra splitting for 2D FC~1! quasilattices with three
kinds of atoms and one kind of bond lengths. There a
exists a perfect self-similarity for this spectra. The electro
properties of 1D quasiperiodic materials constructed follo
ing another general model were studied by Iguchi.42,43

The DD method was created by Liu and Sritrakool15 on
the basis of the result obtained in Ref. 12, and it allows o
only to calculate the influence between resonant coupling
the same kind of atoms in the same state in each hierar
Thus it is possible to compute very large clusters to obt
the electronic energy spectra structure of higher hierarc
without the difficulty that plagues high-order perturbati
calculations. In this paper, using this method, we mai
study the splitting rules for a 2D FC(n) with one kind of
atoms and two bond lengths, and obtain interesting so-ca
Fibonacci-class-number sets. In Sec. II, the construction o
this class of 2D quasicrystals is introduced. By means of
DD method, the splitting rules for spectra of 2D FC(n) are
studied in Sec. III, and Sec. IV is a brief summary.

II. 2D FC „n… WITH ONE KIND OF ATOM AND TWO
BOND LENGTHS

A 2D FC(n) with one kind of atoms and two bond length
under study has network forms constructed by a correspo
ing 1D FC(n) chain in two directions, and can be compos
in the following way.

~i! Create one FC(n) chain in a horizontal direction by th
substitution rules

S05B,

B→Bn21A, ~1!

A→Bn21AB,

which shows the following sequence:

~2!

FIG. 1. The 2D FC~2! with one kind of atom and two kinds o
bond lengths.
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~ii ! Make ‘‘B’’ units in Eq. ~2! decide ‘‘short’’ bond
lengths between atoms for the horizontal lattices, and or
‘‘ A’’ unite to define ‘‘long’’ bond lengths, respectively.

~iii ! By the same step as that for horizontal chains, we
obtain a vertical sequence with the same order of bo
lengths; then the 2D FC(n) can be obtained. Figures 1 and
show a 2D FC~2! with one kind of atoms and two bon
lengths, and a 2D FC~3!, respectively.

III. SPLITTING RULES FOR SPECTRA OF 2D FC „n…

A. Numerical simulations of spectra

In the framework of the single-particle tight-bindin
transfer model, atomic orbitals are all located at the cente
the cell, and the single-site energye i is a constant for all of
the atoms; then the Hamiltonian can be simply written as

H5(
i

u i &e i^ i u1( 8
i , j

u i &t i j ^ j u, ~3!

where ui& is the i th Wannier state,( i , j8 is the sum over the
nearest-neighbor atoms, andt i j is the transfer-matrix elemen

FIG. 2. The 2D FC~3! with one kind of atom and two kinds o
bond lengths.

FIG. 3. The electronic energy spectra of the 2D FC~2! vs atom
numbers with 10 000 atoms, where the single-site energye i50.0,
and the transfer-matrix elements contain two kinds of valu
ts521.0 ~strong! andtw520.1 ~weak!, corresponding to short and
long bonds, respectively.
5-2



t

al

2
u
o
f
ta
el
.

t

e

e
e

ul
in
th

rgy

ion,
le

nd
s

-

ber
ber

e
of the

ith
ing

7,
34,
68,
64,
e-

re-
mit

d
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which contains two kinds of elementsts ~strong! and tw

~weak! corresponding to short and long bonds. In order
solve the problem simply, we assumets521.0, tw520.1,
and e i50.0 for all i. Figures 3 and 4 show the numeric
results of electronic spectra of a 2D FC~2! and 2D FC~3!,
respectively. From Fig. 3 one can see that the spectra of a
FC~2! split as 13 subbands, and we denote this kind of str
ture as typeY22221 , where the parameters of the symb
Yn2m2 l are defined as follows:n is the class number o
FC(n), m denotes the dimension number for the quasicrys
andl indicates the sorting number of the atoms, respectiv
Similarly, the spectra for a 2D FC~3! divide into 25 branches
This type was called typeY32221 by us.

B. Analysis of the spectra by means of the DD method

~i! Making use of the DD method,15 one can presume tha
there exists no interaction among the atoms~i.e., t i j 50! in
the first approximation; then the 2D FC(n)’s are broken into
isolated atoms, and there is only one highly degenerate
ergy 0.0 in the systems.

~ii ! In the second approximation only the interactions b
tween the nearest-neighbor atoms are calculated and w
bonds are absent~i.e., t i j 5tnearest-neighbor521.0 and t i j

5tothers50.0!; then the 2D FC(n) contains only three kinds
of isolated clusters:n3n, n3(n11), and (n11)3(n11)
molecules. At present, for example, there only exist 232,
233, and 333 kinds of clusters in the 2D FC~2!, as illus-
trated in Fig. 1. In this case, the spectra of then3(n11)
clusters are nondegenerate, and will split inton3(n11)
subbands. The spectra for then3n and (n11)3(n11)
clusters all have degenerate energy levels; the splitting r
for their spectra are very complicated and there exists a k
of interesting phenomenon in these systems called
Fibonacci-class-number setYn2m2 l , which is discussed in
detail in the next section.

FIG. 4. The electronic energy spectra of the 2D FC~3! vs atom
numbers with 10 000 atoms, where the single-site energye i50.0,
and the transfer-matrix elements contain two kinds of valuests

521.0 ~strong! and tw520.1 ~weak!, corresponding to short an
long bonds, respectively.
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C. Fibonacci-class-number setŝYnÀmÀ l‰

In the second approximation the number of total ene
levels for then3n clusters~including degenerate ones! can
be obtained by formulas~4! and ~5!:

Nn3n5n3n, ~4!

Nn3n5n12(
i 51

bn/2c
~112an3n,i !. ~5!

In Eq. ~5! the brackets represent the greatest integer funct
the first numbern at the right side means that the midd
electronic energy level with the value of 0.0 isn degenerate,
the first digit 2 from left to right denotes that the upper a
lower levels aresymmetriesand that the point of symmetry i
0.0, the signal 1 after the sum signalS means returns to a
nondegenerate level, and the parameter 2 of iteman3n,i
shows that there existan3n,i doubly degenerate lines be
tween every nondegenerate one; all of the numbersan3n,i
tend toward a set of certain values with the cluster num
n’s increasing, forming the so-called Fibonacci-class num
setYn2m2 l , wherean3n,i can be given as

an3n,050, an3n,5i 1158i 11 ~ i>0!,

an3n,5i 1258i 13 ~ i>0!,
~6!

an3n,5i 1358i 14 ~ i>0!, an3n,5i 1458i 16 ~ i>0!,

an3n,5i58i 17 ~ i>0!.

The splitting for then3n cluster is shown as Fig. 5, wher
numbers in the parentheses are the degenerate degrees
energy levels.

On the other hand, we calculate a 2D square cluster w
101 atoms on every side, and obtain the first order splitt

10 20151013101510112(
i 51

50

~112a1013101,i !, ~7!

wherea1013101,i ( i 51,...,50) takes the values as 1, 3, 4, 6,
9, 11, 12, 14, 15, 17, 20, 18, 24, 22, 26, 27, 29, 30, 32,
37, 35, 40, 42, 44, 44, 47, 51, 48, 56, 55, 57, 60, 64, 65,
73, 74, 77, 80, 88, 87, 96, 97, 107, 115, 125, 143, and 1
respectively. Figure 6 shows the fitting curve which was d
signed by the experimental formulas

an3n,i5c1i 1c2i c3,

c151.686 9360.020 06,
~8!

c25~3.4566310216!6~6.6024310216!,

c3510.200 9160.442 48,

where the points shown by up triangles are those of the
alistic 10 201 cluster, and the circle-shaped dots are li
values which are decided by formula~6!. It was shown that
many of the realistica1013101,i spots are coincident with the
5-3
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XIANGBO YANG AND DA XING PHYSICAL REVIEW B 65 134205
stable limit specks. The curve constructed by practical po
will tend to become the straight line defined by limit do
with increasingn’s.

Now, by means of Eq.~5!, we obtain formula~9! for the
number of lines with different energy values for the firs
order splitting spectra of ann3n cluster:

Nn3n8 5112(
i 51

bn/2c
~11an3n,i !. ~9!

Deducting the degenerate energy levels of then3n cluster
and the (n11)3(n11) molecules from the system, one o
tains the general formulas~10! and ~11! for numbers of lev-
els with different energies of the first-order splitting spec
of the 2D FC(n) (n.1), because the splitting rules of th
2D FC~1! was studied in detail by Fuet al.2

FIG. 5. Electronic energy structure of the electronic spectra
an n3n cluster.
13420
ts

~i! Whenn52k11(k>1), the number of the levels is

NFC~2k11!8 5112~k12!~2k11!12a~2k12!3~2k12!,~k11!

12(
i 51

k

@a~2k11!3~2k11!,i1a~2k12!3~2k12!,i #.

~10!

~ii ! Whenn52k (k>1), the amount of the lines is

NFC~2k!8 5112k~2k13!12(
i 51

k

@a2k32k,i

1a~2k11!3~2k11!,i #. ~11!

D. Comparison with numerical results

In order to compare the analytical results with the nume
cal calculations shown in Figs. 3 and 4 for the 2D FC~2! and
2D FC~3!, we assume that the transfer-matrix elementt i j is
the same~21! for all pairs of atoms that are nearest neig
bors to each other, and is zero otherwise. Then the Ham
nians of 232, 233, and 333 clusters exist in the 2D FC~2!
can be written as

H2325S E t t 0

t E 0 t

t 0 E t

0 t t E

D , ~12!

H2335S E t 0 t 0 0

t E t 0 t 0

0 t E 0 0 t

t 0 0 E t 0

0 t 0 t E t

0 0 t 0 t E

D , ~13!

r

FIG. 6. The fitting curve figure of Fibonacci-class-number s
for a cluster with 1013101510 201 atoms.
5-4
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H33351
E t 0 t 0 0 0 0 0

t E t 0 t 0 0 0 0

0 t E 0 0 t 0 0 0

t 0 0 E t 0 t 0 0

0 t 0 t E t 0 t 0

0 0 t 0 t E 0 0 t

0 0 0 t 0 0 E t 0

0 0 0 0 t 0 t E t

0 0 0 0 0 t 0 t E

2 . ~14!

Solving the secular equationlI 2H50 for Eqs.~12!, ~13!,
and ~14!, whereI is a unit matrix, we obtain the following
eigenvalues of the above three kinds of clusters, respectiv

E452t, 0 ~double degenerate!, 22t, ~15!

E65~&11!t, t, ~&21!t, 2~&21!t,

2t, 2~&11!t, ~16!

E952&t, &t ~double degenerate!,

0 ~ three degenerate!,

2&t ~double degenerate!, 22&t. ~17!

Then 13 levels with different energies for the 2D FC~2! are
obtained as follows, where only was the nearest interac
calculated:

FC~2!: e152&t, e25~&11!t, e352t,

e45&t ~double degenerate!,

e55t, e65~&21!t,

e750 ~five degenerate!, e852e6 , ~18!

e952e5 , e1052e4 ~double degenerate!,

e1152e3 , e1252e2 , e1352e1 .

We denote this kind of structure as typeY22221 . Although
the realistic fine spectra is much more complicated than
of the calculations, the values of all of the centers for the
main subbands nearly fit the above computing results. Th
to say, the analytical results are confirmed by numer
simulations.

Similarly, making use of the above method, one can
tain a conclusion for the 2D FC~3!, and the data for the
splitting typeY32221 are

FC~3!: e152ut, e25~u1& !t, e352&t,

e45A5t ~double degenerate!,

e55~v1& !t, e65ut,

e75&t ~double degenerate!, e852vt,
13420
ly:

n

at
3
is
l

-

e95t ~double degenerate!, e105~&2v !t,

e115vt, e125~u2& !t,
~19!

e1350 ~seven degenerate!, e1452e12;

e1552e11, e1652e10,

e1752e9 ~double degenerate!, e1852e8 ,

e1952e7 ~double degenerate!, e2052e6 ,

e2152e5 , e2252e4 ~double degenerate!,

e2352e3 , e2452e2 , e2552e1 ,

where

u5
A511

2
, v5

A521

2
. ~20!

In fact, the practical spectra structures are influenced
the quantity of the clusters and the percentage of the m
ecules. For the 2D FC~3!, as an example, the center of th
subband with the largest energy values for 16 atom clus
is located atE434,152(A511)t'3.236, but the realistic
range forE434,1 values is from 3.245 57 to 3.242 09. Th
shift comes from the repelling actions given by a large nu
ber of polar 334 clusters and nonpolar 333 clusters. For
the same reason, the shape of the spectra will also
changed by the interaction. The widths of the three subba
for a 16-atom cluster over the symmetry pointE50.0 are all
less than 0.01, but the ones for 12-atoms molecules are
larger than 0.07. The latter is usually nine times larger th
the former.

IV. SUMMARY

On the basis of the substitution rules for the 1D FC(n),
we constructed a 2D FC(n) with one kind of atoms and two
bond lengths. In the framework of the single-particle tigh
binding nearest interaction transfer model, we have stud
the splitting rules of electronic energy spectra for the
FC(n) analytically by means of the DD method, based on
renormalization-group technique, and we also calculated
electronic energy spectra for the 2D FC~2! and 2D FC~3!
numerically. It was found that there only exist three kinds
clusters—n3n, n3(n11), and (n11)3(n11)—for the
entire class of 2D quasilattices, and that the electronic ene
bands split asYm2n2 l . The general formula for the numbe
of energy levels was obtained. We discovered that there
kind of so-calledFibonacci-class number setfor the param-
eters used to describe the energy level number; we also
tain the set’s formula. The formula was explored. The a
lytical results were compared with numerical calculations
taking the influences between clusters with different qua
ties and different polarities into account. The former w
confirmed by the latter.
5-5
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