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Splitting rules for the electronic spectra of two-dimensional Fibonacci-class quasicrystals
with one kind of atom and two bond lengths
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On the basis of the substitution rules for a one-dimensional Fibonacci-class chain, we construct two-
dimensional Fibonacci-class quasicrystals with one kind of atom and two bond lengths. In the framework of
the single-electron tight-binding nearest-interaction transfer model, we study the splitting rules of the electronic
energy spectra for two-dimensional Fibonacci-class quasicrystals by means of a decomposition-decimation
method based on a renormalization-group technique, and we also calculate the electronic energy spectra
numerically. It is found that there exist only three kinds of clustems<n, nX(n+1), and f+1)X(n
+1)—for all classes of two-dimensional quasilattices, and that the electronic energy bands ¥plit,as.

The general formula of the number for energy levels is obtained. We discover that there is a kind of so-called
Fibonacci-class-number set for the parameters used to describe the energy-level number, and we obtain the set
formulas. The experienced formula are sought out. The analytical results are confirmed by numerical simula-
tions.
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[. INTRODUCTION odic laminar ferroelectric domain structures, and studied the
second-harmonic-generatié8HG) light in this system. Zhu
There has been a large number of studies on the properties al?* fabricated a nonlinear optical superlattice of LitaO
of quasicrystals and quasiperiodic systems since the expelin which two building blocksA and B were arranged as a
mental discovery of fivefold symmetry in the diffraction pat- FC(1) sequence, and measured the quasi-phase-matched
tern of metallic alloys, found by Shechtmanal® in 1984.  SHG spectrum of it.
In general, to study an aperiodic system one will face two Trying to find a consummate quasiperiodic superlattices

problems: self-similarity and quasiperiodicity self-similar  |ike FC(1), Huang and co-worket3 3 proposed a so-called
structure is produced by the substitution rule, and a quaSinntergrovvth quasiperiodic modfFC(2)] in 1992, and inves-
eriodic lattice is constructed by the projection metfidthe  tigated the main characteristics of it in detail. Based on re-
former reflects the inflation symmetry, while the latter char-gsearches concerning FO and FG2), Fu et al? designed a
acterizes that its Fourier spectrum consists of Bragg peakgjass of flawless quasiperiodic models which contair{1FC
Several groups studied the relationship between these twehd FG2) in 1997, and called them “Fibonacci-class quasi-
sides!° Before 1992, the one-dimensiondiD) quasiperi- [attices” [FC(n)]. They studied the energy spectra splitting
odic Fibonacci chaifiFC(1)] was a unique perfect quasiperi- ryles and gap-labeling properties of a 1D RE( Recently
odic model with the above two properties. Since then, 1Dye®-33 gptained results for the transmission properties of
FC(1) quasilattices, or the superlatice systems constructeﬁlght through multilayers constructed following a 1D Fe(
following the FQ1) sequence, attracted much attention fromsequence, and found the laws for the output power of SHG
both physicists and mathematicians for many yéar&'be-  Jight derived from ferroelectric multidomains arranged by
cause its structure is not only relatively very simple but also1D FC(n) orders. Being the theoretical basis for researches
possesses the main characteristics of quasicrystals. In 198hto the optical properties of materials, naturally it is a very
Merlin et al® reported a realization of a quasiperiodic su-interesting problem to investigate the splitting rules for elec-
perlattice grown by molecular-beam epitaxy, and presentettonic energy spectra of the two-dimensional RLQuasic-

the x-ray and Raman-scattering measurements of the samplgstals, which comprise a general quasilattice model.
consisting of alternating layers of GaAs and AlAs, to form a  During the past 17 years, much attention has been paid to
FC(1) sequence in which the ratio of incommensurate peristudies of the electronic properties of quasilattices, especially
ods is equal to the golden meanTo exhibit the localization the energy spectrum structure, which is an important aspect
of classical waves, the authors of Ref. 18 suggested an idead the physical properties of quasicrystals. It is generally
experiment. They studied the transmission of light throughknown that for the 1D FQ@) quasicrystals, the band struc-
dielectric multilayers consisting of two kinds of layers, ture, which is a Cantor-like set, shows a peculiar self-
which are arranged following a 1D KO sequence; their similarity because of its hierarchical geometric structure. But
theoretical results were confirmed by a dielectric multilayerfor 2D Penrose lattices, its topological structure is much
experiment! Afterwards, Tamura and Wolfé studied more complicated than its 1D counterparts; there was no un-
acoustic-phonon transmission through a realisti¢1¥Gup-  usual self-similarity to be found for its energy spectta®®
perlattice theoretically, and obtained some results for thés for a 2D FQ1) quasicrystal with one kind of atoms and
transmission spectra. Zhu and Mfdgnalyzed a FQ) op-  two bond lengths, this is quite different from the case of 2D
tical superlattice made from a single crystal with quasiperi-Penrose tiling. The energy spectrum of this was
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FIG. 1. The 2D F@) with one kind of atom and two kinds of FIG. 2. The 2D FQ3) with one kind of atom and two kinds of
bond lengths. bond lengths.

researched’~*°and Fuet al*° found that its spectrum has a (i) Make “B” units in Eq. (2) decide “short” bond
variety of multifurcating structures. By means of the Iength; between atoms for the horizontal Iatt|ce_s, and order
decomposition-decimationDD) method, based on the “A’unite to define “long” bond lengths, respectively.
renormalization-group technique, ftestudied the rules of (iii ) By the same step as that for horizontal chains, we can
energy spectra splitting for 2D KO quasilattices with three obtain a vertical sequence with the same order of bond
kinds of atoms and one kind of bond lengths. There alsdengths; then the 2D F@{ can be obtained. Figures 1 and 2
exists a perfect self-similarity for this spectra. The electronicshow a 2D F@2) with one kind of atoms and two bond
properties of 1D quasiperiodic materials constructed follow/engths, and a 2D FG), respectively.
ing another general model were studied by Igufé?

The DD method was created by Liu and Sritrakdan
the basis of the result obtained in Ref. 12, and it allows one |II. SPLITTING RULES FOR SPECTRA OF 2D FC (n)
only to calculate the influence between resonant couplings of
the same kind of atoms in the same state in each hierarchy.
Thus it is possible to compute very large clusters to obtain In the framework of the single-particle tight-binding
the electronic energy spectra structure of higher hierarchiesansfer model, atomic orbitals are all located at the center of
without the difficulty that plagues high-order perturbationthe cell, and the single-site energyis a constant for all of
calculations. In this paper, using this method, we mainlythe atoms; then the Hamiltonian can be simply written as
study the splitting rules for a 2D F@J with one kind of
atoms and two bond lengths, and obtain interesting so-called
Fibonacci-class-number setk Sec. I, the construction of H:Z_ |i>ei(i|+2’ [yl (3)
this class of 2D quasicrystals is introduced. By means of the ! '
DD method, the splitting rules for spectra of 2D FQ(are
studied in Sec. Ill, and Sec. IV is a brief summary. whereli) is theith Wannier stateX/; is the sum over the

nearest-neighbor atoms, andis the transfer-matrix element

A. Numerical simulations of spectra

Il. 2D FC(n) WITH ONE KIND OF ATOM AND TWO 50

BOND LENGTHS ' ) ' ' ' ' ' ' Toe
25} I
A 2D FC(n) with one kind of atoms and two bond lengths 20} e, ~
under study has network forms constructed by a correspond s} R
ing 1D FC(n) chain in two directions, and can be composed 15[ € o
in the following way. S osl -
(i) Create one FGY) chain in a horizontal direction by the £ _,f -
substitution rules %_05 L €4
:C; -1.01 €5
So=B, 5L 10
2.0F €y r""
B—B" 1A, (1) I
PN I . . . . . . .
_ (¢} 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
A—B" lAB’ Number of Atoms
which shows the following sequence: FIG. 3. The electronic energy spectra of the 2D(BGs/s atom
numbers with 10 000 atoms, where the single-site energy0.0,
and the transfer-matrix elements contain two kinds of values
B ...... BA ...... B ...... BAB ...... B ...... BA ...... (2) ts: _ 1.0(str0ng andtw= _ O.l(wealé, Corresponding to short and
n—1 n—1 n—1 long bonds, respectively.
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N ; PR C. Fibonacci-class-number set§Y,,_,_}
= In the second approximation the number of total energy
2t ees-f . levels for then X n clusters(including degenerate onesan
& P be obtained by formula&t) and (5):
1F e, ~o= 4
@ e11—1'9;‘- j—
o e & Npxn=nXn, 4
% 0 em",i:_—j" _
) e © [n/2]
5 - &= : Npxn=n+2> (1428, 1). 5
Lo pxn=N+22, (1+2a0.p,) 5
2F - J
eeﬂzl In Eq. (5) the brackets represent the greatest integer function,
3t ] the first numbem at the right side means that the middle
25 24,

electronic energy level with the value of 0.0riglegenerate,

the first digit 2 from left to right denotes that the upper and

lower levels arssymmetriesind that the point of symmetry is
FIG. 4. The electronic energy spectra of the 2D(BGrs atom 0.0, the signal 1 after the sum sigmalmeans returns to a

numbers with 10 000 atoms, where the Single-site en@rgw.o, nondegenerate |eve|' and the parameter 2 of immni

and the transfer-matrix elements contain two kinds of values gshows that there exis, ., ; doubly degenerate lines be-

=—1.0(strong andt_W= —0.1 (weak, corresponding to short and yeen every nondegeneraie one; all of the numbers, ;

long bonds, respectively. tend toward a set of certain values with the cluster number

n’s increasing, forming the so-called Fibonacci-class number
which contains two kinds of elements (strong andt,  setY,__,, wherea,y,; can be given as
(weak corresponding to short and long bonds. In order to

. L L ) L 1 L
0 10000 2000 3000 4000 5000 6000 7000 8000 9QO0 10000
Number of Atoms

solve the problem simply, we assurhe= —1.0, t,,= — 0.1, Anxn0=0, @nxnsi+1=8i+1 (i=0),

and ,=0.0 for all i. Figures 3 and 4 show the numerical . i

results of electronic spectra of a 2D &L and 2D FG3), Anxnsi+2=8i+3 (i=0),

respectively. From Fig. 3 one can see that the spectra of a 2D (6)

FC(2) split as 13 subbands, and we denote this kind of struc- @nxns+3=8i+4 (i=0), anxns+4=8i+6 (i=0),

ture as typeY, , 4, where the parameters of the symbol
Y,_.m-, are defined as followsn is the class number of

FC(n), mdenotes the dimension number for the quasicrystalThe splitting for thenx n cluster is shown as Fig. 5, where

and| indicates the sorting number of the atoms, respectivelyahumbers in the parentheses are the degenerate degrees of the
Similarly, the spectra for a 2D K@) divide into 25 branches. energy levels.

This type was called typ¥;_, 1 by us. On the other hand, we calculate a 2D square cluster with
101 atoms on every side, and obtain the first order splitting

Anxns=8i+7 (i=0).

50

B. Analysis of the spectra by means of the DD method
10 201=101X101=101+ 22 (1+2a501x101), (7)
i=1

(i) Making use of the DD methot?,one can presume that
there exists no interaction among the atofins., tj;;=0) in )
the first approximation; then the 2D FiG)(s are broken into  Wheréaioiioy; (i=1,...,50) takes the values as 1, 3, 4, 6, 7,

isolated atoms, and there is only one highly degenerate e 11, 12, 14’2 15,17, 20, 18, 24, 22, 26, 27, 29, 30, 32, 34,
ergy 0.0 in the systems. 37, 35, 40, 42, 44, 44, 47, 51, 48, 56, 55, 57, 60, 64, 65, 68,

(ii) In the second approximation only the interactions be—73’ 74, 77, 80, 88, 87, 96, 97, 107, 115, 125, 143, and 164,

; r?(spectively. Figure 6 shows the fitting curve which was de-
tween the nearest-neighbor atoms are calculated and weal .
. Signed by the experimental formulas
bonds are absenti.e., tjj=tnearestneighbor — 1.0 and t;;
=tomere= 0.0); then the 2D FQf) contains only three kinds

‘ nxn,i = Cal +C2i 3,
of isolated clustersnxn, nxX(n+1), and fi+1)X(n+1)

molecules. At present, for example, there only exist2 ¢,=1.686 93-0.020 06,

2% 3, and 3x 3 kinds of clusters in the 2D R@), as illus- ®)
trated in Fig. 1. In this case, the spectra of the (n+1) C,=(3.4566< 10" 16) = (6.6024x 10" 16),

clusters are nondegenerate, and will split im (n+1)

subbands. The spectra for tiexn and (+1)X(n+1) c3=10.200 91 0.442 48,

clusters all have degenerate energy levels; the splitting rules

for their spectra are very complicated and there exists a kindrhere the points shown by up triangles are those of the re-
of interesting phenomenon in these systems called thelistic 10201 cluster, and the circle-shaped dots are limit
Fibonacci-class-number s&t,_,_;, which is discussed in values which are decided by formul@). It was shown that
detall in the next section. many of the realisti@; g5 101j SPOtS are coincident with the
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FIG. 6. The fitting curve figure of Fibonacci-class-number sets
a cluster with 10k 101=10 201 atoms.

(i) Whenn=2k+ 1(k=1), the number of the levels is

NEcoks 1) =1+ 2(k+2)(2k+ 1) + 2821+ 2)x (2k+ 2, (k+ 1)

k

+22 [a2k+1)x (2k+1),i T A2k +2)x (2k+2),i -

(10

(i) Whenn=2k (k=1), the amount of the lines is
k

N =1+2k(2k+3)+ 221 [@ix 2k

+ 802K+ 1)x (2k+ 1), (11

D. Comparison with numerical results

In order to compare the analytical results with the numeri-

cal calculations shown in Figs. 3 and 4 for the 2D(BCand
2D F((3), we assume that the transfer-matrix elemignts

the samg—1) for all pairs of atoms that are nearest neigh-
FIG. 5. Electronic energy structure of the electronic spectra folygrs to each other. and is zero otherwise. Then the Hamilto-

annxn cluster.

nians of 2< 2, 2X 3, and 3x 3 clusters exist in the 2D RR)

can be written as

stable limit specks. The curve constructed by practical points
will tend to become the straight line defined by limit dots
with increasingn’s.

Now, by means of Eq(5), we obtain formula9) for the
number of lines with different energy values for the first-
order splitting spectra of anXxn cluster:

[n/2|

Nr’1><n:1+2i2‘4l (l+anxn,i)- 9
Deducting the degenerate energy levels of nhen cluster
and the 0+ 1)X(n+1) molecules from the system, one ob-
tains the general formulad0) and(11) for numbers of lev-
els with different energies of the first-order splitting spectra
of the 2D FCg) (n>1), because the splitting rules of the
2D FQ(1) was studied in detail by Fat al?
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E t Ot 00 0 0 O ey,=t (double degenerate e;;=(v2—u)t,
t Et 0t 0 0 0O . (u—va)t
e11:U y 812: u— y
0Ot EO0O0OTLt O0O0O0 (19
t 0 0O Et O 1t 0 O e13=0 (seven degenerate e;,= —eq,;
Haxs=[ O t O t E t O t O0f. (19
00t O¢tETO OOt 15~ " G167 G0,
0 060t 0 O0EtO e;;=—€y (double degenerate e;g=—eg,
0 00Ot 0 t E t
00000t 0t E €19= — €7 (double degenerate e,p=—e€g,
Solving the secular equationl —H=0 for Egs.(12), (13), e,1=—6s, ey,=—e, (double degenerate
and (14), wherel is a unit matrix, we obtain the following
eigenvalues of the above three kinds of clusters, respectively: €)= —€3, €y=—€p, Epx=—€,
E,=2t, 0 (double degenerate —2t, (15  where
Ee=(vV2+Dt, t, (v2—1t, —(v2—1)t, J5+1 N
u= , U= —F—. (20)
—t, —(V2+1t, (16) 2 2
Eo=2v2t, V2t (double degenerate In fact, the practical spectra structures are influenced by
the quantity of the clusters and the percentage of the mol-
0 (three degenerate ecules. For the 2D F@B), as an example, the center of the
subband with the largest energy values for 16 atom clusters
—v2t (double degenerate —2v2t. (170 is located atE,x4,=—(V5+1)t~=3.236, but the realistic

range forE,x 4, values is from 3.24557 to 3.24209. The
hift comes from the repelling actions given by a large num-
er of polar 3x4 clusters and nonpolar>33 clusters. For

Then 13 levels with different energies for the 2D (BCare
obtained as follows, where only was the nearest interactio

calculated: the same reason, the shape of the spectra will also be
FC(2): e,=2v2t, e,=(V2+1)t, ez=2t, changed by the interaction. The widths of the three subbands
for a 16-atom cluster over the symmetry poiht 0.0 are all
e,=v2t (double degeneralge less than 0.01, but the ones for 12-atoms molecules are all
larger than 0.07. The latter is usually nine times larger than
es=t, ez=(vV2—1)t, the former.
e;,=0 (five degenerate eg=—¢;, (18 V. SUMMARY
€=—6€s5, €= —€ (double degenerate On the basis of the substitution rules for the 1D RI(
we constructed a 2D F@j with one kind of atoms and two
€11= —€3, €1p= —€, €137 €. bond lengths. In the framework of the single-particle tight-

We denote this kind of structure as tyMe_,_,. Although binding nearest interaction transfer model, we have studied

the realistic fine spectra is much more complicated than thdf!€ Splitting rules of electronic energy spectra for the 2D
of the calculations, the values of all of the centers for the 13C(n) analytically by means of the DD method, based on the
main subbands nearly fit the above computing results. That &&normalization-group technique, and we also calculated the
to say, the analytical results are confirmed by numericaflectronic energy spectra for the 2D @Cand 2D FG3)
simulations. numerically. It was found that there only exist three kinds of

Similarly, making use of the above method, one can obflusters—axn, nx(n+1), and +1)X(n+1)—for the
tain a conclusion for the 2D F®), and the data for the €ntire class of 2D quasilattices, and that the electronic energy
splitting typeYs_,_, are bands split as,,_,_;. The general formula for the number

of energy levels was obtained. We discovered that there is a

FC(3): e;=2ut, e,=(u+v2)t, e3=2v2t, kind of so-calledribonacci-class number sér the param-
eters used to describe the energy level number; we also ob-
e,= /5t (double degenerale tain the set’s formula. The formula was explored. The ana-
lytical results were compared with numerical calculations by
es=(v+v2)t, eg=ut, taking the influences between clusters with different quanti-
ties and different polarities into account. The former was
e;,=v2t (double degenerate eg=2uvt, confirmed by the latter.
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