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Connecting atomistic and experimental estimates of ideal strength
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The ideal strength is the minimum stress required to plastically deform an infinite defect-free crystal and is
an upper bound to the strength of a real crystal. Disturbingly, however, the best available experimental
estimates of the ideal strengths of tungsten and molybdenum are 25–50 %abovethe values predicted by recent
ab initio density-functional calculations. This work resolves this discrepancy by extending the theoretical
calculations to account for the triaxial state of stress seen in the nanoindentation experiments and by adjusting
the experimental values to account for the crystallography of loading and the nonlinearity of the elastic
response at large strains. Although an implicit assumption in many discussions of mechanical properties is that
the ideal strength is not experimentally observable, as the true strength of most materials is limited by lattice
defects, the close agreement between corrected experimental and theoretical estimates of ideal strength sug-
gests that the ideal strength of some materials can be observed directly using nanoindentation.

DOI: 10.1103/PhysRevB.65.134111 PACS number~s!: 62.20.Dc, 62.20.Fe, 62.20.Qp
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INTRODUCTION

If an infinite, defect-free solid is subjected to an increa
ing load, it deforms elastically until the stress exceeds
limit of elastic stability and irreversible deformation occur
The elastic limit defines the ‘‘ideal strength’’ of the solid. I
value sets an upper bound on the mechanical strength
solid can have under the given load.1,2 Since the elastic limit
is a property of the infinite, periodic lattice, it can be com
putedab initio, with the consequence that the ideal stren
is one of the few mechanical properties that is truly pred
able.

The most immediately promising experimental approa
to measuring the ideal strength is nanoindentation, in wh
an indenter with a tip radius of 50 nm to 1mm is pressed into
the material surface. If the native defect density is low,
stressed volume beneath the sharp indenter may be de
free. Moreover, since the shear component of the indenta
stress reaches its maximum value some distance beneat
surface, deformation may initiate in the bulk. In this case,
local value of the stress required to initiate deformation
either the ideal shear strength or the stress required to nu
ate dislocations homogeneously, a stress that should be
close to the ideal shear strength.

Encouragingly, very high values of the shear stren
have been reported recently from nanoindentation studie
tungsten3,4 and molybdenum.6 The peak shear stresses r
ported in the W range from 25.7 GPa3 with a 700 nm dia-
mond tip to 28.6 GPa4 with a 400 nm diamond tip. Pea
stresses in Mo are reported to be 20 GPa6 with a 50 nm
diamond tip. These normalized strengths~16–18 % of the
shear modulus! appear to be independent of the radius of
indenter. Surprisingly, however, the values reported are s
stantially above recentab initio calculations of the idea
shear strengths of these bcc metals.7,8 The work presented
here resolves this discrepancy, and further establishes
under favorable circumstances, one may observe experim
tal strengths approaching the ideal strength of a materia
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The discrepancy is resolved by reanalyzing both the
and experiment. First, the theoretical solution must be mo
fied to reproduce the geometry of the indentation load. T
calculations reported in Refs. 7 and 8 assumed a fully
laxed shear load. However, the actual stress state at the
of maximum shear under the indenter is triaxial. This triax
stress stabilizes the structure and raises the ideal streng
shear. Second, the experimental numbers must be corre
for the nonlinearity in the stress-strain relation at finite stra
and also require a~smaller! correction to orient the shea
onto the appropriate crystallographic plane.9 These correc-
tions substantially lower the maximum shear stress that
be inferred from the experimental hardness data. The
effect is to remove the apparent discrepancy: to within
accuracy of our analysis, the measured shear strengths
either equal to or slightly below the computed ide
strengths, as they should be. Moreover, the difference
tween the measured shear strengths and the prediction
theory are now less than the uncertainties in the anal
~,5%!.

The next section of this paper presents the computatio
approach and results. This is followed by a discussion s
tion and the conclusions.

COMPUTATIONAL PROCEDURES AND RESULTS

To quantify the effect of triaxial loading on the idea
strengths of W and Mo, we used the local density appro
mation ~LDA ! to density functional theory within an ultra
soft pseudopotential total-energy scheme10,11 to calculate the
stress-strain response for the active shear system in W
Mo ~^111&$110%!. ~The calculations were done with theVASP

package.12–14! The stress states considered included rela
simple shear~as in Ref. 7! and a triaxial stress determine
numerically from the finite element modeling of nanoinde
tation described below. Using a plane-wave energy cutof
17 Ry with a Monkhorst-Pack 17317317 k-point grid
proved sufficient to achieve precision of better than 0.01
©2002 The American Physical Society11-1
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in the calculated energies and better than 0.6 GPa in p
stress.15 The triaxial stress increased the shear strength (tcrit)
of W from 20.0 to 22.7 GPa and the strength of Mo fro
17.1 to 18.2 GPa.@The unconstrained strength of W is high
than the value~18.2 GPa! calculated by Roundyet al., pre-
sumably because different pseudopotentials are used in
two calculations.! Figure 1 shows the normalized stres
strain curves for W and Mo. They are similar with pe
stresses near a shear strain of 17% as expected for the
structure.7

To correct the reported values of the experimen
strengths we must examine how they are generated from
raw data. In a study of tungsten by Bahr, Kramer, a
Gerberich,4 a sharp diamond with a tip radius of approx
mately 400 nm is pressed into a single crystal with a polis
surface. Yielding is marked by a sudden increase in the de
of penetration during loading. Prior to yielding, the loa
displacement (P-d) response of the system is fit well by th
Hertzian model of elastic contact16

P}ARd3, ~1!

FIG. 1. Ab initio stress-strain response for^111&$110% slip in
tungsten and molybdenum. Data is shown for both simple shear
shear along a path that includes the triaxial stress states seen d
indentation. The solid line is the sinusoidal constitutive relat
used in our FEM modeling.
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whereR is the radius of the indenter tip. Since the stress
not measured directly, the Hertzian stress field is used
deduce the maximum shear stress underneath the inden
the yield point. However, the Hertzian stress field assum
linear stress-strain behavior in both the indenter and the s
strate. This assumption fails when the shear stress
proaches the ideal strength~Fig. 1!.

To include nonlinearity, a sinusoidal curve is fit to theab
initio calculated stress-strain relation in Fig. 1. The sinus
is then used as the elastic-plastic constitutive relation i
finite-element~FEM! model of nanoindentation. The two
dimensional~2D! axisymmetric FEM model resembles a
earlier model by Tang and Arnell17 and uses theANSYS code.
A frictionless sphere with a radius of 100 units is press
into a 160031600 unit substrate. The sphere is meshed w
elements approximately 2.75 units square, and the mes
the substrate is refined from 100 unit square elements a
opposing boundaries to 1.25 unit square elements dire
beneath the indenter. In the model, a stiff indenter is pres
into both a linear-elastic substrate and into a substrate w
the stress-strain response given in Fig. 1. The shear mod
of the indenter is taken to be 1000 times that of the substr
and both indenter and substrate are assumed elastically
tropic with Poisson ratios of 0.3.

We specifically considered indentation normal to a^100&
surface, which is the strongest configuration, and calcula
the resolved shear stress on the most favorably orien
member of thê111&$110% slip system.~This plane should be
the first to shear.! Figure 2 shows the calculated stress co
tours for a linear-elastic solid@Fig. 2~a!# and for a solid with
the nonlinear constitutive relation given in Fig. 1@Fig. 2~b!#.
As expected,18 in both cases the maximum value of the r
solved shear stress is located beneath the surface slightl
the loading axis. Figure 3 presents plots of the applied st
~a! and the maximum shear stress~b! as functions of the
indentation depth. The classic Hertzian model reproduces
overall load-displacement curve of the nonlinear substr
very well @Fig. 3~a!#, but significantly overestimates th

nd
ring
al

-

d

FIG. 2. ~Color! Contour plots
of the maximum^111&$110% shear
stresses beneath a rigid spheric
indenter near the failure loads.~a!
Pictures a material with linear
elastic behavior and~b! a material
with the nonlinear behavior shown
in Fig. 1. The stress is normalize
to the peak stress in~b! ~at a rela-
tive indentation depth of 0.16!.
1-2
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CONNECTING ATOMISTIC AND EXPERIMENTAL . . . PHYSICAL REVIEW B 65 134111
maximum shear stress in the nonlinear solid at the exp
mental yield point@Fig. 3~b!#. ~The Hertzian model also
slightly misestimates the stress in the linear-elastic solid,
parently because the assumption that the contact area is
compared to the size of the elastic bodies in contact16 fails
for loads near the yield point.! The Hertzian value for the
critical resolved shear stress on the^111&$110% slip system at
the experimentally observed failure depth~the indentation
depthd normalized by the indentor radiusR50.16! overes-
timates the peak stress in the nonlinear substrate by a fa
of 1.08. The Hertzian value for the maximum shear stres
failure ~which is the value reported in Refs. 4 and 6! is above
the true nonlinear peak stress by a factor of 1.21. This me
that the maximum shear stresses cited in past analyse
approximately 20% higher than the actual stresses see
the weakest slip systems, where failure is likely to initiate

Additional FEM modeling shows that the correction fa
tors are not particularly sensitive to the conditions of t
model. Using a Poisson’s ratio of 0.07 for the indenter~the
experimental value of diamond! and Poisson’s ratios of 0.2
and 0.35~typical of most metals! gave correction values o
1.22 and 1.20. If we account for the compliance of the d
mond indenter on W the total error introduced by using
Hertzian stress and ignoring crystallography decreases
factor of 1.17. Raising the coefficient of friction between t
indenter and the substrate to 0.4 reduces the factor to 1

Figure 4 summarizes the effects of the triaxiality of loa

FIG. 3. Macroscopic and microscopic response of the linear
nonlinear FEM models and the analytic Hertzian solution.~a! Nor-
malized applied stress as a function of indentation distance.
normalized stress isP/(GpR2), whereP is the applied load,R is
the radius of the indenter, andG is the shear modulus of the in
denter.~b! Maximum shear stress and maximum shear stress
solved on̂ 111&$110% as a function of indentation depth. The3 and
its error bar marks the upper range of indentation depths at w
experimental failure occurred in W and Mo.
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ing and of the nonlinear elastic correction. The error bar
the corrected experimental numbers includes the possible
fects of friction, of varying the ratio of the substrate an
indenter’s stiffnesses, and of varying the Poisson’s ratios
the substrate and indenter. When all corrections are prop
made, the maximum shear strengths that can be infe
from nanoindentation experiments on W~Ref. 4! ~22.8–24.0
GPa! and Mo ~Ref. 6! ~16.0–16.8 GPa! are, to within the
accuracy of our analysis, either equal to or below the th
retical values of the ideal strength~W522.1– 23.3 GPa;
Mo517.6– 18.8 GPa!, as they should be. At the same tim
the theoretical and experimental values are reasonably c
which suggests that nanoindentation may provide a via
means for measuring ideal strength.

DISCUSSION

Other sources of error. We note that the peak shea
stresses inferred from the nanoindentation experiments o
and Mo are only 96% of the absolute peak stresses predi
by FEM modeling. Failure in the FEM model occurs whe
the slope of the peak stress-strain curve@Fig. 3~b!# drops to
0, which occurs at a relative indentation depth (d/R) of
;0.21. However, failure for both W and Mo occur for rela
tive indentation depths of 0.15–0.17. If indentation cont
ued to a relative depth of 0.21, the peak stress would b
factor of 1.04@51/sin(p30.16/0.21/2)# higher.

In the calculations presented here, we assumed ela
isotropy because that made the problem computation
tractable using the resources that we had available. In f
the shear response of a real bcc material is stiffer than
sinusoidal form we have assumed when shear is applie
directions other than̂111&. The maximum effect that this
could have on our analysis can be estimated by compa
the peak strains at the indentation failure depth for ela
and plastic cases. The peak shear strain for the linear-el
case~6.2%! is 10% lower than the nonlinear elastic ca
~6.9%!. Given that the anisotropic solution will lie betwee

d

e

e-

h

FIG. 4. Comparison between theoretical and experimental e
mates of ideal strength. Experimental estimates of ideal strength
both tungsten~Ref. 4! and molybdenum~Ref. 6! based on a Hert-
zian contact model exceedab initio theoretical calculations unde
loading conditions of simple shear. However,ab initio calculations
that include the effects of multiaxial constraint during indentati
slightly exceed experimental estimates which incorporate both
crystallography of slip and the non-linear elastic response expe
near the limit of elastic stability.
1-3
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the linear and nonlinear cases and given that the weakes
system still has a sinusoidal stress-strain response, a g
lower bound on the anisotropic peak stress solution would
5% lower than the isotropic case. However, since the str
strain behavior on the weak slip system will be identical
the isotropic and anisotropic solutions, the true correction
likely to be much less than 5%.

Other models of the limits of indentation strength. A re-
cent paper by Krameret al.3 uses atomic force microscopy t
demonstrate that limited~and, on some occasions, reversib!
plastic deformation can occur before bulk yielding is d
tected in a load-displacement curve. This implies that a sm
number of dislocations can either move or nucleate bef
bulk plasticity is observed. Krameret al. further argue that
the beginning of large-scale plasticity is limited by the fra
ture strength of a surface oxide layer. This may be a reas
able explanation for the observed increase in the yield
load of Fe-3% Si single crystals with increasing oxi
thickness,4 but it cannot convincingly explain the appare
insensitivity of yield load to oxide thickness in a series
experiments on tungsten single crystals performed by
same authors.4

However, the observations of Krameret al.3 may also im-
ply that the onset of macroscopic plasticity is limited by t
activation of a dislocation multiplication mechanism. In th
absence of such a mechanism, a sharp diamond tip loadi
flaw-free region of a metallic surface could nucleate a sm
number of dislocation loops. Nucleation could occur eithe
the surface or at an interface between a surface oxide and
bulk metal. These loops will be pinned at the surface but
grow under increasing applied load. If the growing loops d
not encounter obstacles during their growth, this plastic
formation would be reversible. If the collapsing loops a
pinned by obstacles, there will be a residual deformation
the surface, as Krameret al. have observed. Time depende
recovery is possible if thermal activation and the line tens
of the loops is sufficient to overcome the obstacles.
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A macroscopic yield point requires either a renewable d
location source beneath the surface~see Ref. 5, Chap. 20, fo
examples! or the homogeneous nucleation of a shower
dislocations in the bulk, which we believe will occur at
level of stress very close to the ideal shear strength. We
estimate the dislocation density that can be released b
elastic instability by equating the elastic strain energy
unit volume (5 1

2 Gg2) with the line energy of a given line
density of dislocations (; 1

2 Gb2r). For any shear modulu
G, a straing of only 0.01, and a burger’s vectorb of 3 Å, we
get a dislocation densityr of about 1015/m2. Furthermore,
the energy released in the instability is more than suffici
to fracture a thin surface oxide film.

CONCLUSIONS

After incorporating the triaxial state of stress seen
nanoindentation experiments intoab initio calculations of
ideal strength and after properly accounting for the crys
lography of loading and the nonlinearity of the elastic
sponse at large strains in the analysis of experime
nanoindentation experiments, we find close agreement
tween corrected theoretical and experimental estimates o
ideal strengths of W and Mo. This suggests that the id
strength of some materials can be observed directly u
nanoindentation.
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