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The molecular dynamics method was used to simulate energy transport ina- andb-Si3N4 single crystals.
The simulation data, in conjunction with the Green-Kubo formulation, was used to calculate the thermal
conductivity of the single crystals, as a function of temperature. Although a relatively small simulation super-
cell size was employed, the thermal conductivity could be estimated with a reasonable degree of accuracy. In
addition, simulated elastic constants of the crystals were found to be in reasonable agreement with existing data
obtained from the literature. At a temperature of 300 K, it was estimated that the thermal conductivity~in units
of W m21 K21! in a- andb-Si3N4 , along thea andc directions, is approximately 105 and 225, and 170 and
450, respectively. The results were compared to existing experimental data and, in particular, to the well-known
Slack’s equation. It was found that the current results are in reasonable agreement with existing results.
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I. INTRODUCTION

Silicon nitride (Si3N4) is currently a material of grea
research interest, because of its unique mechanical and
tronic properties. In particular, it has been shown that silic
nitride exhibits excellent resistance to wear, corrosion,
thermal shock.1 Furthermore, silicon nitride materials exhib
superior mechanical properties at elevated temperatures
thus, it has been considered an ideal material for use in v
ous applications, such as engine components, extrusion
and cutting tools.1

It is well known that there are two crystal structures
silicon nitride,a- andb-Si3N4 , where theb configuration is
the more stable of the two.2 It is generally accepted thata
and b are low- and high-temperature polymorphs, resp
tively, with a transformation of thea to b phase occurring a
elevated temperatures above 1300 °C. Additionally, both
the configurations have an underlying atomic structure tha
hexagonal and only differs along thez axis in the stacking
sequence. Nevertheless, both of the configurations ex
slightly different mechanical and thermal properties~for ex-
ample, thea configuration is harder than theb configuration!
that are not completely understood. Regardless of the di
ence between the two silicon nitride configurations, in or
to understand, and thus control, the behavior of this type
ceramic at elevated temperatures some knowledge of th
sponse of the material to temperature changes must be
tained.

Microstructure is important in understanding the therm
conductivity of a ceramic since the phases present, and
0163-1829/2002/65~13!/134110~11!/$20.00 65 1341
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distribution of the phases, all have a significant effect on h
transport. In addition, porosity, grain boundaries, and str
tural defects~e.g., dislocations! are also important due to
phonon, and photon, scattering. However, one factor
cannot be ignored is the effect of temperature on ther
conductivity. In general, increased temperatures result in
creased lattice vibrations, which result in increased pho
scattering. In contrast, photon transport increases with t
perature and may dominate in certain ceramics. In particu
in Si3N4 ceramics only acoustic phonons contribute sign
cantly to heat transport. Although the magnitude of the th
mal conductivity of most solids can be determined expe
mentally, it is desirable to have an estimate of the id
thermal conductivity. Such an estimate can be used in
development of ‘‘real’’ materials. When the thermal condu
tivity of a ceramic is considered, along with the mechani
properties, suitable insight can be obtained, and microst
tures can be developed to produce specific and desir
properties.

In this study, the ideal thermal conductivity ofa- and
b-Si3N4 single crystals was determined. Furthermore,
dependence of the thermal conductivity as a function of te
perature was calculated. The calculations were performed
ing a molecular dynamics method, in conjunction with t
Green-Kubo formulation. In the present paper, initially t
simulation method will be outlined, including the procedu
employed to calculate the thermal conductivity from the m
lecular dynamics data. Following this, the results of t
simulation procedure will be presented, with a detailed d
cussion.
©2002 The American Physical Society10-1
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II. ESTIMATING THE THERMAL CONDUCTIVITY

Molecular dynamics is a numerical method that can
employed to estimate the characteristics of energy trans
in a solid, due to lattice vibrations, at the atomic scale. A
ditionally, the molecular-dynamics method implicitly in
cludes any anharmonic effects, which describe the vib
tional mode couplings in an atomic lattice. The
anharmonicities are essential for better characterizing
physical phenomena in solids, such as thermal conducti
Therefore, molecular dynamics is one method that is w
suited for the simulation of thermal conductivity in a soli
Clearly, however, it is appropriate to compare the molecu
dynamics results to those of other existing methods. In
following sections the molecular dynamics procedure for
timating the thermal conductivity ofa- andb-Si3N4 single
crystals, and various other methods, are outlined.

A. The molecular dynamics method

As mentioned, the molecular dynamics method can
used to study the characteristics of energy transport in a
tem. The molecular-dynamics technique, which in this c
also incorporates the Green-Kubo method~discussed in the
following section!, has been employed successfully in t
past to investigate the thermal properties of silicon crysta3

KCl,4 and diamond.5 In the case of Si3N4 , lattice vibrations
are assumed to govern energy transport, which are mod
on predefined potential functions. The total potential ene
for Si3N4 structures, of the system (ET) was defined as the
sum of two-@Ei j

(2)(r i j )# and three-body@Ejik
(3)(r i j ,r ik ,u j ik)#

interactions as proposed by Vashishtaet al.,6

ET5(
i , j

Ei j
~2!~r i j !1 (

i , j ,k
Ejik

~3!~r i j ,r ik ,u j ik !, ~1!

wherei, j , andk refer to atoms in the system,r i j is the length
of the ij bond, andu j ik is the bond angle between theij and
ik bonds. The two- and three-body energy terms are give

Ei j
~2!~r i j !5Ai j S s i1s j

r i j
D h i j

1
ZiZj

r i j
e~r i j /r s1!

2
a iZj

21a jZi
2

2r i j
4 e~r i j /r s4!, ~2!

Ejik
~3!~r i j ,r ik ,u j ik !5Bjike@~ l /r i j 2r c!1~ l /r i j 2r c!#

3@cosu j ik2cosu j ik
0 #, ~3!

whereA, s, h, Z, r s1 , a, r s4 , B, l, r c , andu0 are parameters
determined for Si3N4 by Vashishtaet al.6

The two-body potential function consists of steric rep
sion, Coulomb interaction, and dipole interaction throu
electronic polarization. The three-body function involv
bond-bending terms, to take into account covalent bond
This latter potential has been applied to various molecu
dynamics calculations and has resulted in excellent pre
13411
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tions of equilibrium lattice parameters, elastic constan
phonon densities of states, and specific-heat data.6–9

It has been shown that it is important to take into acco
quantum corrections for low-temperature molecular dyna
ics simulations of the thermal conductivity.10 The quantum
correction is necessary in order to include the quantum
cupation of phonon states, which differs significantly fro
the classical Boltzmann distribution. In general, this is a
complished by rescaling the temperature of the molecu
dynamics simulation.10 Since the classical oscillator in a mo
lecular dynamics system is different from that of a quant
oscillator, the mean kinetic energy of the molecula
dynamics system should be equal to the quantum syste
low temperatures. Nevertheless, this effect is only signific
for temperatures below approximately 300 K.10 In this study,
the thermal conductivity is only calculated for temperatu
equal to or greater than 300 K and thus quantum correct
are not used.

B. The Green-Kubo method

Although the molecular dynamics method can be used
characterize energy transport, no direct information of
thermal conductivity can be obtained. Instead, the ther
conductivityk is calculated using the Green-Kubo11 method,
which is based on the evaluation of the decay of equilibri
fluctuations of the heat flux vectorS(t) of the simulated
system. The heat flux vector12 for a system of atoms is de
fined as

S~ t !5
d

dt (i
r i Ẽi5(

i
n i Ẽi1 (

i , j ,iÞ j
~Fi j •n i !r i j , ~4!

wheren i is the velocity of atomi, Fi j and r i j represent the
force acting on atomi due to atomj and the directional
vector from atomi to atom j ~where r i j 5r i2r j !, respec-
tively, andẼi is the excess amount of site energy at atomi. In
Eq. ~4! the first term,( in i Ẽi , is a convection term that de
scribes atomic diffusion, and contributes significantly only
high temperatures. The second term,( i , j ,iÞ j (Fi j •n i)r i j , rep-
resents the correlation between neighboring atoms and
cludes anharmonic effects.10 All of the quantities in Eq.~4!
can be determined directly from the molecular-dynam
simulation results. Additionally,Ẽi can be obtained from the
following relation~the sum of the two- and three-body term
of the potential and kinematic energy!,

Ẽi5(
j

iÞ j

Ei j
~2!~r i j !1 (

jk
iÞ j ,iÞk, j .k

Ejik
~3!~r i j ,r ik ,u j ik !1 1

2 mi unu i
2,

~5!

whereEi j
(2) andEjik

(3) are defined in Eqs.~2! and ~3!, respec-
tively, and mi is the mass of atomi. Thus, the directional
thermal conductivity can be related directly to the time c
relation function of the heat flux vector using the relation
0-2
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MOLECULAR DYNAMICS CALCULATION OF THE IDEAL . . . PHYSICAL REVIEW B 65 134110
kx~T!5
1

kBVT2 E
0

`

^Sx~0!Sx~ t !&dt, ~6!

whereSx is the heat flux vector along thex direction~and the
relation is the same in they andz directions!, V the volume
of the system,T the temperature of the system, andkB is
Boltzmann’s constant.10 There are several methods for eval
ating the Green-Kubo11 expression, which is directly relate
to estimating the time correlation function, using the d
obtained from the molecular dynamics procedure. In t
study, both direct and indirect methods are employed to
timate the time correlation function in Eq.~6!.

In this study, the direct method of estimating the tim
correlation function of the heat flux vector was perform
using adouble averaging method. The ensemble, represente
by the heat flux vector, was divided into subensembles fo
given initial value. For example, in the case of the therm
conductivity in thex direction @given by Eq. ~6!#, Sx(0)
5Sx(to), and a final valueSx(to1t), which represents
many microscopic states with a given macroscopic va
Sx(0). The time average of each individual subensemb
was calculated, and then the average over all subensem
was determined, to obtain the time correlation function. U
ing the time average of the subensemble, in a discret
form, the non-normalized correlation function in thex direc-
tion can be written as

^Sx~0!Sx~ t !&5
1

tmax
(

to51

tmax

Sx~to!Sx~to1t!, ~7!

where the average is overtmax time origins, which is the
total number of subensembles. Clearly, in this case, for e
value of to , the value ofto1t must not exceed the max
mum simulation time. More importantly, if the time stept
were too large the statistics of this long time would be po
since there would exist few terms in the summation of E
~7!. In general, the time correlation function should decay
zero in a time that is short compared to the total simulat
time, and thus only a short time~equivalent to a few hundred
data points! is of interest. Furthermore, for a short timet, the
correlation function can be determined with greater statist
accuracy because the total number of subensembles in
average would be greater. The time origin of each sub
semble should not be defined such that they are succe
data points, even though this is suggested in the definitio
Eq. ~7!. Instead, the summation should be determined
time origins that are sufficiently distant in time. This is th
case since successive origins in time would be highly co
lated.

In general, the direct method of calculating the correlat
function may require a large number of data points and l
to difficulties, since the time correlation of the heat flux ve
tor decays very slowly with time. This can be avoided
using an indirect method, which is based on the Fou
transform of the thermal conductivity, defined by th
expression3,10

k~v,T!5
1

kBVT2 E
2`

`

^Sx~0!Sx~ t !&eivtdt, ~8!
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wherev is the frequency, andSx is the heat flux vector along
the x direction. It is then easy to show that the thermal co
ductivity can be defined as the zero-frequency limit of E
~8!.10 The indirect Fourier-transform method can be valida
by comparing the zero-frequency extrapolation with the ti
integral of the thermal conductivity, given in Eq.~6!. It has
been shown, previously, that the Fourier-transform analy
is consistent with the time-integral result.10

C. Slack’s equation: An analytical approach

In 1954, Liebfried and Schlo¨mann13 reported an analytica
treatment of the lattice vibrations in a face-centered-cu
crystal structure, which consisted of only one atom type
unit cell ~i.e., a rare-gas crystal!. This treatment was used t
analytically determine the thermal conductivity of the cry
tal, above the Debye temperature. The treatment was
proved by Julian,14 to correct an intrinsic counting error, an
then generalized by Slack,15 to make it suitable for complex
crystal structures. The derivation of Slack’s equation is
yond the scope of this study. Nevertheless, the relevant e
tions will be presented and the calculated results compare
the molecular dynamics~MD! results.

Slack’s equation assumes that heat transport in the cry
is dominated by acoustic vibrations, the dominant scatter
mechanism is phonon-phonon scattering, and it is only va
at temperatures equal to or higher than the Debye temp
ture. Slack’s equation for the maximum achievable therm
conductivity in nonmetallic solids, with complex crysta
structures, can be written as16

k5
BM̄du3

g2n2/3T
for T>u, ~9!

where B ~in W mol kg21 m22 K23! is a constant~which is
dependent ong!,15,16 M̄ (kg mol21) is the mean atomic
mass,d3 (m3) is the average unit-cell volume,u ~K! is the
acoustic-mode Debye temperature at absolute zero as c
lated from elastic constants,15 g ~dimensionless! is the Grün-
eisen parameter,n ~dimensionless! is the number of atoms
per unit cell, andT ~K! is the absolute temperature.

Recently, it has been shown that the accuracy of Slac
equation can be improved considerably.16 This is the case
because the thermal-conductivity result is highly sensitive
the input parameters, in particular, the Debye tempera
and Grüneisen parameter. It has been estimated that an e
in the Debye temperature of;10% can result in an error a
high as 40% in the thermal conductivity. Additionally,
similar error of;10% in the Gru¨neisen parameter can resu
in an error as high as 20% in the thermal conductivity.
particular, it has been shown that Slack’s equation, w
some modifications, can be applied to temperatures be
the Debye temperature.16

As mentioned, the general Slack’s equation is only va
in the region where the temperature is equal to or higher t
the Debye temperature. In general, it is common practice
extrapolate data from this region to room temperature, 3
K. However, Bruls16 has shown that a modified Slack’s equ
0-3
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tion can be formulated to determine, with greater accura
the thermal conductivity below the Debye temperature. T
equation can be written

k5
BM̄d@um#2

g2n2/3
F S FDS uh

T D
3R

D @~euh /~bTn1/3!!21#bn1/3G ,

~10!

whereFD(uh /T) is the Debye function,16,17 uh is the high-
temperature limit of the Debye temperature,um is the mini-
mum Debye temperature,R is the gas constant 8.31
~J mol21 K21!, and b is a constant~where b>2 for most
solids18!. It is trivial to show that Eq.~10! simplifies to the
original Slack’s equation, Eq.~9!, for the limit T@uh .

In this study, for evaluating Slack’s equation, the inp
parameters of greatest importance areuh , the high-
temperature limit of the Debye temperature,um , the mini-
mum Debye temperature, andg, the Grüneisen parameter. I
is assumed that only the acoustic phonons contribute to
transport, in particular, at low temperatures. Therefore,
Debye temperature and the Gru¨neisen parameter should b
derived from the acoustic vibration modes only.15,19 Further-
more, the Debye temperature~for silicon nitride! as a func-
tion of temperature shows a minimum at approximately
K.20 Since the low-temperature behavior is governed
acoustic vibration modes, this minimum value is sugges
as a better estimate for the high-temperature limit relate
acoustic phonons. It is also suggested that the Gru¨neisen pa-
rameter should be defined over all temperatures as the
modynamic Gru¨neisen parameter evaluated at the minim
Debye temperature, which describes better the acou
mode vibrations. The values adopted for the Slack’s equa
parameters are listed in Table I, and were collected from
literature.15,16,19,20

D. An estimate of the thermal conductivity of isotropic
polycrystalline silicon nitride

Currently, few experimental measurements of the ther
conductivity of silicon nitride single crystals have been
ported. This is due, in part, to the difficulty associated w
growing single crystals of silicon nitride ceramics. Neverth
less, the current simulation results can be used to estim

TABLE I. A list of the Slack’s equation parameters and t
corresponding values for thea- andb-Si3N4 single crystals.

Slack’s equation
parameters a-Si3N4 b-Si3N4

B(g) 3.15e7 3.15e7

M̄ 0.02 0.02

d 2.18e210 2.18e210

g 0.61 0.61
n 28 14
uh 1200 1200
um 837 837
b 2 2
13411
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the thermal conductivity of isotropic polycrystalline silico
nitride, for which some data have been reported in the lite
ture. In the case of macroscopically isotropic polycrysta
certain material properties, such as the thermal proper
~for obvious reasons in this study only the thermal cond
tivity is considered!, can be estimated from the propertie
determined in the corresponding anisotropic single-cry
material. The most well-known formulations for such es
mates are the expressions for the arithmetic~AM ! and har-
monic ~HM! means of the thermal conductivity,21,22

kAM5 1
3 ~k11k21k3!, ~11!

1

kHM
5 1

3 S 1

k1
1

1

k2
1

1

k3
D , ~12!

wherekAM , kHM are estimates of the isotropic polycrysta
line thermal conductivity, andk i $ i 51, 2, 3% represents the
anisotropic crystalline thermal conductivity in thex, y, andz
directions, respectively. It should be noted that these
solutions are a lower, Eq.~12!, and upper, Eq.~11!, bound of
the estimate for the polycrystalline structure21 ~they are
known as the elementary bounds!. However, there has bee

FIG. 1. Crystal structure of the~a! a- and ~b! b-Si3N4 single
crystals, in which the Si-N layers are stacked as AB¯AB and
ABCD¯ABCD, respectively.
0-4
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FIG. 2. Plot of thermal con-
ductivity ~at a constant tempera
ture of 300 K! as a function of the
supercell characteristic length i
the ~a! a- and ~b! c-axial direc-
tions.
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some discussion in the past as to the applicability of t
result. Various authors have reported formulations based
variational principles,23–25 which lead to narrower bounds
Recently, however, Adams and Olson21 have shown that al-
though tighter bounds could be obtained using the variatio
principle methods, the results were based on question
assumptions. Thus, in this study, theclassical elementary
bounds@Eqs. ~11! and ~12!# calculated from the simulation
data of the single crystals are used to estimate a range fo
thermal conductivity of isotropic polycrystalline silicon n
tride. It is important to note that the range calculated i
rough estimate, which does not include the effect that str
tural anomalies, such as grain boundaries, would have on
thermal conductivity of the material.

III. MOLECULAR DYNAMICS SIMULATION RESULTS

The crystal structure of botha- andb-Si3N4 can be con-
sidered to contain the fundamental Si-N4 tetrahedra struc-
ture, joined together by shared corners in a three-dimensi
13411
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network. The structures consist of layers of silicon and nit
gen in a sequence, along thec axis, as illustrated in Figs. 1~a!
and 1~b!. The a- and b-Si3N4 structures both exhibit hex
agonal symmetry represented by the space groupsP31c and
P63 , respectively.2 The relevant elastic constants for the tw
silicon nitride phases26 are C11, C33, C44, C66, C12, and
C13, whereC22 is equivalent toC11, C55 is equivalent to
C44, and C66 is calculated using the relationC665

1
2 (C11

2C12).
The elastic constants of thea- andb-Si3N4 single crys-

tals can be calculated using the total potential-energy t
given by Eq.~1!. The tensors of the elastic constantsCi j are
expressed using the total potential energyET ,27

Ci j 5
1

V

]2ET

]« i]« j
, ~13!

wherei , j 51, 2, 3, 4, 5 and 6, and is equivalent to the co
ponentsxx, yy, zz, yz, zx, andxy, respectively,« i and« j are
small strains, andV is the volume of the model. For th
0-5
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elastic constant calculations, all simulations were for cano
cal, NVT ensembles at 300 K. It should be noted that
calculations were performed at 300 K, since the lattice
rameters for the material structure were obtained experim
tally at this temperature.2,28 Equation~13! suggests that the
elastic constants can be calculated by differentiating the
teratomic potential with respect to strain. Thus, the MD u
cell was deformed prior to the MD procedure by a predefin
amount of« i and« j ~approximately 1023 in magnitude!, and
ET was calculated using Eq.~1! by finding the minimum-
energy point. TheCi j values were calculated by numerical
differentiating ET in Eq. ~13! by « i j and «kl , at the
minimum-energy point. It should be noted that in Eq.~13!
the kinetic-energy term of the system was not included.
general, the kinetic term is negligible and, thus, was not
cluded so as to simplify the calculation.27,28

The supercell dimension, in the direction of the heat fl
calculation, has a significant effect on the accuracy of
estimated thermal conductivity and on the computation tim
It was necessary, therefore, to estimate an optimum supe
size. The thermal conductivity was calculated for vario
supercell lengths in thea andc directions, at a constant tem
perature of 300 K, presented in Figs. 2~a! and 2~b!, respec-

TABLE II. Relevant structural data for thea- and b-Si3N4

single-crystal supercells, used in the molecular dynamics simula
procedure.

a-Si3N4
Number of atoms 672

Optimum supercell
dimensions~nm!

a direction:x54.7, y51.4, z51.7
c direction:x51.6, y51.4, z53.4

Lattice Constants~nm! a50.7818,c50.5591

b-Si3N4
Number of atoms 672

Optimum supercell
dimensions~nm!

a direction:x54.6, y51.3, z51.7
c direction:x51.7, y51.3, z53.5

Lattice constants~nm! a50.7595,c50.2902
13411
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tively. It is clear from the data that the optimum character
tic length in thea direction is;4.7 nm and in thec direction
is ;3.5 nm.

Thus, the unit cell of thea-Si3N4 single crystal for the
simulation contained 12 silicon and 14 nitrogen atoms. C
respondingly, theb-Si3N4 single-crystal unit cell contained
six silicon and eight nitrogen atoms. The typical superc
employed in this study contained 672 atoms, construc
from a predefined number of unit cells. The relevant str
tural data of thea- andb-Si3N4 single-crystal supercells ar
summarized in Table II. Periodic boundary conditions we
imposed along each direction of the supercell, to ensure
ergy~and momentum! conservation while allowing energy t
flow through the boundaries.

Initially, for a predefined temperature, constant volum
and constant number of atoms, the atomic configuration~of
the supercell! was relaxed to equilibrium~a force-free me-
chanically stable configuration! over a period of approxi-
mately 12 ps. After equilibration, the molecular dynami
simulation was carried out for approximately 3.5 ns, duri
which the heat flux vectorS was calculated~at constant vol-
ume, constant total system energy, and constant numbe
atoms! approximately every 1.2 fs.

As mentioned previously, there exists direct and indir
methods of calculating the temperature-dependent ther
conductivity from the molecular-dynamics simulation r
sults. In this study, the thermal conductivity was calcula
using both methods. In the case of the direct method
double averaging method, the thermal conductivity was c
culated for an averaging time of approximately 12 ps. T
averaging time, over the total simulation time of 3000 ps
equivalent to approximately 250 subensembles. The ther
conductivity was then calculated by averaging the sub
semble results, over all subensembles. The therm
conductivity result as a function of the averaging time
presented in Fig. 3. It is clear from the results that a sh
averaging time leads to inaccurate results. Furthermore
should be clear that a long averaging time would also lea
inaccurate results, as mentioned in Sec. II.

n

e,
-

FIG. 3. A typical plot of ther-
mal conductivity, as a function of
the subensemble averaging tim
obtained using the double averag
ing method. This data is for
a-Si3N4 at 300 K in thea-axis di-
rection.
0-6
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FIG. 4. A typical plot of the
frequency-dependent heat flu
correlation function, as a function
of frequency~circles!, and nonlin-
ear fitting result ~dashed lines!.
This data is fora-Si3N4 at 300 K
in the a-axis direction. The inset
shows the same data in the sho
time region.
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The indirect method, a Fourier-transform analysis, w
calculated for the zero-frequency limit. A typical plot of th
frequency-dependent heat flux correlation function is p
sented in Fig. 4. A fit of the data, using a nonlinear lea
squares method,5 was applied to determine the zer
frequency limit. To fit the correlation function a doub
exponential function was employed,5

^Sx~0!Sx~ t !&5Aoe~2t/to!1Aae~2t/ta!, ~14!

where the subscriptso and a denote optical and acousti
modes, respectively. After a simple substitution@into Eq.
~8!#, and integration, it is found that the frequency-depend
thermal conductivity is given by the following equation,

k~v,T!5
1

kBVT2 F S Ao

A~v21to
22!

D 1S Aa

A~v21ta
22!

D G , ~15!
13411
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where, as mentioned previously, the static thermal cond
tivity is obtained from the zero-frequency limitk(0,T). It is
important to note that the nonlinear fitting result, Fig. 4, d
verges from the simulation result for low frequencies~,2
THz!. It is understood that the behavior in this region
related to an overestimation in the correlation function
low frequencies.3 The periodic boundary conditions induc
correlation artifacts in the correlation function. Thus, t
higher-frequency data are more favorable, and in this c
the fitting at higher frequencies is more reliable. The typi
results of the direct and indirect methods, in the direction
thea axis, fora-Si3N4 , are presented in Fig. 5 for compar
son. It is clear that the data from both methods agree we
was found that typically the optical modes have a relaxat
time on the order of;3.68e25 ps and the acoustic modes a
on the order of;9.5 ps. In addition, the optical modes a
found to contribute a maximum of;8% to the thermal con-
ductivity.
d
d
s

FIG. 5. A typical plot of the
thermal conductivity as a function
of temperature, as determine
from the double averaging an
Fourier-transform methods. Thi
data is fora-Si3N4 in the a-axis
direction.
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FIG. 6. Plot of the thermal
conductivity as a function of tem-
perature, for thea- and b-Si3N4

single crystals, in the~a! a- and
~b! c-axial directions.
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The data of the thermal conductivity, for thea- and
b-Si3N4 single crystals, as a function of temperature, in
a and c directions are presented in Figs. 6~a! and 6~b!, re-
spectively. It is important to note that an arbitrary choice w
made and the data given in Figs. 6~a! and 6~b! are the results
obtained from the direct, double averaging, method. The m
lecular dynamics results are also compared against re
obtained from other sources, such as Slack’s equation
experimental measurements reported in
literature,15,21,29–31in Table III for 300 and 1400 K. The elas
tic constants for thea- andb-Si3N4 single crystals were also
estimated, and are presented in Table IV along with d
reported in the literature.26,32–34

IV. DISCUSSION

The material elastic constants calculated using the cur
numerical procedure are presented in Table IV. Numer
theoretical26,32 and experimental33,34 studies have reporte
13411
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elastic constants for silicon nitride ceramics. From the d
presented in this study, the theoretical results are from W
dal and Goddard III,26 and Chinget al.,32 where the elastic
constants were derived from anab initio force field
molecular-dynamics simulation and anab initio total-energy
calculation, respectively. Correspondingly, the experimen
measurements are from Vogelgesang and Grimsditch,33 and
Hay et al.,34 determined using Brillouin scattering an
nanoindentation measurements, respectively. However,
reported data are limited tob-Si3N4 . Regardless, the data i
Table IV indicate that the simulation results are in reasona
agreement with existing data found in the literature.

In this study, the phonon mean free path in the cryst
examined can be on the order of tens of nanometers. Thu
is reasonable to expect that for accurate results the cha
teristic supercell dimension should be as large, if not larg
than the phonon mean free path. The phonon mean free p
of the silicon nitride systems, can be calculated using
0-8
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TABLE III. A comparison of the current molecular dynamics results, and the existing results found in the literature for various m

a-Si3N4 b-Si3N4

300 K 1400 K 300 K 1400 K

Anisotropic single-crystal
results

a axis c axis a axis c axis a axis c axis a axis c axis

MD simulation 105 225 25 46 170 450 30 110
Single-crystal experimental

resultsa
69 180

Isotropic polycrystalline
results

Slack’s equationb 115.20–46.90 16.87 249.71–77.30 26.77
Elementary bounds from

MD resultsc
128.0–145.0 29.5–32.0 214.5–263.0 39.6–56.7

CVDd and sinterede

specimen experimental
results

;59.0 ;19.7 ;122.0 ;28.0

aReference 27.
bReference 15.
cReference 21.
dReference 28.
eReference 26.
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thermal-conductivity equation obtained from the kine
theory of gases,35

k5 1
3 npC^ l p&, ~16!

wherenp is the phonon velocity,C is the heat capacity, an
^ l p& is the phonon mean free path. Using the simulated e
tic constants to estimate the phonon velocity, the simula
thermal conductivity, and the experimentally determined h
capacity, the phonon mean free path was calculated fo
temperature of 300 K. The estimated results are presente
Table V. Clearly, the shortest mean free path is appro
mately 14 nm, which is much larger than the smaller op
mum supercell size of approximately 3.5 nm, estimated fr

TABLE IV. Elastic constants calculated using the current m
lecular dynamics procedure, for thea- andb-Si3N4 single crystals.

aReference 25.
bReference 29.
cReference 30.
dReference 31.
13411
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Fig. 2. When the supercell size is small, there is the po
bility of a periodically equivalent phonon traveling throug
the supercell, and returning to the phonon point of orig
However, it is possible to obtain accurate therm
conductivity results for a characteristic supercell dimens
much smaller than the phonon mean free path.5 This is the
case since in the method employed in this study the ene
current correlation time is much shorter than the energy
laxation time. A rigorous proof is not given here as a mat
of convenience, however, Cheet al.,5 and Volz and Chen3

provide a detailed analysis of the current correlation funct
method.

-

TABLE V. An estimate of the phonon velocity and phono
mean free path, as determined from the elastic constants calcu
using the molecular dynamics procedure. The data were calcul
for a temperature of 300 K. It should be noted that in the case of
phonon mean free path, the current thermal conductivity, the exp
mentally determined heat capacity, and the current phonon velo
were used in the calculation.

a-Si3N4 b-Si3N4

Velocity
components

~3! 104 ~m s21! a direction c direction a direction c direction

nx 1.36 1.34 1.36 1.47
ny 1.04 1.04 1.09 1.09
nz 0.81 1.04 0.82 1.0

naverage 0.98 1.11 0.99 1.17
Mean free path

~nm!

l p 14 27 23 52
0-9
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The thermal conductivity as a function of temperatu
obtained from the molecular-dynamics procedure, is p
sented in Fig. 6. In addition to the simulation data presen
in Fig. 6, the experimental measurement for ab-Si3N4
single crystal and a trend line of theT21 behavior below 300
K are also shown. At present, to the best of our knowled
there are no reported experimental data of the thermal c
ductivity of a a-Si3N4 single crystal. In the case of th
b-Si3N4 single crystal the lower experimental result was e
pected. The current results were calculated for a cry
structure with no impurities or structural defects. The ‘‘rea
b-Si3N4 single crystal does contain structural anomalies a
impurities and, thus, results in an increase in phonon sca
ing, resulting in a lower thermal conductivity.

In Fig. 6, the functional dependence of the simulated th
mal conductivity to temperature is also shown. The dep
dence was estimated by calculating a power function of
best fit to the data. Clearly, within calculation error, the c
rent data exhibits a behavior that is in good agreement w
theT21 behavior predicted by experimental data.30 TheT21

behavior is also predicted by Eq.~16!.11 It is argued that,
below the Debye temperature, the heat capacityC increases
in proportion toT3, approaching a constant value. In th
temperature regime, the phonon velocitynp is not sensitive
to temperature. However, the phonon mean free path^ l p& for
temperatures above 300 K decreases asT21 due to phonon-
phonon scattering. It is well known that below 300 K, t
mean free path is approximately constant since phonon s
tering is dominated by temperature-independent phonon
teractions at structural anomalies and surfaces.

In addition to Fig. 6, the simulation results at 300 a
1400 K are compared to other results, presented in Table
In this table the results of Slack’s equation, the element
bounds~calculated from the molecular-dynamics data!, and
experimental measurements of silicon nitride are presen
Clearly, there exists far fewer reported data fora-Si3N4 ~no
theoretical or experimental data could be found in the lite
ture! than forb-Si3N4 . Furthermore, it should be clear th
the experimental data presented are not expected to corr
well with the simulation results, because of structural diff
ences. As mentioned previously, in the ‘‘real’’ silicon nitrid
ceramics, there are a large number of structural defects
numerous impurities, which result in an increase of phon
scattering. This is particularly the case with thea-Si3N4 ex-
perimental result because it was measured for a chemic
vapor deposited~CVD! specimen,31 which is a method tha
can result in various structural anomalies. However, con
ering the structural differences, the data presented in T
III are in relatively good agreement.

The Slack’s equation results are of great interest, since
Slack’s equation was derived for a defect-free crystall
solid, where phonon-phonon interactions are presumed t
the main source of phonon scattering. However, in Eq.~10!
for the temperature regime below the Debye temperature
valueb>2, assumed for most solids, is questionable. Hen
the values of the Slack’s equation for 300 K are presented
a range of values,b>0.5 to 3, where the lowerb values
result in a higher thermal conductivity. The resulting range
values suggests that the thermal conductivity is sensitiv
13411
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the value chosen for the material constantb. In particular, a
valueb,1 may be more representative of the silicon nitri
ceramics.

The simulation results are in reasonable agreement w
Slack’s equation, where better agreement is obtained for
b-Si3N4 single crystal. This maybe the case since t
b-Si3N4 single crystal has only half as many atoms per u
cell. In Slack’s equationsk;n22/3, however,k;n21/3 and
k;n21/2 have also been reported in the literature.36 From the
simulation results it is found thatk;n2160.5. The depen-
dence of the thermal conductivity on the number of ato
per unit cell is a point of contention that requires furth
investigation. However, it has been shown by an extens
study37 that, although the tetrahedral atomic structure is
vorable for a high thermal conductivity, a higher coordin
tion number does result in a lower thermal conductivity. It
important to note that in general, however, the Slack’s eq
tions are based on assumptions, which limit the accurac
the results. The assumptions clearly neglect the possibilit
heat transport by photons, charge carriers, polarons, etc.
also neglect other possible scattering processes, such a
purities, vacancies, dislocations, grain boundaries, cry
boundaries, etc.15 In addition, as mentioned previously, th
values of several of the parameters in Slack’s equation
difficult to define. For example, in Eq.~10! by using the
thermodynamic Gru¨neisen parameter forg, there is no dis-
tinction made between the acoustic and optic phonons.16

It is clear from the main results of this study that th
silicon nitride ceramics are a class of materials with excell
thermal conductivity. This is particularly the case with th
b-Si3N4 single crystal. However, the current investigatio
has not attempted to determine the effects of impurities
structural defects on the thermal conductivity. In order
ascertain such effects, it is suggested that the molecu
dynamics calculation be employed to investigate atomic c
figurations that have such anomalies introduced into
crystal structure. The ability to introduce specific atomic im
purities at specific atomic lattice locations, also the ca
when looking at the effect of structural defects, would be
significant advantage. It is already well known that su
anomalies significantly affect thermal properties of a solid
is the intention of the current authors to investigate su
effects using the molecular-dynamics procedure. It is
pected that such a study would result in a greater underst
ing of the mechanisms of heat transport in solids.

V. CONCLUSION

In this study, the molecular dynamics method was used
simulate energy transport ina- andb-Si3N4 single crystals.
Using the simulation data, the Green-Kubo formulation w
applied to calculate the thermal conductivity of the sing
crystals, as a function of temperature. It was found that
thermal conductivity could be estimated with a high deg
of accuracy, even though a relatively small simulation sup
cell size was employed. The calculated elastic constant
the crystals were found to be in reasonable agreement
existing data obtained from the literature. At a temperature
300 K, it was determined that the thermal conductivity~in
0-10
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units of W m21 K21! in a-Si3N4 andb-Si3N4 , along thea
andc directions, is approximately 105 and 225, and 170 a
450, respectively. It is clear from comparisons with existi
experimental data that a higher thermal conductivity for s
con nitride could be obtained, if the existing methods
producing the ceramics could be refined to result in few
structural defects and impurities. This is particularly the c
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with the b-Si3N4 single crystal, which exhibits the highe
thermal conductivity.
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