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Dielectric hysteresis loops of first-order ferroelectric bilayers and antiferroelectrics
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We consider a ferroelectric bilayer or superlattice with an antiferroelectric interface coupling between two
materials which have first-order phase transitions in the bulk. The system is described by a Landau free-energy
expression including a bilinear coupling. A detailed discussion is given for the case when the component
materials are the same. For equal thicknesses the free energy is the same as for a bulk first-order antiferro-
electric. For this, analytical expressions are given for the supercooling, thermodynamic and superheating
critical temperatures. Dielectric hysteresis loops are calculated numerically, and it is shown that they can be
classified according to a simple scheme. A qualitative discussion is given of the effect of including biquadratic
interface coupling. For a general thickness ratio in the bilayer, an analytical result is found for the supercooling
temperature and the other two are calculated numerically. Typical dielectric hysteresis loops are shown, and a
classification scheme is presented.
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. INTRODUCTION J,P2P2, which is also symmetry allowed. We do not give a
detailed analysis of the effect of including this term but we
Ferroelectrics, as it is recalled, have simple hysteresislo give a brief qualitative discussion.
loops!~® whereas the hysteresis for an antiferroelectric ma- The free-energy expression is presented in Sec. I, and
terial consists of double loops. In a recent pipee pointed  rewritten in dimensionless units. In order to make the analy-
out that if a bilayer of two ferroelectrics can be producedsis tractable we assume, as befdtbat the materials of the
with antiferroelectric coupling across the interface, then andividual layers are identicah=A’. As discussed above,
wide range of dielectric hysteresis loops is possible, goingve replace A/B/A by A//A with B represented by the
from basically antiferroelectric fdr;~L, to basically ferro-  exchange-like final term in our Eql). ForL,=L, the free
electric forL{>L,, whereL, andL, are the thicknesses of energy is the same as that for a first-order antiferroelectric
the component layers. The kind of system we have in mind isnd for this special case a number of analytical results can be
a physical trilayerA/B/A’, in which a thin layer of a ferro- derived. We devote Sec. Il to a discussion of this case for
electric B is interposed between ferroelectric layéksand  two reasons. First the antiferroelectric is of interest in itself,
A’. The basic assumption that was made in Ref. 6, an@nd the available discussions are no more than outfifres.
which we continue to make here, is that layeproduces an  Second, the results in this special case are very helpful in
antiferroelectric coupling between ferroelectric lay&rand  giving a clear account of the results for genetsl/L,,
A’. In modeling this system, we repla&by an effective  which are the subject of Sec. IV. For both special and general
couplingJP; P, between the ferroelectric polarizationsAn  cases we start by finding the critical temperatusegpercool-
andA’, so that we may represent the system as an effectiving tsc, thermodynamidc, and superheatintsy) in a zero
bilayer A//A’. A magnetic analog is the Fe/Cr/Fe trilayer, in applied fieldE; some of the results are analytical and some
which it is well knowr that in a suitable thickness range the are numerical. We then numerically explore the minimum
Cr layer produces an antiferromagnetic coupling betweemoints of the free energy in thé, — P, plane for nonzerd,
the Fe layers. This system is often modeled by a “bilayer”and use these to draw dielectric hysteresis loops. It will be
Fel/lFe, with the Cr layer replaced by an effective exchangseen that a wide variety of loops is possible, but a simple
between the Fe layers. generalization is that the form of a loop is characteristic of
To simplify the analysis, we assumed that the layers wer¢he rangetgc<<t<t: in which the temperaturelies. Some
made of materials in which the transition to ferroelectricity isconclusions are presented in Sec. V.
second order. However, since most ferroelectric phase tran-
sitions are first order, it is worthwhile to extend the analysis Il. FREE ENERGY
to first-order materials, and that is the purpose of this paper.
As before, we describe the bilayer by a Landau-Devonshire Our analysis is based on the free-energy expression
free-energy expression. The key term in this is a coupling

JP,P, across the interface, and it is analogous to the magF A1 _, Bi1 4 Ci s Ay
netic coupling in giant magnetoresistaheehere the value S~ 2g, PIL,+ 4_8(2)P1L1+ 6_88P1L1_ EPiLy+ 2e, Pol2
of J depends on the material used to serve as the coupling

mechanism between the interfaces. This expression is sym- B> , Co &

metry allowed, and should therefore be included; further- +4—8(2)P2L2+6—88P2L2—EP2L2+JP1P2, @)

more it appears in a continuum approximation to the Ising-
model in transverse fieldMTF) Hamiltonian for a bilayef. ~ whereSis the surface area of the samplg; andL, are the
The IMTF analysis leads to higher-order coupling terms likethicknesses of the layersy;, B;, andC;, i=1,2 are the
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Landau coefficientsE is the applied static field; andlis the
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siuniversal. We should mention that previolfsiye used the

assumed coupling interactioA; is as usual assumed to be dimensionless length parameterL, /L4 but the more sym-

temperature dependem;= «; (T—T,o) whereg; is the in-

verse Curie constant, anid, the critical supercooling tem-

metric definition in Eq(4) is preferable.
Our subsequent analysis is based on the free enkergy

perature of layer. B; andC; are assumed to be temperaturegiven in Eq. (5 and we make the usual assumption that

independent and for first-order transitioBs<0 andC;>0.

stable (and metastab)estates of the bilayer correspond to

The first three terms in Eq1) apply to layer 1, and are the minima of f with respect to variations gb; andp,. These
standard free energy for a first-order bulk ferroelectric; theare given by solutions of the simultaneous equations

fourth term describes coupling of layer 1 to the field. The
next four terms are the same thing for layer 2, and the final

term is the interface coupling. We assudie0 so that the
coupling favors antiferroelectric orderirigy P,<<0. A ferro-

electric coupling<<0 might also occur, but is unlikely to be
of great interest since its basic effect would be to make th
bilayer similar to a single ferroelectric layer. As mentioned

previously? we omit a possible variation d? with distance

across each film. This allows us to concentrate on the qua
tative effects of the coupling term; a numerical scheme i
availablé that would allow the inclusion of spatial variation

of P.

tip,—2Ip3+1p3—el+jp,=0, 9)

t(1-1)p,—2(1—-1)p3+(1—1)p3—e(1—1)+jp;=0.
(10)

eSubsequentIy we plot dielectric hysteresis loopsmst (1

—1)p, versuse.
For the bulk first-order ferroelectric analytical results can

li-
s‘be found for tgc, tc, andtgy namely,

tsczo, tC:O75, tSH:j..O. (11)

If materials 1 and 2 are different, the variety of equilib- In addition, there is a “field-induced ferroelectric phase,”

rium states and dielectric hysteresis loops described big

that is, a phase witp+#0 in nonzero field, in a temperature

very large. In order to concentrate on the effects produced byangetg,<t<t,, and the upper temperature limit of this

the interface coupling we therefore, as befoassume that

materials 1 and 2 are the same, so we WAte=A,=A,

B,=B,=—-B andC;=C,=C, where we insert the sign of

the B terms explicitly so thaB is positive. We now follow
the conventional scaling for first-order materiafsand also
introduce a dimensionless length variahle

4aC(T—Ty)
t:%, (2)

pi=P;/Py with i=1,2 and P3=¢,B/(2C), (3)
I=L./(Li+Ly), (4)
and we obtain
f=3t[Ip7+(1-1p3]—z[Ip7+(1-1)p3]
+a[IpS+(1=1pSl—ellps+(1=1)p2]+jpsp2,

5
where
F SB¥(L;+L,)
f= F_o with FO_Ty (6)
E 5
= — i 2:
e Eo with EO W' (7)
N B(L;+Lo)
I J_o with JO—W. (8)

phase is

t,=1.8. (12)

For generall the only one of these for which an analytic
expression can be found tgc. This is the temperature at
which the linearized form of Eq$9) and(10) for e=0 has a
solution, i.e.,

o
fsc™ Jda=n

At first sight the divergence ofsc as|—0 orl—1 is
puzzling and as will be seen in Sec. IV sintg is the
smallest of the critical temperatures where the others also
diverge. The condition from whickgc is calculated is that
the paraelectri¢PE) phasep;=p,=0 becomes locally un-
stable fore=0, so that Eq.(13) is the condition for the
determinant of the second derivativesfafith respect tgp,
andp, to vanish at the origin. This condition involves only
the quadratic terms ify so we are concerned with the behav-
ior near the origin of

(13

1 _
fo=35tlIpi+(1-Dp3l+ipipo=fotfc, (19

wherefcs=jp1p, is the coupling term. This has the form of

a saddle point at the origin, with; increasing in the two
quadrants wherg, andp, have the same sign and decreas-
ing in the quadrants where they have opposite signs. Thus
destabilizes the PE phase for paths in these latter quadrants,

The scaling introduced here has the advantage that all firswhich is why tsc is larger than the bulk value. The level
order materials are described by universal curves, but there &urfaces off, are ellipses, and for smalllthese are highly
the disadvantage, as seen from E), that the value of the elongated along the, axis. In terms off, therefore, the
dimensionless temperatutecorresponding to absolute zero energy cost of a movement op{,p,) along a line withp,

is material dependent. To this extent the scaling is only quapositive and close to the negatipg axis is small, so that the
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FIG. 1. (a) Dielectric hysteresis loopp=(pim+P2m)/2 Vs e for equal-layer thicknessdy%, coupling j=0.3, and temperature
=0.2. The annotations in the fornp{,p,,f,d) are the locations of minima dfand values of at minima. These minima correspond to the
minimum points in the contour plots i) and(c). d is the “degeracy”(1 or 2), becausg, andp, are interchangeable in giving the same
value off. (b) Contour plot off vs (p;,p,) for e=0. (c) Contour plot off vs (p;,p,) for e=0.9. (d) Dielectric hysteresis loops=(p1m
+Pom)/2 vs e for equal-layer thicknessds= % couplingj =0.5, and temperature=0.

temperature at which the PE phase is destabilizedbin- lll. EQUAL THICKNESSES:
creases abdecreases. This is the reason for the divergences THE BULK ANTIFERROELECTRIC
with | in Eq. (13). As mentioned, fol =3 the free energy in Eq. (5) takes

Another way of explaining the divergencetatin (13)is o same form as that for a bulk antiferroelectric, or more

to understand the competing effect betweeand | in EQ.  yrecisely 2f has the conventional form of the antiferroelec-
(14). The effect ofj, as mentioned, is to make, andp,  tic fa:

antiparallel whereas the effect of temperattiis to realign

bothp,; andp, to a paraelectric phase. Now imagine making

layerL , thinner withL , fixed in thickness, thus depicting the 2 f=fa=3t(pi+p3) —3(pi+p3)

situation wherel —0. As L, gets thinner, the value gb, 1,.6. .6 .

decreases and Eq(14) approximately becomesf +5(pr+p2)—e(p1tp2)+2jpip2. (19
=(1/2)tp,2+jp1p,=Tfo+ fc. Sincej andp, stay constant,
this leads to a decreasefig, therefore, in order to maintain This describes a two-sublattice antiferroelectric with intersu-
the free energyt has to increase in value thus explaining theblattice coupling 2. The critical temperatures can be found
reason for its divergence. from the zero-field expression fdr,. Because of the cou-
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FIG. 3. Dielectric hysteresis loops= (pim+ P2m)/2 Vs e for
1.8 equal-layer thicknessd;%, coupling j=0.3, and temperature
=18.
1
pling term the relevant minimum points éf, satisfy p,=
0.5 —p; so that Eq(15) becomes
L)
a 0 1 Nh2_ 1.4, 1.6
f=2(t=2])p1—2pi+35P7- (16)
0% This is the same as the equivalent equation for a first-order
ferroelectrié with the replacemertt—t—2j. The same com-
-1 ment applies to Eqg9) and(10) for the first derivatives. The
critical temperatures can be derived in the same way as those
-1.5 for the ferroelectric. At the supercooling temperature the lin-
. ) . ) ) ) . earized form of Eq(9) has a solution, so thdt.—2j=0;
-1.5 -1 -0.5 ©o 0.5 1 1.5 this is the same as EL3) for | =3. Fortgc<t<tgy, there
(b) pl are two local minima of, and at the thermodynamic critical

temperaturd. the values of at these are equal. At the

minimum corresponding to the metastable ordered state dis-
1.8 @::__ appears, sbsy is given by simultaneous solution éf/dp
=0 and &zf/apizo. Finally, att,, the upper temperature
1
TABLE I. Summary of the behavior of lines in the DHL for
=0.5 andj=0.3, witht.
0.5
t Aline B line Cline P line
o
0
F t<tge Passes Appears for Crosses Does not
through e+0 e=0 appear
to.5 (0, 0), becomes only for
shorter ag low values
-1 increases of t.
tge<t<<tc Passes Becomes Appears at Begin to
-1.5 through longer e#0 appear
(0, 0), becomes
-1.5 -1 -0.5 0 0.5 1 1.5 shorter ad
() pl increases
FIG. 2. (a) Dielectric hysteresis loops= (pym+ Pam)/2 vsefor  le<t<lsk Passes maintain  Appears atBecomes
equal-layer thicknesses=3, couplingj=0.3, and temperature tr(lgo%?h highere  longer

=1.0. The annotations in the fornp{,p,,f,d) are the locations of

minima off and values of at minima. These minima correspond to disappearing

the minimum points in the contour plots i) and (c). d is the teu<t<t, disappeared maintain AppearsBecomes
“degeracy,” (1 or 2), becausep; and p, are interchangeable in at even longer
giving the same value df (b) Contour plot off versus 6,,p,) for highere

e=0.2.(c) Contour plot off vs (p;,p») for e=0.7.
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FIG. 4. Dependence on the thickness paramletén(@) tsc, (b)
te, and(c) tgy. Values of the coupling constapiare 0.1(lowest
curve on each graph0.2, 0.3, 0.4, and 0.fhighest curve on each
graph.

limit of the field-induced ferroelectric state, a non-zgrp-
point of inflection inf disappears, sb, is the highest tem-
perature at Whichﬁzf/&pf=0 has a solution. In view of the
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FIG. 5. Temperature dependence pflp,;+(1—1)p, for j
=0.3 andl equal to(a) 0.1 and(b) 0.3. Pointsv are local minima
(p) of f andd are saddle pointspg). The value off is plotted as
solid line with separate curves i) for the upper and lower equi-
librium curvesU andL. Part of this is shown enlarged in the inset
graph.

versuse, where @1,,,P2m) IS the position of a local mini-
mum of f. Sincep is the electric polarization in dimension-
less units, the DHL corresponds to measured hysteresis
loops.

The values ofp,,, andp,., are found by numerical solu-
tions of Eqs(9) and(10). A number of qualitative comments
about the possible locations gb{,,p,m,) can be made from
the free energy expressi¢iqg. (15)]. We write this as

fa=fot+fetfc, (18

wheref, now stands for the first three ternfg is the field
term, and, as in Eq.14), fc is the coupling termf, is the

form of Eq.(16), application of these rules shows that for the sum of identical terms for the two layers, séy="f,+f,.

antiferroelectric the values given in Eq4.l) and (12) are
simply offset by 3:

tSC: Zj,tC:O75+ 2], tSH: 10’*’2], t2:18+ 2]
17

Since it contains only even terms, the surface describing this
term has four-fold symmetry in thep(,p,) plane. For ex-
ample, fortgc<t<tgy, wheretgc andtgy are the bulk val-
ues, f; has a local minimum ap;=0 (PE) and another at
nonzero valuep;= * p, say(FE). Consequently thé, sur-
face has a local minimum at the origin and four more at
(£po.*Ppo). The coupling ternf favors antiparallel align-

Our main emphasis is on the dielectric hysteresis loopnent,p,~ —p;. Thus when added tf,, and in the absence

(DHL), which is defined as the graph of=(pim+ P2m)/2

of a field, fo deepens the FE minima ap{,—pg) and
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(1.22, 1.65, -6.756) \ ¢

(-1.62, 1.33,-0.53) 151 00l ;-67, 6.757) « =B

FIG. 6. (a) Calculated DHL's forj=0.3,1=0.1, andt=0.8 (t<tgd. Contour plots are shown fdb) e=0, (c) e=0.4, and(d) e
=5.0. The annotations shown {a), in the form (4,p,,f), are the locations of minima dfand values of at minima. These minima
correspond to the minimum points in the contour plotgkip-(d).

(= Ppo.Po) relative to the two in whictp; and p, have the critical temperatures in Eq17), and we start by discussing
same sign. In addition, as remarked in Secf {ldestabilizes the DHL mainly for the coupling valug=0.3 at various
the PE phase, as seen in the valye=2j>0 in Eq. (17).  temperatures. For=0.3, obviously,tsc=0.6, tc=1.35,tgy

Finally, the field termfg favors an alignment of both, and  =1.6, andt,=2.4.
p, in the direction ofe, and obviously this becomes the  The DHL for a temperature belowgc is shown in Fig.
dominant term for large. 1(a). There are three branches as labeled. &e0 the PE

We now show some examples of the DHL for some typi-phase is not stable and poiff corresponds to the AF phase
cal parameter values. In addition to numerical solution of(py, —py). The value of is sufficiently small that there is a
Egs.(9) and (10), with subsequent evaluation 6from Eq.  second local minimum a€; this is a shifted form of the
(15 where necessary, we applied algebraic softwsweH- point (pg,po) that was noted as an equivalent minimum for
EMATICA) to make three-dimensional and contour plotsf of j=0. A contour plot of thef surface fore=0 is shown in
versusp; andp,. We find that the form of the DHL depends Fig. 1(b). As seen there, and as noted in the annotations in
mainly on where the temperatutes located relative to the Fig. 1(a), the C minima are much shallower than th®
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FIG. 7. Calculated DHLs forj=0.3, 1=0.1, andt=1.2
(tgc<t<ty).

minima. Asj increases, th&€ minimum fore=0 becomes
shallower and vanishes for sufficiently large

As seen in Fig. (@), theAline persists to some valig 5
of e above which it disappears and only t8@dine is stable.
An additional sectiorB is seen for a small range of interme-
diate field values. A contour plot f@=0.9 is shown in Fig.
1(c) with the minima identified with the annotations in Fig.
1(a). Like all graphs for nonzere, the contour plot has re-
flection symmetry about the ling,=p,. The graph and the
figure show thaB corresponds to a minimum point witty
large andp,~0, or vice versa.

The qualitative form of the DHL shown in Fig.(d) per-
sists up tot=tgc with qualitative changes as follows for
increasingt. First, theC line eventually does not cross the
e=0 axis, but appears only at a nonzero value.dbecond,
eca decreases; thA line becomes shorter. Third, thiline
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(-1.49, 0.99, 0.03)

(-1.23, 0.31, 0.003)

2.0 3.0 4.0 5.0 6|0

(@) ¢

0.5

o
P 0

becomes longer. We remark that the converse is true: with, ®)

decreasing the B line becomes shorter and eventually dis-

appears.

Some indication of the effect of changings given by
Fig. 1(d). As commented upon above, for this largethe C
minimum ate=0 is absent, with th& line starting only at
non-zeroe. In addition, theB line is absent. Since at B
point p;p,~0 larger| disfavors B compared withA for

FIG. 8. (a) Calculated DHL's forj=0.3,1=0.1, andt=1.5
(tc<t<tgy. (b) Contour plot fore=0 with relevant annotations
shown in(a).

As t increases towardsy, the AF phase becomes rela-
tively less stable and, on the DHL tiAeline becomes shorter
and theP line longer. Abovetgy the AF phase is not locally

which p;p, is negative and of some magnitude. The form ofstable fore=0, and consequently th& line no longer ap-

the DHL in Fig. 1(d) is similar to that found in second-order
antiferroelectrics.

Figure Za), again forj=0.3, shows the DHL for a tem-
perature in the rangesc<t<tc; the qualitative form is
similar for the whole intervatg<t<tg, in which both the
PE and antiferromagneti@&F) phases are locally stable. The

pears, as illustrated in Fig. 3. Otherwise, as seen, the DHL
retains the same general form with B, and C portions.
Table | gives a summary on the behavior of lines in the DHL
for 1=0.5 andj =0.3, with temperaturé These lines show a
similar behavior in the DHL forj=0.3 and 0.5. A distinct
quadruple-loop DHL is seen in the temperature range of

main difference from Fig. (B) is the appearance of a second tgy<t<t,.

line, labeledP, in the low-field region. The contour plot for
e=0.2,[Fig. 2(b)], and the annotations in Fig(&) show that
this line corresponds to the PE phdsenall and equal field-
induced values op; andp,). For higher field values curves
A, B, andC are identified in Fig. @). The contour plot for
e=0.7, Fig. Zc), and the annotations in Fig(& show that

We remarked that a biquadratic interface coupling term
Feo=J2P%P3 in the free energy is allowable by symmetry.
We have not carried out detailed studies of the effects that
might be due to such a term but it is not difficult to make
some qualitative comments. For positidg, the surface de-
scribingFgq as a function o, andP,, is as follows. Along

these have the same character as the corresponding curveseither axis,Fgq is zero. At a given radius from the origin,

Fig. 1(a).

Fgo attains its maximum value along the 45° linBg=
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20

- from 0 to 0.5. The first temperaturtsc, is calculated from

L5 the analytical formuldEg. (13)], while t; andtg are found
4 : numerically:t is the temperature at which the free energies
o of local minima representing the paraelectric phase and an
(-1.44, 0.97, -0.009)

05115 ordered phase withp(,p,)#0 are equal, andgy is the

(-1.23,046,-0.13) I highest temperature to which an ordered phase persists. Ac-
cording to Eq.(13), and as seen in Fig.(d tgc diverges as

|—0 orl—1 and takes its minimum value fér,=0.5; it is

seen from Figs. @) and 4c) that the same holds fdg and

tSH.

For illustration, we takg =0.3 and two values of, 0.1
and 0.3, so that we are looking at the extension of results like
Figs. 1-3 to unequal thickness. Fer0 the ordered state
@) ¢ with p; andp, nonzero generally corresponds to a nonzero
polarizationp=Ip,+(1—1)p, and it is helpful to start with
the temperature variation @fin zero field, as shown in Fig.

5. The paraelectric phage=0, which runs fromt=tgc up-
ward, is not shown explicitly. For the higher valueldfFig.
5(b)], the graph is similar to that for a bulk first-order mate-
rial with supercooling and superheating temperatures as
marked and an equilibrium phase transitiontatwhere f

=0. Figure %a) is more complicated, with two separate or-
dered phases marked dsandL. As seen in the inset graph,
the corresponding free energies become edyah f; at a
temperaturdc,, andf =0 attc,. Thus two phase transi-
tions occur. A previous prediction of two phase transitions in
a first-order ferroelectric system was given by Seital°
They were concerned with a single film in which the
Landau-Devonshire theory was extended to allow for spatial
variation ofp, and they found that in some cases there were
two transitions, the lower one from a “bulklike” ordered
phase to a “surfacelike” one, and the upper from the surface-

) ) op1 ’ ) like phase to the paraelectric phase.

We now turn to calculated DHLs, starting wit=0.1.

FIG. 9. (& Calculated DHL forj=0.3, 1=0.1, andt=1.7  Figure 6 shows an example of a low-temperature DHL, with
(t>tgy). (b) Contour plot fore=0.2 with relevant annotations some relevant contour plots. The contour plot in Fi¢o)6
shown in(a). and the annotations in Fig(#® confirm that, as expected, the

states ate=0 have values op; and p, that are large in
=P,, and increases strongly with distance from the origin.magnitude and opposite in sign. They are antiferroelectric, or
Thus the addition oFgq into the free energy favors states more accurately ferrielectric, in character, and in accordance
with P, or P, near zero, as on lineB or P (the PE phase  with Figs. 1 and 2 we label the Fore=0.4, Fig. c) and
and disfavors the AF and FE states, linkgand C. In F|g the annotations in F|g (ﬁ) show the twoA points] with
Z(a), for example, one would expect theaxis lengths of opposite signs o, and p,, and they identify the short
linesA (AF) andC (FE) to decrease, and the lengthsRoénd  intermediate line as B type line withp, large andp, near
B to increase. zero. We mark it a8,. Figure &d) and the annotations in
Fig. 6(a) correspond to the triple-valued region at high field.
They confirm that curve\ is still antiferroelectric in charac-
ter, with p; negative ang, positive. The persistence of this
state to a high-field value is explained by the small value of

For general, we may expect that, as in the second-order. The dominant term in the free energy is the field coupling
case® the properties of the bilayer are intermediate betweerio p, so thatp, is positive(as it is at all three local minima
those of a ferroelectric fdr=0 and 1 and an antiferroelectric and the exchange coupling then driygsnegative. The in-
for I=0.5. To some extent the form of the hysteresis looptermediate curve is identified & type, now withp, large
depends on the whereabouts of the temperature with respeahdp; near zero; we denote B,. The highp curveC is the
to the critical valuesgc, etc., so we start by showing Fig.  fully aligned state with botlp,; andp, positive; it obviously
4) the variation of these with and|. Since, obviously, the persists to higher fields. Thus, as seen in Figl),6the three
values for -1 are the same as those fprthe | axis runs  local minima all havep, positive because of the large field

40 -50 40 -30 20 -0 /‘0 1.0 2.0 3.0 4.0 5.0 60

(-0.15,0.15,-0.12)

-0.25}

IV. GENERAL THICKNESS RATIO
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FIG. 10. Calculated DHLs forj=0.3 and 1=0.3. (@ t=0.5, t<tgc. (b) t=1.0, tgc<t<tc. (€) t=1.45, tc<t<tgy.
(d) t=1.6,t>tgy.

energy, whilep; is successively negative, near zero, andthe other lines have the same character as discussed previ-
positive. ously.
Figure 7 is the DHL fol =0.1 andt= 1.2, in the interval Figure 10 shows calculated DHL's for the various tem-
tgc<t<tc. Since the paraelectric phase is now locally stableperature ranges for the larger vallie 0.3; these are natu-
a line, markedP, appears in the low-field region. We have rally intermediate in character between thoselfei0.1 and
confirmed from a contour plot that this is indeed the0.5. The main qualitative differences between these curves
paraelectric phase, withy andp, both near zero. The rest of and those fol =0.1 are due to the fact that since side 1 is
the DHL contains line8;, A, B,, andC which are similar  thicker, the field coupling t@, is stronger so that it ener-
in character to those in Fig(®. getically less favorable fop, to be in the opposite direction
Figure 8a) is the DHL forl =0.1 andt=1.5, in the inter- to e. Consequently theéA lines are shorter, and the final
val tc<t<tgy. As seen from Fig. @), this is in the tem- switch to theC line, on which bothp, andp, are aligned
perature range where there are two locally stable orderedlong e, takes place at a lower field value. Converse state-
phases in addition to the paraelectric phase. The nature of theents describe the comparison with the DHL'S fer0.5.
phases ae=0 is clarified by the contour plot in Fig.(l8)  Another noteworthy feature of Fig. 10 is that althougB a
and the annotations in Fig(8. The larger value op has an line is present, except in Fig. (@), it never crosses the
“antiferroelectric” character, withp; andp, opposite in sign =0 axis, in agreement with Fig.(8).
and relatively large. The smallgrcorresponds to a smaller In order to have a clearer picture on the variation of the
value ofp,. We label this part of the DHL aB;, since it lines in the DHL, which is more varied, a summary on the
evolves from the corresponding portion of Fig. 7. The otherbehavior of the lines in the DHL for a few temperature
parts have the same identification as in previous figures. ranges is given in Table Il fdr=0.1. Many similarities in the
Finally for this value ofl we show in Fig. @) the DHL  behavior of lines in the DHL between cased 6f0.1 and 0.3
fort=1.7, for whicht>tgy. LinesP, B, A, B,, andC are  are observed. Hence, another table Ifer0.3 is not neces-
identified as in previous figures. As seen from the contousary. We wish to point out tha&, line disappears, within the
plot in Fig. 9b) and the values in the annotations in Fig. temperature range dfs,<t<t,, in 1=0.3 first then inl
9(a), theB, point is quite well away from the linp;=0, but  =0.1 as can be seen in Fig. @. The six-loop-DHL can
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TABLE Il. Summary of the behavior of lines in the DHL for
=0.1 andj=0.3 witht.

mentioned previousl§.For the special case of equal layer
thicknesses, our free energy expression is the same as that
for a bulk first-order antiferroelectric. As far as we are aware,

t Aline B line C line P line there is no detailed account of the DHL for this in the litera-
ture so we have discussed it in Sec. Ill. In addition to the
t<tsc  Splitsinto  B; andB, Appears  Does not  expectedA phase, in whictp, andp, are both large and of
upper and lines appear as fore#0  appear  gpposite sign, the paraelectr® phase in which both are

lower lines, t increases, for small and the high-fiel@ phase in which botip; andp, are

becomes e#0 aligned along the field, we have found that in some field and
shorter ad temperature intervals there isBaphase in which one o,
Increases andp, is large and the other is near zero. This leads to some
tsc<t<tc Splitsinto B, draws  Appears for Beginsto intermediate segments on the calculated DHL's.
upper and  nearer to e+0 appear For unequal layer thicknesses our system might be called
lower lines, (0, 0) and an engineered ferroelectric. At first sight the DHL's appear
becomes shifts quite complex, but we have found that a simple classification
shorter a¢  downward and into P, A B;, B,, andC segments works surprisingly well in
increases B, becomes understanding the field regions occupied by the various seg-
longer ments. We should draw attention to the two thermodynamic
te<t<tsy Splitsinto B, draws Appears at Becomes phase transitio_n temperatures identified in Fi@)5and ex-
upper and  nearer to highere longer plored further in Figs. & and 8b). We should also make
lower lines, (0, 0) and the obvious comment that we have qonS|dered pnly the spe-
becomes shifts cial case when the component materials of the bilayer are the
shorter as  downward and same, since this enabled us to concentrate on the effects of
increases B, becomes the coupling term. The DHL's for more general systems
longer might not answer to such a simple classification scheme as
o ) we have used here.
tgy<t<t, Splits into B, line Appears at  Becomes All the features discussed above involving tBeand P
upper and  disappears even highee longer lines are not present in the DHL of Ref. 6, because the tem-
lower lines, only whent is peraturet in a second-order phase transition does not play a
Eecomes Closber ot crucial role in establishing features of the hysteresis loop. In
shorter ad B, becomes Ref. 6 we commented on the implications of our results for
increases longer . . . . e
the design of bilayers or superlattices with specified hyster-
esis loops. As we have seen, the form of the DHL is sensitive
only appear as soon as B line disappears within the to the value of the dimensionless coupling consjahtow-

upper temperature range mentioned.

V. CONCLUSIONS

ever, as seen in E(8), j is proportional toJ/(L,+L,),
whereJ is the interface coupling irfil) andL,+L, is the
total thickness. Thus the value p€an be selected by design
of L, +L,. The other main parameter affecting the hysteresis

Here we have presented a generalization of our previoumops is the dimensionless thickness rdtioL,/(L,+L5,),
account of bilayers to the practically important case of first- and obviously this can be selected too. As we have seen, the
order materials. Although we have not stressed the point, thextra complexity of first-order materials compared with
calculations apply equally to two-component superlattices, asecond-order introduces further flexibility.
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