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Tight-binding calculations of the band structure and total energies
of the various phases of magnesium
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Tight-binding calculations for Mg in a variety of crystal structures are reported using the nonorthogonal
tight-binding model with parameters selected to fit accurately first-principles results. These parameters cor-
rectly predict hcp to be the stable crystal structure. We have calculated electronic prdperigstructure and
density of states elastic constants, phonon frequencies at high-symmetry points, surface energies, surface
electronic structure, stacking fault energies, the energy of a small cubic cluster, and finally, dynamical prop-
erties. We find good agreement with previous calculations and experiment.
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[. INTRODUCTION sults. It was found that the spherical cellular method works
well for alkali metals, but for fcc Mg the agreement with the
The electronic structure of hcp metals has been discussezhlculations of Moruzzi, Janak, and Williafisvas only fair.
previously by several authots® In particular, Mg is an im-  Phonon-dispersion curves have been calculated for hcp Mg,
portant alkaline-earth element existing in many compoundsusing first-principles pseudopotentialst? The calculated
While most hcp materials do not have the ideal value of thecurves are in fair agreement with experiment.
ratio c/a=8/3=1.633, magnesium has the ratic/a In another type of calculation, using force model
=1.623, which is very close to ideal one and has, thereforenethods-® the calculated phonon dispersions are compared
attracted much interest. In addition to this, the bulk modulus with inelastic neutron-scattering data and good agreement is
of 35.4 GPa caused Mg to be regarded as a “soft” metal andound. The surface energy and the surface dipole barrier of
thus elastic constant calculations pose a theoretical chasimple metals have been calculated by application of the
lenge. Kohn-Sham energy functional of the density with the inclu-
The full-potential linear-augmented-plane-wav@P-  sion of an exchange and correlation correction to account for
LAPW) (Refs. 7,8 method has been employed with elec- the inhomogeneity of the electron gésThe surface energy
tronic structure calculations of all hcp metals up tois minimized with respect to two parameters, describing the
cadmium! In particular, the density of states of Mg com- decrease of the electron density at the surface and the relax-
pares well with augmented-plane-wé&wand pseudopotential ation of the top lattice plane. For the fcc KMd1) surface the
calculations’ whereas difference electron densities show al-calculated values are in good agreement with the experimen-
most no deviation from spherical symmetry. Band structurestal ones and are better than the jellium model values of Ref.
densities of states, and Fermi surfaces for Mg, Zn, and Cd5. Surface energies of simple metals have been computed
have been calculated using the linear muffin-tin orbitalsPy application of the Rayleigh-Ritz variational principle to
(LMTO) method® The large variation in the/a ratio be- the Kohn-Sham energy functional of the densftfzor most
tween the near ideal in Mg and the far from ideal in Zn andof the simple metals examined, the variational bounds are
Cd allows for interesting comparisons of their electronicSUperior to perturbation-theory resutfswhereas for Mg
structures and Fermi surfaces. In the case of Mg, the totaf@riational and perturbative results are approximately the
density of states below the Fermi level is a “free-electron-Same. The corrected effective medium method was applied to
gas” parabola, in sharp contrast with the density of states fofh€ calculation of the surface energy of a variety of metal
Zn and Cd, where there is a significant contribution from theSurfaces.” For the perfectly terminated hcp MO0 sur-
d states. The electronic and structural properties of hcp Mdace the agreement with experiment is very good. Chemi-
have been calculated at the Hartree-Fock level, the hybrigorption properties have been calculated for adsorbate Mg on
Hartree-Fock—density-functional level and the density-Mg surfaces, using the effective medium theiiyn addi-
functional level within the local-density and generalized gra-tion, calculated values for the surface energy of the free
dient approximations.Comparison shows that various prop- Mg(0001) and Mg(11D) surfaces are presented, all in fair
erties of Mg, such as elastic constants, can be accounted fagreement with available experimental and other theoretical
within the Kohn-Sham schemes, especially when nonlocavalues.
correlation and exchange potentials are used, providedithat The surface electronic structure of K001 has been
functions are included in the basis Set. calculated using a self-consistent pseudopotential
There is an approach completely different from the previ-approach® The surface states were determined for a ten-
ous ones, called the spherical cellular method, which relayer Mg film and are in good agreement with angle-resolved
places the Wigner-Seitz polyhedron by a spieféie main  photoemission experiment$?! Finnis-Sinclair-type many-
goal was to investigate the numerical properties of the cellubody potentials have been constructed for eight hcp metals,
lar method and validate its accuracy against established revhich reproduce the observeda ratio and the elastic con-
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stants for each metal consider@dJsing the constructed po- scheme have already been preserfede will only give a
tentials, the stacking fault energies on the basal plane havarief summary here. The total energy of the system is written
been calculated. For some elements the stacking fault energgs the sum of the energies of the occupied electronic eigen-
is high, whereas for others it is unphysically low. However, it states. The onsite Hamiltonian matrix elements vary with the
is in the experimentally expected range for Mg. The modifiedocal density associated with each atom, allowing the
embedded-atom method, an empirical extension oNRL-TB method to use in the fit LAPW eigenvalues that
embedded-atom method that includes angular forces, hdsmave been shifted so that the LAPW total energy is equal to
been applied to hcp metdld Calculated stacking fault ener- the eigenvalue sum. Therefore, all of the contributions to the
gies and surface energies were found to be in reasonabtetal energy are accounted for in the eigenvalue sum and the
agreement with experiment. The energetics of various stacladdition of a sum of pair potentials, a feature common to
ing defects in hcp Mg were determined from first-principlesmost TB models, is not needed.
local-density-approximation calculatiofsThe energies of The energies of the electronic states and the correspond-
these defects suggest that Mg is likely to form stacking faultsng eigenvectors are the solutions of a generalized eigen-
with the two kinds of intrinsic fault; andl,, being the most value equation with Hamiltonian and overlap matrix ele-
probable defects. Based on the first-principles results, a locahents parametrized as follows: the basis used to describe the
bond orientation model is proposed that is able to predict thélamiltonian and overlap matrices is a set of an¢hreep,
energies of arbitrary stacking sequences. Stacking fault anaind fived orbitals around each atom, with all interactions
surface energies have been calculated for ten hcp metals usetween atoms assumed to be in the two-center
ing the embedded-atom methodoldgyThe calculated sur- approximatior?’ A local atomic density at atoris defined
face energies for the basal and prism planes of Mg are aboats
equal and both are less than the experiment. The two kinds of
intrinsic faultsl,; andl,, and the extrinsic faulE have en- _ AR~ R B
ergies that are much lower than those reported by others. pi_; e M RRIf(R —RID, @)
However, reasonable stacking fault energies have been ob- ) N . . n
tained for Mg. whereR; is the position of atomnand\ is a fitting parameter.

In this paper we use the NRL-TB meth&tia nonor-  The cutoff functionf(R) is given by
thogonal tight-binding method, in the two-center representa-

_ -1
tion that uses environmentally dependent parameters ob- 1+ex;{R Re+ 5l R<R.
tained from fitting ab initio calculations of a few high- f(R)= [ ' 2)
symmetry structures, to compute the electronic structure of 0 R>R,

the various phases of magnesium. The method produces

good structural energy differences, elastic constants, phonomhere R; is 16.5 a.u. and is 0.5 a.u.. The onsite matrix
frequencies, vacancy formation energies, and surface enezlements are given in terms of the local atomic dengitgs
gies for the alkaline-earth, transition, and noble metale

find that the results predict hcp Mg as the stable crystal struc- hijj=a,+ ,6’|pi2/3+ 7|pi4/3+ X|pi2, ©)]
ture, consistent with experiment. This increases our confi- . . :
dence that the reason for the correct results in the testeffnere! is the orbital-type indexs, p ord), ande,, B, 7,

configurations is that the underlying physics of the model is2"dxi are fitting parameters. The distance dependence of the
sound. two-center hopping matrix elements is given by

The paper is organized as follows: In Sec. I, we describe B b 5 2 ‘
the functional form of our TB parametrization and the fitting 11"x(R) = (@i, + by, R+ RO exp(—gjp, ,RIT(R),
data set. In Sec. lll, we discuss applications of the TB model (4)

to a range of properties such as the ground-state electronjghere| and!’ are orbital-type indicesy is an index for the
structure of the various phases of Mg, band structure anf{pe of interaction between orbitals, o or 8), and the pa-
density of states, elastic constants, phonon frequencies, Stametersy 1, , by1,, i/, andg, ., are fitting parameters.
face energies, surface electronic structure, stacking fault efrhe gverlap matrix elements have the same functional form
ergies, and the energy of an eight-atom Mg cluster. In addis the Hamiltonian matrix elements. The angular dependence
tion, we performed molecular-dynami@éD) simulations at  of the Hamiltonian and overlap matrix elements is the stan-
various temperatures to obtain the temperature dependenggrd two-center Slater-Koster forf.
of the atomic mean-square displacement and of the pressure. The 97 parameters used by the functional form for the
In Sec. IV, we summarize the results. sp’d® basis parametrization are fit to four high-symmetry
crystal structure$® The fitting data set includes both the total
energy and band structure for the simple cutsg, face-
centered cubidfcc), body-centered cubic latticébcc), and

In this paper we present results for a tight-binding paramonly energy bands for the hexagonal close-packiech
etrization using ais p®d® basis. This set of parameters allows structure, for a wide range of volumes around the energy
all interactions betweep andd orbitals, in order to account minimum. The total energy and eigenvalues of each crystal
for the p-d hybridized bands above the Fermi levélg). were computed by linear augmented-plane-watab initio
Since the functional forms of the parameters used in the NRIdensity-functional theory calculations in the generalized gra-

Il. FUNCTIONAL FORM AND FITTING
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FIG. 1. Total energy vs volume for a number of crystal struc-

tures as well as the hcp structure for Nipt included in the fjt 'FIG. 2. Band structure along high-symmetry directions in the
computed using the TB model. Brillouin zone for hcp Mg.
dient approximationDFT/GGA).?° The sc lattice data in- The relationship between the TB band structure and the

cluded the widest range of volumes, from 125.0 to 216.6°0rresponding density of statéBOS) is demonstrated in
A%/atom. The fcc lattice structures ranged from 118.6 toF19- 3. One cannot fail to_notlce _the distinct similarity _to the
170.4 AJatom, the bec lattice from 119.2 to 171.5/Atom, free—(_electron-gas parabolic density of stat.es..The partial DOS
and the hep lattice from 135.0 to 156.S/Atom. functions show that the strongest contribution to the total
DOS comes from the bands.
The elastic constants;; contain some of the most impor-

. APPLICATIONS tant information that can be obtained from ground-state total-
energy calculations. A given crystal structure cannot exist in
a stable or metastable phase unless its elastic constants obey

We started total-energy calculations using parameters olgertain relationships. The;; also determine the response of
tained by fitting to muffin-tin(MT) augmented-plane-wave the crystal to external forces and so play an important part in
results. The MT approximation led to sizable errors, for ex-determining the strength of a material. The procedure for
ample, the calculated elastic constants were up to 100% togalculating elastic constants from first-principles calculations
large. Therefore, we decided to fit FP-LAPW results for allis described by Mehl, Klein, and Papaconstantopotfld$e
total-energy calculations presented in this paper. Severgame procedure is used in our TB calculations. Briefly, one
band-structure calculations of Mg exist in the literattif€,  jmposes an external strain on the crystal and calculates the
in comparison to these calculations we found some differenergy as a function of strain. Our method predicts correctly
ences at pointM andK of the Brillouin zone. A treatment of  the bulk modulus, whereas it gives reasonable elastic con-
symmetry in the fitting procedure gave the correct features oétants, as shown in Table I. The agreement between our cal-
the Mg band structure at these points. culated values and the experimental data is satisfactory

The ground-state total energies as a function of volumewithin 26% for Cy;, 29% forC,,, 36% for Cs3, and 24%

for a range of structures are shown in Fig. 1. The TB modefor C,,). As a general rule, the off-diagonal elastic constants
reproduces the LAPW results very well for the fcc, bcc, and

sc structures to which it was fit, and predicts the correct 20
ground state to be the hcp structure, the total energy of whick
was not included in the fit. The root-mean-squ@ares) error

of the bands for all the structures is 19.0 mRy for the lowest
four bands and the rms error for the total energies is 1.4 mRy§ 14
The TB calculations predict equilibrium lattice parameters €
a=3.22 A andc=5.26 A, in excellent agreement with the
experimental ones of 3.21 and 5.21 A, respectively.

The band structure of hcp Mg along directions of high
crystal symmetry is shown in Fig. 2. A striking feature of the @
Mg band structure is that it can be well described by the *
parabolic dependence of a free-electron gas. This similarity
to the free-electron gas is characteristic of simple metals
such as Mg. The TB band structure is very similar to previ-
ous ones:*® The FP-LAPW! the LMTO (Ref. 4 and the
DFT/GGA (Ref. 5 band structures are all reminiscent of the
free-electron one. FIG. 3. Total and partial densities of states for hcp Mg.

A. Static calculations

18

)

(States/Ry/
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TABLE |. Elastic constants and bulk modulus in GPa for mag-
nesium in the hcp structure, computed with $ed® TB model;
comparison with experimental data.

PHYSICAL REVIEW B5 134101

TABLE IlI. Surface energies of Mg0003), (1000, (1100,),
and (110Q,) surfaces, in units of/m?.

TB Expt?
B Expt2
(0001 0.95 0.785
C11 79.98 63.48 (1000 1.20
Cy» 18.33 25.94 — 1.06
Cr 5.23 21.70 (1100,) e
Cas 90.48 66.45 (110Q,) '
Cas 22.77 18.42 aAverage of a polycrystalline surface, Ref. 32.
BP 34.46 35.4
%From Ref. 31. whereEg,1aceiS the energy associated with one unit cell on

PExperimental value from Ref. 6.

close to experimental ones. However, our GGA functiofials

are different from the Becke-Perdew exchange-correlation . .
9 sents atoms witlz coordinate+ c/4, whereas (10Q,) repre-

functionals.

the surface of the slab. In Table I, we display surface ener-
gies of unrelaxed and unreconstructed Mg surfaces. The
such asC,; are affected by larger errors and poor agreement0001) surface is perpendicular to ttzedirection and is the

for the C,5 value (within 76%) is expected. Since Mg is a close-packed surface of the hcp structure. TH00 surface

soft metal, we calculated elastic constants using differenis perpendicular to thg direction and is not as close packed
k-point meshes, and found that they are very sensitive to thas the(0001). From Table Il we observe that the surface
number ofk points. Comparison of our results with the energy in thg0001) surface is lower than 1000, as gen-
Kohn-Sham models of Ref. 5, shows that the Becke-Perdewrally the most close-packed surface has the lowest surface

scheme with the inclusion af functions leads to values very energy. The (100) surface is perpendicular to tigedirec-

tion and has two possible truncations. ThelQ@,) repre-

sents atoms witla coordinate— c/4. Due to unavailability of
experimental data on isolated surfaces, comparison with ex-
periment is only semiquantitative. The experimental value is

n average over various Mg faces extrapolated to zero
emperaturé and the agreement with our calculated values
can be regarded as satisfactory.

The surface electronic structure of K01 is calculated

using a bulk terminate¢0001) surface hcp slab with 30 at-
'9ms. We define surface states as states whose wave function

Phonon frequencies at high-symmetry points in the Bril-
louin zone (BZ) computed with the TB model using the
frozen-phonon approximation are compared with experimen
tally measured values in Table Il. For some phonons th
agreement is quite godavithin 17% forT'Z , 32% forM ,
23% forM3 , 34% forM, , and 26% forM 5 ), whereas for
other modes the agreement is poor.

Magnesium surfaces are modeled using a slab geomet

b b . ; : labs witland Yon is not a rigorous one and introduces an ambiguity in the
ergy by subtracting energies of two slabs witandm at- — geniification of surface states. Figure 4 shows the band

oms. Thi dr:ffel;erkcg bﬁtwee? the energy of the slab and th&ructure of th€0002) surface hcp slab. One surface band is
energy of the bulk s the suriace energy located in the upper part of the valence band/ain agree-
ment with previous theoreticdland experimental work®:?!

1
Esurface=§ [EsiadN) = Epuin], 6)
05 =
TABLE II. Phonon frequenciegin THz) at high-symmetry 04
points of the BZ computed with the TB model and measured ex- 03
perimentally. |
0.2
T8 Bt PN BaSG N
+ <
| 4.34 3.70 s 0
Iy 12.11 7.30
M 9.99 3.70 01 T
M3 5.46 4.15 -0.2 1
Mg 6.73 5.45
3 03 :
M3 4.35 6.58
- 0.4
M5 8.66 6.88 M K M
Ay 7.11 2.94
A; 3.19 5.20 FIG. 4. Surface band structure of §01). Surface states are
represented by filled circles, whereas bulk bands are represented by
%From Ref. 12. curves.
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250 T . T . T . T . TABLE IV. The unstable stacking fault energy,s, the intrinsic
.................... R stacking fault energy;s, and the ductility parameté& of Mg. The
Al values ofy,s and y;s were obtained from a polynomial fit to the

200 | points in Fig. 6.y,s and v, are in units ofJ/m?.

Yus Yis D
0.116 0.016 2.46

150 -

100 -

p(e) (States/Ry/30 Atoms)

local minimum on the right of the curve. Using the formation
energy for thg000]) surface and the unstable stacking fault
energy, we calculate the Rice ductility paramefet* The
. s . s . . . . results are shown in Table IV. We observe that the ductility
04 03 02 -01 0 01 02 03 04 05 parameter is greater than one, consistent with the intrinsic
e(Ry) ductility of Mg.
FIG. 5. Total slab and bulk densities of states for (81, To test the transferability of our parameters we compute
the total energy of a small cluster. In our approach, we take
({he cluster as a finite part of the infinite crystalline solid and
determine the equilibrium size for this fixed structure. The
fptructure we consider is an eight-atom Mg cube in a large
simple cubic unit cell. We construct a huge unit cell, a cube
100 bohr on a side, and keep the atoms near the origin so that
éhey do not interact with their periodic replicas. The only
neighbors are the atoms in the immediate cluster. In Fig. 7
e present the cluster energy as a function of interatomic
istance, starting from 7.9 down to 7.1 bohr. The minimum

Furthermore, analysis of our results shows that there is a
other surface state &twith energy—1.65 eV relative to the
Fermi level. This surface state is in excellent agreement wit
the experimental value 1.6 eV (Ref. 21) and the theoretical
value —1.56 e\!° In Fig. 5 we compare the total slab and
bulk densities of states. The bulk density of states is th
partial DOS from a middle atom scaled by a factor of 30.
The deviation between slab and bulk densities of states i
dutlantc():lt:si_s;giice% srt;]s\;.\;st?aggsh as Mg, planar defects al%eparat@on is 7.397 bohr, substantially greater than the bulk
formed with relative ease, contributing to the ductile nature>eparation of 6.047 bofir.
of these materials. It is well known that crystals glide on the
densest atomic planes; for Mg the basal plane is the densest B. MD simulations
and the primary slip system is basal. We calculate stacking
fault energies as a function of the displacement in[#G.0]
direction along th€0001) plane. We assume that relaxations
are negligible and the atoms in the faulted region maintain
close-packed coordinatiofi.In Fig. 6 we show the stacking
fault energy as a function of the stacking fault variagle
The unstable stacking fault energy, is the peak of the
curve, whereas the intrinsic stacking fault energyis the

Our MD simulations use the tight-binding molecular-
dynamics(TBMD) code® which is based on a quantum-
echanical description of the interatomic interactions. In the
D simulations, the system consists of an hcp supercell of
288 atoms. The equations of motion were integrated using a
time step of 2 fs for 2000 steps. We performed MD simula-
tions for several temperatures at the experimental lattice con-
stants,a=3.21 A andc=5.21 A, to compute the atomic
mean-square displacement and then the Debye-Waller factor.

0.12 X
In Fig. 8 we compare the temperature dependence of our
01}
-0.176 .
+
0.08 0177
o -0.178 | ’
E
S 006 . -0.179 +
_— >
g < -0.180 4
B
0.04 | 5 -0.181 |
u -0.182 | £
0.02 1 S 0,183 | ‘_ ,
© -0.184 *, &
0 . . . . s s
0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 -0.185 -
Displacement parameter q -0.186 F +++
FIG. 6. Stacking fault energy as a function of the stacking dis- 08 T 7s 74 75 78 77 78 79 80
placementg for hcp Mg, determined by the NRL-TB method. At Inter-atomic Distance (Bohr)
=0 there is no stacking fault, gt=1 we reach the intrinsic stack-
ing fault energy(a local fcc-like crystal structuje FIG. 7. TB parametrization for an eight-atom Mg cube.
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FIG. 8. Debye-Waller factor of Mg as a function of temperature. 150 200
The filled circles are the results of the molecular-dynamics simula-
tions using our TB model, filled squares are the experimental points FIG. 9. Pressure as a function of temperature for Mg, derived

(Ref. 36. from molecular-dynamics simulations using our TB model.

computed Debye-Waller factor with experimental dt@he IV. SUMMARY
overall agreement with experiment is good, given that our
calculated values are well within 19% of experiment in the

tl\(;mperatur:a rzl':mtgtcaj \]:ve 5|Tu§1ted. Th’e milu%%;emp%r.ature er of high-symmetry crystal structures. We found that the
i gtr\:yas (':ta cula et tk:om II? eTanns C:' enth. ccording resulting Hamiltonian is transferable to a wider range of ge-
o this criterion, at the meiing temperature the averageé amsayjes. This model with a nonorthogorst*d® basis re-

plitude of vibration is about 15% of the nearest-neighbor roduces experimental measurements for a range of material

g!stalmce. A Iltnear Extra_\polatlon (I)tf ou: atom'ctmear}'%%jaéroperties, such as elastic constants and phonon frequencies.
ISplaceément results gives a meiting temperature o 't correctly describes slabs as approximate systems for sur-

consistent W'.th the expenmental value of 922 K. .. faces. This TB model also describes the energy of a small
To determine the .theoret.|c_a'l therm.al—expansmn COe}‘f'c'enfsolated cluster for different interatomic distances. In addi-
a we use the following definition for- tion, we performed molecular-dynamics simulations at vari-
ous temperatures to compute the Debye-Waller factor and the
, (6)  thermal-expansion coefficient. Both quantities were found to
v be in good agreement with experimental data. The ability of
) L ) ) the model to accurately describe such diverse properties and
This definition requires the calculation of the pressure as Qystems, despite having been fitted to only a small number of

function of temperature for a fixed volume. We perform MD pigh symmetry crystal structures, increases our confidence
simulations at 150, 200, 250, 300, 325, and 350 K, keeping ot it“captures the essential physics of bonding in magne-
the volume fixed at the experimental value. Tdfa ratio is  j;m systems.

taken to be the experimental one. For each temperature we
select ten configurations from the trajectories generated by
the MD simulations and compute the pressure. In Fig. 9 we
show pressure as a function of temperature as derived from This work was supported by the U.S. Office of Naval
the simulations. From Fig. 9 we can see that it is reasonablResearch and the Common High Performance Computing
to assume that the pressure varies linearly as a function ®oftware Support Initiativé€CHSS) of the United States De-
temperature. In Eq. 6, if for the bulk modul@swe use the partment of Defense High Performance Computing Modern-
theoretical and the experimental valuggken from Table)l, ization Program(HPCMP. The work of H.J.G. was sup-
we geta=7.12x10 °® and 6.9% 10 ® K1, respectively. ported by the National Research Council Associateship
These values underestimate the experimental valuer of Program. One of ugH.J.G) would like to thank Dr. N. Bern-

We have applied the NRL-TB method to generate a TB
odel for Mg that was fit to LAPW results of a small hum-
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