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Spin-wave dispersion in LgCuO,
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We calculate the antiferromagnetic spin-wave dispersion in a half-filled Hubbard model for a two-
dimensional square lattice, and find it to be in excellent agreement with recent high-resolution inelastic neutron
scattering performed on L&uQ, [Phys. Rev. Lett86, 5377(2001)].
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After over a decade of intense research on the
microscopic origin of high-temperature superconductivity in H=-1 2 (CiT.tTCJ',tT+ CJT,aCi,U)
cuprates, there is no general consensus on the micro- (e
scopic Hamiltonian suitable for describing these materials. + t +
Nevertheless, it appears that magnetic fluctuations must +,u§ Ci,ociyﬁ'UZ Ci,1Ci1Ci 1 Cil s
play an important role. Therefore, the study of magnetic '
fluctuations in the high-temperature superconductor
parent compounds, such as ,CaQ,, is an im-
portant field of research, both theoretical and
experimental. where the sum ovefi,j) counts each pair of nearest neigh-
In two recent papers? high-resolution inelastic neutron- bors only once, the momentuta runs over the Brillouin
scattering measurements were performed on two differenfone; the electronic energy dispersiaik) = — 2t cosk,
two-dimensional spin-1/2 quantum antiferromagnets. TheSQZtcosky has the nesting vectd = (), and
are copper deuteroformate tetradeuterdteFTD) and
La,CuQ,. Surprisingly, the dispersion at the zone boundary U
observed in the two materials does not agree with spin-wave Hy=— >, CE Tc,;,dﬁc}, +CRr 1 - 2
theory predictions. Moreover the amount of dispersion is N kk'.q '
not the same for both materials. In CFTD the dispersion is
about 6% fromw(m/2,7/2) to w(,0), whereas in LeCuQ,

=2 [e(K)—plct ci o+ Huy, &)
k,o

The broken-symmetry state is introduced by considering

it is about —13% along the same direction. In the case 0fthe existence of an off-diagonal Green’s function given by
CFTD the dispersion at the zone boundary can be explained - ) .
using the nearest-neighbor Heisenberg model aloaed Fo(pi7=7)=—(T:C5-6,0(7)C; (7). 3

high-precision quantum Monte Carlo simulations have con- . , )

firmed that this is s6.0n the other hand, an explanation for N @ddition to the usual Green's function:

the observed dispersion in 4@uQ, was proposed using an . N

extended Heisenberg mod&linvolving first-, second-, and Go(piT—7")=—(T,C5o(7)C; (7). (4)

third-nearest-neighbor interactions as well as interactions )

among four spins. This extended model was obtained froni? mean-field theory for a SDW, the two propagators are

the Hubbard model, using perturbation theory, and is diagotélated as shown in the Feynman diagrams depicted in Figs.

nalized afterward using classicdargeS) linear spin-wave I @nd 2. Singledoubled arrowed lines represent diagonal

theory® (off-diagona) propagators. Thg single line represents the free
The La,Cu0, results clearly show that the usual Heisen_propagator, whereas double lines represent mean-field propa-

berg model is insufficient to explain the experimental datagators. The Hubbard interaction is represented by a dashed

. S line. The solution to the mean-field equations yields the
and th"’?‘ the Hubbard _m_odel IS _the qorrect Ham|lton|§m fOrSDW staggered magnetic moment which is defined as
describing the magnetic interactions in the cupratesthis

work we do not use perturbation theory for deriving an ef-
fective magnetic Hamiltonian. Instead we work directly with
the Hubbard model. We consider a half-filled Hubbard model
1 1
Q

in a spin-density-wave(SDW)-broken symmetry ground

state and, by summing up all ladder diagrams, we compute _ ! !
the transverse spin susceptibility and from this obtain the » = t =+

: - - +
spin-wave dispersion. P P P P p ptQ p
_ The Hubbard model for a square lattice Mfsites is de- FIG. 1. Feynman diagrams corresponding to the SDW mean-
fined as field equation forG,(p; 7— 7').

0163-1829/2002/68.3)/1324044)/$20.00 65 132404-1 ©2002 The American Physical Society



BRIEF REPORTS

\Y

== = Pt + —>—l

p ptQ p p+QP+Q p p+Q

PHYSICAL REVIEW B 65 132404

FIG. 2. Feynman diagrams corresponding to the SDW mean-

field equation forF ,(p; 7— 7')

1 t m
N Z <Cﬁ+(§,ocﬁ,0>: EO’. (5)
p

The staggered magnetic moments reduced from its Nel

value for finite values of/U, and its behavior as function of
t/U at zero temperature is shown in Fig. 3. Both the above g, ]

Green'’s functions have two-pole structures given by

Gy (Piwg) = —— ®)
w - Nl
" iwa—EL(p) iw,—E_(p)
g u‘)‘ U‘U‘
Fo(Piwy)= ——"—+—PL7—  (7)
" iwg—EL(p) iw,—E_(p)
where the energieg.. are given by
. Hp)rEpP+Q)  on .
E.(p)="——5 —+U;=E(p),
where E(p)=3[£(p)~£(p+Q)1*+Um* and £(F)
=€e(k) — u, and the coherence factors read
E,—&p+Q)-Un2  E,—&p)-Un/i2
Up= E.—E_ T E —E.
9

Ui

FIG. 3. Staggered magnetization as function Wft at T
=0 K.

spin spin
spin
spin
=+

spin ]

FIG. 4. The four first-order bubble diagrams ﬁpi_(c],i wp) in
the SDW state. A summation over the internal momentum along the
interaction line is implied.

and

~ Uma/2 ~ Uma/2 10
Up o= = > Upog= "= = -
P, E+_E_ P. E+_E_

It is known that the mean-field treatment of the spin dy-
namics of itinerant strongly correlated electronic systems
yields satisfactory results, as in the study of the dynamic
spin-response function of the cuprates’ superconducting
state® In order to describe the spin dynamics of the system,

we consider the transverse spin susceptibi/tity+(ﬁ,iwn),
which is defined as

- B . R
x7+(q,lwn)=uéfo d 7e'“n(T,S (q,7)S"(q,0)),

(11
where 8=1/T is the inverse temperatur&, is the chrono-
logical order operator (in imaginary time, Sf(a)

=2,;c;-’lc,;+m, and S+(ﬁ)=[S‘(ﬁ)]T. The above expres-
sion can be written as

X+—(d,iwp)
“ (B
=ul> f dry, e"“nT< [ deH T)
n=0 JO 65

T 1
><cﬁyl(r)cg,ﬁj(r)cﬁ,+dﬁ(o)c’3,’i(0)> ,
d.c.

(12

whered.c. stands for differently connected diagrams.

We now computey_ . (q,i w,) by summing up all ladder
diagrams and taking into account the existence of two pos-
sible Green’s-function lines. The first-order bubble diagrams
are shown in Fig. 4. The complete ladder summation is given
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by 400
X2 wp)
— (XHFY)[L+HNXFY) ]+ (21+25)? \®\
= — 1 O
[1+NX+Y) ][I+ N (X+Y)]— N3 (Z1+2,)? 300 f N
(13
with A=U/N and
X(Giwn)= 5 2 G(p,iwh)G(p+a,iw)+in,), £ 200
n'.p 3
2. 1 . g . .
y(q1|0)n): ) Ea Fi(pvlwn)FT(p+qvlwn+lwn)v
B n"p
100 \ \
zi(Aiw) =7 2 G(piwp)Fi(p+diwg+in),
B s
2(Giwn) =5 2 Fi(Piwn)Gi(p+dio+ioy), .
nP (3/4.1/4) M X (3/4.1/4) r X
;(al:iwn)ZE 2 Gl(ﬁ,iwé)GT(ﬁ“‘d‘F (j,iwé%—iwn). FIG. 5. Spin-wave dispersion, in meV, along high-symmetry
B n'.p directions in the Brillouin zone. The circles are the data reported in

Ref. 1 at 10 K. The solid line is the analytical res(dt 0 K) for
U=1.8 eV andt=0.295 eV. The momentum is in units ofr2
andM =(1/2,1/2),X=(1/2,0), andl’=(0,0).

The retarded susceptibility is obtained from E&3), per-
forming the analytical continuatioinw,— w+i0*. The poles
of the retarded susceptibility give the ener@yﬁ) of the
spin excitations of the system as well as their lifetimes. The

equation for the poles is >w(w/2,7/2), that is, a dispersion at the zone boundary is
g P obtained. For these values todndU the staggered magnetic
1+ N[X(Q,0)+Y(q,0) THL1+A[X(0, @)+ y(d,w moment ism=0.832, and therefore /= 1.20, which agrees
{ [x(@.0)+y(q.)]H [x(@.0)+y(@.e)l well with Z,=1.18 used to fit the data in Ref. 1.
—)\z[zl(ﬁ,w)szz(ﬁ,w)]Z:O. (14 In their interpretation of the experimental data, the au-

. . . ) thors of Ref. 1 considered an effective Hamiltonian incorpo-
Itis not possible to solve Eq14) analytically for arbitrary) rating ring exchange. In such a model the electron not only

?;got';p t:\r:aeslgrr::ati gsj?azt.g?lgg!:;ng’.;r_org Eeqt'éég)r eror th (ranakes a virtual trip to its nearest neighbor, but also makes
v . U ni pin-wav y virtual excursions around a loop visiting its second neigh-
nearest-neighbor Heisenberg model, . NS
bors. If we had written the transverse susceptibility in coor-
t2 dinate space, it would be clear that in a ladder summation the
w(qx,qy)au—\/4—(cosqx+ cosqy)z, (15 electron goes around larger and larger rings before it comes
m back to the original site with its spin flipped. Therefore, such
which predicts thatw(0,7) = w(w/2,7/2), in disagreement & good agreement between the perturbation theory calcula-
with the experimental dataand m—1, showing no mag- tion in Ref. 1 and our ladder summation is not surprising.
netic moment reduction from the Blestate value. Of course Althought we have not presented the results here, (E4).
Eq. (15) holds asymptotically fot/U<1. We remark that the @IS0 predicts a continuum of excitations which are gapped
factor 1M plays the role of the quantum renormalization relatively to the ground state. _
factorz, . In summary, we have shown that a ladder summation
On the other hand, for finit§U, Eq.(14) has to be solved based on the SDW state can account satisfactorily for the
numerically. Considering the half-filled casgp€0), appro- ~Mmeasured spin-wave dispersion of,Cai0, at all energies.

priate for LaCuQ,, we computed the spin-wave dispersion The quality of the fitting points out that it is not needed to
o ~) for U=1.8 eV andt=0.295 eV along the high- derive an effective spin Hamiltonian from the Hubbard
q : ’ 9 9 model in order to obtain agreement with the data.

symmetry directions, in the two-dimensional Brillouin zone,
considered in Ref. 1. These values agree with those used in We gratefully acknowledge G. Aeppli for discussions,
Ref. 1:U=2.2+-0.4 eV andt=0.30=-0.02 eV. The results and for providing us the experimental data we show in Fig.
(solid line) are given in Fig. 5 together with the experimental 5. We thank A. Sandvik for calling our attention to this prob-
results (in circley at T=10 K. It is clear thatw(0,7) lem.
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