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Spin-wave dispersion in La2CuO4
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We calculate the antiferromagnetic spin-wave dispersion in a half-filled Hubbard model for a two-
dimensional square lattice, and find it to be in excellent agreement with recent high-resolution inelastic neutron
scattering performed on La2CuO4 @Phys. Rev. Lett.86, 5377~2001!#.
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After over a decade of intense research on
microscopic origin of high-temperature superconductivity
cuprates, there is no general consensus on the m
scopic Hamiltonian suitable for describing these materi
Nevertheless, it appears that magnetic fluctuations m
play an important role. Therefore, the study of magne
fluctuations in the high-temperature superconduc
parent compounds, such as La2CuO4, is an im-
portant field of research, both theoretical a
experimental.

In two recent papers,1,2 high-resolution inelastic neutron
scattering measurements were performed on two diffe
two-dimensional spin-1/2 quantum antiferromagnets. Th
are copper deuteroformate tetradeuterate~CFTD! and
La2CuO4. Surprisingly, the dispersion at the zone bound
observed in the two materials does not agree with spin-w
theory predictions.3 Moreover the amount of dispersion
not the same for both materials. In CFTD the dispersion
about 6% fromv(p/2,p/2) to v(p,0), whereas in La2CuO4

it is about213% along the same direction. In the case
CFTD the dispersion at the zone boundary can be expla
using the nearest-neighbor Heisenberg model alone,2 and
high-precision quantum Monte Carlo simulations have c
firmed that this is so.4 On the other hand, an explanation f
the observed dispersion in La2CuO4 was proposed,1 using an
extended Heisenberg model5,6 involving first-, second-, and
third-nearest-neighbor interactions as well as interacti
among four spins. This extended model was obtained fr
the Hubbard model, using perturbation theory, and is dia
nalized afterward using classical~large-S) linear spin-wave
theory.1

The La2CuO4 results clearly show that the usual Heise
berg model is insufficient to explain the experimental da
and that the Hubbard model is the correct Hamiltonian
describing the magnetic interactions in the cuprates.7 In this
work we do not use perturbation theory for deriving an
fective magnetic Hamiltonian. Instead we work directly wi
the Hubbard model. We consider a half-filled Hubbard mo
in a spin-density-wave~SDW!-broken symmetry ground
state and, by summing up all ladder diagrams, we comp
the transverse spin susceptibility and from this obtain
spin-wave dispersion.

The Hubbard model for a square lattice ofN sites is de-
fined as
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H52t (
^ i , j &,s

~ci ,s
† cj ,s1cj ,s

† ci ,s!

1m(
i ,s

ci ,s
† ci ,s1U(

i
ci ,↑

† ci ,↑ci ,↓
† ci ,↓ ,

5(
kW ,s

@e~kW !2m#ckW ,s
†

ckW ,s1HU , ~1!

where the sum over̂i , j & counts each pair of nearest neig
bors only once, the momentumkW runs over the Brillouin
zone, the electronic energy dispersione(kW )522t coskx

22t cosky has the nesting vectorQW 5(p,p), and

HU5
U

N (
kW ,kW8,qW

ckW ,↑
†

ckW2qW ,↑ckW8,†
†

ckW81qW ,↓ . ~2!

The broken-symmetry state is introduced by consider
the existence of an off-diagonal Green’s function given b

Fs~pW ;t2t8!52^TtcpW 6QW ,s~t!cpW ,s
†

~t8!&. ~3!

in addition to the usual Green’s function:

Gs~pW ;t2t8!52^TtcpW ,s~t!cpW ,s
†

~t8!&. ~4!

In mean-field theory for a SDW, the two propagators a
related as shown in the Feynman diagrams depicted in F
1 and 2. Single~doubled! arrowed lines represent diagon
~off-diagonal! propagators. The single line represents the f
propagator, whereas double lines represent mean-field pr
gators. The Hubbard interaction is represented by a das
line. The solution to the mean-field equations yields t
SDW staggered magnetic momentm, which is defined as

FIG. 1. Feynman diagrams corresponding to the SDW me

field equation forGs(pW ;t2t8).
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1

N (
pW

^cpW 1QW ,s
†

cpW ,s&5
m

2
s. ~5!

The staggered magnetic momentm is reduced from its Ne´el
value for finite values oft/U, and its behavior as function o
t/U at zero temperature is shown in Fig. 3. Both the abo
Green’s functions have two-pole structures given by

Gs~pW ,ivn!5
upW

ivn2E1~pW !
1

vpW

ivn2E2~pW !
, ~6!

Fs~pW ,ivn!5
ũpW ,s

ivn2E1~pW !
1

ṽpW ,s

ivn2E2~pW !
, ~7!

where the energiesE6 are given by

E6~pW !5
j~pW !1j~pW 1QW !

2
1U

n

2
6E~pW !, ~8!

where E(pW )5 1
2
A@j(pW )2j(pW 1QW )#21U2m2 and j(pW )

5e(kW )2m, and the coherence factors read

upW5
E12j~pW 1QW !2Un/2

E12E2
, vpW5

E12j~pW !2Un/2

E12E2

~9!

FIG. 2. Feynman diagrams corresponding to the SDW me

field equation forFs(pW ;t2t8)

FIG. 3. Staggered magnetization as function ofU/t at T
50 K.
13240
e

and

ũpW ,s5
Ums/2

E12E2
, ṽpW ,s52

Ums/2

E12E2
. ~10!

It is known that the mean-field treatment of the spin d
namics of itinerant strongly correlated electronic syste
yields satisfactory results, as in the study of the dynam
spin-response function of the cuprates’ superconduc
state.8 In order to describe the spin dynamics of the syste
we consider the transverse spin susceptibilityx21(qW ,ivn),
which is defined as

x21~qW ,ivn!5mB
2E

0

b

d teivnt^TtS
2~qW ,t!S1~qW ,0!&,

~11!

whereb51/T is the inverse temperature,Tt is the chrono-
logical order operator ~in imaginary time!, S2(qW )
5(pWcpW ,↓

†
cpW 1qW ,↑ , andS1(qW )5@S2(qW )#†. The above expres

sion can be written as

x12~qW ,ivn!

5mB
2 (

n50

` E
0

b

d t (
pW ,pW 8

eivntK TtF2E
0

b

d t̄HU~ t̄ !Gn

3cpW ,↓
†

~t!cpW 1qW ,↑~t!cpW 81qW ,↑
†

~0!cpW 8,↓~0!L
d.c.

,

~12!

whered.c. stands for differently connected diagrams.
We now computex21(qW ,ivn) by summing up all ladder

diagrams and taking into account the existence of two p
sible Green’s-function lines. The first-order bubble diagra
are shown in Fig. 4. The complete ladder summation is gi

n-

FIG. 4. The four first-order bubble diagrams forx12
1 (qW ,ivn) in

the SDW state. A summation over the internal momentum along
interaction line is implied.
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by

x1,2
ladder~qW ,ivn!

5
2~x1y!@11l~ x̄1y!#1l~z11z2!2

@11l~x1y!#@11l~ x̄1y!#2l2~z11z2!2
,

~13!

with l5U/N and

x~qW ,ivn!5
1

b (
n8,pW

G↓~pW ,ivn8!G↑~pW 1qW ,ivn81 ivn!,

y~qW ,ivn!5
1

b (
n8,pW

F↓~pW ,ivn8!F↑~pW 1qW ,ivn81 ivn!,

z1~qW ,ivn!5
1

b (
n8,pW

G↓~pW ,ivn8!F↑~pW 1qW ,ivn81 ivn!,

z2~qW ,ivn!5
1

b (
n8,pW

F↓~pW ,ivn8!G↑~pW 1qW ,ivn81 ivn!,

x̄~qW ,ivn!5
1

b (
n8,pW

G↓~pW ,ivn8!G↑~pW 1qW 1QW ,ivn81 ivn!.

The retarded susceptibility is obtained from Eq.~13!, per-
forming the analytical continuationivn→v1 i01. The poles
of the retarded susceptibility give the energyv(qW ) of the
spin excitations of the system as well as their lifetimes. T
equation for the poles is

$11l@x~qW ,v!1y~qW ,v!#%$11l@ x̄~qW ,v!1y~qW ,v!!#%

2l2@z1~qW ,v!1z2~qW ,v!#250. ~14!

It is not possible to solve Eq.~14! analytically for arbitraryU
and t. In the limit t/U→0 at half-filling, from Eq.~14! we
recover the same result as in linear spin-wave theory for
nearest-neighbor Heisenberg model,

v~qx ,qy!→ 4t2

Um
A42~cosqx1cosqy!2, ~15!

which predicts thatv(0,p)5v(p/2,p/2), in disagreemen
with the experimental data,1 and m→1, showing no mag-
netic moment reduction from the Ne´el state value. Of course
Eq. ~15! holds asymptotically fort/U!1. We remark that the
factor 1/m plays the role of the quantum renormalizatio
factor Zc .1

On the other hand, for finitet/U, Eq.~14! has to be solved
numerically. Considering the half-filled case (m50), appro-
priate for La2CuO4, we computed the spin-wave dispersio
v(qW ) for U51.8 eV and t50.295 eV along the high-
symmetry directions, in the two-dimensional Brillouin zon
considered in Ref. 1. These values agree with those use
Ref. 1:U52.260.4 eV andt50.3060.02 eV. The results
~solid line! are given in Fig. 5 together with the experimen
results ~in circles! at T510 K. It is clear thatv(0,p)
13240
e

e

,
in

l

.v(p/2,p/2), that is, a dispersion at the zone boundary
obtained. For these values oft andU the staggered magneti
moment ism50.832, and therefore 1/m51.20, which agrees
well with Zc51.18 used to fit the data in Ref. 1.

In their interpretation of the experimental data, the a
thors of Ref. 1 considered an effective Hamiltonian incorp
rating ring exchange. In such a model the electron not o
makes a virtual trip to its nearest neighbor, but also ma
virtual excursions around a loop visiting its second neig
bors. If we had written the transverse susceptibility in co
dinate space, it would be clear that in a ladder summation
electron goes around larger and larger rings before it co
back to the original site with its spin flipped. Therefore, su
a good agreement between the perturbation theory calc
tion in Ref. 1 and our ladder summation is not surprisin
Althought we have not presented the results here, Eq.~14!
also predicts a continuum of excitations which are gapp
relatively to the ground state.

In summary, we have shown that a ladder summat
based on the SDW state can account satisfactorily for
measured spin-wave dispersion of La2CuO4 at all energies.
The quality of the fitting points out that it is not needed
derive an effective spin Hamiltonian from the Hubba
model in order to obtain agreement with the data.

We gratefully acknowledge G. Aeppli for discussion
and for providing us the experimental data we show in F
5. We thank A. Sandvik for calling our attention to this pro
lem.

FIG. 5. Spin-wave dispersion, in meV, along high-symme
directions in the Brillouin zone. The circles are the data reported
Ref. 1 at 10 K. The solid line is the analytical result~at 0 K! for
U51.8 eV andt50.295 eV. The momentum is in units of 2p,
andM5(1/2,1/2),X5(1/2,0), andG5(0,0).
4-3



, T

.
B

ee,

BRIEF REPORTS PHYSICAL REVIEW B 65 132404
1R. Coldea, S. M. Hayden, G. Aeppli, T. G. Perring, C. D. Frost
E. Mason, S.-W. Cheong, and Z. Fisk, Phys. Rev. Lett.86, 5377
~2001!.

2H. M. Ro”nnow, D. F. McMorrow, R. Coldea, A. Harrison, I. D
Youngson, T. G. Perring, G. Aeppli, O. Syljua˚sen, K. Lefmann,
and C. Rischel, Phys. Rev. Lett.87, 037202~2001!.

3J. Igarashi, Phys. Rev. B46, 10763~1992!.
4Anders Sandvik and Rajiv R. P. Sing, Phys. Rev. Lett.86, 528
13240
. ~2001!.
5M. Takahashi, J. Phys. C10, 1289~1977!.
6A. H. MacDonald, S. M. Girvin, and D. Yoshioka, Phys. Rev.

41, 2565~1990!; 37, 9753~1988!.
7P. W. Anderson, Science255, 1196~1987!.
8See, for example, Jan Brinckmann and Patrick A. L

cond-mat/0110316, J. Low Temp. Phys.~to be published!, and
references therein.
4-4


