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Van der Waals binding energies in graphitic structures
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Two types of methods are commonly used to describe the van der Waals cohesive properties of graphitic
systems: one is based on density functional theory and the other on empirical model potentials. This paper
examines the relation between the two and finds that, when properly done, both methods give the same results.
The local density approximation~LDA ! method can describe cohesion when graphitic molecules are close
together, but must be supplemented with the theory of dispersion forces when the intermolecular distance
increases. It is found that LDA dispersion force calculations reproduce the empirical potentials, which are
thereby validated by fundamental theory. A recent disparity between two types of calculations in determining
binding energy of C60 molecules inside a~10,10! nanotube is also examined.
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Calculations of the van der Waals cohesive energies
graphitic structures are performed byab initio methods and
by using model potentials. The model potentials are base
empirical functions whose parameters are obtained from
periment and are restricted to computations that involve o
physical forces. Given their simplicity, it is remarkable th
they have been so successful in providing a unified, con
tent description of the properties that depend on the w
interactions between and among graphene sheets, fulle
molecules, and nanotubes.1–13 The local density approxima
tion ~LDA ! of density functional theory~DFT! has given
excellent results14–19 for the total energies and band stru
tures for graphite, fullerites, and nanotubes. Some of
studies that include calculation of the van der Waals inter
tions between graphitic structures give results that agree
experimental data.@Note that we define the van der Waa
energy to include both the repulsive~from electron repul-
sions! and attractive~from dispersion! parts, as in the van de
Waals gas equation, rather than just London dispers
forces, as used by some modern authors.#

The model potentials are convenient when the objec
research is material properties, such as the equation of
or phase transformations, buta priori calculations are essen
tial for analysis of the fundamental physics giving rise
these properties. Since both approaches are in use and
give valuable results, it is important to understand the re
tionship between them. We therefore examined the D
LDA and the van der Waals binding energies betwe
graphene sheets, two C60 molecules and between two nan
tubes, as well as those for the binding energy of a C60 mol-
ecule inside a nanotube. It is found that the important fac
for the representation of cohesion between graphitic st
tures are the following:

~1! Empirical model potentials can adequately descr
the cohesive properties of graphitic structures arising fr
van der Waals interactions.

~2! Appropriateab initio calculations reproduce empirica
potentials in detail to an adequate level of accuracy, provi
dispersion interactions are added to DFT-LDA results.

~3! DTF-LDA calculations of the van der Waals cohesi
properties are sensitive to the choice of pseudopotential,
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of

on
x-
ly
t
s-
k
ne

e
c-
th

n

f
ate

oth
-
-

n

rs
c-

e

d

he

exchange-correlation functional, the basis set, and the n
ber of basis functions used in wave function expansions.

~4! Most ab initio calculations of van der Waals energie
do not give results that agree with experiment, but some h
been successful. There are indications that success dep
on some cancellation of errors as well as on the specific
the calculation.

~5! The repulsive part of the interaction results from t
overlap of electrons on adjacent molecules.

~6! The attractive part is an electron correlation effe
with two components: the decrease in kinetic energy aris
from electron delocalization and the dispersion interact
between fluctuating dipoles on the two molecules.

~7! The delocalization energy has a shorter range than
exchange-correlation energy. When the molecules are
apart, the exchange-correlation energy is just the disper
energy. The LDA underestimates these at large distance

~8! DFT-LDA calculations that can be directly compare
to multipole-polarization theory, and to the empirical mode
show that, in graphitic structures, their accuracy decrea
rapidly for distances greater than about 15% beyond
equilibrium distance.

These conclusions are supported by existing calculatio
It is recognized in the theory of rare gas interactions t

the DFT-LDA does not describe dispersion forces correc
Sandor and Pulay20 and Perez-Jorda and Becke,21 for ex-
ample, performed calculations for rare gas interactions us
a variety of LDA functionals and different basis sets. In on
two cases was there any binding at all, and both the bind
energy and equilibrium separations for two molecules w
far from the experimental values. Their conclusion was t
the DFT-LDA fails to describe the dispersion interaction, b
does a good job for the repulsive part of the potential. In
dentally, this work shows that the nonlocality of the e
change energy can also contribute to errors of the LDA.21 In
fact, it has been shown that using a nonlocal exchange fu
tional improves the calculated exchange energy in heli
and neon by 1.3 atomic units.22

The inadequacy of the DFT-LDA for computing dispe
sion energies was stressed by Kohn, Meir, and Makaro23

who pointed out that the DFT-LDA fails for long-range in
teractions. They proposed a method in which traditio
©2002 The American Physical Society04-1
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DFT-LDA methods are modified by treating long-range
teractions separately in terms of the susceptibility. In
limit of large distances, they get the usualR26 form for the
van der Waals attraction, and the interaction constant is c
putable from electron densities calculated in the LDA. A
alternate approach is typified by the work of Rapcewicz a
Ashcroft24 and by Anderssonet al.25 in which an effective
‘‘local’’ electron density for the interaction of two electro
distributions is defined as some average of the densitie
the two distributions. This effective density is then used
the LDA and works reasonably well because the densities
electrons that are far apart are included in the theory in
rectly by the averages in the effective density. This appro
has correctly reproduced the van der Waals attractive co
cients for a dozen atom-atom interactions.25

An early calculation by Santos and co-workers26,27 using
an extended Thomas-Fermi jellium model showed that n
homogeneity corrections as well as exchange and correla
effects were needed to get binding between graphite sh
The first application of noncontinuum DFT to a graphi
structure was that of DiVincenzo, Mele, and Holzwarth28

They computed the electron density for an isolated graph
sheet and assumed that the electron density in th
dimensional graphite was a superposition from differ
planes. They then used this density in DFT. Their kine
energy was a gradient-corrected Thomas-Fermi functio
while for exchange correlation they used the homogene
electron gas result, plus a correction containing the grad
of the density. Their interplanar binding energy is larger th
experiment by a factor of 5. Actually, the disagreement
greater than this because their equilibrium interlayer spac
is 2.80 Å, which is much less than the experimental value
3.35 Å. Their theoretical result for the energy should the
fore be compared to the binding energy of highly co
pressed graphite, which at 2.8 Å is repulsive, so there is
binding. These studies are nevertheless important. T
show that the DFT-LDA is sensitive to the choice of electr
density by using a superposition of atomic densities, wit
result for the binding energy that is almost an order of m
nitude larger than experiment. Note that the superpositio
planar densities does not allow for electron delocalizati
which makes an important contribution to binding. The a
thors also recognized the importance of dispersion forces
performed a calculation of the van der Waals~VDW! attrac-
tive potential from the polarizability of graphite plane
While the shapes of the VDW and exchange-correlation
tentials were similar at short distances, they were quan
tively different by 0.1–0.15 eV. We note that at large d
tances both the kinetic energy and the exchange-correla
energy should be included in a comparison of the DFT-LD
with dispersion energies. The binding energy based on
exchange-correlation potential was less attractive than
from the polarizability. An important point is that the devi
tion increased for distances greater than 4 Å, and at a
tance of 4.5 Å the exchange-correlation result was sm
Since the kinetic energy contribution is also small at th
distances, we conclude that the total DFT-LDA interacti
decreases rapidly with distance beyond the equilibrium se
ration. It should be noted that including dispersion forc
12540
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would not eliminate all problems with this calculation sin
they would decrease the calculated equilibrium spac
which was already to low.

Other work on graphite showed the high sensitivity
results to details of the calculation. Trickeyet al., first in
1989 and then in 1992,14 performed DFT-LDA studies of the
binding between two graphene sheets. As stated in their l
paper, the first calculation gave spurious results. With
improved code, they obtained an interlayer binding ene
that was 50% larger than experiment. Also, an LDA calcu
tion by Jansen and Freeman29 gave a fairly good answer fo
the interlayer spacing~3.41 versus 3.35 Å) but their resu
for the interlayer binding energy was larger than experim
by a factor of 4.

Schabel and Martins,30 however, found an interlayer spac
ing and binding energy in excellent agreement with expe
ment. Their delocalization energy was about one-third of
exchange-correlation energy. Figure 1 shows the energ
graphite as a function of interlayer distance calculated b
from the Schabel-Martins results and the empirical mo
potential for interacting graphene sheets.1 At close distances,
up to just beyond the minimum, the two curves are nearly
same. But the Schabel-Martins potential falls off expone
tially rather than asR26 as shown by their analytic represe
tation. It is significantly less attractive than the model pote
tial at distances 15% greater than the equilibrium dista
and is close to zero at an interlayer spacing only 30% lar
than the equilibrium value. This is consistent with DiVin
cenzoet al.28 Since the attractive part of the model potent
explicitly has its origin in dispersion forces, this supports t
idea that the DFT-LDA does not describe the attraction wh
molecules are far apart and the electron density is low,
can give good results in the vicinity of the energy minimu
It is interesting to note that, in the Schabel-Martins calcu
tion, choosing a different number of grid points in a DFT
the local potential operator gives a variation in the total c
hesive energy of 0.03 eV. This is small relative to the to
cohesive energy, but is of the same magnitude as the in
layer binding energy. The calculated binding energy var
little with changes in the number of grid points, suggesti
that there is a significant cancellation of errors.

A DFT study of graphite by Charlieret al.17 identified the

FIG. 1. Comparison of empirical~solid line! and LDA ~dashed
line! potentials for graphene-graphene interaction. Note the ra
falloff of the LDA potential at long distances.
4-2
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various contributions to the interlayer binding and gave
correct interlayer spacing and binding energy. They c
firmed that the attractive part of the binding energy had t
origins: the exchange-correlation energy and a decreas
kinetic energy because of delocalization. The exchange
relation is critically important. Without it, the calculate
equilibrium interlayer distance is 4.15 Å rather tha
3.30 Å. The distance at which the interaction energy w
negligible agreed with the Schabel-Martins work, bei
about 4.5–5 Å. In a study that compared bonding in gra
ite to that in graphitic silicon, Wanget al.31 obtained similar
results.

While some DFT-LDA calculations gave good results f
the interlayer binding energy and spacing in graphite, they
failed to reproduce the experimental compressibility ac
rately. Compressibility depends on the curvature of the
tential energy as a function of interlayer distance and thi
difficult to obtain accurately from the LDA. This was reco
nized by Palser,32 who used a tight-binding calculation alon
with an empirical dispersion potential. The dispersion con
bution was necessary because the tight-binding results
themselves did not give binding. The dispersion poten
was chosen to reproduce the experimental interlayer spa
and binding energy, so Palser could not independently g
numerical results for these quantities, but he did find t
ABA stacking was favored overAAA stacking, and he did
get the correct compressibility. This illustrates the need
include long-range forces in calculations of cohesive prop
ties.

First-principles studies of C60 interactions are consisten
with the statements ~1!–~8! listed above. The
Saito-Oshiyama15 DFT-LDA calculations for C60 crystal
gave a cohesive energy that agreed with experiment. But
agreement is spurious because the cohesive energy wa
tained for the lattice spacing that minimized the calcula
energy. This corresponds to a highly compressed crysta
the calculated energy should be compared to that of the c
pressed crystal. The energy of the compressed crystal ca
estimated from either pressure-volume data or the Girifa
potential2 which both show that the cohesive energy is po
tive at this compression.

Troullier and Martins,18 on the other hand, got excellen
results for the cohesive energy, lattice parameter, and c
pression equation of state for C60 crystal. They used a plane
wave, pseudopotential DFT-LDA method with th
Ceperley-Alder33 and Perdew-Zunger34 forms for the ex-
change correlation. This is the same exchange correla
used by Saito and Oshiyama,15 whose results were unsatis
factory. However, Troullier and Martins used a plane-wa
rather than a Gaussian basis set, and a pseudopotentia
ferent from that of Saito-Oshiyama. Also, they included
very large number of plane waves in their expansio
~17 000–110 000!. This again illustrates the sensitivity of ca
culated van der Waals energies to the details of the calc
tion. Compression increases the electron density betw
molecules, so one would expect that the calculation of
exchange correlation, and therefore the equation of s
would be more accurate at higher pressures. But
Troullier-Martins calculation of the bulk modulus shows th
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their method also correctly reproduces the curvature near
minimum of the energy-lattice parameter curve.

The dispersion energy was first calculated for C60 interac-
tions from multipole expansions by Lambinet al.,35 who
used a polarizable shell model for the fullerene molecu
They compared their results to those obtained by summ
an empirical Lennard-Jones potential for the interaction
carbon atoms on two different C60 molecules. Their attractive
dispersion energy, at a distance equal to the equilibrium
tance in C60 crystal, was in fair agreement with that calc
lated from the empirical potential. Their work also show
that the repulsive part of the binding energy is much m
sensitive to atomic corrugation than the attractive part.

The importance of the long-range dispersion energy w
also recognized by La Roca36 who combined the results o
Lambin et al. with a Gordon-Kim~GK! method37 to study
the C602C60 potential. His result for the equilibrium lattice
parameter was good~14.17 versus 14.0 Å) and his calcu
lated energy of 1.4 eV/molecule was not too far from t
experimental value. An important point is that the calculati
gave no binding unless the dispersion energy was include
the theory. Because the GK method uses a superpositio
molecular densities, the delocalization contribution to the
tractive energy is missing. If the entire difference betwe
the calculated and experimental values were attributed to
effect, then the delocalization energy would be about 0
eV/molecule.

The calculation for the dispersion potential was improv
by Girardet al.38 by treating each C60 molecule as a set of 60
polarizable carbon atoms. This resulting dispersion poten
matched the attractive part of the Girifalco potential ve
well, provided the attractive constant was decreased by a
15%. The close agreement of the shape of the potential
tween the polarization theory and the model potential is
ditional support for the validity of the latter.

Detailed confirmation of this was obtained by Pache
and Ramalho~PR!.39 They point out the failure of the LDA
to account for long-range interactions, so they use the L
for distances near, and less than, the equilibrium separa
and a multipole expansion for the longer-range interacti
They constructed a pairwise potential from these results
using a Fermi-type function to join a Morse function repr
sentation of the short-range results with a dispersion inve
power function for the long-range results. Their potential
shown in Fig. 1 of their paper along with the Girifalc
C60-C60 potential. The two potentials are close together
distances in the vicinity of the minimum and beyond. F
close distances, the PR potential is less repulsive. Both
tentials reproduce the experimental equation of state up t
least 20 000 atmospheres, but the Girifalco potential pred
a compression that is too small at higher pressures. The
accuracy of the model potential at close separation distan
is understandable. The attractive part of the potential is ba
on the correct leading term for the form of the distance
pendence, but the form of the repulsive part of the Lenna
Jones potential is arbitrary. This work provides the most c
vincing evidence for the agreement of the empiric
approach with fundamental theory for the calculation of c
hesive properties, provided the pressure is not too high.
4-3
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The analytic representation of the PR potential permits
calculation of the contribution of the DFT-LDA calculatio
to the total potential as a function of distance. This calcu
tion shows that the DFT-LDA contribution is less than 15
at a separation 20% greater than the equilibrium distan
This is similar to the conclusion for graphite from th
Schabel-Martins30 work. Further support for this agreeme
comes from the calculation of intertube binding energy o
~6,6! rope ~radius 54.07 Å) by Charlieret al.19 using a
DFT-LDA method. The equilibrium distance between tw
nanotubes was found to be 3.14 Å at which the bind
energy was 9.76 meV/atom. These compare well with
universal model potential4 results which give 3.14 Å and
8.65 meV/atom.

All of these results support statements~1!–~8! listed
above and the conclusion that the empirical model poten
correctly describe the VDW cohesive properties that are
sensitive to the atomic corrugation of interacting graph
structures. This model provides a unified physical picture
the binding energies in graphitic structures, as displayed
Table I, which lists the binding energy of a C60 molecule
interacting with other graphitic structures.

From the Table I, we note that the binding energies fo
C60 molecule on top, at the mouth of, inside a tube, and a
spherical cap of the tube form a consistent series in wh
the energy increases with the number of carbon atoms c
enough to each other to contribute to the binding energy.
last column in Table I gives the number of atoms within t
‘‘interaction distance’’ from atoms on a fullerene molecu
with atoms on the other graphitic structure. The interact
distance is defined as the distance between two atoms
which the magnitude of the interaction energy is 5%
greater than that at the minimum of the Lennard-Jones
tential. There is an obvious trend. The interaction of C60 with
another fullerene molecule is the weakest because only a
atoms are close to each other, the distance between o
atoms increasing rapidly as we move away from the poin
contact. When fullerene is on top of a tube, its atoms
more other atoms that are close enough to interact bec
the cylinder curves away from the fullerene only tangentia
to the tube rather than in all directions, as is the case for
interaction between two fullerenes. The interaction betw
C60 and graphite includes more atoms that are close to at
on the fullerene molecule, so the binding is greater. At
mouth of a tube, the atoms on C60 are closer to an even large

TABLE I. Binding energy of a fullerene molecule interactin
with other graphitic structures.

Interacting with Reference Binding energy
No. of

relevant
~eV/molecule! interactions

fullerene 2 0.277 364
on top of a~10,10! tube 4 0.537 732
graphite 11 0.968 1001
mouth of a~10,10! tube 4 1.63 2270
inside a~10,10! tube 4 3.26 4112
at a spherical cap 4 4.40 5416
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number of atoms, and within the tube there are yet m
atoms interacting. The largest number of interactions is
tween fullerene and the inside of the spherical cap in
~10,10! tube, so the binding energy is the largest. The bin
ing energy is an almost linear function of the number
interacting atoms.

Recently, DTF-LDA calculations have been performed
the van der Waals interactions in a chain of C60 molecules
inside a~10,10! nanotube16 by Okadaet al.Their result does
not fit into the trend shown in Table I. They report a peap
formation energy of 0.51 eV/molecule. The fullerene m
ecules were constrained to be 9.824 Å apart. Since thi
close to the equilibrium distance between two isola
fullerene molecules, an energy about equal to that of
equilibrium C60-C60 interaction must be subtracted from thi
which gives about 0.2 eV/molecule for the interaction of t
C60 molecule with the inside of the tube. This result is le
than that for the interaction of fullerene with any other gr
phitic structure. Given the success of the other calculatio
especially for the cases of graphite and C60 crystal, it must be
concluded that the result of Okadaet al. is much too low.
Furthermore, any large deviation for the ball-tube interact
from the trend in binding energies in graphitic structur
must imply a significant difference in the nature of the bin
ing. But any change in the type of binding would increa
the binding energy, not decrease it. An examination of t
discrepancy can shed light on the influence of errors
approximations on calculated results.

For a chain of C60 molecules inside a~10,10! nanotube,
there are two factors that are not accounted for by the c
tinuum approximation potential in the empirical model. T
first is the effect of atomic corrugation, and the second is
nonlinear superposition of delocalization. An estimate of
first effect can be obtained from studies that examine co
gation energies. According to Savinet al.,40 who analyzed
the angular-dependent potential between two fullerene m
ecules, atomic corrugation results in a rotational barrier
about 42 meV. La Rocca36 obtained a rotational barrier be
tween two fullerenes of 23–40 meV. Also, Gravilet al.,41 in
a study of adsorption, found a barrier of 30 meV for fullere
on a graphite surface. These results suggest that the corr
tion energy introduces a variation of about 5% around
mean which is not enough to account for the discrepa
between the empirical model and the results of Okadaet al.

The second effect that can introduce a difference betw
the VDW model and the DTF-LDA results is that the res
from the empirically based potential was not for a chain, b
for a single molecule inside a tube. The models for t
molecule-molecule interaction and the molecule-tube in
action each take all pairwise effects, including electron de
calization, into account. But when interpreting the result
a chain inside a tube as if it is a sum of interactions
individual molecules with the tube and with each other, it
presumed that the molecule-molecule and molecule-tube
tentials are unchanged by the proximity of nearby molecu
More likely, the chain of molecules results in a grea
charge transfer than for individual molecules, so there
more delocalization than for a single molecule in a tube. T
delocalization of electrons can contribute a substan
4-4
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amount to cohesion17 but we need an estimate of how muc
this changes in a chain versus individual molecules in
nanotube. Such calculations have not been done, but
analysis by Pacheco and Ramalho39 shows that three-body
interactions contribute only 6% to the cohesive energy of C60
crystal and we would expect a similarly small effect for th
three-body interactions in peapods. In any case, increa
delocalization would increase binding and therefore can
account for the low value of Okadaet al.

Some important experiments exist that are relevant. T
formation of encapsulated C60 in nanotubes has been ob
served and studied by Smith and Luzzi42 by high-resolution
transmission electron microscopy. They found that C60 crys-
tallites coexisted with nanotubes in material that was chem
cally cleaned and baked at 225 °C. After acid reflux a
reannealing at 4500 °C, chains of C60 molecules were found
in the nanotubes~peapods!. Their experiments provide strong
evidence that peapods are more stable than C60 crystal, as
predicted by the empirical model calculations and in dire
contradiction to the result of Okadaet al. Furthermore, dif-
fraction experiments43 yield a distance between adjacent en
capsulated molecules that is almost identical with that
fullerite. This argues against the idea that there is a seri
-
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change in the nature of the binding when C60 molecules are
placed inside a nanotube. Clearly, we must conclude that
value of the binding energy in a~10,10! tube from the VDW
model potentials is to be preferred and that these poten
provide a valid method of studying the van der Waals int
actions among graphitic structures.

This analysis shows that first-principles calculations
graphitic structures can be carried out quite successfully,
they are sensitive to the details of calculation and the lo
range dispersion interaction must be included. Without
long-range interaction, DFT-LDA calculations are inaccur
for separation distances greater than 1.15 of the equilibr
separation. It also shows that model potentials, in which
van der Waals interactions between graphitic structures
treated as sums of carbon-carbon interactions, give valid
sults for the van der Waals cohesive properties. The fact
the empirical potentials can be reproduced by first-princip
calculations for distances near to and less than the equ
rium separation for graphite, and over a large range of
tances for C60 crystal, provides a good theoretical base
the former.
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