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Stick-slip friction and nucleation dynamics of ultrathin liquid films
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We develop a theory for stick-slip motion in ultrathin liquid films confined between two moving atomically
flat surfaces. Our model is based on the hydrodynamic equation for flow coupled to the dynamic order
parameter field describing the ‘‘shear melting and freezing’’ of the confined fluid. This model successfully
accounts for the observed phenomenology of friction in ultrathin films, including periodic and chaotic se-
quences of slips, transitions from stick-slip motion to steady sliding, and ultrasound generation.
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I. INTRODUCTION

The nature of sliding friction is a fundamental physic
problem of prime practical importance.1,2 While the possibil-
ity to create low-friction surfaces and lubricant fluids h
been ubiquitous for almost all engineering applications
has become crucial for the design of modern microminiat
devices such as information storage and microelectro
chanical systems, where low friction without stick-slip~or
interrupted! motion is necessary.

Studies of friction between atomically flat mica surfac
separated by an ultrathin layer of lubricant have reveale
striking phenomenon:3 in a certain range of experimental p
rameters the fluid exhibited solidlike properties, in particu
a critical yield stress leading to stick-slips similar to that
solid-on-solid dry friction processes5 with the transition to
sliding above critical velocityVc;1 mm/s. This behavior
was attributed to the confinement-induced freezing of
lubricant and its recurring melting due to increased sh
stress: as the fluid thickness is reduced to several molec
layers, it freezes, but when the shear stress exceeds
critical value, it melts. This behavior was confirmed by m
lecular dynamics~MD! simulations,6,7 which indicated order-
ing of the fluid due to confinement by the walls.

A quest for the quantitative description of stick-slip lub
cant dynamics motivated several theoretical works.8–10 An
important step has been made by Carlson and Batista10 who
proposed a phenomenological constitutive relation conn
ing the frictional forces to velocity and coordinates via t
order-parameter-like state variable reflecting the degree
melting. This model successfully described some of the
served phenomenology of the experiment3 and gave insight
into the dynamics. Yet many important questions includ
the very mechanism of the onset of the stick-slip rem
unresolved. In particular, MD simulations of Ref. 6 give t
critical velocityVc;10 m/s which exceeds the experimen
value by many orders. This apparent disagreement was
tributed by Persson9 to complex nucleation dynamics o
stress domains and the importance of thermally activa
processes in the shear melting transition.

In this paper we develop a theory of stick-slip motion
ultrathin liquids based on equations for the flow coupled
the equation for the order parameter~OP! for the melting
transition in the presence of shear stress. We propose tha
0163-1829/2002/65~12!/125402~7!/$20.00 65 1254
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shear melting is controlled by the stress tensor rather than
sliding velocity as assumed in Ref. 10. Making use of t
generalized Lindemann criterion, we combine shear and t
modynamic melting within a unified description. Using th
approach we describe the onset of stick-slip motion a
function of the film thickness and temperature, and de
mine the dynamic phase diagram. We demonstrate that
dom nucleation of droplets of the fluid phase during the m
tion leads to an irregular temporal distribution of slip even
and to ultrasound radiation. Admittedly, our approach is p
nomenological in nature; it is not justified from firs
principles calculations and cannot be used for a precise
mate of experimental parameters. Nevertheless, it capt
all observed experimental phenomenology, results in a
rect order of magnitude estimate of the critical velocity, a
gives insights into the problem.

The structure of the article is the following. In Sec. II w
describe the general formulation of our model. In Sec. III
introduce the thin-layer approximation. Using this appro
mation, we reduce the model to a relatively simple system
equations for averaged shear stress and deviation of the o
parameter. In Sec. IV we study the stick-slip dynamics
spatially uniform motion. In that section we also compa
our results for the critical velocity with the experimental va
ues. In Sec. V we study the nucleation dynamics of liqu
phase droplets in the overheated solid and connect it to
regularity in stick-slip sequences. Finally, in Sec. VI we i
vestigate the generation of ultrasound by stick-slip event

II. MODEL

The simplified setup of a friction experiment is shown
Fig. 1. The upper plate is sliding with the velocityV on a
thin-layer of lubricant with thicknessh. The ‘‘free end’’ of
the spring, representing the overall elastic properties of
friction device, is pulled with constant velocityV̄. The re-
sulting friction forceF is proportional to the deflection of th
spring.

The flow of lubricant satisfies the momentum conser
tion law

r0

Dv i

Dt
5

]s i j

]xj
, ~1!
©2002 The American Physical Society02-1
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where v i is a component of the fluid velocity,D/Dt5] t
1v¹ is the material derivative, andr0 is the density of fluid.
Assuming incompressibility we setr051 and divv50.

The stress tensors i j is described by the Maxwell-type
stress-stain relation, widely used in the boundary lubricat
theory of friction:1,2

] ts i j 1hs i j 5mSi j , ~2!

whereSi j 5]v i /]xj1]v j /]xi is the strain rate tensor,m is
the shear modulus, andh is the shear stress relaxation ra
Thus, the stress-strain relation includes both viscous fl
and elastic restoring forces. The microscopic mechanism
the stress relaxation can be attributed to nucleation and
motion of dislocations in the solidlike phase of the lubrica
The conventional shear viscosity is defined asn5m/h.

To describe the dynamic phase transition between s
and fluid states we take into account that the stress relaxa
rateh is itself a function of the physical state of the mater
quantified near the melting transition by the OPr which is
defined in such a way thatr51 corresponds to the solid sta
and r50 to the liquid state. The physical interpretation
the OP for various systems can be different, but for crys
line solids r can be related to the dislocation density. W
restrict ourselves to the simplest dependence of the s
relaxation rate onr:h5h0(12r),h05const. This choice
assures that Eq.~2! gives Hook’s law for the pure solid (r
51) and the viscous stress-strain relation for the Newton
fluid with r50. For the lubricant used in Ref. 3 the bu
value of h0 at normal pressure isO(1010) s21, and it de-
creases by several orders of magnitude at large pressur3,4

In the spirit of the phenomenological theory of first-ord
phase transitions, we postulate that the OP for melting tr
sition obeys the scalar Ginzburg-Landau equation

] tr52
dF
dr

, ~3!

where the free energyF;*dr @Du¹ru21 f (r)# includes the
‘‘local potential energy’’ f (r) and the diffusive coupling
Du¹ru2 contributions. The diffusion constantD can be esti-
mated asl 0

2t0
21, wheret0 and l are the characteristic tim

and length, correspondingly;l is of the order of the lattice
constant or intermolecular distance,a;1 nm, and timet0 is
expressed through the sound velocitycs;103 m/s,t0' l /cs
;10212 s. The potential energy densityf (r) should have
extrema atr50 and r51 corresponding to uniform solid

FIG. 1. Setup of typical friction experiment. The upper plate
sliding on a flat substrate covered by the lubricant with thicknesh.
A spring ~spring constantk) is connected to the block and the ‘‘fre

end’’ of the spring moves with the constant pulling velocityV̄.
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and liquid phases. We approximatef (r) by a quartic poly-
nomial with three extrema atr50,1 andr5d, so the order
parameter equation becomes

t0] tr5 l 2¹2r2r~12r!~d2r!. ~4!

The control parameterd is proportional to the temperatureT.
Since the melting of the lubricating layer occurs under o
of-equilibrium conditions, it is characterized by two critic
temperaturesT1, corresponding to an instability of the ove
cooled liquid, andT2, the stability limit of the overheated
solid phase.11,12The thermodynamic melting temperatureTm
is confined between these limits:T1,Tm,T2. The param-
eterd is expressed in the form

d5~T2T1!/~T22T1!. ~5!

Now we have to relate the solid instability temperatureT2 to
the stress generated in the process of motion. Accordin
the Lindemann hypothesis, atT5T2 the mean-square dis
placement^u2&5 c̃L

2a2, where c̃L
2 is the numerical factor

~‘‘Lindemann number’’!. In the absence of shear deform
tions the temperature mean-square displacement^u2& is re-
lated to the temperature as^u2&5T/ma. For averaged shea
displacements the following relation holds:^u2&5s2a2/m2,
wheres[sxy is the shear stress. Assuming independence
thermal fluctuations and shear, one can present the m
square displacement field under shear stress in the form

^u2&.
T

ma
1

s2a2

m2
, ~6!

where the first term on the right-hand side stands for
average thermal displacement, while the second term
presses the shear-induced displacement field. Equation~6!
implies that the solid phase instability can stem not o
from the thermal fluctuations, but also from the she
stresses. At zero physical temperature the instability can
caused by the shear only. This concept ofshear-induced
meltinggeneralizes the hypothesis of the dynamic disord
driven melting introduced in earlier work.13 It finds support
in the molecular dynamic simulations of the system un
stress; see, e.g., Ref. 14. Although we apply the macrosc
concepts of free energy and shear to fairly thin system~under
ten layers across!, the continuum description can be su
ported by the fact that elasticity based estimates of the m
ing temperature~the temperature at which shear modul
vanishes! are in fairly good agreement with empirical dat
Since melting is an inherently short-wave phenomenon,
offers some empirical support to the possibility of using t
concept of shear until almost the atomic scale. Thus,
expect that our analysis will reproduce qualitative features
the shear melting in thin films and possibly will result
correct order of magnitude estimates for critical velocity a
other observed quantities.

Since atT5T2 the relation^u2&5 c̃L
2a2 holds, atT5T2,

Eq. ~6! yields

T25T2
02s2a3/m, ~7!
2-2
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STICK-SLIP FRICTION AND NUCLEATION DYNAMICS . . . PHYSICAL REVIEW B 65 125402
whereT2
05cL

2ma3. Substituting Eq.~7! into the expression
for the control parameterd, Eq. ~5!, one derives in the firs
order

d5d01s2/s0
2 , ~8!

whered05(T2T1)/(T2
02T1) and s0

25m(T2
02T1)/d0a3 is

the yield shear stress.

III. THIN-LAYER APPROXIMATION

In the thin-layer approximation, the thickness of the lub
cant layerh is small so that the dependence of the sh
stresss and other stress components on the transverse c
dinatey is neglected in the leading order. Now we can furth
simplify the OP dynamics. Since the walls favor the form
tion of a solid, the boundary conditions for the OP a
r(0)5r(h)51, and the bulk variations of the OP are sm
as compared to 1. Let us seek the solution in the form

r~x,y,t !512A~x,t !sinS py

h D , ~9!

where A!1 is the slowly varying amplitude. Substitutin
Eq. ~9! into Eq. ~4! and making use of the standard orthog
nalization procedure leads to

] tA5]x
2A1S d212

p2

h2 D A1
1628d

3p
A22

3

4
A3, ~10!

where d5d01s2, and the variables are rescaled asx/ l
→x,t/t0→t,sxy /s0→s,V→V/( l /t0), andh* →h0t0.

After integrating over the width of the sample, Eq.~2!
yields in the leading order

] ts1
2h*
p

As5
mV

hs0
1

m

s0
]xU, ~11!

where

U5
1

hE0

h

vydy ~12!

is the y component of the flow velocity averaged over t
width of the sample. Here we used nonslip condition for
x component of the fluid velocity, which yieldsvx(h)
2vx(0)5V5const, whereV is the relative velocity of the
upper plate with respect to the bottom.

Now, integrating Eq.~1! for the y component of the ve-
locity one obtains

] tU5
s0t0

2

l 2
]xs. ~13!

Here we assume that the hydrodynamic velocity is small
neglect termsv¹v. Thus, we obtain two coupled equation

] ts52
2h*
p

As1
v0

h
1nS, ~14!

] tS5]x
2s2zS, ~15!
12540
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wherev05mV/s0 is the rescaled velocity of the top plate
and S5 l 2/(t0

2s0)]xU, and n5m/( l /t0)25O(1). The term
zS has been added to Eq.~15! in order to account for radia
tion losses of sound due to its leakage into the substrate
one sees from Eqs.~14!, and~15!, for A→0 ~solid phase! the
above system is reduced to the wave equation] t

2S5n]x
2S

2z] tS; i.e., it describes the propagation of shear elas
waves with sound velocitycs5An and radiation decay rate
z.

The pulling velocityV̄ does not necessarily coincide wit
the upper plate velocityV; see Fig. 1. In a standard frictio
experiment, the upper plate is pulled via a spring with st
nessk. The relation between the position of the upper pla
X, friction forceF, and the position of the spring~neglecting
masses of the spring and upper plate! readsF5k(V̄t2X).
SinceF;*0

Ls(x)dx andV5dX/dt, the difference between

the plate velocityV and pulling velocityV̄ can be neglected
for stiff enough springs.

IV. STICK-SLIP MOTION

First we discuss spatially uniform motion. In this ca
Eqs. ~10!, ~14!, and ~15! are reduced to a pair of couple
ordinary differential equations~ODE’s!:

] tA5S d212
p2

h2 D A1
1628d

3p
A22

3

4
A3, ~16!

] ts52
2h*
p

As1
v0

h
. ~17!

Above the melting temperatured0.1, the solid phase of
the lubricant is formed due to the proximity-to-the-walls e
fect. In the experimentally relevant limith* ,v0!1 Eqs.~16!
and ~17! can be investigated analytically using the bifurc
tion analysis and the multiscale technique withs being a
slow andA being a fast variable. Stick-slips are described
the limit cycle on thes-A plane. The bifurcations amon
different regimes depend on the relative position of t
nullclines which are defined by the conditionsds/dt50 and
dA/dt50. The slow-motion nullcline determined by Eq
~17! is of the form

2h*
p

sA5v0 /h. ~18!

The manifold of fast motions consists of two separate cur

A50, ~19!

S d212
p2

h2 D 1
8

3p
~22d!A2

3

4
A250. ~20!

Fixed points of Eqs.~16! and ~17!, i.e., steady sliding re-
gimes, correspond to the intersections of nullclines. The li
cycle can be approximated by two segments lying on t
different nullclines of fast motion and two liness5const
which describe the rapid transitions from one branch of
2-3
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nullcline, Eqs.~19! and ~20!, to another; see Fig. 2. Th
segment of fast-motion nullcline~20! left of point C is un-
stable. Therefore the trajectory slides down along fa
motion nullcline up to pointC and then falls to the nullcline
A50. The nullcline~19! is unstable above pointD given by
the conditiond511p2/h2. Thus, above this point the tra
jectory switches to nullcline~20!.

It is easy to estimate the duration of stick (Tstick) and slip
(Tslip) phases forv0→0. Since the stick corresponds to m
tion along nullclineA50, from Eq. ~17! we obtainTstick
;1/v0. During the slip phaseA ands are related according
to Eq. ~20!, and since for slipAs;O(1)Þ0 @see, e.g., Fig.
2~b!#, from Eq. ~17! one obtainsTslip;1/h* if h* @v0.
Thus, one obtainsTstick@Tslip@1 for smallh* .

FIG. 2. Phase portraits of spatially uniform equations~10! and
~14! in the regime of stick-slip motion ford051.3. Solid lines show
the nullclines of fast motion, Eqs.~19! and ~20!; dashed line indi-
cates the nullcline of slow motion Eq.~18!. The nullclines intersect
in point B, and pointC showsds/dA50. Panel~a! (h54,v0 /h*
50.2) corresponds to the neighborhood of the continuous trans
from stick-slip to sliding. The limit cycle vanishes smoothly whe
points B and C merge with an increase ofv0. Panel ~b! (h
54.85,v0 /h* 50.03) corresponds to the neighborhood of the d
continuous transition from stick-slip to sliding at largerh. The limit
cycle disappears abruptly with hysteresis when pointC touches the
nullcline of slow motion Eq.~18! ~dashed line!, with an increase of
v0. The unstable branches of the nullclines are shown by lines w
open circles.
12540
t-

For h* →0 the transition from stick-slips to continuou
sliding corresponds to the intersection of the slow mot
manifold with the minimum of the fast-motion manifolds
5 f (A), i.e., ds/dA50 shown in Fig. 2 by pointC. The
limit cycle vanishes smoothly if pointsB andC merge; see
Fig. 2~a!. It corresponds to a change of stability of the fixe
point B. In this case one has supercritical Hopf bifurcation
limit the cycle with a decrease ofv0.

Another scenario occurs when there is more then one
tersection point between fast and slow manifolds; see F
2~b!. One pointC touches the slow manifold, the period o
the limit cycle diverges, and the limit cycle disappea
abruptly with hysteresis.

Figures 3 and 4 illustrate the transition from continuo
sliding to the stick-slip motion. As one can see from Figs
and 4, stick-slips are possible only in relatively thin-laye
In thick layers, sliding is steady since the lubricant in t
bulk is always in a fluid state. The critical thicknesshc is
determined by the stability conditionds/dA50 derived
from Eq. ~20!: hc5p/Ad021164(22d0)2/27p2. We find
that for h close tohc transition from stick-slip to sliding is
always abrupt and has a hysteretic character~see Fig. 4 and
Fig. 3, inset b!. For the chosen parameters, the ‘‘friction law
s vs v0 has a minimum~Fig. 4, inset, curve 2!, as is common
for a typical dry friction behavior.1 For smallerd0 the tran-
sition is continuous~inset a in Fig. 3, curve 3 in Fig. 4
inset!. For h,h05p the dry friction without stick slip oc-
curs because the viscous friction force becomes larger
the dry friction one, curve 1 in Fig. 4, inset.15

The proposed mechanism for the stick-slip friction h
actually a wide range of applicability. In particular, it de
scribes the transition between elastic and plastic depinnin
periodic structures driven through disordered media, suc
vortex lattices, charge density waves, and Wign

n

-

th

FIG. 3. Phase diagram of lubrication regimes atd051.3. The
solid line indicates the continuous transition from stick-slip to sl
ing, and the dashed line corresponds to the hysteretic abrupt tr
tion. Insets a and b show normalized shear stresss vs time for
h* 50.01 at two different values ofh corresponding to continuou
and discontinuous transitions, and several values ofv0 /h* ap-
proaching the transition line~dots in the main plot!: h54, v0 /h*
50.1, 0.2, 0.3, 0.31, 0.32~a! and h54.85 v0 /h* 50.03, 0.05,
0.064, 0.0645, 0.065~b!.
2-4
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STICK-SLIP FRICTION AND NUCLEATION DYNAMICS . . . PHYSICAL REVIEW B 65 125402
crystals.13,15 In the case of driven vortex lattices the horizo
tal axis in Fig. 4, inset, represents voltage and the vert
axes correspond to driving current. Then curve 1 descr
the elastic depinning and curve 2 corresponds to hyste
plastic depinning.

Let us estimate typical values of the critical velocity f
the transition to steady sliding. From Fig. 3 one finds a ty
cal value of the velocityvc'0.1h* . In physical units one
has Vc;0.1h0t0css0 /m. The ratio s0 /m;1022 has the
meaning of relative stress for onset of plastic deformation
solids. Using the bulk value ofh051010 s21 one derives
Vc'1210 mm/s, i.e., the value which is about 3 orders
magnitude larger than the experimental valueV0;1 mm/s.
Under high pressureh0 decreases by several orders of ma
nitude ~Refs. 3 and 4 report an effective increase ofh0 by
4–6 orders for pressure of about 20 MPa!, and one arrives a
V0;0.1–1 mm/s.

V. NUCLEATION

The above analysis was based on the assumption tha
stick-slips occur simultaneously in the entire lubricant lay
which may not be the case for large samples. It is natura
expect that stick-slips occur via a series of nucleation eve
when droplets of the liquid emerge in the solid phase a
then expand and merge throughout the system. Nuclea
can be responsible for the observed irregularity stick-slip
quences@notice that the second-order system of ODE’s~16!
and ~17! can only produce periodic oscillations#.

If the sample sizeL is not very large and the ‘‘acousti
shear time’’ta5L/cs is much smaller than any characteris
time scale of the problem~e.g., slip time!, we can simplify
the problem by neglecting the dependence ofs on the lon-

FIG. 4. Temperature- (d0) thickness~h! diagram. Above the
solid line (hc) sliding occurs for arbitrary small velocityv0. Below
hc stick-slips exist forv0,vc , while the transition to sliding is
abrupt with hysteresis between solid and dashed lines and sm
otherwise. Below the dotted line (h0) one has dry friction without
stick-slips. Inset: shear stresss ~or friction force! vs sliding veloc-
ity v0 corresponding to stationary sliding regimes in three differ
regions. The falling part of line 2 corresponds to the unstable
tionary solution; in this range of pulling velocities the system e
hibit stick-slip oscillations.
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gitudinal coordinatex, so the shear stress becomes a funct
of time only.16 Equation~14! yields

] ts1
2h*
pL

sE
0

L

A~x!dx5
v0

h
. ~21!

Here we would like to note that although we derived E
~21! from Eq. ~14!; in fact, Eq.~21! can be derived directly
from the stress-strain relation, Eq.~2!, even when Eq.~14! is
not applicable. In addition, Eq.~21! is much simpler than the
original Eq. ~14! and, as we will show below, still capture
the essential physics of nucleation.

Since during the stick phaseA is close to zero, the solid
phase can be significantly ‘‘overheated’’ by the shear. F
A!1, integration of Eq.~16! yields

A'A0expS E
0

t

~2e1s2!dtD , ~22!

wheree511p2/h22d0.0. From Eq.~21!, s'v0t/h1s0,
andA0 ands0 are the values of amplitude and stress in t
beginning of stick phase. We restrict ourselves to the c
h→hc , wheres0→0 andA05O(1). While s is small, the
amplitudeA decays exponentially to very small values.
reaches a minimum Amin5exp(22e3/2h/3v0) at tmin
5e1/2h/v0. Then it starts to grow slowly and reaches t
value O(1) ~slip event! at t5tm5A3tmin . At tmin,t,tm
the growth rate2e1s2.0, and therefore the lubricant is i
an unstable~‘‘overheated’’! state. The overheated solid
very sensitive to fluctuations, e.g., to thermal noise. Sm
nuclei of liquid can appear and expand within the solid,
sulting in accelerated slip events. Since nucleation eve
have probabilistic character, one can expect spatio-temp
randomness of the slip events. However, this randomness
only manifest itself at low noise levels. At the higher level
the noise, the slips become more regular because the nu
of nucleation sites increases, and the overall effect of
noise averages out. This effect is somewhat similar to
coherence resonance in noise-driven excitable systems w
increase of noise makes the oscillations more regular.17,18

We studied Eqs.~10! and~21! numerically in a fairly large
domain; see Figs. 5 and 6. Since during the slip phase
shear stress rapidly drops, the domains do not necess
propagate through the entire system and in large systems
may observe ‘‘partial slips.’’ The random character of t
nucleation process manifests itself in the nonperiodicity
slips and local amplitudeA.

In our simulations we used the valueh* 50.01, which
corresponds to the bulk value ofh0 at normal pressure. Fo
the experimental conditions,3 the value ofh0 decreases by
many orders of magnitude, which makes the simulatio
technically impossible. However, the qualitative picture
phenomena does not change with a decrease ofh* , which
even in our case is already sufficiently small.

VI. SOUND EMISSION

In this section we will briefly discuss the radiation o
sound during phase slip events. Although the physi
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mechanisms of ultrasound generation in friction experime
are not well understood, it is believed that sound waves
the range from 106 to 1011 Hz are excited.2 In most of the
mechanisms proposed earlier, the frequency of the u
sound is proportional to the pulling velocity.

The sound generation can be described within the fra
work of the full Eqs.~10!, ~14!, and ~15! in the regime of
‘‘partial slips.’’ Indeed, as follows from Eq.~14!, inhomoge-
neity in A(x) also creates inhomogeneity in the shear str
distributions(x), which in turns generates elastic waves d
to the wave nature of Eqs.~14! and ~15!.

We studied Eqs.~10!, ~14!, and~15! for the same param
eter values as in Sec. V. Indeed, as one sees from Fig. 7
8, sound waves are emitted during the slip events. They
manifested as propagating ripples in Fig. 7 and hig
frequency modulation ins vs t profiles.

FIG. 5. Space-time plot ofA for d051.1, h54,h* 50.01, and
v050.0002 in the system of lengthL51000. Black corresponds to
A50 ~solid!, white to A51 ~liquid!. Time progresses from top to
bottom, total integration time 30 000 dimensionless units. Unco
lated noise with zero average and amplitude 10216 is added toA at
each time step and each grid point.

FIG. 6. s andA at x5L/2 vs t for the parameters of Fig. 5.
12540
ts
in

a-

e-

s
e

nd
re
-

It should be noted that sound generation is an interes
phenomenon which can be observed experimentally. Acco
ing to our results, it is not the reason for stick-slips but th
consequence. Our investigation shows that there is no qu
tative difference with the nucleation dynamics described
Sec. V, where wave propagation effects are neglected.

Let us now estimate the frequency of the ultrasound. A
cording to our results, the ultrasound is generated during
slip event. Since the duration of slipTslip is of the order

-

FIG. 7. Space-time plots ofs and A for d051.1, h54,h*
50.01, v050.0002, andn51 in the system of lengthL51000,
obtained from solution of Eqs.~10! and ~14!. Small ripples on the
s(x) vs time plot show sound radiation.

FIG. 8. s andA at x5L/2 vs t obtained from solution of Eqs
~10! and~14!, other parameters identical to Fig. 7. Small ripples
the dependences vs t are fingerprints of acoustic waves.
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1/h* , the representative frequency of sound waves will
v;h* . The parameterh changes by several orders of ma
nitude as a function of applied pressure, and one obtains
the frequencyv;h5106–107 Hz for the conditions of
experiment.3 Moreover, our results indicate that the fr
quency of ultrasound practically does not depend on the p
ing velocity. This prediction is worth testing experimental

VII. CONCLUSION

In this paper we have proposed a continuous theory
friction dynamics in ultrathin films. Experimentally observe
layering and crystallization of ultrathin films near atomica
flat surfaces~see, for example, Ref. 3! can be phenomeno
logically described as an ordered state with the correspo
ing order parameter close to 1. Under shear stress, crysta
structure breaks, and the film ‘‘melts,’’ thereby releasing
stress. This process of shear-induced melting and free
leads to the stick-slip behavior of thin liquid films to shea
induced melting and freezing processes. Our theory is ba
on the Ginzburg-Landau equation for the order param
which describes the melting transition under shear str
The order parameter then enters the stress relaxation ra
that it approaches zero in the solid state. The developed
proach allowed for a quantitative description of dynam
nucleation effects leading to slip events and sound gen
tion. The proposed theory can be applied to a wide rang
phenomena including friction in nanoscale devices, frict
on ice, etc. A similar approach can be used in describ
12540
e

or

ll-

r

d-
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er
s.
so
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a-
of
n
g

depinning transitions of flux-line lattices in type-II superco
ductors, charge density waves, and other structures dr
through disorder.13 Our results may also shed light on var
ous phenomena related to shear thickening and memory
fects in complex fluids.19

This theory is similar in spirit to our recent analysis
partially fluidized flows in granular materials.21 That theory
also operates with an order parameter equation that is
trolled by the shear stress tensor. When applied to the
scription of granular friction experiments~see, for example,
Ref. 20!, it also reproduces the observed stick-slip dynam
The important difference, however, is that the thermod
namic temperature, which is essential here, is irrelevant
the granular dynamics.

It is also interesting to note the analogy between nuc
ation dynamics of ‘‘partial slips’’ in the systems with th
lubricated friction and the creation of defects during rap
quench~‘‘cosmological scenario’’!.22–24In the vicinity of the
phase transition the defects, e.g., domain walls in the o
dimensional case, are created from small fluctuations of
order parameter on the background of essentially unst
state~overheated solid in our case!.

ACKNOWLEDGMENTS

This research was supported by U.S. DOE Grant N
W-31-109-ENG-38, DE-FG03-95ER14516, and DE-FG0
96ER14592.
f
ev.
-

tt.
1B.N.J. Persson,Sliding Friction: Physical Principles and Appli-
cations~Springer-Verlag, Berlin, 1998!.

2E. Meyer, R.M. Overney, K. Dransfeld, and T. Gyalog,Nano-
science. Friction and Rheology on the Nanometer Scale~World
Scientific, Singapore, 1998!.

3H. Yoshizava and J. Israelachvili, J. Phys. Chem.97, 4128~1993!.
4J. van Alsten and S. Granick, Phys. Rev. Lett.61, 2570 ~1998!;

H.-W. Hu, G.A. Carson, and S. Granick,ibid. 66, 2758~1991!.
5G. Hähner and N. Spencer, Phys. Today22~9!, 22 ~1998!; T.

Baumberger, P. Berthoud, and C. Caroli, Phys. Rev. B60, 3928
~1999!.

6P.A. Thompson and M.O. Robbins, Phys. Rev. A41, 6830~1990!;
Science250, 792 ~1990!.

7J.P. Gao, W.D. Luedtke, and U. Landman, J. Chem. Phys.106,
4309 ~1997!.

8O. Braun, A.R. Bishop, and J. Ro¨der, Phys. Rev. Lett.82, 3097
~1999!; W. Zhong and D. Tomanek, Europhys. Lett.15, 887
~1991!.

9B.N.J. Persson, Phys. Rev. B51, 13 568~1995!.
10J.M. Carlson and A.A. Batista, Phys. Rev. E53, 4153~1996!.
11L. Pietronero, inPhonons: Theory and Experiments, edited by P.
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