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Charge transport model for disordered materials: Application to sensitized TiO2
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We propose a simple model of charge transport that predicts the conducting properties of disordered mate-
rials. The transport of charge is assumed to occur by trapping and detrapping of electrons in localized states
and diffusion via a conduction-band level. The input is an arbitrary density of localized states~DOLS! and the
output, bulk mobilities, and conductivities as a function of the field and the density of carriers. The code can
be applied to any kind of carrier~electrons, holes, or ions! and includes trap-filling effects. This leads to
predictions of density-dependent mobilities—a determining factor in the conducting properties of amorphous
insulators and sensitized semiconductors. Using this model, we have studied the photoconductor TiO2 by
comparing the predicted conductivity for different DOLS with experimental data in steady-state conditions.
Our simulations show that the presence of a few deep traps determines the observed superlinear dependence of
the conductivity on the number density of carriers.
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I. INTRODUCTION

The electrical properties of disordered insulators a
semiconductors are of great interest both as a challengin
of fundamental problems and because of their technolog
applications. The electrical industry is interested in evalu
ing current-voltage characteristics of insulating material1,2

that are the key to the description of long-standing proble
such as breakdown and aging processes in insulation
high-tension cables. Colloidal semiconductors such as T2
and ZnO represent a new class of electronic materials w
numerous technological applications, ranging from batte
and electrochromic devices to a new generation of solar c
based on dye-sensitized nanoparticulate films.3–7 Semicon-
ducting polymers8,9 can be used as the emissive material
organic light-emitting diodes, and amorphous organic pho
conductors used in xerography. In all these materials,
movement of charge~electrons, holes or ions! determines the
electronic characteristics through a disordered medium,
nature of which is determined by the chemical composit
and the microscopic structure of the material. A key obj
tive for research on these materials has been the determ
tion of carrier mobilities. Traditionally, mobilities are derive
by interpreting measurements on photoinduced transient
rents in terms of carrier activation out of traps.10,11 In mod-
eling such measurements, a broad analytic distribution
trapping energies~generally exponential or Gaussian! is of-
ten assumed. An important advance would be to use real
density of localized states~DOLS! obtained either fromab
initio calculations of the electronic structure or from spect
scopic measurements.

The case of sensitized wide-band-gap nanocrystal
metal-oxide films represent a very attractive class of mat
als for research.6 They provide a model system for pure ele
tron transport between localized states. In such mate
electrons are injected into the porous semiconductor netw
by means of a sensitizer that absorbs light in the visi
range of the spectrum. These electrons migrate within
network until they recombine with the surface or extern
0163-1829/2002/65~12!/125324~10!/$20.00 65 1253
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electron acceptors~the process to be prevented in applic
tions! or reach the collecting electrode. In the case of sen
tized solar cells, the greater the fraction of photoinjec
electrons that reaches the collecting electrode, the greate
efficiency of the cell.7,14 Thus, electrons ofexternalorigin
give rise to the transport of charge. There are no holes c
tributing to the conductivity unlike other photosensitive m
terials such as amorphous hydrogenated silicon.12 Further-
more, electron transport in porous, nanocrystalline me
oxides exhibits a strong, nonlinear dependence on elec
density and electron injection.4,7,13–16 This observation is
usually explained in terms oftrap filling. The argument runs
as follows: as more electrons are injected into a system w
a distribution of trap energies, traps with larger energies w
respect to the conduction-band level~deeptraps! are progres-
sively filled, leaving only shallow traps available for condu
tion. As the residence times of electrons in deep traps
much longer than those in shallow traps, the net mobility
the electrons is enhanced as the electron density increa
Nelson has recently reported simulations of electron tra
port in nanocrystalline TiO2 electrodes.17 The calculations
considered several electrons simultaneously with the co
tion that only one electron is allowed per trap. The simu
tions demonstrated that the transient current decays fa
with time when more electrons are used. To our knowled
this is the first simulation study of charge transport that ta
into account trap-filling effects. We note that the populati
of the trap states is a factor7 that determines the kinetics o
the recombination reaction between electrons and surfac
electron acceptor oxidized species. Thus, an increase in
trap occupancy enhances the acceleration of charge reco
nation with injected electron density.

The study of the trap-filling effect in disordered TiO2 pro-
vides an interesting link with other systems where nonlin
behavior of the conductivity is also observed. For instan
the case of trap-controlled conduction in insulati
polymers.1,2 In this case, the filling of traps is believed t
have a significant effect on the current-voltage characte
tics. The filling of the traps at higher voltages~strong injec-
©2002 The American Physical Society24-1
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tion! is considered to be related to the breakdown of
insulation.1

In all the cases mentioned above, charge transport ca
described as the transfer of carriers between localized s
or traps that act as potential wells for the moving carrie
The purpose of the present paper is to develop a gen
transport model that can be employed to describemultiple-
trapping transport of charge in disordered media. Previo
papers18,19,25 have already addressed this kind of transpo
both from the theoretical and the simulation point of vie
However, much of this paper has been inspired by the
scription of ‘‘time-of-flight’’ experiments, i.e., these autho
look at the problem oftransient currentsin thin films of
fixed thickness. More generally, previous studies20 are re-
stricted to the case of single-particle simulations, where tr
filling effects are not taken into account. In the present pa
we are interested in multiple-trapping transport of charge
steady-stateconditions, in thebulk @three-dimensional~3D!
size-independent calculations# and with explicit consider-
ation of the effects oftrap filling. All these factors must be
taken into account if we aim to model, for instance, sen
tized TiO2 solar cells in real working conditions. Furthe
more, we use nontrivial DOLS that correspond to kno
electron traps in the material under consideration. Hence
pursue three main objectives in this paper:~1! the consider-
ation of trap-filling effects, ~2! generalization to size
independent~3D! calculations in the steady state, and~3! the
use of nontrivial DOLS related to real experimental mate
als.

As mentioned above, for sensitized TiO2 solar cells and
many other applications, we are interested in the conduc
properties of a material in thebulk, away from the electrodes
We wish to predict the mobility as a function of the field a
the charge density so that this can subsequently be used
macroscopic calculation that takes into account space-ch
and electrode effects.14,8 Hence, our simulation model ap
plies periodic boundary conditionsin the field direction~in
contrast to some previous studies where the sample h
fixed width along the direction of the applied field10,11!. We
show that the predicted mobilities correspond to the infin
width limit of the finite-size calculations.

In a previous paper on nanocrystalline TiO2 , it has been
demonstrated that an exponential DOLS with a character
temperature of;800 K can fit experimental data for tran
sient currents.17 The localized, intraband states are though
arise from surface defects associated with oxygen vacan
that is, Ti31 states and absorbed species. Nevertheless,
evidence could be obtained either in spectroscopic studi21

or ab initio calculations22 that the distribution of surface
states should be exponential. In the present paper we tr
reconcile the transport data with the information availa
regarding the energies of the surface traps in nanocrysta
TiO2 . Our simulations show that very small concentratio
of very deep traps determine the density dependence o
conductivity and that it is these deep traps that should be
focus of further research.

The paper is organized as follows. In Sec. II, the simu
tion procedure and the model system are introduced
tested in ideal cases. In Sec. III we make use of the sim
12532
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tion to obtain photoconductivities in dye-sensitized nan
crystalline TiO2 for several choices of the DOLS. Conclu
sions based on our simulations are presented in Sec. IV.

II. TRANSPORT MODEL

A. Basic description

We assume that transport of charge occurs by transfe
electrons between localized states ortraps. In the simplest
situation, all traps will have the same energy~i.e., a DOLS
with the shape of a Diracd function!. In this case, it can be
shown that the mobility is given by1,2,23

m5
2n0a

lE
expS 2

«

kTD sinhS eEa

2kTD , ~1!

wheren0 is the attempt-to-jump frequency,a is the average
distance between traps,l is the number of equivalent neigh
boring sites to which the carrier is allowed to jump,23 E is the
applied field,« is the trap depth~activation energy!, e is the
elementary charge,k is the Boltzmann constant, andT is the
absolute temperature. Although the original model was
ionic transport,2 it can be used to describe conductivity
any kind of carrier24 provided that there are no tunnelin
effects.

In the limit of very small fields (eEa!kT), Eq. ~1! re-
duces to

m5
n0a2e

lkT
expS 2

«

kTD , ~2!

and in the absence of traps the mobility is given simply b

m5
n0a2e

lkT
~3!

that corresponds to the mobility of a carrier performing
simple random walk with time stept051/n0 in a network of
lattice constanta and coordination numberl.

B. Computer simulation

Following Marshall25 and Nelson,17 we have implemented
a random-walk simulation technique based on detrapp
times between sites or traps. This method is related to but
the same as the so-called continuous-time random-w
model originally introduced by Scher and Montroll.26 Our
simulation runs as follows:

~1! A three-dimensional array of sites is set up.
~2! Each site is givensix differentdetrappingtimes~to each

one of its six nearest neighbors! according to its energy
~see below!.

~3! Carriers jump randomly from one site to a neighbori
site.

~4! The carriers adopt the detrapping times of the sites t
visit. The release times are then the difference betw
the detrapping times of the site and the time alrea
spent by the carrier in that site.

~5! At each simulation step, the carrier having theshortest
release timet i is selected and allowed to jump. The r
4-2
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CHARGE TRANSPORT MODEL FOR DISORDERED . . . PHYSICAL REVIEW B65 125324
lease times of the rest of the carriers are then advan
by t i . In the next step, the process is repeated.

The simulation method is an adaptive time-step proced
This is important in the simulation of charge transport
disordered materials since detrapping times can vary by
eral orders of magnitude from site to site. Also, this pro
dure is particularly suitable if we want to monitor sudd
increases of the mobility consequent on the filling of t
deeper traps.

In the present paper we calculate the detrapping time
tween two sitesi and j via the expression

t i j 52 ln~r !t0 exp~@« i1E•aui j /2#/kT!, ~4!

wherer is a random number uniformly distributed between
and 1,t0 is the minimum detrapping time,« i is the trap depth
~energy! of thestartingsite i, E is the applied field, andui j is
the unit vector linking sitesi and j. The combination of ex-
ponential detrapping times with the additional requiremen
single trap occupancy produces a Fermi-Dirac distribut
for the probability of a trap being occupied at equilibrium
a temperatureT ~see Fig. 1!.

In order for this algorithm to produce an equilibrium e
semble in the absence of an applied field, the condition
microscopic reversibility ~sometimes called detaile
balance27! must be obeyed. In our model the release r
from a site of energy« t is related to the capture rate by th
ratio exp(«t /kT) ~the probability of capture by an empty si

FIG. 1. Illustration of the trap-filling effect: probability that
trap of energy« is occupied in an MTRW simulation~solid circles!.
Site energies are distributed according to an exponential densi
states~solid line! with a50.3125@see Eqs.~7! and~8!#. The dashed
lines correspond to fittings to a Fermi-Dirac distribution,f («)
5$11exp@2(«2«F)/kT#%21 ~see Table I!. The calculations were
carried out for systems of ten particles in lattices of 18318318,
24324324 and 28328328 sites, respectively~from left to right!.
12532
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is 1 in our model! and this ensures that, at equilibrium, th
transition between states of the system occurs at the s
rate.

In contrast to the papers of Marshal25 and others, the
present model does not contain a tunneling factor and mo
is always between adjacent sites. These assumptions
been used successfully to model electron transport
TiO2

17,28 and appear reasonable also for charge transpo
polyethylene.29 For systems with a wide distribution of tra
energies, deep traps are in most cases surrounded by sh
traps so as to leave a deep trap that electron has to tu
through an energy barrier almost equal to the trap ene
~with respect to the conduction band!. For such cases, even
tunneling occurs, the present model will give the corre
qualitative behavior. Of course, neglect of tunneling will a
ways be a good approximation as the temperature
increased.30

Equation~4! resembles amultiple-trappingmechanism of
conduction:31 carriers have to surmount an activation barr
to escape from one trap and move to an adjacent one. T
the detrapping time does not depend on the difference
energies between two sites10 ~as in hopping models! but on
the activation energy of a single trap, i.e., a multiple-trapp
random walk~MTRW!. The logarithmic factor in Eq.~4!
represents the random dispersion of detrapping times w
respect to the mean detrapping time of the trap.25,32

As mentioned above, we aim to simulate conduction
the bulk and in the steady state. With this intent, we constr
a three-dimensional lattice of sites whose energies are a
cated by sampling the selected DOLS, and periodic bound
conditions are applied in all directions. During the simulati
process, any carrier crossing one of the boundaries in thx
direction ~the direction of the applied field! is reinjected
through the opposite side. The simulation is allowed to re
a stationary state~no variation with time of the current! and
the current and the mobility are obtained from the numbe
carriers moving forward per unit time. The calculation
then repeated for several realizations of the DOLS. The m
bilities are then extracted from

m5
J

erE
, ~5!

whereJ is the current density,e is the charge of the carriers
andr is their density. By using this expression we neglect
polarization and diffusion components of the current dens
~once the stationary state is reached there is no density
dient!. In the bulk calculation,J is obtained from counting
thenetnumber of carriers moving in the positivex direction
in a selectedtime window. The result is then averaged, onc
the stationary state is reached, over several time wind
~50, typically! and several realizations of the DOLS. Th
parametert0 @cf. Eq. ~4!# controls the time scale of the simu
lation. It corresponds to the inverse of the attempt-to-ju
frequencyv0 in Eq. ~1!.

C. One-particle simulations and finite-size effects

We have tested theMTRW code against the theoretical re
sult, Eq.~1!, which should hold for a one-particle simulatio

of
4-3
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JUAN A. ANTA, JENNY NELSON, AND N. QUIRKE PHYSICAL REVIEW B65 125324
with all sites having the same energy~single trap energy
case!. Results, in reduced units, are shown in Fig. 2. T
simulations were performed on a lattice of 28328328 sites
and spanned a total simulation time of 53106t, t being the
average detrapping time given by Eq.~4!. The time window
is set equal to 53104t. This is seen to be enough to extra
good statistics from the random-walk simulation. The resu
prove that the code properly describes the transport of ch
when this occurs by thermally activated detrapping.

We are also interested in proving that the code produ
true bulk, size-independent mobilities and conductivities.
order to demonstrate this and make contact with previ
papers on transient currents10,11,17,18we have prepared a ver
sion of the code where the calculation resembles a ‘‘time
flight’’ experiment. Thus, no periodic boundary conditio
are applied in the direction of the field. Carriers are int
duced through one border of the system~the injecting elec-
trode! and registered at the opposite end~the collecting elec-
trode!. The transient currents are then obtained as avera
over independent simulations~different realizations of the
DOLS!. In contrast to the bulk version of the code, the s
of the sample is limited by the distance between the injec
and the collecting electrodes. The mobilities are then ca
lated as

m5
l sample

t rE
, ~6!

where l sample is the width of the simulation cell~distance
between the injecting and the collecting electrodes! andt r is
the transient time, that is, the time needed for the carriers
travel the distance between the two electrodes, on avera26

With this ‘‘size-limited’’ version of the code, we hav
carried out one-particle MTRW simulations of transient c
rents through a system with a unique site energy, as ab
We considered several sample widths in thex direction~from

FIG. 2. Mobilities from Eq.~1! ~dashed line! and from MTRW
simulations in the bulk~circles! for different values of the trap
energy« and the electric field.
12532
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50 to 500 sites! and compared the results~see Fig. 3! with
bulk simulations for the same sample sizes. Our calculati
demonstrate that the mobilities drawn from the bulk simu
tion are independent of the size of the simulation cell in
x direction. That means, the bulk model corresponds to
infinite-width limit of the transient-current model. Or, i
other words, that the bulk version of the code provides t
local, size-independent, conducting properties. In a previ
paper33 this was achieved by making the system size in
field direction very large. In contrast, the application of p
riodic boundary conditions in the field direction for sma
samples leads to the same outcome. The present metho
lows the use of small system sizes to predict the bulk mo
ity of the carriers, which can be used subsequently in a
macroscopic calculations based on the continuity equatio15

or on the space-charge limited conduction model.8

In this paper we have considered, as a standard, a DO
of the exponential type. This has the general form

g~E!5
Nt

kT0
e2«/kT0, ~7!

where« is the activation energy~definite positive!, T0 is a
characteristic temperature that defines thedepthof the distri-
bution, andNt is the total density of traps (Nt51/a3). Using
this DOLS with Eq.~4! leads to a power law for the detrap
ping times where the governing parameter is17,26

a5
T

T0
. ~8!

FIG. 3. Mobilities from MTRW simulations of transients~black
circles! and in the bulk~open circles! transport model~see text! for
the case of one trap energy.K is the number of sites in the field
direction.
4-4
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CHARGE TRANSPORT MODEL FOR DISORDERED . . . PHYSICAL REVIEW B65 125324
D. Trap-filling effects

Our simulation method makes it possible to investig
the density dependence of the mobility for a fixed density
traps. The mobility is determined by the occupancy of
traps, which produces an enhancement of the net mobilit
the carriers when their number is increased.

To describe the effect of the occupancy of the traps on
conductivity, we start from a formula for the conductivity o
the Kubo-Greenwood type that relatess to the DOLSg(«),
the energy-dependent mobilitym~«!, and the probabilityf («)
of a trap of energy« being occupied,30

s5eE
0

`

g~«!m~«! f ~«!d«. ~9!

As shown in Eq.~2!, for thermally assisted transport,m is
expected to be of the formm5m0 exp(2«/kT). For the case
of a single site energy,g(«)5Ntd(«2«0), Eq. ~9! reduces
to

s5em0NtE
0

`

d~«2«0!e2«/kTf ~«!d«5em0e2«0 /kTr,

~10!

wherer is the number density of carriers andm0 is given by
Eq. ~3!. If we have a distribution of trap energies, as sho
in Fig. 1, the MTRW method reproduces a Fermi-Dirac fun
tion for the occupancy, i.e., f («)5$11exp@2(«
2«F)/kT#%21, with a well-definedquasi-Fermi level«F . We
rewrite Eq.~9! as

s5em0e2«F /kTE
0

`

g~«!F e2«/kT

e2«F /kT1e2«/kTGd« ~11!

and consider the particular case where the Fermi level
well below the conduction band, for which the term in brac
ets tends to 1, leaving

s5em0Nte
2«F /kT. ~12!

Due to the trap-filling effect, the quasi-Fermi level is
monotonically increasing function of the density of carrie
See, for instance, Fig. 1. In order to estimate quantitativ
this effect, we start with the definition of the carrier dens
in terms of the DOLS, and expand about«5«F after inte-
grating by parts~see Appendix A!,

r5E
0

`

g~«! f ~«!d«;E
«F

`

g~«!d«2~1/6!

3~pkBT!2d2H E
«

`

g~«!d«J Y d«2C
«5«F

1¯ . ~13a!

We now focus on the exponential DOLS of Eq.~7!. We have
then

r;E
«F

` Nt

kT0
e2«/kT0d«1~Nt/6!p2~T/T0!2 exp~2«F /kT0!

1¯ , ~13b!
12532
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which leads to fourth order ina to ~see Appendix A!,

«F52kT0 lnS r

Nt@11~pa!2/617~pa!4/360# D .

~13c!

By inserting Eq.~13c! in Eq. ~12! we obtain

s5em0Nte
2«F /kT

5em0NtS r

Nt@11~pa!2/617~pa!4/360# D
1/a

,

~13d!

which predicts a power-law dependence for the conductiv
on carrier density of exponent 1/a,a5T/T0 . For the expo-
nential DOLS, higher terms in Eq.~13b! do not change this
power-law form.

For smalla, or when the Fermi level is deep enough a
finite temperature, we will have

«F52kT0 lnS r

Nt
D ~14!

and

s5ercm05em0NtS r

Nt
D 1/a

~15!

with rc representing the average density of carriers in
conduction band.

In Table I and Figs. 1 and 4 we present results fro
MTRW simulations with an exponential DOLS at thre
different densities of carriers. All simulations were pe
formed with a fixed number of ten particles. The size
system isN3, with N set to 28, 24, and 18, respectively. Als
we introduce an energy cutoff of 0.8 eV in order to limit th
CPU time required to carry out the simulation. For the DO
and densities considered here the effect of the cutoff on
results is very small. The results were obtained after ave
ing over 50–100 realizations of the DOLS and with a tim
window of 0.01t, t being the maximum detrapping time fo
each realization. The applied field in all cases was
3105 V m21

As shown in Fig. 1, the simulation leads to a well-defin
Fermi level. In Table I we compare these Fermi energies w
the predictions of Eqs.~14! and~13c! and show that this las
equation reproduces the Fermi energies obtained in the s
lation to well within statistical errors, whereas Eq.~14! is
only partially fulfilled at the smallesta. The fact that«F
obeys a logarithmic law in all cases explains the power l
of exponent 1/a for the conductivity. We observe that Eq
~11! used with the trap occupancy distributions predicted
the simulation reproduces the conductivities yielded by
MTRW simulation. The approximations, Eqs.~13d! and~15!,
only match the simulation for progressively largera’s, for
which the Fermi level lies well below the conduction ban

We note that this description in terms of Fermi-Dirac s
tistics is not expected to be valid in the limit of strong r
combination, in which case the assumption of thermo
namic equilibrium between traps and conduction band bre
4-5
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TABLE I. Conductivities and Fermi levels for exponential DOLS as obtained from MTRW simulat
and theoretical predictions~see text!.

a Particles/sites r ~m23!

Log s ~V m!21 «F ~eV!

MTRW Eq. ~11! Eq. ~15! Eq. ~13d! MTRW Eq. ~14! Eq. ~13c!

10/283 5.6931022 21.30 21.36 20.33 20.99 0.259 0.199 0.237
1 10/243 9.0431022 21.06 21.13 20.13 20.78 0.245 0.187 0.225

10/183 2.1431023 20.65 20.70 0.25 20.41 0.219 0.165 0.203
10/283 5.6931022 23.97 23.90 23.67 24.04 0.425 0.397 0.417

0.5 10/243 9.0431022 23.62 23.67 23.27 23.64 0.398 0.374 0.394
10/183 2.1431023 22.85 22.94 22.52 22.84 0.355 0.329 0.349
10/283 5.6931022 27.61 27.88 27.77 27.91 0.648 0.637 0.646

0.3125 10/243 9.0431022 27.07 27.31 27.12 27.27 0.615 0.598 0.608
10/183 2.1431023 25.92 26.12 25.91 26.07 0.544 0.527 0.536
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down. In this section our objective is to demonstrate that
the cases studied, the simulation results can be describe
terms of Fermi-Dirac distributions and quasi-Fermi leve
The general simulation procedure is quite capable of desc
ing more complicated cases, such as those in which rec
bination is the determining factor.

III. APPLICATION TO SENSITIZED TiO 2

In this section we apply our method to the case of se
tized nanocrystalline TiO2 , which provides a model system
for the study of pure electron transport between traps. Th
is experimental evidence15,4,13,34,35that electron transport in
this system exhibits nonlinear behavior which is usually
plained in terms of trap-filling effects.

FIG. 4. Illustration of the trap-filing effect: the conductivity in
creases linearly or superlinearly with the density of carriers in
MTRW simulations. The plot is double logarithmic with the dash
lines corresponding to the predictions of Eq.~11!. Logs follows a
straight line of approximate slope 1/a, wherea is given by Eq.~8!.
Cases shown are fora51, 0.5, and 0.3125~from top to bottom!.
See Table I for details.
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Our results described above indicate that dispersive tra
port with trap filling leads to a conductivity that is nonline
with r, varying as

s}r1/a ~16!

in the special case of an exponential DOLS with charac
istic parametera. Although the dependence ofs on r is not
easy to observe experimentally, the dependence ofs on light
intensity can be readily measured. For sensitized nanoc
talline TiO2 , it has been found4 that the dc photoconductivity
has a power-law dependence with respect to the degre
illumination ~i.e., the volume photogeneration rateG! of the
form

s}Gb, ~17!

whereb is around 1.6.4,15 This could result from the depen
dence ofs on r, if certain assumptions are made about c
rier recombination~discussed below!.

To relate the density of carriers to the degree of illumin
tion, we assume that, in the stationary state, the volume p
togeneration rateG equals the recombination rateR. Thus,

G5R5r/t, ~18!

where t is the lifetime of the electrons that is, in genera
carrier density dependent. Equations~16!, ~17!, and~18! im-
ply that the lifetime obeys another power law with respect
the degree of illumination

t}G2g, ~19!

where

g512ab. ~20!

A power-law variation oft with G has been observed in bot
electrolyte-supported and dry TiO2 films14,15,36,37for which g
lies in the range 0.560.2. The exponent is a function of th
chemical environment and it is not known exactly howt
depends onG for the system of Ref. 4. For our current pu
pose we will assumeg50.5. Using a different dependenc
would change the shape of the DOLS needed to reprod
the experimental behavior, but it would not change the qu

e
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tative result, i.e., that trap filling can explain the superline
dependence of photoconductivity on light intensity.

Assuming g50.5 and b51.6, we geta50.31 as the
characteristic parameter of the exponential DOLS. This va
is in good agreement with that used to reproduce trans
experiments in TiO2 electrodes17 (a50.37) as well as with
recent studies16 on electron transport in nanoporous TiO2 . It
also implies that, according to Eq.~16!, the photoconductiv-
ity has an almostcubic dependence on the density; this is
strong evidence of trap filling.

We have simulated sensitized TiO2 at 300 K using the
MTRW code for several DOLS at three different steady-st
electron densities. These have been estimated from the
perimental degrees of illumination4 and the known behavio
of the lifetime vs the photogeneration rate~see Appendix B!.
We use an average distance between traps ofa520 Å, ex-
tracted from the quoted densities of traps on the surfac
the nanoparticulates38 and nanoparticle radius~about 10 nm!.
Also, we take the applied field to be 33105 V m21. This has
only a very small influence on the detrapping times as c
culated by Eq.~4!. We set the time-window to be 0.1t ~t is
the maximum detrapping time for each realization of t
DOLS!. The current density was obtained from averag
over 50 time-windows once the steady state for each rea
tion was achieved. Simulations were performed with ten p
ticles in all cases and a system size ofN3, N being 28, 24,
and 18 for the three densities studied, respectively. The t
scale was fixed by settingt055310213 s. This value has
been shown to be adequate to describe transient currents
the random-walk model in theabsence of recombination.17

Nevertheless, the choice oft0 does not affect the densit
dependence of the photoconductivity, rather it introduce
constant shift that can be corrected once more precise
for phonon frequencies in nanocrystal TiO2 are available.

We have used an exponential DOLS witha50.31. This is
a deep distribution, there is a non-negligible number of tr
with a high activation energy and very long residence tim
This requires a large time-window to correctly sample
DOLS. Nevertheless, traps with very long residence tim
are not likely to contribute to the conductivity as these tim
are longer than the lifetimes of the electrons in the mate
~see Appendix B!. In other words: electrons will recombin
long before they detrap to a neighboring trap. Based on t
we have introduced a cutoff of 1.0 eV in the DOLS. Th
cutoff will have an effect on the numerical results. The effe
is small at the densities considered here but could be larg
much lower densities.29 In the present paper the choice
cutoff is an integral part of the model. This keeps the co
putational cost within reasonable limits~around 12 h on a PC
of 400 MHz!. As it can be seen in Fig. 6, the conductivitie
still follow a power law, although the slope in the doubl
logarithmic plot is slightly larger than 1/a.

As an alternative to the exponential DOLS, we have tr
more realistic distributions based on spectroscopic and
sorption measurements. Go¨pel, Rocker, and Feierabend39

have performed an extensive study of the~110! surface of
rutile TiO2 ~the most stable surface of the rutile phase of t
oxide!. These authors report two kinds of surface intraba
defect states located at 0.32 and 0.51 eV below
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conduction-band edge, respectively. The former correspo
to oxygen vacancies in the oxide surface, whereas the se
are associated with the first ionization state of these vac
cies. Bearing this in mind, we have constructed a DO
where 0.32 eV traps are predominant, but where there
also a few 0.50-eV traps. This has been modeled by mean
Gaussians~see Fig. 5! centered at 0.32 and 0.5 eV, respe
tively, with widths s« and weightsA’s used as adjustable
parameters,

g~«!5A1 exp@2~«20.32!2/s«1
2 #

1A2 exp@2~«20.5!2/s«2
2 #. ~21!

In Fig. 6 the photoconductivities obtained for DOLS d
scribing sensitized TiO2 are plotted versus the light intensity
It can be seen that both an exponential DOLS and the G
sians for which the dispersion of values around the m
value for the deeper trap of 0.5 eV is 0.2 eV give the corr
slope with respect to the experiment. A smaller dispers
~i.e., 0.1 eV! does not lead to the correct slope for the Gau
ian model. This implies that it is the very small proportio
~1%! of deep traps that control the conductivity. In additio
for the t0 parameter chosen above, it is observed that
simulation provides photoconductivities of the order of t
experiment, provided the DOLS is composed of 97% traps
energy 0.3260.1 eV and 3% of 0.560.2 eV. Thus, it is the
parameters«2 ~tuning thetail of the DOLS! that determines
the slopein the conductivity-illumination curve whereas th

FIG. 5. DOLS used in this paper to describe electron transp
in sensitized TiO2 . The Gaussian distributions are obtained fro
Eq. ~21! with A150.99, A250.01, s«150.1 eV, ands«250.1 eV
for case~1!, A150.99, A250.01, s«150.01 eV, ands«250.2 eV
for case ~2! and A150.97, A250.03, s«150.1 eV, and s«2

50.2 eV for case~3!. To highlight the difference between all dis
tributions, only the region of very deep traps is shown in the figu
4-7
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parameterA2 ~giving the overallproportion of deep traps!
controls the magnitude of the photoconductivity.

IV. CONCLUSIONS

In this paper we have devised a simulation code base
a multiple-trapping model of charge transport, which c
predict local~or microscopic! conducting properties in disor
dered materials. We have tested the model against limi
cases~single trap energy and an exponential density
states! for which we have derived analytic results for co
ductivities and Fermi levels. The model and its correspo
ing code have been shown to reproduce truebulk conducting
properties and to demonstrate trap-filling effects, known
be relevant to many experimental systems. We have con
ered a very simple model mechanism of conduction that
volves thermal excitation from traps, with neglect of dire
tunneling from trap to trap or scattering processes in
conduction band. We show that this choice is plausible
systems with a large dispersion of trap energies. In addit
we have shown that the MTRW simulation in the steady s
obeys Fermi-Dirac statistics with a Fermi level that is
monotonically increasing function of the density of carrie

For TiO2 we have seen that it is possible to construc
reasonable DOLS that gives rise to the observed illumina
dependence of the photoconductivity. We have also pro
that it is the relatively small region of very deep traps th
control the magnitude and the slope of the conductivity–li
intensity curve. Thus, it is necessary to include in the mo
a sufficient amount of very deep traps to obtain an enhan
ment of the mobility at high injection levels. Clearly, mo
information about deep traps is vital if the model is to
improved.

FIG. 6. Photoconductivities vs illumination intensity in sen
tized TiO2 from MTRW simulations for the DOLS of Fig. 6. The
dashed lines correspond to linear fits of the simulation points.
perimental data are taken from Ref. 4.
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At present the simulation does not take into account
combination in an explicit way. Work is in progress to intr
duce recombination~and generation! explicitly in the code
and provide a fuller microscopic description of photocondu
tion.

ACKNOWLEDGMENTS

J.A.A. has been supported by Electricite´ de France. J.N.
acknowledges support from Greenpeace Environmental T
and EPSRC. N.Q. thanks EPSRC for computational facilit
awarded under Grant No. GR/M94427.

APPENDIX A: DERIVATION OF Eq. „13c…

We define the function

G~«!5E
0

«

g~«!d« ~A1!

and rewrite Eq.~13a! as

r5E
0

`

g~«! f ~«!d«5E
2`

`

f ~«!
dG

d«
d«, ~A2!

which can be integrated by parts to give

r5 f ~«!G~«!u2`
` 2E

2`

`

G~«!d f5G~`!2E
2`

`

G~«!d f .

~A3!

We now formulate a Taylor expansion ofG~«! about«F and
write

r5G~`!2G~«F!E
2`

`

d f1
dG

d«U
«F

E
2`

`

~«2«F!d f

1
1

2

d2G

d«2U
«F

E
2`

`

~«2«F!2d f1
1

3!

d3G

d«3U
«F

E
2`

`

~«

2«F!3d f1
1

4!

d4G

d«4U
«F

E
2`

`

~«2«F!4d f1¯ . ~A4!

Odd terms in («2«F) integrate to zero,

E
2`

` xn exp~x!

@11exp~x!#2 dx50 ~ for n odd!, ~A5!

whereas

E
2`

` x2 exp~x!

@11exp~x!#2 dx5p2/3,

E
2`

` x4 exp~x!

@11exp~x!#2 dx57p4/15, ~A6!

wherex5(«2«F)/kT. On the other hand,

-
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d2G

d«2 5
2NT

~kT0!2 exp~2«/kT0!,

d4G

d«4 5
2NT

~kT0!4 exp~2«/kT0!. ~A7!

By inserting Eqs.~A5!, ~A6!, and~A7! into Eq.~A4!, we get

r5E
«F

`

g~«!d«1NT

p2

6
a2 exp~2«F /kT0!

1NT

7p4

360
a4 exp~2«F /kT0!1¯

5NT exp~2«F /kT0!S 11
p2

6
a21

7p4

360
a41¯ D ,

~A8!

hence

«F52kT0 lnS r

N1@11~pa!2/617~pa!4/360#1¯

D .

~A9!

APPENDIX B: CALCULATION OF STEADY-STATE
ELECTRON DENSITIES

To obtain electron densities in TiO2 electrodes unde
steady-state illumination, we start from the following expre
sion for the volume generation rate

TABLE II. Volume generation rates, lifetimes and steady-st
electron densities for PbS-sensitized TiO2 1 mm films.

I ~mW/cm2! G ~m23 s21! Jph ~A m22! t ~s! r ~m23!

0.8 9.7931020 2.831025 59.76 5.8531022

2.0 2.4531021 7.031025 37.79 9.2531022

10.0 1.2231022 3.531024 16.90 2.0731023
k-

an

ys
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-

G5~12r !~12eaad!
I

Eph
d21, ~B1!

wherer is the fraction of light lost by scattering, reflection
and absorption in outer layers,aa is the light absorption
coefficient,I is the light intensity,Eph the energy of a photon
andd is the thickness of the film.

The average lifetime of the electrons is related to
photoinduced current density via15

t5t0 j ph
2g. ~B2!

The photoinduced current density is in turn related to
light intensity through the photoresponseP. This quantity is
defined by the ratio between current intensity and light
tensity, i.e.,

j ph5
PI

ld
, ~B3!

wherel is the separation of the electrodes. Once the lifeti
and the generation rate are known, the number density
electrons is obtained from Eq.~21!.

We have focused on the case studied in Ref. 4. In
paper, the photoconductivity of porous TiO2 films sensitized
with PbS is measured under several degrees of illumina
ranging from 0.8 to 10mW/cm2. The thickness of the films is
1 mm and a voltage of 100 V is applied between two ele
trodes separated 300mm. For these films, the photorespon
measured at 500 nm is 35310212 A W21 m2.

In order to obtain the volume generation rate from E
~B1! we need to know the absorption coefficient of Pb
sensitized TiO2 at 500 nm and the fractionR. We have taken
aa57.23104 m21 from a comparison of data in Ref. 4 wit
the measured absorption coefficient of unsensitized TiO2 and
r 50.3.40 The volume generation rates obtained from the
data are shown in Table II.
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