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We have derived general boundary conditi¢BE’s) for the multiband envelope functiorfgshich do not
contain spurious solutionsn semiconductor heterostructures with abrupt heterointerfaces. These BC require
the conservation of the probability flux density normal to the interface and guarantee that the multiband
Hamiltonian be self-adjoint. The BC are energy independent and are characteristic properties of the interface.
Calculations have been performed of the effect of the general BC on the electron energy levels in a potential
well with infinite potential barriers using a coupled two band model. The connection with other approaches to
determining BC for the envelope function and to the spurious solution problem in the mulklgantbdel are
discussed.

DOI: 10.1103/PhysRevB.65.125302 PACS nuntder73.21—b, 73.20-r, 02.30.Nw

[. INTRODUCTION erostructures break the periodicity of the crystal poteritfal.
The nonperiodic part of the potential varies rapidly in an

It is impossible to overestimate the role of the multibandinterface region of siza~ag. This may lead to such inter-
effective mass approximatiofMEMA), which consists of face effects as the admixture of remote band statesipling
the multibandk-p method together with the envelope func- of states with different symmetry,® and the formation of
tion approximatio(EFA), in the simulation of electronic and Surface localized statésMoreover, Bloch functions in dis-
optical devices formed from various semiconductor heteroSimilar materials can be significantly differérind do not
structures, such as those with type-1 and -1l heterointerface§Ven exist in the boundary regiotIn light of the great
quantum well structures and superlattices, and one and zerg¥ccess of the MEMA, it is important to develop an adequate
dimensional semiconductor structures such as quantum wird$scription of semiconductor heterostructures with abrupt
and quantum dots. The calculations of energy bands anfoundaries using the MEMA to describe each material in the
wave functions in such structures have often been considerdifterostructure. Laikhtmafhas shown that this is possible
as only being a matter of “energy band engineering” or for heterostructures with a characteristic lengtha, pro-
“wave function engineering.” However, although such cal- Vided that the boundaries are treated appropriately. The prob-
culations successfully describe many heterostructtses, €M iS then focused on the appropriate choice of boundary
for example, Ref. )} a general theoretical description of conditions(BC) for piece-wise defined envelope functions in
structures with abrupt interfaces has yet to be developed. these heterostructures. _ _

The MEMA gives an accurate description of the energy Conservation of the current normal to the interface is an
band structure of bulk semiconductors near the extrema dfPvious requirement dictated by conservation of probability
the first Brillouin zone. In this approach the carrier wavedensity. In the EFA this condition reduces to the continuity
functions are expanded in the band edge Bloch functiongcross the interface of the normal componenlt of the probabil-
near an extremum with “envelope function” coefficients, or ity flux densityJ, averaged over the unit céff™* In a hetero-
components, that are required to vary slowly over a distancgtructure formed of semiconductors with parabolic bands,
on the scale of the unit ceiy. The bulk MEMA Hamil- ~ Which can be described by a single band effective mass ap-
tonian contains such parameters as band edge energies, intefoximation (EMA) (the simplest MEMA, this condition
band momentum matrix elements and carrier effectivec@n be expressed as the continuity across the interface of
masses. These material parameters are determined by fitting
to independent experimental data or are obtained from first
principles calculations. The MEMA is certainly appropriate
for calculating the spectrum and carrier wave functions in the
presence of any slowly varying potentfal. where7 is a unit vector directed normal to the interfaoeis

However, abrupt heterointerfaces in semiconductor hetthe effective mass, arfds the single band envelope function

J =

] — *x £/ __ fr%
= T (PR =1, ey
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and the prime denotes the derivative alandhe continuity ~ side of the heterointerface. The general consideration of the

of Eq. (1) is satisfied if 8X8 band model based on the symmetrical properties of the
planar heterointerfatthas allowed us to gain important in-

g iz ﬂ @ formation about the elements of the transfer matrices. How-

T me my ever, the BC introduced in Ref. 11 may lead to an energy

o o ) dependent connection between the componentt ahdV .
where the indices andl refer to a point just to the right and 4, the left and right sides of the heterointerface and, there-
just to the left, respectively, of the interface. These BC, ex{gre, do not generally satisfy the requirement that the MEMA
pressing the separate continuity of the envelope function andgmiitonian be self-adjoint.
the normal envelope velocity,'/m, first suggested in Refs.  The MEMA that take band coupling into account have a
12,13, are referred to as “conventional” BC. However, thesjgnjficant theoretical problem when describing various
con\f‘entlonal BC of Eq(2) were recognized almost 20 years semiconductor heterostructures. The full expansion of the
agd“to be a special case of more general BC that conservR-pand envelope function in thd independent plane wave
J. across the interface.** -/ solutions of the bulk Hamiltonian corresponding to the same

energye includes solutions with a very large wave vector
fr T fi def T = tustprtustpr— 1 lying outside the first Brillouin zon&?® Such “wing”
fiim,) U\ f/m)’ R (evanescent® or “spurious” (oscillatory?® solutions must
3 be rejected in the perturbatidap theory; in the bulk they
_ are rejected as being unphysical solutiéhg® However,
where the elements; of the transfer matrixf,, are charac-  {nejr elimination from the multiband envelope function for
teristic of the interfacE”® and as seen from a more general heterostructurdd3-28 eads to additional complications in
derivation of Eq.(3),'!" based on the requirement for the the analysis of the BC. For example, the continuity ofNll
EMA Hamiltonian to be self-adjoint, do not depend on the  components of this truncated envelope function cannot be
particular states and are energy independent. For exampleagisfied if the interband matrix elements of the momentum
first principle calculations performed for GaAs(8a,_ AS  gperatorp are not continuous across the interfatelhe
heterostructurés show that the off diagonal elements,  same problem remains for the alternative approach, based on
[which was shown to be always proportional to the Sma”modifying the MEMA Hamiltonian by discarding those
parametes/L (Ref. 10] andt,; are negligible for this inter-  tarms responsible for the lardesolutions?>26:3233The use

face. In this case the BC can be written in the form of different BC for the conduction and valence band states
(see, for example, Ref. 32automatically results in the de-
o o ff f pendence of the BC og, and is justified only if band cou-
mef =m'f,, me 1 = met L (4) pling in the MEMA Hamiltonian and bands nonparabolicity
r

can be neglected.
similar to the general BC first suggested in Ref. 19. In gen- In our paper we consider the boundary condition problem
eral the parameterg and the off diagonal elemety; (which within the MEMA for heterostructures with abrupt bound-
may be nonzero for other heterostructdfestrongly effect —aries. We show that the most general requirement for the
the penetration of the wave function into the barrier and theMEMA Hamiltonian to be self-adjoint implies continuity at
energy spectra in quantum well®W'’s). For example, this the interface of the normal component of the envelope flux
has been demonstrated in Ref. 21 by analyzing the experilensity vectorJ*?. Here the indicese and B denote, in
mental data for the exciton optical spectra in narrow GaAsfeneral, two arbitrarily chosen envelope functiokg and
AlGaAs and InGaAs/InP QW's using the EMA with modi- W, respectively. This allows us to formulate general BC
fied BC similar to those given by Ed4). However, the using a newenergy and state independemansfer matrix
parabolic band approximation has a very narrow range o€onnecting the components of the envelope functions and
applicability and appropriate BC for the MEMA need to be their normal velocities on each side of the interface. It also
developed for describing experimental data. allows us to find a general way of eliminating the lafge-
For the multiband analysis of heterostructures, a naturadolutions because these solutions make only a smadpor-
extension of the conventional BC of E@) is the continuity  tional toa/L) contribution to the envelope flux density. This
of each component of the-component envelope functioh procedure does not depend on the particular nature of the
and of each component of the normal envelope velogjtpt  largek solutions(which we shall hereafter call spuriguand
each interfacé?~** Taken together, these BC preserve thecan be applied to boundaries with either finite or infinite
normal component of the envelope flux densltyaveraged potential barriers. The elements of these transfer matrices
over a unit cell. The most general derivation of these BCcan be considered as characteristic surface or interface pa-
suggested by Baraff and Gershéhis based on the require- rameters and are additional to the bulk energy band param-
ment for the MEMA Hamiltonian to be self-adjoint. A gen- eters in the multiban#-p approximation.
eral form of the BC within the MEMA for the planar hetero-  The paper is organized as follows. In Sec. Il we derive the
structures was suggested by Kisinal 1! Those authors start general form of BC for the multiband envelope function, that
from the conservation o, at the interface, and introduce a follows from the condition that the MEMA Hamiltonian be
transfer matrix connecting the components of the multibandelf-adjoint. In Sec. Il we derive a truncated form of general
envelope functiot and its normal derivativel” on each  BC for slowly varying envelope functions which do not al-
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low spurious solutions. To clarify the general procedure, wdf a/L is small, the contribution from the boundary regions
first consider, in detail, the two band Kane model. Section IVcan be neglected. Therefore, Ed), within the accuracy of
gives analytical and numerical examples of the effect of thehe MEMA, is replaced byd/dt(¥,¥)=0, whereV is the
general BC on the quantum size energy levels in dots witltorresponding envelope function satisfying the BC and the
infinite potential barriers. In Sec. V we discuss our resultsnner product is now defined as
and compare them with those of other approaches to the BC
g:gksjtkram within the MEMA and othek-p theories for het- <‘Pa,‘1'5>=2 f d3r(\IfJa,\IfJB),
uctures. T JR

Il. GENERAL FORM OF MULTIBAND BOUNDARY N

CONDITIONS IN HETEROSTRUCTURES (W, "I"ﬁ):n; VW en ®
WITH ABRUPT BOUNDARIES

Th|s implies, in turn, that the heterostructure MEMA Hamil-

(fonlanH Riforre R;, acting onW has to be a self-adjoint

operator Therefore for any two arbitrarily chosen functions

¥, and¥,, the condition

Let us consider a semiconductor heterostructure made
M arbitrary shaped semiconductor layers with a characteris-
tic length L. Single-electron wave function®(r) in these
structures are solutions of the Sctirmger equation with the
_rprilc;roscopic_: H_arr:iltoniar'lf-lﬂn'iCr gontaining a crystal potential: <|:|‘1’a W) =(V, J:“I’,B> (9)

is potential is “periodic” inside each of the bulklike semi-
conductor layers, but it varies rapidly in the boundary re-must be satisfied if the same BC is imposediopas well as
gions with width a~a,. Assuming thata/L is small, we onW¥ (see, for example, Ref. 34The MEMA Hamiltonians
neglect the exact behavior df(r) in the boundary regions Hi, when defined for the ideally infinite homogenous bulk
and expandP!=®d(r e R, ;) in the bulklike interior regiorR; semiconductor, are self-adjoint, but when one adds the
of thejth layer in the Bloch functions! nko; at a critical point  abrupt boundaries, the condition of E(@) may be violated

Koj of the bulk energy band structure for the material in thatby boundary terms. The requirement farto be self-adjoint

layer: limits the choice of the boundary conditions that may occur,
but there is an ample variety of BC that satisfy it. We shall
see that any self-adjoint MEMA Hamiltonian preserves the

®l(r)= 2 v (r)unko j=12,... M, (5  normal component of the envelope flux density for an arbi-

trary state of the system.

whereN; is the number of bands that describe the band-edge The MEMA Hamiltonians for thé\; component envelope

bulk properues of the material in thgh layer, andVl is the  wave functions have terms of first and second ordét:in

number of layers. The symmetry of the material and the

number of bands can be different in each region. The HI=Cl+#Blk,+#4%D) k.k,, (10)

component envelope functio!(r)={¥} (r)} , is slowly

varying in the bulklike regiom € R;, where it satisfies the

k+p Schralinger equation

where CJ, eachBL (k=x,y,2) and DW (m,v=x,y,2) are
Hermitian N; X N; tensors of rank 0, 1, and 2, respectively.
They contain the energy band parameters for the material in
R; and are defined only in these bulk-like regions. Using Eq.

(10) we can write a velocity operat=V' for r € R; which

TheN; X N; HamiltoniansH! are obtained after averaging of acts on the heterostructure envelope functions

the perturbed microscopic Hamiltoniaty,.(p+7%Kk) over a 1 Q] Dk Kk
unit cell in each bulklike regidhand includes terms up to the /) =Bl4p L2 EY (11

vi==

second order in the wave vector operator —iV. The hook ok

boundary regions, however, are excluded from the averaging general envelope flux density matrix can be written

procedure, and the parameters of the resulting heterostructure L

MEMA HamiltoniansH' may have abrupt jumps from one aB(py— — 9 9 )

layer to another. / PrIEP =3[V VI TV Wp)l TER;, (12
In what follows we study in detail the boundary condi-

i i i i
tions imposed on the wave functiong(r)=¥!(r) for r —\I’a(l’eR) \If —W (r<R,) of the Schidinger equation

eR; at the interfaces. The microscopic Hamlltomlsllr,h,Cr E
g.(6), deflned |n each bulklike region, with energiesand
actlng ond(r) is a self-adjoint operatdf This is equivalent ¢, respectively. Noting that

to the conservation of charge in the full heterostructure re-
gion Q:

HI(K)Wi(r)=eWi(r), reR;. (6)

where ¥, and \Ifﬁ are two arbitrarily chosen soluuon]rJ

divd®A(r)=— %[(R%,\?xpﬁ)—(qfa,lz-\‘/qfﬁ)

d
3 2_
dJQd r|®|2=0. )

—(VV, kW) +(k-V¥,, V)], reR;,
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and using Eqgs(10),(11) we arrive at the identity wherely is theN X N unit matrix and the dagger denotes the
Hermitian conjugate. Thereford,y must be state indepen-
dent and characteristic only of the interface. For the conven-
tional BC, ¥ =¥,V =V_, the transfer matrix reduces
(13)  to the unit matrix,Ton=12y .

Thus, for the MEMA HamiltoniarH to be self-adjoint with In th_e pur.eAKane models ©,,,=0 andH»orJIy contains
BC imposed on¥,, and ¥ 4, Eq. (9) requires terms linear ink) the N components oV .= 7-BW¥ depend

linearly on theN components ofP. In this case, the general
BC can be written

. . h
(P, HYp)—(HY,,, ¥ p)= T divd*A(r), reR;.

> f d®r-divdeP=2, J ds;-3®=0, (14
IR IR vE=TyW~, TIB/Ty=B;. (19
whereds; is an element of the surface boundiRg. Noting
that Eq.(14) holds for arbitrary surface shape, we find that
local continuity of the normal envelope flux density matrix
across each interface must hold:

HereB.=7-B andTy is anNXx N state independent transfer

matrix. One can see that B, #B_ , the transfer matrix

cannot be the unit matrixy. The number of independent

equations in Eq(18) is determined by the rank of the matri-

. 1 cesB, and can be less thax.
Jgﬂ: T.\]aﬁzz[(\lfa,;.\A/\IIB)—F(;.\A/\IIQ W 5)]=const. The elements of the state independent transfer matrix may
depend on such properties of the heterojunction as band off-

(19 sets and surface crystal symmetry due to, e.g., its reconstruc-

Equation(15) is a generalization of the normal flux density tions. Additional restrictions on the components of the trans-

conservation lawJ,=J*=const, that is often used as the fér matrix can be obtained from symmetry consideration of

starting point for deriving B&:* The conditionJi‘B=const the bulk and surfac_e properti‘é_§ in particular cases. For

is a very general and strong requirement on the envebpgeterostructures which geometrical shape has some elements

functions at each point of the interface. For an unpenetrat?f SYmmetry one can expect the boundary parameters to be

able interface, or a semiconductor/vacuum surface it reducd8€ Same at the symmetrical points of the interface. For ex-

to Jf'8=0. We will consider this case only in Sec. IV, and ample, in a QW the parameters of the transfer matrix are the

shall assume, for now, thdf;ﬁ#O at the semicondutor het- S ¢ along the plane, and in the spherically _shaped hetero-
erointerface. structure, the parameters of the transfer matrix are the same

The condition of Eq(15) must be fulfilled independently anywhere on the surface.
of whether the number of the envelope function components
on the two sides of interface is the same. For clarity in the
following we will only consider heterostructures formed of
semiconductors whose energy band structures are described

by multiband Hamiltonian$i! of same symmetry and with Consider a heterostructure with a single heterointerface
N;=N in each region. For the more general case, a morélescribed by a piece-wisdxN Hamiltonian of Eq.(10),
complicated procedure similar to that suggested in Ref. 1@nd with nonzero energy dispersion matrig,. The en-

is needed. The appropriate number of boundary conditiongelope functions can be expanded in a complete se\l of
depends on the number of independent components gflane wave eigenfunctionsl;(k;), of the NXN MEMA

the envelope functiont? and normal envelope velocity,  Hamiltonian

=7-VWV. If all the components oft andV,, are linearly N

independent on each side of the interface, the most general

BC one can impose on the envelope functions are of the form V= ;1 CiWiki), (19

IIl. ELIMINATION OF SPURIOUS SOLUTIONS
FROM MULTIBAND k -p MODEL:
TRUNCATED BOUNDARY CONDITIONS

v v where theN values ofki2 are the roots of the bulk energy
v+ =Ton v’ (16) dispersion equation dét (k) —e]=0, andC; are numerical
7 7 coefficients. The set of @ boundary condition equation in
where the indices " and “ +" refer to neighboring points Eq. (17) can be solved only if the expansion in E@d.9),
on neighboring bounding surfac&s andS; , ;, respectively, for both sides of the interface, includes &llof the plane
andT,y is the 2N X 2N transfer matrix. In the BC described wave eigenfunctions. If any, sam roots |ki| (i=N—m
by Eq. (16) the material parameters of the MEMA Hamil- +1,...N) lie outside the first Brillouin zone, the corre-
tonian are included in the vectors of the normal envelopeponding spurious solutions must be excluded from the wave
velocity. Equation(15) is satisfied for all arbitrarily chosesa  function. In this case, i components of the envelope wave
and g if and only if the BC of Eq.(16) are imposed on all function and their velocities are linearly dependent on the
WV, as well as on all ; with the sameT ,y and other components, and only I8 m) independent BC can
be imposed on the truncated functigh=="""C;¥;(k;). In
Tt ( 0 In Ton= 0 Iy 17) this section we suggest an approximate procedure which al-
MNl—y 0 2N -1y 0/’ lows us to derive a truncated set of general BC that must be
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imposed on the envelope function in order to satigfy’ ~ wave function component¥;, ¥, and two normal velocity

= const. For the sake of clarity, we first consider a two bandcomponents/y,Vy, . In order to solve them, the envelope

model N=2, m=1) and a planar heterointerface. We thenfunction of a state with energy is written as a linear super-

generalize it to arbitraryN andm and an arbitrarily shaped Position of two plane wave eigenfunctions of the Hamil-

heterointerface. tonian, Eq.(20): ¥=C,W¥,(ky) +C,W,(k;), wherek] , are
The Hamiltonian of the two band Kane model is written the solutions of the bulk energy dispersion equation

<5 2P,\ h2k2 ﬁ2k2 2k2
A E. O A A 52 acks |7kz (2—mOaC+EC—8)(2—mOa’U—Ev+8 +2—mOEp=O. (29
:<0 g, | THe He=om, op '
v O itk —ak? Generally we are only interested in states whose energy is
o o either on the order of or smaller than the semiconductor en-

(200 ergy gap. Using the conditiok, /| et |>Eg, |6 —Eql.|&

wherek,= —id/dz is the wave vector along the normal to — E,|, we find for the two roots of the dispersion equation

the interface,m, is the free electron mas#®, is the Kane

interband matrix elementy; and «, describe the contribu- 222 2(e—E,)(e—Eg)Mo fi2K2~ — 2Epm0_
tion of the remote bands to the electram, and holem, Y o(e—Eyact(Ec—e)a, +Ep’ aca,
effective masses, respectively, and the distance between the (25)

bottom of conduction bané&. and the top of the valence
bandE, is the energy gaf,=E.—E,. The band edge ef-
fective masses can be written &%/m,=a¢,+E,/E,.
Here Ep=2P2/mo is the Kane energy which also character-
izes the nonparabolicity of the electron and hole bulk energ
spectra. Although this two band model completely neglect;

For typical values of the bulk energy band parameters, the
second wave vectdk,|~1 A~ lies beyond the first Bril-
louin zone in which the MEMA is valid. The corresponding
eigenvectory,(k,) is a spurious solutiofeither evanescent

r propagating, depending on the sign of the product
aca,)?’] and must be excluded from the expansion of the
otal wave function. The continuity of the normal flux den-
Igity, Eqg.(21), is now limited to slowly varying functions of
ki, W=",(k;) and ®=d,(k,), and leads toJ}7{(z)
=J3"1%1(z):

spin-orbit interactions, it describes the electron and light hol
band coupling in real semiconductors and is often used i
one dimensional heterojunctidisand spherical dot&:2%3¢
For most semiconductorsg.|~|a,|~1 (they can be either
positive or negativeandE,~20+5 eV. In the “pure” Kane

modela.= a,=0.

For a planar heterointerface, the general normal flux den- VP, E % ep—E, Ec—ey
sity continuity condition, Eq(15), takes the form I (@)= mg Ve ®,|1+a; Ep tay Ep
v O 1 h? 2 2
J; (2)=5[(¥,Vg)+ (Vg ,P)]=const, (21 +aca,5——[ki(eg) +Ki(ey)]
4 2 2moE,
where¥ and® are two arbitrary chosen eigenfunctions of . ey—E, Ec—eo
the Hamiltonian in Eq(20), V4=V, ¥ andV4=V,® are ¥ Q| 1t ac E, tay E,
the respective normal velocities calculated with the two band 42
Kane model velocity operator, +aca, T()Ep[ki(%) +I3(eg)]
A P
5 ack, i W =const. (26)
VZ:m_O P | (22 Hereey andegq are the energies of the states described by
L a,k, the two component envelope function¥(k)=[WV,
=Wo(ky), ¥, =¥, (k)] and @,(ky)=[Dc=Dc(ky), P,
The general BC, Eq$16),(17), now reduce to =&, (kq)], respectively. The two components of the normal
A velocitiesVy. (Voc) andVy, (Vg,) are expressed through
pr P! . 0 I, 0 1, the wave function components, (®.) andV¥, (®,). Since
iV =Ty iv! | To 1. 0 Ty= ool the envelope function¥ and® are now truncated, the nor-
v v 2 2 23 mal velocity and envelope function components are no

longer linearly independent. Therefore, the E26) cannot
whereT;, is an energy independen4 transfer matrix, and be fulfilled if a.«,#0. [For the caser.«,=0 the spurious

r (I) refers to a point to the rightleft) side of the planar solutionk, does not arise, andr, is then the full solution of
interface. The conventional BCK' =W' andV},=V\,) are  the Hamiltonian(20)]. However we shall see below that we
described by the unite transfer matfix=1,. In the general can impose an alternative set of the state independent BC
case,aqa,#0, the BC of Eq.(23) represent four linear in- that retain the continuity of the normal flux densityy for
dependent equations for twioonduction and valence band truncated wave functions within an accuracy consistent with
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the MEMA. We consider 571 that differs fromJ. ; of Eq. To generalize this procedure and derive general BC for
(26) only by the terms}Z;a o which are émall'}z truncated slowly varying envelope functions for heterostruc-
c*v "

_ _ _ 2 2 . tures described by aN X N Hamiltonian havingn spurious
acay(2—Eq) (e .E”)/Ep (ki /kz)". A typlcal_ valye of solutions, it is important to trace from where these solutions
the momentumk, in a heterostructure with size is k; . S .
o T2 arise. Examining Eq417),(25) (and also see Ref. 11 which
fllL. Substituting the value df from Eq.(22) into y we ~ describes spurious solutions in th&® mode) we find that
find that yz_f(aolL)2<1. We can write then the approxi- the spurious solutionkk;| (i=N—m-+1, ... N) of the dis-
mate condition persion equations for the Hamiltonian of E¢0) are propor-

tional to the large components of the matrid@sand in-
versely proportional to the square root of the product of the
tensorD,, conduction and valence band components. For
the sake of definitenesé et us assume that the matricBs
contain the submatriceB’=B”/y of rank 2m, where y
~ag/L is a dimensionless small parameter responsible for
=const, (27)  the spurious solutions. For example, in the two band model

considered above the normal componBiit= 7-B” is

Ec—ew

\I}:q)l) v E

1+«

ep— E
1+, q)E U)
p

~ iP
@)= —
1 Mg b

Sq;_EU EC_S(I)
—‘If*q)(l-l-a )(l-l—a
v C C Ep v Ep

which is fulfilled exactly if the envelope functiong and®

satisfy the truncated set of BC: ar_ in /[ 0 1 3 h ag 30
Er_g |_8 7'_rnOI- -1 0 ’ 7 PL L ( )
c I | Ec
Vel 1+a, Vel 1+a,—; We can write the velocity operator of E€L1) as
p = Ep
= ltr J 1

e—E' o—E! o= tariy

P”I’L(l"'a’(r: : v) P“I’L(l-l—alc = U) V= yBy+V0, (3D
p p

(28 and write the truncated slowly varying envelope function as

_ the superposition of two linearly independent orthogonal
where the components of the~<2 transfer matrixT,, are real  \yayve functions¥ =W, +W¥,, such that the & component
and state independent and[dgt]=1. One can see that the function¥; andn=N—2m component functionV, satisfy
connection between the left and right hand side componentge condition
of ¥, andW¥, has now energy dependent coefficients. This is
a consequence of the linear dependence of the components of BW,#0, B!¥,=0. (32
the truncated wave function and its normal velocity on the ) A~
same side of the interface. However, the new energy inde-urthermore, we can write the functianVoW =V, +V, as
pendent transfer matriX,, is still characteristic of the inter- superposition of a & component functiol; and am com-

ponent functionV, belonging to the same subspaces as the
face only. The truncated general BC of E&8) no longer functions W, and W, respectively, ie.. ¥,.V.)

allow the simultaneous continuity of the both envelope func- N ; o

tion componentd .(k;) and¥ ,(k,) at the interface. For the =(¥,,V))=0. Note that¥’, is absent §=0) in the wo )
X i ~ band model;¥, is the total slowly varying envelope func

case where the off diagonal matrix elementsTgfare neg- .. A ~ . .

o ~ - tion andV,=Vy¥, [V, is the diagonal part of the velocity

ligibly small, t;,~1,;~0, the general BC reduce to operator in Eq(22)]. However, the function¥; andV, do

not coincide with7- V¥, and7- VW, respectively, for the

E —
P 1+a, C—S)\Ifczconst, general case#0. The flux density continuity of Eq(15)
Ep can now be written as
e— J*P=J28+ 3*8=const, 33
pl-el 1+ aCE—”)\va:const, (29) oot T2 33
p

1
which is similar to the BC of Eq(4) for heterostructures Ji’f:;(‘l’la,BZ‘I’mH S[(W1a,Vip)+(Via, Wap)],
with parabolic bands. (34)
Equations (28),(29) are general BC for the truncated
smooth wave functions in semiconductor heterostructures 1
with nonzeroa.a, . These BC do not depend on the sign of Jib= 51 (W2a,Vap) +(Vau , Wap) |- (39
aca, (i.e., whether the spurious solution is evanescent or
propagating They are also valid for any Kane model with Neglecting terms of second order i Eq. (34) can be ex-
aca,=0, in which Egs.(21),(26) are satisfied exactly. The pressed
boundary condition Eq29) was first discussed in Ref. 3 for 1
the “pure” Kane model witha.=«,=0; also the model SaB_ T T Vi 5 Y ay-1
with a,=0,a,#0 was considered in Ref. 33. Jfll_y(\Pla’BT\Pw) Vi=Wit3Br Vi, (36
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whereV, is, to this order, included inP,. Equations(34)
and Eq.(36) are the multiband extension of Eq®&6) and
(27) obtained for the two band model. The vector

{¥,,%,,V,} has in total 2n+2n=2(N—m) independent

components and the general boundary condition satisfying

PHYSICAL REVIEW B 65 125302

wave function at the barrier surface, but this requirement has
never been justifiedsee, for example, Ref. 39In general,

the self-adjointness of the MEMA Hamiltonian requires van-
ishing of the normal flux density at the boundaries

J*P(z=+1L70)=0, (39

J2P~J32F="328+ 3% f=const can be written as
where 4 is the thickness of the quantum well. If we assume

q,1+ \Trl‘ that the two interfaces are completely identical, the quantum
N _ Tom Ti2 well possesses reflection symmetry abpat0 and all solu-

Yo | =Toq-m| Y2 |+ Ton-m= o1 Ton) tions of the Schidinger equation are characterized by their

iV, iV, parity according to whether their components are even or

odd under reflection. However, the BC are local characteris-
tics of each interface. Therefore, the E§9) must be ful-
filled at each interface independent of the symmetry of the

(37)

We shall neglect the off diagonal matrices, i.e., 3gb
=T,,=0 (thus satisfying the stronger condition that both functions¥ . andw
a B

J;#= const and)3” = const) and obtain the following restric-  Now we consider the effect of the general BC for the case
tions on the elements of the energy independent transfer magf the two band Kane model. In order to satisfy E89) in a
trices Toy, and Ty quantum well with symmetric interfaces, one can write the
general BC for the conductio¥ . and valence bandV,

T EBJ’ szZEBy 1 components of the envelope wave functiomhich do not
My ™7 5+0 y 7 5-0 contain spurious solutionsis
-E
I 2n 0 Iz \p(+|_—o)<1_ bl
TS Ton= : 38 cl=h @
2”<—I2n 0) o (—IZn 0 9 &
e—E,
Equations(37) and (38) represent 2{{—m) boundary =¥0OV, (xLF0)| 1+ a, = ) (40
p

condition equation for the truncated envelope wave function.
These general BC do not allow the continuity of all envelopewhere® is a real number and the sign difference is due to
function components at the interfaceBf/y is not contin-  the opposite parity of the conduction and valence band com-
ues. While the elements df,,, and T,, are state indepen- ponents of the envelope functions. The surface paraneter
dent, the functiorﬁfl may be related toV; by the energy does not depend on the energy or symmetry of either state.
dependent expression. Equation(40) can be derived directly from the general BC of
This procedure can be directly applied to heterostructureEq. (28) obtained in Sec. Il for the case of a finite potential
described by the 88 Pidgeon and Brown Hamiltonia. barrier. To do this one has to assume tiat0 outside the
The bulk energy dispersion equations for this Hamiltonianquantum well and use the state independent transfer matrices
has eight solutionki2 (taking spin degeneracy into accoynt T';; , forz=L-0, and'NI'{r , for z=—L+0 interfaces, which
for each energy; two of these are spurious, and propor- differ only by the sign(opposite of the offdiagonal matrix

tional to the large interband Kane matrix eleméhtsee, glements and satisfy the condition [d&f |=def T, ]=0.
for example, Ref. 11l In the case of zero spin-orbit interac-  Neglectingy?~ (a,/L)? terms, Eq(40) can be written as

tion, ¥, must include coupled electron and light hole bandyyg separate equations for the conduction and valence band
envelope functions, whilé, includes the heavy hole band components, respectively,

envelope functions only. For planar heterostructures Egs.

(37),(38) take into account the mixing of light and heavy o 3
holes for the states with finite in-plane momentum. However¥ (L +0)=* Tcaom‘l’é( *L+0), Teap=055,
they neglect the effect of the “low interface symmetfyhat ore (41)
mixes light and heavy hole plane waves normally incident on
the interface(because we assume th@j,=T,;=0). The 0
detailed application of our procedure to the® models for VY, (xLF0)=*T,a5—==¥,(£LF0),
planar and spherical heterostructures will be presented else- m, (En)
where.
1%
Tvao—6 ﬁ (42

IV. ONE-DIMENSIONAL QUANTUM WELL WITH

INFINITE POTENTIAL BARRIERS Here the energy-dependent effective masses in the conduc-

Let us consider an effect of the general BC on the energOn a@nd valence bands are given by

spectrum of a one-dimensional quantum well having infinite £
potential barriers. The conventional BC for structures with =+ P =
an impenetrable barrier require vanishing of the envelope Mc(Ee) EetEy" m,(Ep)

my Ep

0
+
" EptEy’

(43

o

125302-7



RODINA, ALEKSEEV, EFROS, ROSEN, AND MEYER PHYSICAL REVIEW B5 125302

where the electrork., and holeE,, energies are measured L(A)
from the bottor_n of conduction and the top of the valence 50 32 24 20 18 16 14 12
bands, respectivelyfE,=e—E. andE,=E,—¢. The even, 2.0 @ 7
(+), and odd,—), solutions to Egs(38),(39) can be written m=0.1m
. . _ o 15t E=1.7eV -
W e)(2) = Acr)C0L d¢1)2),  V(1)(2) = Ac)SIN P 2), g ‘ / el
(44)

whereA. , are the normalization constants. We can derive
equations for the energies of the even and odd electron and
hole quantum size levels:

(b)
m=0.1m, » \
1.51 E=1.76V E

. RA(¢5)? mg Ee
Ee = 2 |1t
2meL? mq(ES) b

E=17.08V e
o =0 =0 T e

h2 *\2 Et
+ (¢v) mO ( )' (45)

E; = —a—h
" 2mel? my(Ep) “Ep 1op&=a= 7

where ¢, and ¢, are the solutions of the equations

Electron Level Energy (eV)

05 e
me(Eg) L e e T
+ =+ il: _'c e A T
d’c [tar( d)c )] + Mo Tcao , 0.0 .
(c)
= =0.1m
+ +\ 7+ mU(Ei) L 15} mc 0
brtan ¢ )] = T —— , (46) E=1.76V
Mo T,a9 E=20406V e

3

10 | ac= _2 gt

Figure 1 shows the dependence of the two lowest quan- T
tum size electron level, andE_ on the well widthL as a e

function of the surface paramet€ga,. In these calculations 05r 7 ™
we use fom, the electron effective mass at the bottom of the i gl

conduction bandm.=0.1my, and a band gap energg, 0.0 . . . . . ‘
=1.7 eV which are close to the parameters of CdSe and 10 20 30 2402 50 60 70
CdTe. We compare the effect of the general BC on the quan- 10000/L° (A7)

tum size levels in the parabolic EMfFig. 1(@)], in the
“pure” Kane model with a,= a,=0 [Fig. 1(b)], and in the
b Fe™ v [Fig. 1b)] odd (E. ), electron quantum size levels in a well with infinite po-

“full” two band model with aca, #0 [Fig. 1(c)]. tential barriers calculated as a function of the surface parameter
Equations(45),(46) describe the energy of the quantum Tay: (a) in the parabolic EMA model(b) in the pure Kane model

size levels for coupled conduction and valence bands. How:- = 4,=0): (c) in the full two band model e, #0). In (a) and

H C
ever, the conduction and valence band energy spectra can E}rﬁ the solid, dashed, and dotted curves correspondag=0,

considered as being independent when the energies of tqeao:o_5 andTag= — 0.5 A, respectively. Ir(c) the solid and dot-
electron or hole levels are much less than the energy 9apy curves are calculated with,=—2 and @, =2, respectively,
|Ee|,|En| <Eg,Ep. This limit case is realized in thick quan- yoper curves for each level correspondTay=0.43 A and lower

tum wells and is described by the equations for the simpleyryes toTa,= —0.43 A. Other parameters used in calculations are
parabolic bands that one obtains by neglecting the energshown in the figure.

dependence of the effective masses andghg/E, terms in
Egs.(45),(46). For this case the surface paramefBfay and  parabolic EMA. The size dependence differs only in the na-
T,ao can be chosen independently, and the conventional B&ure of the nonlinear dependence oh2/This is because the
VY. (£L)=0 are realized foll .ap=0. Figure 1a) shows the Kane model takes the nonparabolicity of the conduction
effect of T,ap;# 0 on the electron quantum size levels in theband into account.
parabolic EMA. One sees that positive and negative values The size dependence of the electron levels calculated with
of T.a, shift the quantum size levels energy up and down,T.a;=0 is shown in Fig. b) only for comparison. The
respectively, from those obtained using conventional BCconventional BC do not hold in the Kane model, because the
The effect is negligible whefiT .ao|/L< ¢, my/m, but be-  surface parameters for coupled conduction and valence
come noticeable in narrow wells and is greater for highebands are related byTgao)(TUao)thIZEpmo. Choosing
energy levels. T.ao=0 for determining the electron energy levels corre-
Figure Xb) shows the effect of the general BC on the sponds to choosingd,a,—, which does not describe the
electron quantum size levels in the pure Kane model. Onéole energy levels. The conditidif.ag| =|T,a,| =a* real-
sees that the effect df.ay# 0 is very similar to that in the ized for|®|=1, describes a symmetricelative to the center

FIG. 1. The size dependence of the two lowest, evgh)(and
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of the band gapstructure of the electron and hole quantum
size levels in semiconductors with.= «,, . Although these
“symmetric semiconductor structures” do not exist in nature,
the parametea* =%/2P~0.45+0.06 A gives a reasonable
value of|T.a,| and|T,a,| in real semiconductor structures.
If symmetric BC hold

mg a* ., my a*

CmEI L PmEy T @
and the solutions of Eq46) for the lowest electron and hole
guantum size Ievels¢§v , are close to those given by
chvaozo.

Figure Xc) shows the size dependence of the electron
levels calculated in the full two band model with the sym-
metric surface parametéf¥ a,|=a*=0.43 A. One can see
that the term linear in, in Eq. (45) for the electron energy
levels becomes important when they comparable with the
band gap energy. On the other hand changing the sign, of 2.0
leads only to small changes of the level energy.

The dependence of the lowest electron quantum size lev:
els on the surface paramefgfa, for the Kane and full two
band models for wells with. =30 and 12 A, respectively, is
shown in Fig. 2. The surface parameter is varied fro®0
to 3.0 A for L=30 A, and from—1.2 to 1.2 A forL
=12 A, respectively, so thdfT.as|<Lm./my is fulfilled.
One can see that varying the surface parameter in this rang
produces a monotonic change of the first even and odd elec
tron levels. The difference between models with differept
and «, (for the samem,) is small forL=30 A, but can be
important forL=12 A.

It is interesting to note that for positive values of
the surface paramet€¥ (T.ay,>0,T,a,>0), Eqs.(45),(46)

Electron Level Energy (eV)

-
»
T

Electron Level Energy (eV)
& 5

may have even and odd solutions with an energy in the for- %% 2% w05 o0 05 10
bidden gapE.<0,E;,<0. In wide wells the energy of these Ta (A)

gap levels do not depend on their symmetBy, s e

=E(eh),s= E(e,n),s @nd can be found from FIG. 2. The dependence of the two lowest , evEg Y and odd

(E¢). electron quantum size levels on the surface paraniggy

h? M¢(Ee s) 1 Ees calculated in a well of width B surrounded by infinite potential
Ees=— m m 5 11— a, E_) (48)  parriers:(@ L=30 A and(b) L=12 A. The solid line is for the
0 o (Tcao) P pure Kane model withe.=a,=0 andE,=17.0 eV, the dashed
) line is for the symmetric two band model wid,=«,=—2 and
E o= 7= m,(Eps) 1 . ELS (49) E,=20.4 eV, and the dotted line for the asymmetric two band
h,s™ 2my Mo (Tvao)z ' e Ep ) model with a;=—2, a,=2, andE,=20.4 eV. Other parameters

used in the calculations are shown in the figure.
In wide “symmetric wells” these gap states have the same
energyE, s=Ep, s= —Eg/2, and are localized within a layer Schralinger equation is integrated across the interface or a
of thicknessas=2a*E,/Ey near the surface. These solu- Fourier transformation is performed using the piece-wise
tions contain no contributions from the unphysical spuriousspatially determined material parameters with the help of

solutions, and thus are not artifacts of tkgp model. generalized step functions. However, the integration of terms
such as products of (m)R';Z or Pf(z with envelope wave

V. DISCUSSION AND COMPARISON functionsW which are discontinuous across an interface may

WITH OTHER APPROACHES lead to mathematical uncertainties: integration of the product

The occurrence of discontinuities in the envelope WaveOf a step function and @ function is not well defined. To

functions at the heterointerface is one of the most mportan'fesowe this problem, a nonunlcﬂ?éo 1 symmetrized form
consequences of general BC. These discontinuities have ¢ the kinetic energy operatdt, is used, and the BC for the
strong effect on the mathematical procedures often used fanvelope function¥ are obtained by requiring that, ¥ be
the calculation of various physical properties of heterostrucintegrable across the interfat®?*

tures having finite potential barriers. In these procedures, the For example, in order to obtain the general BC of Ej.

125302-9



RODINA, ALEKSEEYV, EFROS, ROSEN, AND MEYER PHYSICAL REVIEW B5 125302

for parabolic bands, symmetrized kinetic energy operator oHere E.(z) and m(z) are the energy of the bottom of the

the fornf? conduction band and the electron effective mass in each re-
gion of the one-dimensional heterostructure considered. The
- #2 d 1 d configuration space envelope function, in tith region of
Hi=——-m*— ——-—m" (50 ; ;
2 dz mi+2e dz the heterostructure, is now given by

is used. The case=_0 then leads to the conventional BC of j . 1= )

Eq. (2). The same symmetrized forky,(1/m)k, is usually H(z)=m, '\/T—WJ_OOF(Q)M-a(k—Q)eXF(IkZ)dkdq,
used for the diagonal terms of the multiband kinetic energy (54)
operatof*39To derive the BC of Eq(29) for the “pure” two
band Kane model ¢.=«,=0) that allow to integrate
Schralinger equation across the interface, one writes the ki
netic energy operator as:

and satisfies the general BC of E¢). For the “pure” Kane
model, Fourier transforming the Scliinger equation, using
the kinetic energy operator of E(p1), leads to the following
coupled integral equations for the two component momen-

i% 0 pak, pl-a tum space functiogF.(k),F,(k)} :
He=— R : 51
K mq _Pl—akzpa 0 ( ) * . f * , ,
_Fe@Velk=a)da+ize | a'Ga(k=a")

Here, now, there is no value of that gives the symmetrized

form 1/2(k,P + Pk,), that is usually used for the off diagonal XG1_,(q'—q)F,(q)dqdq =&F(k), (55)

terms (linear in k) of the multiband HamiltoniaA*3® An

asymmetric ordering, corresponding de=1 was suggested o= , , )

in Ref. 33 for the model withw,=0. The @ dependence of —i EOJ'OOCI G1-o(k=0")G4(q" —q)F(q)dqdq

Egs.(50) and(51) clearly demonstrates that it is the BC that

determine the integration across the abrupt heterointerface o

and not the other way round. + Jiva(q)Vv(k_q)dq:SFv(k)v (56)
Fourier transforming the Schdinger equation has been

suggested by Winkler and Belef® as an alternative ap- wheref” _(|F¢(k)|?+|F,(k)|?)dk=1 and

proach to the MEMA problem for heterostructures with finite

potential barriers. Then one does not deal explicitly with BC 1 (= .

when solving the resulting integral equations for the momen- Veo(K)= ELWEC,U(Z)GXP(— ikz)dz,

tum space envelope function, and avoids unphysical spurious

solutions by restricting the range of integration |k]

<2mwlay. However, the resulting form of the momentum Gy(k)=zf

space MEMA Hamiltonian depends on the particular symme- -

trization procedure chosen for the kinetic energy operator ifHereEU(z) andP(z) are the energy of the top of the valence

configuration spac# and, therefore, is again determined by hand and the Kane matrix element in each region, respec-

the BC imposed on the envelope function. To iIIustrat(_a thiS{ive|y_ The Conﬁguration space en\/e|ope functioft

we derive the explicit form of the momentum space Sehro ={W¥_, ¥, } in the jth region of the one-dimensional hetero-

dinger equation for the one band EMA and the two bandstrycture is now given by

“pure” Kane model, using general BC. Fourier integration of

the EMA Schralinger equation with the kinetic energy op- , 1 (=

erator of Eq(50) leads to the following integral equation for ~ W(2)=P; “ ——| Fc(q)G.(k—q)expikz)dkdq,

the momentum space envelope functiegk): V2m) = (58)

0

P?(z)exp(—ikz)dz. (57)

h? [
7f q'k'M_(k=q")M1.24(9" =k )M _ (k' = q)F(q) ¥ (z)=ps-1 1 jw F (6. (k—qexpikzdkd
- z)=P} " — v _Jk—qg)expikz L
v J \/Z o q 1 q q
xdq’ dk’ dq+f F(qVo(k—q)dg=cF(k), (52 (59
- and will satisfy the general BC of Eq29) with a.=«,
where F(k) satisfies the normalization condition =0.
I, |F(k)|2dk=1 and General BC, for heterostructures described by the MEMA
Hamiltonian, that conserve the normal component of the en-
1 (= . velope flux densityl,. have been suggested by Kisghal*
Ve(k)= Zf,mEC(Z)eXp(_ ikz)dz, We have shown that the general requirement that the hetero-
structure MEMA Hamiltonian be self-adjoint leads to the
1 (= 1 more general conditiod®?=const. That is, thatl, must
M (k)z_J exp(—ikz)dz. (53  be continuous for arbitrary chosen envelope functions
! 27 "(z V¥, , V. This generalization ta# g is important, because it

125302-10



GENERAL BOUNDARY CONDITIONS FOR THE . .. PHYSICAL REVIEW B 65 125302

shows that the components of the transfer matrix connectinthan the distance to the energy band extrema not explicitly
the components of the envelope functih and envelope included in the multiband model. In the appropriate energy
normal velocityV . on the two sides of the interface, are stateinterval, the elements of the transfer matrices can be treated
independent and are characteristic properties of the interfac@s energy independent trial parameters in fitting the experi-
not the states. This is not true for a transfer matrix whichmental data. ) ) )
connects the components 8 and its derivativesV’ (see The number of independent transfer matrices required to
Ref. 11), because the relationship between the components &nsure the flux continuity of Eq15), is determined by the
V_ and ¥. ¥’ on the same side of the interface. in the NUmber of physically nonequivalent interfaces of the hetero-
multiband model may depend on the symmdthe value of  Structure. Therefore, to write general BC, one must model
the interface parallel momentum in planar heterostructires e symmetry of the interface, i.e., the interface geometry
and the total orbital angular momentum and parity in spheri&nd the symmetry of the material properties on the interface.
cal dot®) or on the energy of the state. On the other hand, this is true for any explicit determination
An explicit treatment of “interface” effects can be seen in of the full microscopic wave fu_nct|on near the interface.
severalk-p models of heterostructures that consider exact In conclusion, we ha\(e derived a general form .Of state-
electron wave functions in the interface regfshl-*‘Some independent BC for multicomponent envelope functions that
of these models result in equations in addition to the bulk@r® valid under the same conditions as the MEMA itself.
k-p equations that describe the interf4244The parameters SPUrious components of the wave functions are eliminated
of these “interface” Hamiltonians must be determined from by requiring that the envel_ope _ﬂux density be det_ermlned to
microscopic wave functions or obtained from the comparisoﬁr}? samfe r(})rder of alpproxmatﬁm als the MEI\éIAhnlself. The
with experiment. However, these advanced models are geﬁ— ect of the general BC on t e electron and hole energy
erally much more complicated than the MEMA, completeds'pecm."l has begn quonstrateq In the_ two ba_nd model for a
by an appropriate choice of boundary conditions, which hagotenﬂal well with infinite potential barriers. This procedure,
already successfully described such interface effects as tHéS'n% the g$n§ral BC f(;/rlér&r;\categ (Tnvelope_wave funchonfs,
I'-X intervalley mixing in GaAs/AlAs heterostructurd&the ~ ¢an D€ applied to any model containing any type o
heavy-light hole plane wave mixing at zinc blende interfacesSPurious solution and to heterostructures with finite or infi-
under normal incidenéeaand the effect on the interband light nite potential barriers.
absorption of the intervalley conversion of the electron at the
surface of indirect-band-gap semiconductbrs.
Heterostructures with abrupt heterointefade>(@) are A. V. Rodina gratefully acknowledges financial support
described by the MEMA models using energy independenfrom the Alexander von Humboldt Foundation. The research
transfer matrices which characterize the effects of the interef A. Yu. Alekseev was supported in part by a grant of the
faces on the carrier wave functions within some energy inSwedish Research Coun¢MFR) F 5102-672/2001 and by
terval. The energy of the state considered should be withitlNTAS Grant No. INTAS 99-1705. Al. L. Efros and M.
the range of validity of the chosen bulk MEMA Hamiltonian Rosen thank the US Office of Naval Reseaf@®NR) for
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