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General boundary conditions for the envelope function in the multiband k"p model
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We have derived general boundary conditions~BC’s! for the multiband envelope functions~which do not
contain spurious solutions! in semiconductor heterostructures with abrupt heterointerfaces. These BC require
the conservation of the probability flux density normal to the interface and guarantee that the multiband
Hamiltonian be self-adjoint. The BC are energy independent and are characteristic properties of the interface.
Calculations have been performed of the effect of the general BC on the electron energy levels in a potential
well with infinite potential barriers using a coupled two band model. The connection with other approaches to
determining BC for the envelope function and to the spurious solution problem in the multibandk"p model are
discussed.
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I. INTRODUCTION

It is impossible to overestimate the role of the multiba
effective mass approximation~MEMA !, which consists of
the multibandk"p method together with the envelope fun
tion approximation~EFA!, in the simulation of electronic and
optical devices formed from various semiconductor hete
structures, such as those with type-I and -II heterointerfa
quantum well structures and superlattices, and one and z
dimensional semiconductor structures such as quantum w
and quantum dots. The calculations of energy bands
wave functions in such structures have often been consid
as only being a matter of ‘‘energy band engineering’’
‘‘wave function engineering.’’ However, although such ca
culations successfully describe many heterostructures~see,
for example, Ref. 1!, a general theoretical description o
structures with abrupt interfaces has yet to be developed

The MEMA gives an accurate description of the ener
band structure of bulk semiconductors near the extrema
the first Brillouin zone. In this approach the carrier wa
functions are expanded in the band edge Bloch functi
near an extremum with ‘‘envelope function’’ coefficients,
components, that are required to vary slowly over a dista
on the scale of the unit cella0. The bulk MEMA Hamil-
tonian contains such parameters as band edge energies,
band momentum matrix elements and carrier effect
masses. These material parameters are determined by fi
to independent experimental data or are obtained from
principles calculations. The MEMA is certainly appropria
for calculating the spectrum and carrier wave functions in
presence of any slowly varying potential.2

However, abrupt heterointerfaces in semiconductor h
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erostructures break the periodicity of the crystal potentia3,4

The nonperiodic part of the potential varies rapidly in
interface region of sizea'a0. This may lead to such inter
face effects as the admixture of remote band states,3 coupling
of states with different symmetry,5–8 and the formation of
surface localized states.4 Moreover, Bloch functions in dis-
similar materials can be significantly different9 and do not
even exist in the boundary regions.10 In light of the great
success of the MEMA, it is important to develop an adequ
description of semiconductor heterostructures with abr
boundaries using the MEMA to describe each material in
heterostructure. Laikhtman10 has shown that this is possibl
for heterostructures with a characteristic lengthL@a, pro-
vided that the boundaries are treated appropriately. The p
lem is then focused on the appropriate choice of bound
conditions~BC! for piece-wise defined envelope functions
these heterostructures.

Conservation of the current normal to the interface is
obvious requirement dictated by conservation of probabi
density. In the EFA this condition reduces to the continu
across the interface of the normal component of the proba
ity flux densityJt averaged over the unit cell.3,11 In a hetero-
structure formed of semiconductors with parabolic ban
which can be described by a single band effective mass
proximation ~EMA! ~the simplest MEMA!, this condition
can be expressed as the continuity across the interface

Jt52 i
\

2m
~ f * f 82 f 8* f !, ~1!

wheretW is a unit vector directed normal to the interface,m is
the effective mass, andf is the single band envelope functio
©2002 The American Physical Society02-1
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and the prime denotes the derivative alongtW. The continuity
of Eq. ~1! is satisfied if

f r5 f l ,
f r8

mr
5

f l8

ml
, ~2!

where the indicesr andl refer to a point just to the right an
just to the left, respectively, of the interface. These BC,
pressing the separate continuity of the envelope function
the normal envelope velocity,f 8/m, first suggested in Refs
12,13, are referred to as ‘‘conventional’’ BC. However, t
conventional BC of Eq.~2! were recognized almost 20 yea
ago14 to be a special case of more general BC that conse
Jt across the interface:3,10,14–17

S f r

f r8/mr
D 5Ttr S f l

f l8/ml
D , det@Ttr #5t11t222t12t2151,

~3!

where the elementst i j of the transfer matrixTtr are charac-
teristic of the interface10,3 and as seen from a more gene
derivation of Eq.~3!,16,17 based on the requirement for th
EMA Hamiltonian to be self-adjoint,18 do not depend on the
particular states and are energy independent. For exam
first principle calculations performed for GaAs/AlxGa12xAs
heterostructures15 show that the off diagonal elementst12
@which was shown to be always proportional to the sm
parametera/L ~Ref. 10!# andt21 are negligible for this inter-
face. In this case the BC can be written in the form

mr
a f r5ml

a f l ,
f r8

mr
a11

5
f l8

ml
a11

, ~4!

similar to the general BC first suggested in Ref. 19. In g
eral the parametersa and the off diagonal elementt21 ~which
may be nonzero for other heterostructures20! strongly effect
the penetration of the wave function into the barrier and
energy spectra in quantum wells~QW’s!. For example, this
has been demonstrated in Ref. 21 by analyzing the exp
mental data for the exciton optical spectra in narrow Ga
AlGaAs and InGaAs/InP QW’s using the EMA with mod
fied BC similar to those given by Eq.~4!. However, the
parabolic band approximation has a very narrow range
applicability and appropriate BC for the MEMA need to b
developed for describing experimental data.

For the multiband analysis of heterostructures, a nat
extension of the conventional BC of Eq.~2! is the continuity
of each component of theN-component envelope functionC
and of each component of the normal envelope velocityVt at
each interface.22–24 Taken together, these BC preserve t
normal component of the envelope flux densityJt averaged
over a unit cell. The most general derivation of these B
suggested by Baraff and Gershoni,24 is based on the require
ment for the MEMA Hamiltonian to be self-adjoint. A gen
eral form of the BC within the MEMA for the planar hetero
structures was suggested by Kisinet al.11 Those authors star
from the conservation ofJt at the interface, and introduce
transfer matrix connecting the components of the multiba
envelope functionC and its normal derivativeC8 on each
12530
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side of the heterointerface. The general consideration of
838 band model based on the symmetrical properties of
planar heterointerface11 has allowed us to gain important in
formation about the elements of the transfer matrices. Ho
ever, the BC introduced in Ref. 11 may lead to an ene
dependent connection between the components ofC andVt
on the left and right sides of the heterointerface and, the
fore, do not generally satisfy the requirement that the MEM
Hamiltonian be self-adjoint.

The MEMA that take band coupling into account have
significant theoretical problem when describing vario
semiconductor heterostructures. The full expansion of
N-band envelope function in theN independent plane wav
solutions of the bulk Hamiltonian corresponding to the sa
energy« includes solutions with a very large wave vect
lying outside the first Brillouin zone.25,26 Such ‘‘wing’’
~evanescent!25 or ‘‘spurious’’ ~oscillatory!26 solutions must
be rejected in the perturbationk"p theory; in the bulk they
are rejected as being unphysical solutions.27–29 However,
their elimination from the multiband envelope function f
heterostructures30,31,28,11leads to additional complications i
the analysis of the BC. For example, the continuity of allN
components of this truncated envelope function cannot
satisfied if the interband matrix elements of the moment
operator p̂ are not continuous across the interface.11 The
same problem remains for the alternative approach, base
modifying the MEMA Hamiltonian by discarding thos
terms responsible for the largek solutions.25,26,32,33The use
of different BC for the conduction and valence band sta
~see, for example, Ref. 32! automatically results in the de
pendence of the BC on«, and is justified only if band cou-
pling in the MEMA Hamiltonian and bands nonparabolici
can be neglected.

In our paper we consider the boundary condition probl
within the MEMA for heterostructures with abrupt boun
aries. We show that the most general requirement for
MEMA Hamiltonian to be self-adjoint implies continuity a
the interface of the normal component of the envelope fl
density vectorJt

ab . Here the indicesa and b denote, in
general, two arbitrarily chosen envelope functionsCa and
Cb , respectively. This allows us to formulate general B
using a newenergy and state independenttransfer matrix
connecting the components of the envelope functions
their normal velocities on each side of the interface. It a
allows us to find a general way of eliminating the largek
solutions because these solutions make only a small~propor-
tional toa/L) contribution to the envelope flux density. Th
procedure does not depend on the particular nature of
large-k solutions~which we shall hereafter call spurious! and
can be applied to boundaries with either finite or infin
potential barriers. The elements of these transfer matr
can be considered as characteristic surface or interface
rameters and are additional to the bulk energy band par
eters in the multibandk"p approximation.

The paper is organized as follows. In Sec. II we derive
general form of BC for the multiband envelope function, th
follows from the condition that the MEMA Hamiltonian b
self-adjoint. In Sec. III we derive a truncated form of gene
BC for slowly varying envelope functions which do not a
2-2
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low spurious solutions. To clarify the general procedure,
first consider, in detail, the two band Kane model. Section
gives analytical and numerical examples of the effect of
general BC on the quantum size energy levels in dots w
infinite potential barriers. In Sec. V we discuss our resu
and compare them with those of other approaches to the
problem within the MEMA and otherk"p theories for het-
erostructures.

II. GENERAL FORM OF MULTIBAND BOUNDARY
CONDITIONS IN HETEROSTRUCTURES

WITH ABRUPT BOUNDARIES

Let us consider a semiconductor heterostructure mad
M arbitrary shaped semiconductor layers with a characte
tic length L. Single-electron wave functionsF~r ! in these
structures are solutions of the Schro¨dinger equation with the
microscopic HamiltonianĤmicr containing a crystal potential
This potential is ‘‘periodic’’ inside each of the bulklike sem
conductor layers, but it varies rapidly in the boundary
gions with width a'a0. Assuming thata/L is small, we
neglect the exact behavior ofF~r ! in the boundary regions
and expandF j[F(rPRj ) in the bulklike interior regionRj

of the j th layer in the Bloch functionsunk0 j

j at a critical point

k0 j of the bulk energy band structure for the material in th
layer:

F j~r !5 (
n51

Nj

Cn
j ~r !unk0 j

j , j 51,2, . . . ,M , ~5!

whereNj is the number of bands that describe the band-e
bulk properties of the material in thej th layer, andM is the
number of layers. The symmetry of the material and
number of bands can be different in each region. TheNj

component envelope functionC j (r )5$Cn
j (r )%n51

Nj is slowly
varying in the bulklike regionrPRj , where it satisfies the
k"p Schrödinger equation

Ĥ j~ k̂!C j~r !5«C j~r !, rPRj . ~6!

TheNj3Nj HamiltoniansĤ j are obtained after averaging o
the perturbed microscopic HamiltonianĤmicr(p̂1\ k̂) over a
unit cell in each bulklike region2 and includes terms up to th
second order in the wave vector operatork̂52 i“. The
boundary regions, however, are excluded from the avera
procedure, and the parameters of the resulting heterostru
MEMA HamiltoniansĤ j may have abrupt jumps from on
layer to another.

In what follows we study in detail the boundary cond
tions imposed on the wave functionsC(r )[C j (r ) for r
PRj at the interfaces. The microscopic HamiltonianĤmicr
acting onF~r ! is a self-adjoint operator.18 This is equivalent
to the conservation of charge in the full heterostructure
gion V:

d

dtEV
d3r uFu250. ~7!
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If a/L is small, the contribution from the boundary regio
can be neglected. Therefore, Eq.~7!, within the accuracy of
the MEMA, is replaced byd/dt^C,C&50, whereC is the
corresponding envelope function satisfying the BC and
inner product is now defined as

^Ca ,Cb&5(
j
E

Rj

d3r ~Ca
j ,Cb

j !,

~Ca
j ,Cb

j !5 (
n51

Nj

Can
j* Cbn

j . ~8!

This implies, in turn, that the heterostructure MEMA Ham
tonianĤ[Ĥ j for rPRj , acting onC has to be a self-adjoin
operator. Therefore for any two arbitrarily chosen functio
Ca andCb , the condition

^ĤCa ,Cb&5^Ca ,ĤCb& ~9!

must be satisfied if the same BC is imposed onCa as well as
on Cb ~see, for example, Ref. 34!. The MEMA Hamiltonians
Ĥ j , when defined for the ideally infinite homogenous bu
semiconductor, are self-adjoint, but when one adds
abrupt boundaries, the condition of Eq.~9! may be violated
by boundary terms. The requirement forĤ to be self-adjoint
limits the choice of the boundary conditions that may occ
but there is an ample variety of BC that satisfy it. We sh
see that any self-adjoint MEMA Hamiltonian preserves t
normal component of the envelope flux density for an ar
trary state of the system.

The MEMA Hamiltonians for theNj component envelope
wave functions have terms of first and second order ink̂:

Ĥ j5Ĉj1\B̂m
j k̂m1\2D̂mn

j k̂mk̂n , ~10!

where Ĉj , eachB̂m
j (m5x,y,z) and D̂mn

j (m,n5x,y,z) are
Hermitian Nj3Nj tensors of rank 0, 1, and 2, respective
They contain the energy band parameters for the materia
Rj and are defined only in these bulk-like regions. Using E
~10! we can write a velocity operatorV̂[V̂ j for rPRj which
acts on the heterostructure envelope functions

V̂ j5
1

\

]Ĥ j

]k
5B̂j1\

]D̂mn
j k̂mk̂n

]k
. ~11!

A general envelope flux density matrix can be written

Jab~r !5
1

2
@~Ca ,V̂Cb!1~V̂Ca ,Cb!#, rPRj , ~12!

whereCa and Cb are two arbitrarily chosen solutionsCa
j

[Ca(rPRj ),Cb
j [Cb(rPRj ) of the Schro¨dinger equation

Eq. ~6!, defined in each bulklike region, with energies«a and
«b , respectively. Noting that

divJab~r !52
i

2
@~ k̂Ca ,V̂Cb!2~Ca ,k̂•V̂Cb!

2~V̂Ca ,k̂Cb!1~ k̂•V̂Ca ,Cb!#, rPRj ,
2-3



a
ix

ty
e

lop
ra
c
d
-

n
th
of
rib

o
1

on

e
or

d
l-
p

l

e
-
en-
s

l

r

t
i-

ay
off-

truc-
ns-
of

r
ents
be

ex-
the

tero-
ame

ace

f

y

-
ave
e
the

al-
t be

RODINA, ALEKSEEV, EFROS, ROSEN, AND MEYER PHYSICAL REVIEW B65 125302
and using Eqs.~10!,~11! we arrive at the identity

~Ca ,ĤCb!2~ĤCa ,Cb!5
\

i
divJab~r !, rPRj .

~13!

Thus, for the MEMA HamiltonianĤ to be self-adjoint with
BC imposed onCa andCb , Eq. ~9! requires

(
j
E

Rj

d3r•divJab5(
j
E

Rj

dSj•Jab50, ~14!

wheredSj is an element of the surface boundingRj . Noting
that Eq.~14! holds for arbitrary surface shape, we find th
local continuity of the normal envelope flux density matr
across each interface must hold:

Jt
ab5tW•Jab5

1

2
@~Ca ,tW•V̂Cb!1~tW•V̂Ca ,Cb!#5const.

~15!

Equation~15! is a generalization of the normal flux densi
conservation law,Jt[Jt

aa5const, that is often used as th
starting point for deriving BC.3,11 The conditionJt

ab5const
is a very general and strong requirement on the enve
functions at each point of the interface. For an unpenet
able interface, or a semiconductor/vacuum surface it redu
to Jt

ab50. We will consider this case only in Sec. IV, an
shall assume, for now, thatJt

abÞ0 at the semicondutor het
erointerface.

The condition of Eq.~15! must be fulfilled independently
of whether the number of the envelope function compone
on the two sides of interface is the same. For clarity in
following we will only consider heterostructures formed
semiconductors whose energy band structures are desc
by multiband HamiltoniansĤ j of same symmetry and with
Nj5N in each region. For the more general case, a m
complicated procedure similar to that suggested in Ref.
is needed. The appropriate number of boundary conditi
depends on the number of independent components
the envelope functionC and normal envelope velocityVt
5t•VC. If all the components ofC and Vt , are linearly
independent on each side of the interface, the most gen
BC one can impose on the envelope functions are of the f

S C1

iVt
1D 5T2NS C2

iVt
2D , ~16!

where the indices ‘‘2’’ and ‘‘ 1’’ refer to neighboring points
on neighboring bounding surfacesSj andSj 11, respectively,
andT2N is the 2N32N transfer matrix. In the BC describe
by Eq. ~16! the material parameters of the MEMA Hami
tonian are included in the vectors of the normal envelo
velocity. Equation~15! is satisfied for all arbitrarily chosena
andb if and only if the BC of Eq.~16! are imposed on al
Ca as well as on allCb with the sameT2N and

T2N
† S 0 I N

2I N 0 DT2N5S 0 I N

2I N 0 D , ~17!
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whereI N is theN3N unit matrix and the dagger denotes th
Hermitian conjugate. Therefore,T2N must be state indepen
dent and characteristic only of the interface. For the conv
tional BC, C15C2,Vt

15Vt
2 , the transfer matrix reduce

to the unit matrix,T2N5I 2N .
In the ‘‘pure’’ Kane models (D̂mn[0 andĤ only contains

terms linear ink̂) the N components ofVt5tW•B̂C depend
linearly on theN components ofC. In this case, the genera
BC can be written

C15TNC2, TN
† Bt

1TN5Bt
2 . ~18!

HereBt5tW•B̂ andTN is anN3N state independent transfe
matrix. One can see that ifBt

1ÞBt
2 , the transfer matrixTN

cannot be the unit matrixI N . The number of independen
equations in Eq.~18! is determined by the rank of the matr
cesBt and can be less thenN.

The elements of the state independent transfer matrix m
depend on such properties of the heterojunction as band
sets and surface crystal symmetry due to, e.g., its recons
tions. Additional restrictions on the components of the tra
fer matrix can be obtained from symmetry consideration
the bulk and surface properties11,7 in particular cases. Fo
heterostructures which geometrical shape has some elem
of symmetry one can expect the boundary parameters to
the same at the symmetrical points of the interface. For
ample, in a QW the parameters of the transfer matrix are
same along the plane, and in the spherically shaped he
structure, the parameters of the transfer matrix are the s
anywhere on the surface.

III. ELIMINATION OF SPURIOUS SOLUTIONS
FROM MULTIBAND k "p MODEL:

TRUNCATED BOUNDARY CONDITIONS

Consider a heterostructure with a single heterointerf
described by a piece-wiseN3N Hamiltonian of Eq.~10!,
and with nonzero energy dispersion matricesDmn . The en-
velope functions can be expanded in a complete set oN
plane wave eigenfunctions,C i(ki), of the N3N MEMA
Hamiltonian

C5(
i 51

N

CiC i~ki !, ~19!

where theN values ofki
2 are the roots of the bulk energ

dispersion equation det@H(k)2«#50, andCi are numerical
coefficients. The set of 2N boundary condition equation in
Eq. ~17! can be solved only if the expansion in Eq.~19!,
for both sides of the interface, includes allN of the plane
wave eigenfunctions. If any, saym roots uki u ( i 5N2m
11, . . .N) lie outside the first Brillouin zone, the corre
sponding spurious solutions must be excluded from the w
function. In this case, 2m components of the envelope wav
function and their velocities are linearly dependent on
other components, and only 2(N2m) independent BC can
be imposed on the truncated functionC̃5( i 51

N2mCiC i(ki). In
this section we suggest an approximate procedure which
lows us to derive a truncated set of general BC that mus
2-4
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imposed on the envelope function in order to satisfyJt
a b

5const. For the sake of clarity, we first consider a two ba
model (N52, m51) and a planar heterointerface. We th
generalize it to arbitraryN and m and an arbitrarily shaped
heterointerface.

The Hamiltonian of the two band Kane model is writte

Ĥ5S Ec 0

0 Ev
D 1ĤK , ĤK5

\2

2m0S ack̂z
2 i

2P

\
k̂z

2 i
2P

\
k̂z 2avk̂z

2
D ,

~20!

where k̂z52 id/dz is the wave vector along the normal
the interface,m0 is the free electron mass,P is the Kane
interband matrix element,ac and av describe the contribu
tion of the remote bands to the electronmc and holemv
effective masses, respectively, and the distance between
bottom of conduction bandEc and the top of the valenc
bandEv is the energy gapEg5Ec2Ev . The band edge ef
fective masses can be written asm0 /mc,v5ac,v1Ep /Eg .
HereEp52P2/m0 is the Kane energy which also characte
izes the nonparabolicity of the electron and hole bulk ene
spectra. Although this two band model completely negle
spin-orbit interactions, it describes the electron and light h
band coupling in real semiconductors and is often used
one dimensional heterojunctions11 and spherical dots.35,29,36

For most semiconductors,uacu;uavu;1 ~they can be either
positive or negative! andEp'2065 eV. In the ‘‘pure’’ Kane
modelac5av50.

For a planar heterointerface, the general normal flux d
sity continuity condition, Eq.~15!, takes the form

Jt
C F~z!5

1

2
@~C,VF!1~VC ,F!#5const, ~21!

whereC and F are two arbitrary chosen eigenfunctions
the Hamiltonian in Eq.~20!, VC5V̂zC and VF5V̂zF are
the respective normal velocities calculated with the two ba
Kane model velocity operatorV̂z

V̂z5
\

m0S ack̂z i
P

\

2 i
P

\
2avk̂z

D . ~22!

The general BC, Eqs.~16!,~17!, now reduce to

S C r

iVC
r D 5Ttr S C l

iVC
l D , Ttr

† S 0 I 2

2I 2 0 DTtr5S 0 Î 2

2 Î 2 0
D ,

~23!

whereTtr is an energy independent 434 transfer matrix, and
r ~l! refers to a point to the right~left! side of the planar
interface. The conventional BC (C r5C l andVC

r 5VC
l ) are

described by the unite transfer matrixTtr[I 4. In the general
case,acavÞ0, the BC of Eq.~23! represent four linear in-
dependent equations for two~conduction and valence band!
12530
d
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wave function componentsCc ,Cv and two normal velocity
componentsVCc ,VCv . In order to solve them, the envelop
function of a state with energy« is written as a linear super
position of two plane wave eigenfunctions of the Ham
tonian, Eq.~20!: C5C1C1(k1)1C2C2(k2), wherek1,2

2 are
the solutions of the bulk energy dispersion equation

S \2k2

2m0
ac1Ec2« D S \2k2

2m0
av2Ev1« D1

\2k2

2m0
Ep50. ~24!

Generally we are only interested in states whose energ
either on the order of or smaller than the semiconductor
ergy gap. Using the conditionEp /uacavu@Eg ,u«2Ecu,u«
2Evu, we find for the two roots of the dispersion equatio

\2k1
2'

2~«2Ev!~«2Ec!m0

~«2Ev!ac1~Ec2«!av1Ep
, \2k2

2'2
2Epm0

acav
.

~25!

For typical values of the bulk energy band parameters,
second wave vectoruk2u;1 Å21 lies beyond the first Bril-
louin zone in which the MEMA is valid. The correspondin
eigenvector,C2(k2) is a spurious solution@either evanescen
or propagating, depending on the sign of the prod
(acav)27# and must be excluded from the expansion of t
total wave function. The continuity of the normal flux de
sity, Eq. ~21!, is now limited to slowly varying functions of
k1 ,C5C1(k1) and F5F1(k1), and leads toJt,1

CF(z)
[Jt

C1F1(z):

Jt,1
CF~z!5

iP

m0
FCc* FvS 11ac

«F2Ev

Ep
1av

Ec2«C

Ep

1acav

\2

2m0Ep
@k1

2~«F!1k1
2~«C!# D

2Cv* FcS 11ac

«C2Ev

Ep
1av

Ec2«F

Ep

1acav

\2

2m0Ep
@k1

2~«F!1k1
2~«C!# D G

5const. ~26!

Here«C and«F are the energies of the states described
the two component envelope functionsC1(k1)[@Cc
5Cc(k1),Cv5Cv(k1)# and F1(k1)[@Fc5Fc(k1),Fv
5Fv(k1)#, respectively. The two components of the norm
velocitiesVCc (VFc) andVCv (VFv) are expressed throug
the wave function componentsCc (Fc) andCv (Fv). Since
the envelope functionsC andF are now truncated, the nor
mal velocity and envelope function components are
longer linearly independent. Therefore, the Eq.~26! cannot
be fulfilled if acavÞ0. @For the caseacav50 the spurious
solutionk2 does not arise, andC1 is then the full solution of
the Hamiltonian~20!#. However we shall see below that w
can impose an alternative set of the state independent
that retain the continuity of the normal flux densityJt,1

CF for
truncated wave functions within an accuracy consistent w
2-5
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the MEMA. We consider aJ̃t,1 that differs fromJt,1 of Eq.
~26! only by the termsg̃2;acav which are small: g̃2

5acav(«2Ec)(«2Ev)/Ep
2'(k1 /k2)2. A typical value of

the momentumk1 in a heterostructure with sizeL is k1

;1/L. Substituting the value ofk2 from Eq. ~22! into g̃ we
find that g̃2;(a0 /L)2!1. We can write then the approx
mate condition

J̃t,1
CF~z!5

iP

m0
FCc* FvS 11ac

«F2Ev

Ep
D S 11av

Ec2«C

Ep
D

2Cv* FcS 11ac

«C2Ev

Ep
D S 11av

Ec2«F

Ep
D G

5const, ~27!

which is fulfilled exactly if the envelope functionsC andF
satisfy the truncated set of BC:

S Cc
r S 11av

r
Ec

r 2«

Ep
r D

PrCv
r S 11ac

r
«2Ev

r

Ep
r D D 5T̃trS Cc

l S 11av
l

Ec
l 2«

Ep
l D

PlCv
l S 11ac

l
«2Ev

l

Ep
l D D ,

~28!

where the components of the 232 transfer matrixT̃tr are real
and state independent and det@ T̃tr #51. One can see that th
connection between the left and right hand side compon
of Cc andCv has now energy dependent coefficients. This
a consequence of the linear dependence of the componen
the truncated wave function and its normal velocity on
same side of the interface. However, the new energy in
pendent transfer matrixT̃tr is still characteristic of the inter
face only. The truncated general BC of Eq.~28! no longer
allow the simultaneous continuity of the both envelope fu
tion componentsCc(k1) andCv(k1) at the interface. For the
case where the off diagonal matrix elements ofT̃tr are neg-
ligibly small, t̃ 12' t̃ 21'0, the general BC reduce to

PaS 11av

Ec2«

Ep
DCc5const,

P12aS 11ac

«2Ev

Ep
DCv5const, ~29!

which is similar to the BC of Eq.~4! for heterostructures
with parabolic bands.

Equations ~28!,~29! are general BC for the truncate
smooth wave functions in semiconductor heterostructu
with nonzeroacav . These BC do not depend on the sign
acav ~i.e., whether the spurious solution is evanescent
propagating!. They are also valid for any Kane model wit
acav50, in which Eqs.~21!,~26! are satisfied exactly. The
boundary condition Eq.~29! was first discussed in Ref. 3 fo
the ‘‘pure’’ Kane model withac5av50; also the model
with ac50,avÞ0 was considered in Ref. 33.
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To generalize this procedure and derive general BC
truncated slowly varying envelope functions for heterostr
tures described by anN3N Hamiltonian havingm spurious
solutions, it is important to trace from where these solutio
arise. Examining Eqs.~17!,~25! ~and also see Ref. 11 whic
describes spurious solutions in the 838 model! we find that
the spurious solutionsuki u ( i 5N2m11, . . . ,N) of the dis-
persion equations for the Hamiltonian of Eq.~10! are propor-
tional to the large components of the matricesB̂ and in-
versely proportional to the square root of the product of
tensorDmn conduction and valence band components. F
the sake of definiteness,37 let us assume that the matricesB̂
contain the submatricesB̂85B̂g/g of rank 2m, where g
;a0 /L is a dimensionless small parameter responsible
the spurious solutions. For example, in the two band mo
considered above the normal componentBt

g5tW•B̂g is

B̂t
g5

i \

m0L S 0 1

21 0D , g5
\

PL
;

a0

L
. ~30!

We can write the velocity operator of Eq.~11! as

V̂5
1

g
B̂g1V̂0 , ~31!

and write the truncated slowly varying envelope function
the superposition of two linearly independent orthogo
wave functionsC̃5C11C2, such that the 2m component
function C1 andn5N22m component functionC2 satisfy
the condition

Bt
gC1Þ0, Bt

gC250. ~32!

Furthermore, we can write the functiontW•V̂0C̃5V11V2 as
superposition of a 2m component functionV1 and ann com-
ponent functionV2 belonging to the same subspaces as
functions C1 and C2, respectively, i.e., (C1 ,V2)
5(C2 ,V1)50. Note thatC2 is absent (n50) in the two
band model;C1 is the total slowly varying envelope func
tion andV15V̂0C1 @V̂0 is the diagonal part of the velocity
operator in Eq.~22!#. However, the functionsV1 andV2 do
not coincide withtW•V̂0C1 andtW•V̂0C2, respectively, for the
general casenÞ0. The flux density continuity of Eq.~15!
can now be written as

Jt
ab5Jt,1

ab1Jt,2
ab5const, ~33!

Jt,1
ab5

1

g
~C1a ,Bt

gC1b!1
1

2
@~C1a ,V1b!1~V1a ,C1b!#,

~34!

Jt,2
ab5

1

2
@~C2a ,V2b!1~V2a ,C2b!#. ~35!

Neglecting terms of second order ing, Eq. ~34! can be ex-
pressed

J̃t,1
ab5

1

g
~C̃1a ,Bt

gC̃1b!, C̃15C11
g

2
Bt

g 21V1 , ~36!
2-6
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whereV1 is, to this order, included inC̃1. Equations~34!
and Eq.~36! are the multiband extension of Eqs.~26! and
~27! obtained for the two band model. The vect

$C̃1 ,C2 ,V2% has in total 2m12n52(N2m) independent
components and the general boundary condition satisfy
Jt

ab' J̃t
a b5 J̃t,1

ab1Jt,2
a b5const can be written as

S C̃1
1

C2
1

iV2
1
D 5T2(N2m)S C̃1

2

C2
2

iV2
2
D , T2(N2m)5S T2m T12

T21 T2n
D .

~37!

We shall neglect the off diagonal matrices, i.e., setT12
5T2150 ~thus satisfying the stronger condition that bo
J̃1

ab5const andJ2
ab5const) and obtain the following restric

tions on the elements of the energy independent transfer
tricesT2m andT2n :

T2m
† 1

g
Bt

gU
Sj 10

T2m5
1

g
Bt

gU
Sj 20

,

T2n
† S 0 I 2n

2I 2n 0 DT2n5S 0 I 2n

2I 2n 0 D . ~38!

Equations ~37! and ~38! represent 2(N2m) boundary
condition equation for the truncated envelope wave functi
These general BC do not allow the continuity of all envelo
function components at the interface ifBt

g/g is not contin-
ues. While the elements ofT2m and T2n are state indepen
dent, the functionC̃1 may be related toC1 by the energy
dependent expression.

This procedure can be directly applied to heterostructu
described by the 838 Pidgeon and Brown Hamiltonian.38

The bulk energy dispersion equations for this Hamilton
has eight solutionski

2 ~taking spin degeneracy into accoun!,
for each energy«; two of these are spurious, and propo
tional to the large interband Kane matrix elementP ~see,
for example, Ref. 11!. In the case of zero spin-orbit interac
tion, C1 must include coupled electron and light hole ba
envelope functions, whileC2 includes the heavy hole ban
envelope functions only. For planar heterostructures E
~37!,~38! take into account the mixing of light and heav
holes for the states with finite in-plane momentum. Howe
they neglect the effect of the ‘‘low interface symmetry’’7 that
mixes light and heavy hole plane waves normally incident
the interface~because we assume thatT125T2150). The
detailed application of our procedure to the 838 models for
planar and spherical heterostructures will be presented e
where.

IV. ONE-DIMENSIONAL QUANTUM WELL WITH
INFINITE POTENTIAL BARRIERS

Let us consider an effect of the general BC on the ene
spectrum of a one-dimensional quantum well having infin
potential barriers. The conventional BC for structures w
an impenetrable barrier require vanishing of the envel
12530
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wave function at the barrier surface, but this requirement
never been justified~see, for example, Ref. 39!. In general,
the self-adjointness of the MEMA Hamiltonian requires va
ishing of the normal flux density at the boundaries

Jt
ab~z56L70!50, ~39!

where 2L is the thickness of the quantum well. If we assum
that the two interfaces are completely identical, the quant
well possesses reflection symmetry aboutz50 and all solu-
tions of the Schro¨dinger equation are characterized by th
parity according to whether their components are even
odd under reflection. However, the BC are local characte
tics of each interface. Therefore, the Eq.~39! must be ful-
filled at each interface independent of the symmetry of
functionsCa andCb .

Now we consider the effect of the general BC for the ca
of the two band Kane model. In order to satisfy Eq.~39! in a
quantum well with symmetric interfaces, one can write t
general BC for the conductionCc and valence bandCv
components of the envelope wave function~which do not
contain spurious solutions! as

Cc~6L70!S 12av

«2Ec

Ep
D

57QCv~6L70!S 11ac

«2Ev

Ep
D , ~40!

whereQ is a real number and the sign difference is due
the opposite parity of the conduction and valence band c
ponents of the envelope functions. The surface parameteQ
does not depend on the energy or symmetry of either st
Equation~40! can be derived directly from the general BC
Eq. ~28! obtained in Sec. III for the case of a finite potenti
barrier. To do this one has to assume thatC[0 outside the
quantum well and use the state independent transfer mat
T̃tr

1 , for z5L20, andT̃tr
2 , for z52L10 interfaces, which

differ only by the sign~opposite! of the offdiagonal matrix
elements and satisfy the condition det@ T̃tr

1#5det@ T̃tr
2#50.

Neglectingg2;(a0 /L)2 terms, Eq.~40! can be written as
two separate equations for the conduction and valence b
components, respectively,

Cc~6L70!56Tca0

m0

mc~Ee!
Cc8~6L70!, Tca05Q

\

2P
,

~41!

Cv~6L70!56Tva0

m0

mv~Eh!
Cv8~6L70!,

Tva05
1

Q

\

2P
. ~42!

Here the energy-dependent effective masses in the con
tion and valence bands are given by

m0

mc~Ee!
5ac1

Ep

Ee1Eg
,

m0

mv~Eh!
5av1

Ep

Eh1Eg
, ~43!
2-7
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where the electron,Ee , and holeEh energies are measure
from the bottom of conduction and the top of the valen
bands, respectively:Ee5«2Ec and Eh5Ev2«. The even,
~1!, and odd,~2!, solutions to Eqs.~38!,~39! can be written

Cc(v)
1 ~z!5Ac(v)cos~fc(v)

1 z!, Cc(v)
2 ~z!5Ac(v)sin~fc(v)

2 z!,
~44!

whereAc,v are the normalization constants. We can der
equations for the energies of the even and odd electron
hole quantum size levels:

Ee
65

\2~fc
6!2

2m0L2

m0

mc~Ee
6!

S 12av

Ee
6

Ep
D ,

Eh
65

\2~fv
6!2

2m0L2

m0

mv~Eh
6!

S 12ac

Eh
6

Ep
D , ~45!

wherefc
6 andfv

6 are the solutions of the equations

fc
6@ tan~fc

6!#6157
mc~Ee

6!

m0

L

Tca0
,

fv
6@ tan~fv

6!#6157
mv~Eh

6!

m0

L

Tva0
. ~46!

Figure 1 shows the dependence of the two lowest qu
tum size electron levelsEe

1 andEe
2 on the well widthL as a

function of the surface parameterTca0. In these calculations
we use formc the electron effective mass at the bottom of t
conduction bandmc50.1m0, and a band gap energyEg
51.7 eV which are close to the parameters of CdSe
CdTe. We compare the effect of the general BC on the qu
tum size levels in the parabolic EMA@Fig. 1~a!#, in the
‘‘pure’’ Kane model withac5av50 @Fig. 1~b!#, and in the
‘‘full’’ two band model with acavÞ0 @Fig. 1~c!#.

Equations~45!,~46! describe the energy of the quantu
size levels for coupled conduction and valence bands. H
ever, the conduction and valence band energy spectra ca
considered as being independent when the energies o
electron or hole levels are much less than the energy
uEeu,uEhu!Eg ,Ep . This limit case is realized in thick quan
tum wells and is described by the equations for the sim
parabolic bands that one obtains by neglecting the ene
dependence of the effective masses and theEe,h /Ep terms in
Eqs.~45!,~46!. For this case the surface parametersTca0 and
Tva0 can be chosen independently, and the conventional
Cc(6L)50 are realized forTca050. Figure 1~a! shows the
effect of Tca0Þ0 on the electron quantum size levels in t
parabolic EMA. One sees that positive and negative val
of Tca0 shift the quantum size levels energy up and dow
respectively, from those obtained using conventional B
The effect is negligible whenuTca0u/L!fc

6 m0 /mc but be-
come noticeable in narrow wells and is greater for hig
energy levels.

Figure 1~b! shows the effect of the general BC on th
electron quantum size levels in the pure Kane model. O
sees that the effect ofTca0Þ0 is very similar to that in the
12530
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parabolic EMA. The size dependence differs only in the n
ture of the nonlinear dependence on 1/L2. This is because the
Kane model takes the nonparabolicity of the conduct
band into account.

The size dependence of the electron levels calculated
Tca050 is shown in Fig. 1~b! only for comparison. The
conventional BC do not hold in the Kane model, because
surface parameters for coupled conduction and vale
bands are related by (Tca0)(Tva0)5\2/2Epm0. Choosing
Tca050 for determining the electron energy levels corr
sponds to choosingTva0→`, which does not describe th
hole energy levels. The conditionuTca0u5uTva0u5a* real-
ized for uQu51, describes a symmetric~relative to the center

FIG. 1. The size dependence of the two lowest, even (Ee
1) and

odd (Ee
2), electron quantum size levels in a well with infinite po

tential barriers calculated as a function of the surface param
Ta0: ~a! in the parabolic EMA model;~b! in the pure Kane mode
(ac5av50); ~c! in the full two band model (acavÞ0). In ~a! and
~b!, the solid, dashed, and dotted curves correspond toTa050,
Ta050.5 andTa0520.5 Å, respectively. In~c! the solid and dot-
ted curves are calculated withav522 and av52, respectively,
upper curves for each level correspond toTa050.43 Å and lower
curves toTa0520.43 Å. Other parameters used in calculations
shown in the figure.
2-8
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of the band gap! structure of the electron and hole quantu
size levels in semiconductors withac5av . Although these
‘‘symmetric semiconductor structures’’ do not exist in natu
the parametera* 5\/2P'0.4560.06 Å gives a reasonabl
value of uTca0u and uTva0u in real semiconductor structure
If symmetric BC hold

fc
6

m0

mc~Ee!

a*

L
!1, fv

6
m0

mv~Eh!

a*

L
!1, ~47!

and the solutions of Eq.~46! for the lowest electron and hol
quantum size levels,fc,v

6 , are close to those given b
Tc,va050.

Figure 1~c! shows the size dependence of the elect
levels calculated in the full two band model with the sym
metric surface parameteruTa0u5a* 50.43 Å. One can see
that the term linear inav in Eq. ~45! for the electron energy
levels becomes important when they comparable with
band gap energy. On the other hand changing the sign oav
leads only to small changes of the level energy.

The dependence of the lowest electron quantum size
els on the surface parameterTca0 for the Kane and full two
band models for wells withL530 and 12 Å, respectively, is
shown in Fig. 2. The surface parameter is varied from23.0
to 3.0 Å for L530 Å, and from 21.2 to 1.2 Å for L
512 Å, respectively, so thatuTca0u<Lmc /m0 is fulfilled.
One can see that varying the surface parameter in this ra
produces a monotonic change of the first even and odd e
tron levels. The difference between models with differentac
andav ~for the samemc) is small forL530 Å, but can be
important forL512 Å.

It is interesting to note that for positive values
the surface parameterQ (Tca0.0,Tva0.0), Eqs.~45!,~46!
may have even and odd solutions with an energy in the
bidden gapEe,0,Eh,0. In wide wells the energy of thes
gap levels do not depend on their symmetryE(e,h),S

1

5E(e,h),S
2 5E(e,h),S and can be found from

Ee,S52
\2

2m0

mc~Ee,S!

m0

1

~Tca0!2
•S 12av

Ee,S

Ep
D , ~48!

Eh,S52
\2

2m0

mv~Eh,S!

m0

1

~Tva0!2
•S 12ac

Eh,S

Ep
D . ~49!

In wide ‘‘symmetric wells’’ these gap states have the sa
energyEe,S5Eh,S52Eg/2, and are localized within a laye
of thicknessas52a* Ep /Eg near the surface. These sol
tions contain no contributions from the unphysical spurio
solutions, and thus are not artifacts of thek"p model.

V. DISCUSSION AND COMPARISON
WITH OTHER APPROACHES

The occurrence of discontinuities in the envelope wa
functions at the heterointerface is one of the most impor
consequences of general BC. These discontinuities ha
strong effect on the mathematical procedures often used
the calculation of various physical properties of heterostr
tures having finite potential barriers. In these procedures,
12530
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Schrödinger equation is integrated across the interface o
Fourier transformation is performed using the piece-w
spatially determined material parameters with the help
generalized step functions. However, the integration of te
such as products of (1/m) k̂z

2 or Pk̂z with envelope wave
functionsC which are discontinuous across an interface m
lead to mathematical uncertainties: integration of the prod
of a step function and ad function is not well defined. To
resolve this problem, a nonunique40,30,16,17symmetrized form
of the kinetic energy operatorĤk is used, and the BC for the
envelope functionC are obtained by requiring thatĤkC be
integrable across the interface.40,24

For example, in order to obtain the general BC of Eq.~4!

FIG. 2. The dependence of the two lowest , even (Ee
1) and odd

(Ee
2), electron quantum size levels on the surface parameterTca0

calculated in a well of width 2L surrounded by infinite potentia
barriers:~a! L530 Å and ~b! L512 Å. The solid line is for the
pure Kane model withac5av50 and Ep517.0 eV, the dashed
line is for the symmetric two band model withac5av522 and
Ep520.4 eV, and the dotted line for the asymmetric two ba
model with ac522, av52, andEp520.4 eV. Other parameter
used in the calculations are shown in the figure.
2-9



r o

of

rg

k

d
l

f
at
fa

n
-
ite
C

en
io

m
e

r
by
is
ro
n
of
-
r

n

e
re-

The

en-

e
ec-

o-

A
en-

ero-
e

ns
t

RODINA, ALEKSEEV, EFROS, ROSEN, AND MEYER PHYSICAL REVIEW B65 125302
for parabolic bands, symmetrized kinetic energy operato
the form40

ĤK
a52

\2

2
ma

d

dz

1

m112a

d

dz
ma ~50!

is used. The casea50 then leads to the conventional BC
Eq. ~2!. The same symmetrized formk̂z(1/m) k̂z is usually
used for the diagonal terms of the multiband kinetic ene
operator.24,30To derive the BC of Eq.~29! for the ‘‘pure’’ two
band Kane model (ac5av50) that allow to integrate
Schrödinger equation across the interface, one writes the
netic energy operator as:

ĤK
a5

i\

m0
S 0 Pak̂zP

12a

2P12ak̂zP
a 0

D . ~51!

Here, now, there is no value ofa that gives the symmetrize
form 1/2(k̂zP1Pk̂z), that is usually used for the off diagona
terms ~linear in k) of the multiband Hamiltonian.24,30 An
asymmetric ordering, corresponding toa51 was suggested
in Ref. 33 for the model withac50. Thea dependence o
Eqs.~50! and~51! clearly demonstrates that it is the BC th
determine the integration across the abrupt heterointer
and not the other way round.

Fourier transforming the Schro¨dinger equation has bee
suggested by Winkler and Ro¨ssler30 as an alternative ap
proach to the MEMA problem for heterostructures with fin
potential barriers. Then one does not deal explicitly with B
when solving the resulting integral equations for the mom
tum space envelope function, and avoids unphysical spur
solutions by restricting the range of integration touku
!2p/a0. However, the resulting form of the momentu
space MEMA Hamiltonian depends on the particular symm
trization procedure chosen for the kinetic energy operato
configuration space,30 and, therefore, is again determined
the BC imposed on the envelope function. To illustrate th
we derive the explicit form of the momentum space Sch¨-
dinger equation for the one band EMA and the two ba
‘‘pure’’ Kane model, using general BC. Fourier integration
the EMA Schro¨dinger equation with the kinetic energy op
erator of Eq.~50! leads to the following integral equation fo
the momentum space envelope functionF(k):

\2

2 E
2`

`

q8k8M 2a~k2q8!M112a~q82k8!M 2a~k82q!F~q!

3dq8dk8 dq1E
2`

`

F~q!Vc~k2q!dq5«F~k!, ~52!

where F(k) satisfies the normalization conditio
*2`

` uF(k)u2dk51 and

Vc~k!5
1

2pE2`

`

Ec~z!exp~2 ikz!dz,

M n~k!5
1

2pE2`

` 1

mn~z!
exp~2 ikz!dz. ~53!
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Here Ec(z) and m(z) are the energy of the bottom of th
conduction band and the electron effective mass in each
gion of the one-dimensional heterostructure considered.
configuration space envelope function, in thej th region of
the heterostructure, is now given by

f j~z!5mj
2a

•

1

A2p
E

2`

`

F~q!M 2a~k2q!exp~ ikz!dkdq,

~54!

and satisfies the general BC of Eq.~4!. For the ‘‘pure’’ Kane
model, Fourier transforming the Schro¨dinger equation, using
the kinetic energy operator of Eq.~51!, leads to the following
coupled integral equations for the two component mom
tum space function$Fc(k),Fv(k)% :

E
2`

`

Fc~q!Vc~k2q!dq1 i
\

m0
E

2`

`

q8Ga~k2q8!

3G12a~q82q!Fv~q!dqdq85«Fc~k!, ~55!

2 i
\

m0
E

2`

`

q8G12a~k2q8!Ga~q82q!Fc~q!dqdq8

1E
2`

`

Fv~q!Vv~k2q!dq5«Fv~k!, ~56!

where*2`
` (uFc(k)u21uFv(k)u2)dk51 and

Vc,v~k!5
1

2pE2`

`

Ec,v~z!exp~2 ikz!dz,

Gn~k!5
1

2pE2`

`

Pn~z!exp~2 ikz!dz. ~57!

HereEv(z) andP(z) are the energy of the top of the valenc
band and the Kane matrix element in each region, resp
tively. The configuration space envelope functionC
5$Cc ,Cv% in the j th region of the one-dimensional heter
structure is now given by

Cc
j ~z!5Pj

2a
•

1

A2p
E

2`

`

Fc~q!Ga~k2q!exp~ ikz!dkdq,

~58!

Cv
j ~z!5Pj

a21
•

1

A2p
E

2`

`

Fv~q!G12a~k2q!exp~ ikz!dkdq,

~59!

and will satisfy the general BC of Eq.~29! with ac5av
50.

General BC, for heterostructures described by the MEM
Hamiltonian, that conserve the normal component of the
velope flux densityJt have been suggested by Kisinet al.11

We have shown that the general requirement that the het
structure MEMA Hamiltonian be self-adjoint leads to th
more general conditionJt

ab5const. That is, thatJt must
be continuous for arbitrary chosen envelope functio
Ca ,Cb . This generalization toaÞb is important, because i
2-10
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shows that the components of the transfer matrix connec
the components of the envelope functionC and envelope
normal velocityVt on the two sides of the interface, are sta
independent and are characteristic properties of the interf
not the states. This is not true for a transfer matrix whi
connects the components ofC and its derivativesC8 ~see
Ref. 11!, because the relationship between the component
Vt and C, C8, on the same side of the interface, in th
multiband model may depend on the symmetry~the value of
the interface parallel momentum in planar heterostructure11

and the total orbital angular momentum and parity in sphe
cal dots36! or on the energy of the state.

An explicit treatment of ‘‘interface’’ effects can be seen
severalk"p models of heterostructures that consider ex
electron wave functions in the interface region.8,9,41–44Some
of these models result in equations in addition to the b
k"p equations that describe the interface.43,44The parameters
of these ‘‘interface’’ Hamiltonians must be determined fro
microscopic wave functions or obtained from the comparis
with experiment. However, these advanced models are g
erally much more complicated than the MEMA, complete
by an appropriate choice of boundary conditions, which h
already successfully described such interface effects as
G-X intervalley mixing in GaAs/AlAs heterostructures,5,6 the
heavy-light hole plane wave mixing at zinc blende interfac
under normal incidence7 and the effect on the interband ligh
absorption of the intervalley conversion of the electron at
surface of indirect-band-gap semiconductors.45

Heterostructures with abrupt heterointeface (L@a) are
described by the MEMA models using energy independ
transfer matrices which characterize the effects of the in
faces on the carrier wave functions within some energy
terval. The energy of the state considered should be wit
the range of validity of the chosen bulk MEMA Hamiltonia
in each layer. This means, that the energy should be sma
21
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g

e,
h

of
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t

k

n
n-

s
he

s

e
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ler

than the distance to the energy band extrema not explic
included in the multiband model. In the appropriate ene
interval, the elements of the transfer matrices can be tre
as energy independent trial parameters in fitting the exp
mental data.

The number of independent transfer matrices required
ensure the flux continuity of Eq.~15!, is determined by the
number of physically nonequivalent interfaces of the hete
structure. Therefore, to write general BC, one must mo
the symmetry of the interface, i.e., the interface geome
and the symmetry of the material properties on the interfa
On the other hand, this is true for any explicit determinat
of the full microscopic wave function near the interface.

In conclusion, we have derived a general form of sta
independent BC for multicomponent envelope functions t
are valid under the same conditions as the MEMA itse
Spurious components of the wave functions are elimina
by requiring that the envelope flux density be determined
the same order of approximation as the MEMA itself. T
effect of the general BC on the electron and hole ene
spectra has been demonstrated in the two band model
potential well with infinite potential barriers. This procedur
using the general BC for truncated envelope wave functio
can be applied to any MEMA model containing any type
spurious solution and to heterostructures with finite or in
nite potential barriers.
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