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Electronic structure of the layer compounds GaSe and InSe in a tight-binding approach
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The three-dimensional band structure of the III-VI layer compounds GaSe and InSe has been investigated in
the tight-binding approach. The pseudo-Hamiltonian matrix elements in thesp3s* basis are fit in order to
reproduce the nonlocal pseudopotential band structure, in the framework of constrained optimization tech-
niques using the conjugate gradient method. The results are in good agreement with the optical and photo-
emission experimental data. The scaling laws appropriate to the covalent bonding are violated by a fraction of
eV only, which suggests that the interlayer interactions are not solely of the van der Waals type.
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I. INTRODUCTION

III-VI semiconductors have been extensively investiga
since they are considered as layer compounds. Among th
GaSe, and to less extent InSe, have been considered
particular interest not only for their intrinsic outstandin
properties,1 but also for their potential applications i
memory devices.2 In the late 1950s, early studies on the n
ture of the chemical bonding in these compounds3 together
with the fact that they crystallize in layered structure4 have
reinforced the idea that the materials under consideration
two dimensional in nature. In this context, most theoreti
investigations of the electronic structure in the 1960s h
neglected the interlayer interactions,5,6 although such inter-
actions may affect optical properties. These calculatio
however, failed to reproduce even the single layer electro
structure. Hence the feeling that the tight-binding approa
so successful in three-dimensional~3D! materials, was not
justified in these layer compounds. Indeed, in the 1970s,
first computations of the electronic structure taking into
count interlayer interactions used the pseudopoten
approach.7,8 One has to wait until the late 1970s to find 3
calculations of the electronic structure of InSe9,10 and
GaSe10,11 using the tight-binding approach. Yet it is hard
justify the rescaling of the two-center integrals used in th
works in order to reproduce the proper energy gap. Actua
a significant improvement of the tight-binding formalism h
been achieved with the introduction of thes* additional or-
bital, which aims to mimic the effects of thed-orbitals ne-
glected in the truncation of the Hamiltonian matrix. But th
s* orbital which allows thesp3s* models to reproduce th
band structure and the energy gaps of the semiconductor
been introduced only in the 1980s.12 Therefore this approach
has not yet been used in III-VI compounds.

The current renewed interest in these compounds co
from the successful attempts to grow these compounds
molecular-beam epitaxy.13,14 In particular, the epitaxy of
GaSe and InSe on silicon opens the use of these materia
buffer layers in electronic devices and motivated the pres
work. In this paper, we report the theoretical study of t
0163-1829/2002/65~12!/125206~12!/$20.00 65 1252
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three-dimensional electronic structure of GaSe and InSe
the framework of the tight-binding approach in thesp3s*
model. In prior works,14–16 including the most recent ones,17

the III-VI compounds are so far considered as truly laye
compounds, i.e., it is commonly accepted that the interac
between the layers is weak and solely due to van der W
interactions. Only the intralayer interactions are suppose
result from an ionic and covalent bonding. However, the
terlayer bonding is not as small as in archetypes of la
materials. For example, the ratioC33/C11 between elastic
constants in the directions parallel and perpendicular to
layers ine-GaSe is 15 times smaller than in graphite,18 and
only three times larger than in three-dimensional materi
Therefore the bonding between layers, although small, is
from negligible, and an order of magnitude larger than e
pected from van der Waals interaction only. The interlay
interactions in III-VI compounds should then not reduce
the van der Waals interactions, and include a small iono
valent component as well. Nevertheless, the anisotropic c
tal structure implies that the Hamiltonian matrix elemen
deviate from the scaling laws empirically established
purely covalent bonding.19 We have thus modified the tight
binding method accordingly. The Hamiltonian matrix el
ments have been allowed to deviate from the covalent s
ing law, and taken as fitting parameters to reproduce
electron dispersion relations determined by the nonlo
pseudopotential approach in GaSe7,20 and InSe.21 We find
that this tight-binding calculation reproduces the electr
dispersion relations determined by the pseudopoten
method, for the valence and the lower conduction states
well. Hamiltonian matrix elements determined in the fittin
process using the conjugate gradient method are foun
deviate by only a fraction of eV from the covalent scalin
law. This is another argument that, besides the van der W
interaction, the interlayer interactions involve ionocovale
bonding which, although small when compared with the
tralayer bonding, is far from negligible. Actually, the use
the tight-binding method to determine the electronic str
ture has two advantages. First, it makes easier the comp
tion of partial densities of states, allowing for a better und
©2002 The American Physical Society06-1
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standing of the bonding in the bulk materials. Second
allows for the determination of the electronic structure
heterojunctions. In particular, it is very difficult to determin
the band offsets by other methods. We used both these
vantages which motivated our work to revisit the nature
the electronic band structure and the chemical bonds in b
III-VI compounds. The electronic properties of their inte
face with silicon will be the subject of a forthcoming pape

This paper is then organized as follows. In the next s
tion, we first recall basic features of the crystal lattice. S
tions III and IV are devoted to our tight-binding calculatio
of the three-dimensional electronic structure of GaSe
InSe. The results are displayed in Sec. V and discusse
Sec. VI, with respect to previous tight-binding and pseu
potential calculations. They are found to reproduce opt
and photoemission experimental data. An interesting ins
in the nature of the bonds in these compounds is infer
from our model.

II. CHEMICAL BONDING OF III-VI COMPOUNDS

One layer of GaSe~or InSe! is made of the pilling of four
atomic planes, two planes of the metalM5Ga,In being
sandwiched between Se atomic planes. The two dimensi
lattice of the atomic planes is hexagonal. This piling is illu
trated in Fig. 1, in which the four atomic planes label
Se1-M1-M2-S2 constitute one layer. Each atom in t
M1 (M2) plane has three Se nearest neighbors~NN! in the
Se1~Se2! atomic plane, respectively~bond labeled1 in Fig.
1!, and one NN metal atom in theM2 (M1) plane. Because
of this M -M bond~labeled2 in Fig. 1!, the twoM1 and Se1
planes~or mirror M2, Se2 planes! do not merge into one
GaSe plane. As a consequence, the Se1-Se2 distance is
larger than theM1-M2 one, and there is a dissimilarity i
the local environment betweenM and Se atoms: each S
atom, say in the Se1 plane, has threeM1 NN atoms~bond
1), but no NN Se atom. The nearest Se atom in the Se2 p
which would be the geometric analog of the bond2 is at a
distance which places this Se atom as the fourth nea
neighbor only. The corresponding bonding is negligible.
another hand, we must take into account nearestM -M and
Se-Se interactions inside the atomic planes, both labele3
and 4, respectively, in Fig. 1. Nevertheless, these consid
ations show that the nearestM -M bond2 plays a central role
in the chemical bonding and the geometry of the layers.
tually, it determines the optical properties of the
materials.22,23

The three-dimensional lattices are built by stacking laye
There are, however, different ways of stacking the layers
compact manner, which correspond to different polytyp
The only type in which GaS is reported to crystallize is t
b-type lattice, but GaSe and InSe usually crystallize in
e-GaSe,4 andg-InSe~Refs. 4, 24, and 25! phase. Theb-type
corresponds to the staking of adjacent layers illustrated
Fig. 1. The interlayer interaction is dominated by the Se
bond ~labeled5 in Fig. 1!. The M -Se interlayer bonding is
much weaker, not only because theM -Se distance is larger
but also because theM -Se interaction is screened by th
12520
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Se-Se interactions. In this work, only the interactions m
tioned above (1 –5) are taken into account. This approxim
tion amounts to neglect the differences between polytyp
Band calculations performed ine, b, andg polytypes cor-
roborate that the energy differences of the electron st
throughout the Brillouin zone are small~the order of 0.1
eV!.11 On an experimental point of view, such differenc
can be estimated from optical studies in GaSxSe12x , be-
cause, for suitable values ofx in the intermediate region o
composition 0.1,x,0.6, all three types of stacking occur.26

Absorption edge measurements have evidenced a differ
of energy gap as small as 50 meV betweene, b, and g
polytypes.27 These prior works then show that the differenc
in the electronic structure between different polytypes
negligible, and justify that we take interactions of the1 –5
kind only. It also means that we have the choice of the po
type to perform our calculations. We only consider t
b-type lattice, which has the highest symmetry (D6h

4 !, and
contains the smallest number of molecules~eight! in the unit
cell. This is also the reason why most of the prior calcu
tions have been performed in this structure, which will ma
easier the comparison between our results and prior wo
The position of the atoms inside the unit cell in thisb struc-
ture, and the standard notations for the high-symmetry po

FIG. 1. View of the crystal lattice ofb-GaSe andb-InSe~a!. M
refers to the metal atom~either Ga or In!. M1, Se1 refer to the first
plane of metal and chalcogen atoms, respectively, building the
half layer. The second half layer is constituted byM2 and Se2
atomic planes. The stacking of the second layer Se3-M3-M4-Se4
has been drawn for theb polytype. The bonds labeled1 –5 corre-
spond to the bonds taken into account in the tight-binding pseu
Hamiltonian. TheM -M bond 2 between the two half layers con
nects two metal atoms projected on the same site in the ver
projection ~b! in the layer plane. On another hand the interlay
interaction5 makes the lattice three dimensional.
6-2
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of the corresponding Brillouin zone are illustrated in Fig.
The atomic positions of the eight atoms in the hexago
lattice cell, the fundamental lattice vectors, and the latt
parameters in theb polytype have been reported by Do
et al.,10 after prior works of Kuhnet al.28 for GaSe and
Lifkorman et al.29 for InSe. They are reported in Table I, i
terms of the parametersz1 and z2 defined in Fig. 1 as the
smallest distances of the Se and metal atoms from the b
plane.

III. TIGHT-BINDING CALCULATION OF BAND
STRUCTURES OF GaSe AND InSe

The tight-binding Hamiltonian is built in the basis o
Bloch states:

FIG. 2. Unit cell of III-VI compounds in theb polytype ~left-
hand side!. The notation is the same as in Fig. 1. The basis of
lattice is made of the eight atoms labeledM1 –M4 and Se1–Se4
The other atoms are actually outside the unit cell. It implies t
some nearest-neighbor interactions connect atoms in different
cells j Þ j 8 in Eq. ~3!. On the right-hand side of the figure, th
corresponding hexagonal Brillouin zone is shown. The hig
symmetry points are also indicated, and delimit the irreducible p
~heavy contour!.
12520
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Cm,kW
l

~rW !5N21/2(
j

expikW•(rW l1RW j )c jm
l ~rW2rW l2RW j !. ~1!

The summation runs over the lattice vectorsRW j . The indexl
distinguishes between the eight atoms inside one unit c
The atoml is positioned atr l inside the unit cell.m labels the
orbital type and runs overs,px ,py ,pz ,s* . To be more spe-
cific, the quantum numberm runs over thes* , 4s, and 4p
states of Se, and either thes* , 4s, 4p states of Ga, or the
s* , 5s, 5p states of In.c jm

l (rW2rW l2RW j ) is the Löwdin m
orbital centered on atomic siter l inside the unit cellj. It is
the symmetrically orthogonalized atomic orbital defined b

c jm
l ~rW2RW j !5 (

j 8m8 l 8
S21/2~ jml; j 8m8l 8!f j 8m8

l 8 ~rW2rW l 82RW j8!,

~2!

wheref j 8m8
l 8 is them8 atomic orbital on atomic sitel 8 of the

unit cell j 8. S21/2( jml; j 8m8l 8) is the element betweenf jm
l

and f j 8m8
l 8 of the S21/2 matrix, as defined from the overla

matrix S between the atomic orbitals. By using Lo¨wdin or-
bitals instead of atomic orbitals, we obtain a secular equa
H2eI 50 instead of the one with troublesome overlapsH
2eS50 considered in prior tight-binding calculations
GaSe and InSe.10,11 In theb polytype, the unit cell displayed
in Fig. 2 includes eight atoms~four anions and four cations!.
Since there are five orbitals in thesp3s* basis, the Hilbert
space is truncated to a set of 835540 basis functions. Be
fore introduction of the spin-orbit interaction, we have thu
40-band model. Since there are 31659 valence electrons pe
cation-anion pair, or 36 valence electrons per unit cell,
solution of the eigenproblem for the Hamiltonian in th
model gives 18 twofold spin degenerate valence bands
22 conduction bands when the spin-orbit interaction is
glected, twice more when the spin degeneracy is lifted by
spin-orbit interaction. The next step is the calculation of
Hamiltonian matrix elements. In the basis set defined in
~1!, they can be written at any givenkW vector of the Brillouin
zone, under the form

e

t
nit

-
rt
d InSe,

TABLE I. Fundamental vectors and positions of the Se and metal~Ga or In! atoms according to their

labels in Fig. 1. The numerical data for the lattice parameters are from Refs. 28 and 29 for GaSe an
respectively.

Basis vectors

aW 15a( 1
2 , )2 ,0) aW25a~2

1
2,
)
2 ,0! aW 35c(0,0,1)

Positions of Se atoms Positions of metal atoms

Se1
2
3 (aW 11aW 2)1z1aW 3 M1

1
3 (aW 11aW 2)1z2aW 3

Se2
2
3 (aW 11aW 2)1( 1

2 2z1)aW 3 M2
1
3 (aW 11aW 2)1( 1

2 2z2)aW 3

Se3
1
3 (aW 11aW 2)1( 1

2 1z1)aW 3 M3
2
3 (aW 11aW 2)1( 1

2 1z2)aW 3

Se4
1
3 (aW 11aW 2)1(12z1)aW 3 M4

2
3 (aW 11aW 2)1(12z2)aW 3

GaSe a53.755 Å c515.94 Å z150.100 Å z250.173 Å
InSe a54.00 Å c516.88 Å z150.091 Å z250.167 Å
6-3
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Hml,m8 l 85(
j 8

eikW•(rW l 81RW j 82rW l2RW j )^c jm
l uHuc j 8m8

l 8 &. ~3!

The number of independent matrix elemen
^c jmuHuc j 8m8& is limited by symmetry considerations. LetV
be the generic name for these matrix elements. Altho
there are five independent values for the quantum num
m,m8, the s andp symmetries of the orbitals imply that th
set (m,m8) gives rise to seven matrix elements not
Vabg in conventional notations of Slater:30

Vsss ,Vsps ,Vpps ,Vppp ,Vs* s* ,Vss* s ,Vs* ps . On another
hand, the number of bonds (j l , j 8l 8) between atomic sites
inside the unit cell is reduced by the truncation of the int
action to nearest~metal and chalcogen! sites only. For a low-
symmetry polytype, this truncation reduces the number
independent bonds to 16. The choice of theb polytype with
the highest symmetry reduces the number of nonequiva
nearest-neighbor bonds from 16 to 5 only: the interacti
labeled (1) –(5) in Fig. 1. In this sequential order, thes
bonds can be labeled by an additional indexd running from
1 to 5. Therefore thêc jmuHuc lm8& matrix elements can be
written Vabg

d . The combination of seven values for the s
(abg) and five values ford results in 735535 independent
such parameters. Within this first-neighbor tight-bindi
theory pioneered by Harrison31 to describe the valence band
of semiconductors, and extended to thesp3s* model by Vogl
et al.12 to describe lower conduction states as well, we ha
replaced the actual Hamiltonian by a 40340 ~or 80380
when spin-orbit interaction is included! pseudo-Hamiltonian
matrix involving 35 independent empirical parameters. T
basic idea of the tight-binding theory is to minimize th
number of such parameters. In a tetrahedral environmen
sociated to nearly covalent bonding only, such as the z
blende structure, the off-diagonal parameters can be
mated from the scaling law:19

Vabg5habgd22exp@22.5~R/d21!#, ~4!

whered is the nearest-neighbor distance between atom
the same nature as those under consideration,R the actual
distance between the atoms under consideration. The pa
etershabg have been determined by Harrison.32 However,
we cannot expect this scaling law to still apply in III-V
compounds which crystallize in a layered structure with h
agonal symmetry. To determine the 35 parametersVabg

d , we
then return to the scheme used successfully by Voglet al.12

in zinc-blende-type semiconductors, i.e., we concentrate
producing energy bands which mimic the nonlocal pseu
potential bands and reproduce the spectral density of st
Of course in the zinc-blende structure, the number of in
pendent parameters is smaller~16! in the nearest-neighbo
tight-binding theory, but raises to a value which compa
well with 35 when interactions between next-nearest nei
bors are included in the pseudo-Hamiltonian. Yet the
tempts to determine the electronic structure in su
extended-neighbor tight-binding theory faced with the
many adjustable parameters have been successfully ach
in zinc-blende structure, by employing least-square fits
pseudopotential bands.33 We have followed this procedure, i
12520
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the present work, to determine the parametersVabg
d entering

the pseudo-Hamiltonian matrix in our nearest-neighbor tig
binding theory of the III-VI compounds.

IV. NUMERICAL PROCEDURE

Actually, the independent parameters in the Hamilton
are the 35 parametersVabg , plus the energiesEe of the
pseudo-s, s* , andp Löwdin orbitals. There are six such pa
rameters labeled bye ~three for Se plus three for the metal!,
which raises the total number of independent parameter
41. The least-square-fit procedure amounts to find the m
mum of the function

f ~$Vabg
d %,Ee!5(

k,i
~Ek

i 2Ẽk
i !2 ~5!

in the space of parametersVabg
d ,Ee . The summation is over

a set$kW% of points in the hexagonal Brillouin zone, and ov
the valence and lower conduction bands, indexed byi. Ẽk

i

corresponds to the dispersion relation as reported from
nonlocal pseudopotential calculations,20,21 andEk

i is the dis-
persion relation provided by the solution of the eigenprobl
of the pseudo-Hamiltonian for a given setVabg

d of indepen-
dent parameters.

The next step is the choice of the sampling$kW% of the
hexagonal Brillouin zone, over which runs the summation
Eq. ~5!. If the number ofkW vectors is too small, the least
square-fit procedure will converge to a solution which rep
duces with a high accuracy the energiesẼk

i at these particular
points, but will depart from the dispersion relations deduc
from pseudopotentials elsewhere in the Brillouin zone. A
tention must then be paid to select a number ofkW vectors
large enough to insure the convergence to a solution wh
reproduces not only the energiesẼk

i at the selected points
but also the overall dispersion relations of the bands. Suc
constraint has been achieved by choosing a set of only fok
vectors, namelyA,G,K,M , plus the point in the middle of
the Brillouin zone along theG-K direction where the disper
sion is larger.

At last, we are left with the choice of the set of ener
bands labeled byi which is the other index entering th
summation in Eq.~5!. Neither the pseudopotential approa
nor the tight-binding approach are supposed to be relevan
describe highly excited states of the conduction band. Th
fore the set$i% has been truncated to include all the valen
bands, and only the five lowest twofold spin degenerate
persion curves for conduction electron states~or the ten low-
est conduction states when spin orbit is included!.

The least-square-fit procedure in Eq.~5! amounts to the
search for a minimum of the functionf in the 41-dimensional
space of parameters. The numerical procedure we have
for this purpose is the conjugate gradient method, as typi
by the Polak-Ribiere algorithm34 which insures faster con
vergence than the Fletcher-Reeves algorithm when, like
Eq. ~5!, the functionf is not quadratic. When the dimensio
of the space is so large that the steepest descent meth
not reliable, the conjugate gradient method is known to
6-4
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ways insure the convergence towards the actual minim
The Ee energies are close to the atomic values which
chosen as the initial values for these parameters in the m
mization process of Eq.~5!. The starting values forVabg

d

completing the set of coordinates of the initial pointP0 of
the 41-dimensional space have been chosen equal to the
ues deduced from the scaling law in Eq.~4!, with the habg

reported by Harrison.32 In addition, we have perturbed th
minimization procedure by choosing different starting poi
in the vicinity of P0, yielding different trajectories to con
verge towards the minimum off, and checked that the rou
tine returns to the same minimum.

As usual in tight-binding calculations, and other proble
met in physics involving many fitting parameters, such
Rietveld refinements of neutron or x-ray diffractograms35 or
analysis of extended x-ray-absorption fine struct
~EXAFS! spectra for example, we have proceeded by diff
ent steps. First the fit of the valence bands is achieved in
sp3 basis, i.e., all the matrix elements involvings* are set
equal to zero. In this process, the diagonal matrix eleme
are adjusted first, by considering the energies of the orb
as fitting variables allowed to depart from the energies of
s and p orbitals of the free atoms, aiming to locate th
valence-bands at the appropriate energy in the solid. Sec
the off-diagonal elements are determined to reproduce
valence band dispersion relations. At last, thes* orbital is
introduced, aiming to fit the energy gap and the dispers
relations of the first conduction bands. This step by step p
cedure takes into account the different impact the vari
parameters have on the band structure, and insures a f
convergence towards the solution. Moreover, it is also
means of controlling that the routine converges to the so
tion which is meaningful on physical grounds. This contro
reinforced by the constraint that the solution does not de
too much from the pointP0. In particular, we found that al
of the 20 actualVabg

d potentials which fit the dispersion re
lation curves of the valence bands in GaSe and InSe~i.e.,
those parameters which do not involves* ) depart from their
initial value atP0 by less than 1 eV. As a result, the deviatio
uEk

i 2Ẽk
i u for any valence bandi, at any point of the Brillouin

zone along theA-G-K-M directions @not only the fourkW
values over which runs thek index in Eq. ~5!#, does not
exceed 0.3 eV. For matrix elements involvings* , we follow
the prior works by setting the matrix elements to zero wh
ever it can be done, i.e., without violating the quality crit
rion we have imposed. This criterion is that~i! the departure
from Ẽk

i pseudopotential dispersion curves still does not
ceed 0.3 eV for any valence bandi, at any point of the
Brillouin zone along theA-G-K-M directions.~ii ! The en-
ergy gap is in quantitative agreement with both the pseu
potential calculations and the experimental data. In ot
terms, the introduction of thes* orbital is intended to adjus
the energy gap, without degrading the overall fit of t
valence-band structure.

Like in any tight-binding approach, we concentrate
producing energy bands which not only mimic the nonlo
pseudopotential bands,36 but also reproduce the spectral de
12520
.
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sity of states.12 The expression of the density of states, or t
imaginary part of the dielectric constante9(v), takes the
form

1

VE E E
BZ

Fk
i d~Ek

i 2E!d3k, ~6!

whereV is the volume of the Brillouin zone. The expressio
has been written in the form appropriate to the calculation
the density of states. In the case of the dielectric consta
Ek

i has to be substituted by the energy differenceDEk
i j be-

tween two bandsi and j. In both cases, however,Ek
i or DEk

i j

has the periodicity of the reciprocal lattice. Such integr
over the Brillouin zone, can be determined by replacing
integral by a discrete summation over the ‘‘specialkW
points,’’37,38 provided the Dirac functions are smoothed. F
this purpose, the Dirac distribution has been replaced b
Gaussian of widths50.2 eV. This value ofs is large
enough to insure that the integrant is smooth so that
special point approximation is valid, and small enough
that the peaks in the density of states are not smeared o
the process. The reflectivity curve has been investigated b
experimentally, and theoretically by computing first th
imaginary part ofe9(v), then the real part by Kramers
Kronig transformation.23 These authors have determined th
the use of two specialkW points was already satisfactory t
describe the reflectivity curve in the range of energies~3–6
eV! where it has been investigated. However, we found t
more than three specialkW points had to be used to determin
quantitatively the partial or total density of states, and
actually used a set of eight specialkW points in the hexagona
Brillouin zone generated by the procedure of Chadi a
Cohen.38 Note that the reflectivity curves calculated from th
band structure determined in the pseudopotential appro
are in good agreement with the experimental data in G
and InSe.7,20,23Since our tight-binding model is built in suc
a way that we reproduce the nonlocal pseudopotential dis
sion relations, we take for granted the fit of the reflectiv
curves, and we shall check the validity of the model by dir
comparison between theory and experiments, for the dis
sion relations and density of states.

V. TIGHT-BINDING ELECTRONIC STRUCTURE
OF GaSe AND InSe

The matrix elements of the tight-binding nearest-neigh
pseudo-Hamiltonian resulting from the least-square fit to
nonlocal pseudopotential dispersion relations, in the fram
work of the constrained optimization procedure outlined
the previous section, are displayed in Tables II and III. T
diagonal intra-atomic elements, which represent the pseu
atomic energies of the Lo¨wdin orbitals, are reported in Tabl
II together with thes- andp-atomic energies of the free ele
ments, to evidence that the departure from the atomic va
is actually small, as it should be. The matrix elementsVabg

d

fit to the pseudopotential band structure are reported in Ta
III. To get more insight in the chemical bonding in the m
terials, we have detailed in Table IV theVabg

d evaluated from
6-5
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TABLE II. Diagonal matrix elements of the tight-binding nearest-neighbor pseudo-Hamiltonian res
from the least-square fit of the nonlocal pseudopotential dispersion relations. Thes- andp-atomic energies of
the free elements are also reported in parentheses, for comparison. All the energies are expressed

GaSe InSe
Ga Se In Se

Es -12.63~-11.55! -22.60~-25.78! -12.97~-10.14! -21.73~-25.78!
Ep -6.44 ~-5.67! -12.30~-10.96! -6.73 ~-5.37! -10.82~-10.96!
Es* -2.60 -4.89 -2.34 -4.89
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the scaling law@Eq. ~4!# in case of nearly covalent bondin
with the habg parameters given in Ref. 32. The differen
between our result forVabg

d ~Table III! and the correspond
ing element in Table IV allows us to point out deviatio
from covalent bonding. This difference is found smaller th
1 eV for any matrix element.

The solution of the eigenproblem for the Hamiltonian d
fined in Tables II and III is reported in Figs. 3 and 4 for Ga
and InSe, respectively. The top of the valence band has b
chosen as the origin of energies. For clarity, the dispers
relations and the corresponding Hamiltonian matrix eleme
have been reported without including the spin-orbit inter
tion in the pseudo-Hamiltonian. We have also performed
calculations including the spin-orbit interactionHso . The
coupling constant defined as the intra-atomic matrix elem
l5^x↑uHsouz↓& for Ga, In, and Se has been taken from R
39. The only sizeable effect of this interaction is the lift
the spin degeneracy of the dispersion relations, mainly at
points of the Brillouin zone where the symmetry is hig
A,G,M , and along theM -G direction where the spin splitting
is maximum. Yet this splitting remains smaller than 50 m
even in this direction, for any subband. This is a too sm
splitting to be detected experimentally, and indeed, no s
orbit effect has ever been reported in III-VI compounds. A
consequence, the spin-orbit interaction will be neglected
the following.

The lettersA–E in Figs. 3 and 4 also label peaks of th
density of valence states illustrated in Fig. 7 for the case
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GaSe. The experimental density of states deduced from
analysis of photoemission data40 is also reported in Fig. 7 for
comparison. The width of the valence band extending fr
the bottom of theE subband to the top of theA subbands is
6.8 and 6.6 eV for GaSe and InSe, respectively, in our mo
This is in agreement with the experimental estimation of t
bandwidth, 7 eV after Ref. 41 in GaSe, and 6.2 eV in InSe42

A similar agreement is found with previous tight-binding ca
culations according to which the bandwidth is 7.2 eV
GaSe,10,11 and 5.8 eV in InSe.10 The tight-binding determi-
nation of this bandwidth is then in better agreement w
experiments than the pseudopotential calculations which
dict a width of 6.2 eV only, in GaSe.23 In addition, the loca-
tion of the peaks of density is in quantitative agreement w
experiments. TheF peak corresponding to the lowest valen
band is found at212.3 eV below the top of the valenc
band, which compares well with the experimental valu
212.8 eV,40 at contrast with former tight-binding calcula
tions, which places thisF band at lower energy, namel
214 eV ~Ref. 10! and214.3 eV.11 The only sizeable dif-
ference between experiments and our results in Fig. 7 c
cerns the relative amplitude of theD and E peaks. We find
the E peak smaller than theD peak, at contrast with earlie
photoemission data.40 However, more recent angle-resolve
photoemission experiments in the geometry where the p
toelectrons are collected along theGM direction43 give D
and E peaks with the same energy position, and the sa
relative amplitude as our theoretical result.
n re-
of the
TABLE III. Off-diagonal matrix elements of the tight-binding nearest-neighbor pseudo-Hamiltonia
sulting from the least-square fit of the nonlocal pseudopotential dispersion relations. The labeling
bonds in the first column is defined in Fig. 1. All the energies are expressed in eV.

GaSe sss sps pps ppp s* ps s* ss s* s* s

Ga-Se(1) -0.988 2.057 2.803 -0.533 0.822 -0.333 2.253
Ga-Ga(2) -2.241 1.881 2.462 -1.013 0.000 -0.279 -0.240
Ga-Ga(3) -0.102 0.085 0.774 -0.115 0.561 0.007 0.415
Se-Se(4) -0.133 0.242 0.330 -0.075 0.488 -0.386 1.110
Se-Se(5) -0.050 0.051 0.483 -0.149 0.249 -0.010 -0.125

InSe sss sps pps ppp s* ps s* ss s* s* s
In-Se(1) -1.001 2.105 3.290 -0.421 0.913 0.000 0.000
In-In(2) -1.701 1.493 2.327 -0.968 1.896 0.000 0.000
In-In(3) -0.133 0.293 1.119 0.204 0.597 0.000 0.000
Se-Se(4) 0.082 0.233 0.114 -0.109 -0.220 0.000 0.000
Se-Se(5) -0.055 -0.147 0.582 -0.159 -0.051 0.000 0.000
6-6
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ELECTRONIC STRUCTURE OF THE LAYER COMPOUNDS . . . PHYSICAL REVIEW B65 125206
Some information on the dispersion relations of the
lence bands are provided by angle-resolved photoemis
experiments for GaSe~Ref. 41! and InSe.42 To go further in
the discussion, attention should be paid to the process it
In such experiments, a photoelectron has to exit from

TABLE IV. Off-diagonal matrix elements of the tight-bindin
nearest-neighbor pseudo-Hamiltonian, after the scaling law~Ref.
19! @Eq. ~4! in the present paper#. These matrix elements, with a
the ss!s and s!s!s elements set equal to zero, completed by
diagonal elements in parenthesis in Table I, define the Hamilton
in the standard tight-binding scheme~Ref. 12!. The labeling of the
bonds in the first column is defined in Fig. 1. All the energies
expressed in eV.

GaSe sss sps pps ppp s* ps

Ga-Se(1) -1.636 1.761 2.752 -0.781 1.825
Ga-Ga(2) -1.734 1.866 2.917 -0.828 1.765
Ga-Ga(3) -0.525 0.565 0.883 -0.251 0.545
Se-Se(4) -0.136 0.146 0.228 -0.065 0.139
Se-Se(5) -0.116 0.125 0.195 -0.055 0.122

InSe sss sps pps ppp s* ps
In-Se(1) -1.429 1.537 2.403 -0.682 1.593
InIn(2) -1.335 1.436 2.246 -0.637 1.358
InIn(3) -0.510 0.549 0.859 0.244 0.530
Se-Se(4) 0.092 0.099 0.155 -0.044 0.094
Se-Se(5) -0.119 0.128 0.200 -0.057 0.125

FIG. 3. Band structure of GaSe in our model. The origin
energies is chosen at the top of the valence band. The lettersA–F
identify the dispersion relation curves responsible for peaks in
density of states, with the same label~see Fig. 7!. The result of
k-resolved inverse photoemission spectroscopy experimental
~full dots! relative to conduction bands are also reported, for co
parison~Ref. 51!.
12520
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e

material before being detected. In the process, it crosses
surface, which breaks the translational invariance along thz
axis, and there is no conservation rule for thez componentkz
of the photoelectron wave vector. Therefore the dispers
relation in angle-resolved photoemission experiments is
duced from an analysis of the spectra in which only the co
ponentk// of the photoelectron is conserved, without takin
thekz component into account: it is assumed that there is
dispersion of the energy along thez axis. As stated by the
authors themselves, the angle-resolved photoemission
periments then give only access to the 2D dispersion r
tions of the valence bands.41,42 To make contact with these
experiments, we thus have to mimic also a 2D approxim
tion. To do so, we have considered our Hamiltonian app
priate to bulk GaSe and InSe, as defined by its matrix e
ments in Tables II and III, in which we set equal to zero
the matrix elements relative to interlayer interactions. T
dispersion relations of the valence-band solutions of
eigenproblem for this Hamiltonian are reported in Figs.
and 6, together with the angle-resolved photoemission d
for comparison. The overall agreement between our mo
and the experiments is good. It is, of course, not as good
the agreement which can be reached in three-dimensi
band calculations where the fitting parameters are just c
sen so that the dispersion relations reproduce these da10

However, we find it difficult to justify this procedure, a
there is some inconsistency in the fitting of two-dimensio
dispersion relations by a three-dimensional Hamiltoni
Even in layered compounds such as GaSe and InSe,
width of the dispersion relations along thez axis reaches 0.8
eV, which sets the limit in the accuracy of the fitting proc
dure used in this prior work.10 Note the agreement betwee

n

e

f

e
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-

FIG. 4. Band structure of InSe in our model. The origin
energies is chosen at the top of the valence band. The labelingA–F
is the same as in Fig. 3. The result ofk-resolved inverse photoemis
sion spectroscopy experimental data~full dots! relative to conduc-
tion bands are also reported, for comparison~Ref. 51!.
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theory and photoemission experiments in Figs. 5 and 6
actually better than 0.8 eV for all the bands labeledA–E in
Figs. 3 and 4, everywhere in the Brillouin zone.

Most band calculations reproduce more or less the ene
gap, since they involve parameters which are adjusted
this purpose. This is also the case in our model: the comp
son of the theoretical and experimental energy gaps is a
of efficiency of the addition of thes* orbital to thesp3 basis.
Our tight-binding band structure, and the nonlocal pseudo
tential band structure we have fit, are calculated with
lattice parameter and interatomic distances set equal to
experimental value measured at room temperature. There
the direct and indirect energy gaps in our own calculatio
must be compared to their experimental value measure
room temperature determined at 300 K. For GaSe, diffe
optical measurements of the gaps have been made44–47 at
different temperatures. All of them are consistent, provid
the temperature dependence of the gap is taken into acc
As a result, at room temperature, the direct gap in GaS
2.03 eV, and the indirect gap is at 1.98 eV. It is commo
accepted that the direct gap is at the center of the Brillo
zone, while the indirect gap is between the top of the vale
band at theG point, and the bottom of the conduction band
M point. Our theoretical value is 2.01 and 2.00 eV for t
direct and indirect gaps, respectively, in GaSe, in quantita
agreement with experiments. For comparison, too small
ues, 1.75 and 1.70 eV, are found for the direct and indir
gaps, respectively, in Ref. 10. This is presumably due to
different fitting procedure we have just questioned, givi
too much importance to the two-dimensional dispersion

FIG. 5. Comparison between our calculated two-dimensio
dispersion relations for the valence bands of GaSe~full curves! and
the angle-resolved photoemission experimental data~Ref. 41! ~full
dots!. Note that, due to the two-dimensional nature of both exp
mental and theoretical results, the dispersion relations do not m
the three-dimensional results displayed in Fig. 3.
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lations of the valence bands. Another tight-binding calcu
tion gives larger values, namely 2.18 and 2.13 eV for
direct and indirect gaps in GaSe.11 Pseudopotential calcula
tions reproduce quantitatively the direct gap.23,20However, if
there is also a quantitative agreement with experiments
our own result for the indirect gap in Ref. 20, a smaller va
1.8 eV is found in Ref. 23. For InSe, we find the dire
energy gap is 1.44 eV, and the indirect gap is 2.33 eV, w
the second minimum of the conduction band still located
theM point of the Brillouin zone, just like inb-GaSe. On an
experimental point of view, InSe has been much less inv
tigated than GaSe.48 The direct gap at room temperature d
duced from absorption measurements is 1.29 eV,49 in reason-
able agreement with our theoretical result 1.44 eV. Howev
the indirect gap in the same work is reported at 1.19
Another analysis of optical properties of InSe has led B
kanski et al.50 to attribute the indirect gap to an energy 1
eV, with the secondary minimum for the conduction band
the K point of the Brillouin zone, rather than theM point.
This is in contradiction with theoretical calculations in th
present work, and previous ones as well, which predic
larger indirect gap, with the secondary minimum of the co
duction band at theM point. Recent experimental technique
such as thek-resolved inverse photoemission spectrosco
~KRIPES! allow for a better determination of the gaps a
discriminate between these conflicting results. Such exp
ments are intended to give the three-dimensional disper
relation of the conduction bands, while the angle-resolv
photoemission experiments give a two-dimensional appro
of the valence bands. Most recent KRIPES experiments

FIG. 6. Comparison between our calculated two-dimensio
dispersion relations for the valence bands of InSe~full curves! and
the angle-resolved photoemission experimental data~Ref. 42! ~full
dots!. Note that, due to the two-dimensional nature of both exp
mental and theoretical results, the dispersion relations do not m
the three-dimensional results displayed in Fig. 4.
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ELECTRONIC STRUCTURE OF THE LAYER COMPOUNDS . . . PHYSICAL REVIEW B65 125206
both GaSe and InSe have been reported by Sporkenet al.51

In this study, the authors have explored theGK and theGM
directions. The results are displayed in Figs. 3 and 4
GaSe and InSe, respectively, together with our own res
for comparison. The KRIPES energies at the bottom of
conduction band at theG, K, andM points of the Brillouin
zone are reported in Table V, together with our theoreti
result. A global shift in energy of the KRIPES data has be
performed, since the origin of energies in the experiment
unknown. This shift has been chosen in order to adjust
bottom of the conduction band to our theoretical estimat
of the smallest gap, which is not controversial as there is
overall agreement between experimental and theoretica
timations of this parameter. In InSe, where the gap is dir
this minimum of the conduction band is 1.44 eV above
top of the valence band at theG point, while in GaSe where
the gap is indirect, it is located at theM point, 2.0 eV above
the top of the valence band. We find that our tight-bindi
energy position of the conduction bands at theK, M, andG
points of the Brillouin zone are in agreement~also within 0.1
eV! with the KRIPES results both in GaSe and in InS
Therefore our tight-binding model reproduces the dispers
relation of the lower conduction band in GaSe and InSe
termined by KRIPES experiments. In particular, we conclu
that the indirect gap in InSe is between the top of the vale
band at theG point and the bottom of the conduction band
theM point, at contrast with few former underestimations
the indirect energy gaps in InSe, which eventually placed
secondary minimum of the conduction band at theK point.50

Like in the case of GaSe, we find our results concerning
band gaps for InSe in quantitative agreement with a form
pseudopotential calculation,21 while a former tight-binding
calculation10 is in qualitative disagreement with experimen
as it predicts InSe is an indirect gap, in addition with aM
point of the conduction band only 1.00 eV above the top
the conduction band. To summarize, our theoretical res
for the band gaps are thus an improvement with respec
former tight-binding calculations, and the introduction of t
s* orbital has allowed to reproduce both the direct and
indirect band gaps in GaSe and in InSe as well, like the b
pseudopotential calculations.

According to Figs. 3 and 4, the good agreement betw
the dispersion relations of the conduction bands in our mo
and the experimental ones is not restricted to the vicinity
the energy gap, and it extends up to 4 eV above the top o
valence bands. To our knowledge, the density of conduc
states has not been measured in InSe. In GaSe, howeve

TABLE V. Energies~in eV! of the bottom of the conduction
band at the main points of the Brillouin zone (G,K,M ) with respect
to the absolute maximum of the valence band at theG point. The
experimental results ofk-resolved inverse photoemission spectro
copy ~KRIPES! are from Ref. 51.

G K M
GaSe InSe GaSe InSe GaSe InS

This work 2.01 1.44 2.42 2.65 2.00 2.33
KRIPES 2.22 1.44 2.38 2.69 2.09 2.25
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first peaks in the density of conduction states have b
found at 2.35 and 3.65 eV above the top of the valen
band.41 In our model, these peaks occur at 2.6 and 4.0 eV
agreement with these experiments. The third peak is loca
at 6.4 eV in our model. This is in disagreement with
experimental work41 and a tight-binding result54 where the
third peak is reported at 4.75 eV, but in agreement with p
toemission experiments analysis55 and another tight-binding
result11 which report the peak at 6.4–6.9 eV, and the pseu
potential results at 5.8 eV~Ref. 8! and 6.4 eV~Ref. 20! as
well. Significant disagreement with experiments can be
served for more remote conduction bands, but our tig
binding approach is no longer valid for such high energie

VI. DISCUSSION

To get a better understanding of the chemical bonding
these materials we have computed the partial densitie
states. They are illustrated for GaSe in Fig. 8. Since
bonding is essentially the same in GaSe and InSe, we h
chosen GaSe as an example, and will simply point out sm
differences between GaSe and InSe. TheF peak of densities
of states is clearly identified as thes band of Se. TheE and
D states are mainlys states of Ga, hybridized withx,y states
of Se. This hybridization is at contrast with the previo
claim that theE andD peaks of density of states correspo
to Ga-Ga bonding and antibonding states, respectively.
deed, the states are related to the Ga-Ga intralayer inte
tion, as the Ga contribution to these states is dominant. N
ertheless, although smaller than in theC and B states, the
contribution of selenium in theD and E bands is non-
negligible, which explains their rather large dispersion, a
their overlap with theC andB states corroborated by photo
emission experiments.52,53 The z states of Ga and Se do no
contribute to theE states, but their contribution to theD
states explains the larger amplitude of theD peak of density
of states with respect to theE peak in our calculations, in
disagreement with Ref. 40 in Fig. 7, but in agreement w

FIG. 7. Comparison between our calculated density of vale
states~broken curve! and the result of photoemission experimen
analysis~Ref. 40! ~full curve! for GaSe. The lettersA–F identify
peaks associated to the dispersion relation curves with the co
sponding label in Fig. 3.

-
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M. O. D. CAMARA, A. MAUGER, AND I. DEVOS PHYSICAL REVIEW B65 125206
the more recent angle-resolved photoemission experimen43

as already mentioned earlier.
TheB andC bands are mainlyp states of selenium, mixed

with x,y states of Ga, so that the corresponding states pl
key role in the cohesion of the layers, through the Ga
intralayer bonding.

The A-states are of particular importance, since they c
respond to the top of the valence band. The calculation
partial densities show a dominantpz component of selenium
and gallium. This hybridization corresponds to the format
of bonding states due to thes and p component of the
Ga-Se interaction. This is in agreement with former analy
of photoemission experiments with various polarizations
the incident photons.55 Taking into account that an electro
must be in apz valence state to be photoexcited when t
polarization of the photon is parallel to the layers, these
thors have shown that the states at the top of the vale
band arepz states of Ga and Se. Figure 8 shows a smallpx,y
contribution of Se to theA peak of density of states. How
ever, this contribution comes from states in theA valence
band away from the center of the Brillouin zone, i.e., bel
the top of the valence band. Actually the mixing betweenpz

FIG. 8. Partial densities of states in GaSe, on Ga~full curves!,
and Se~broken curves! atoms. The origin of energies is chosen
the top of the valence band. The vertical lines correspond to
location of the peaks in the state density labeledA–F in Fig. 7.
12520
,

a
e

r-
of

n

is
f

-
ce

andpx,y states is forbidden by symmetry at theG point of the
Brillouin zone.

Although GaSe and InSe valence-band dispersion r
tions are very similar, some differences can be noticed. F
the splitting between the twoD bands at theG point is larger
in GaSe~1.4 eV! than in InSe~0.85 eV!. On one hand, this
splitting between these bands vanishes when the interl
interactions vanish. The dispersion relations are even fla
the G-A direction in the 2D model. On another hand, t
interlayer distance is smaller and then the interlayer inter
tion larger in InSe than in GaSe. The larger splitting of the
bands in GaSe is thus an evidence that the interlayer in
action is not the only pertinent parameter which determi
the splitting energies of theD bands. Actually, we have ar
gued that theD states are sensitive to the Ga-Ga~or In-In!
intralayer interaction. Indeed, the larger splitting of theD
bands in GaSe is consistent with the fact that the Ga
distance is smaller and the Ga-Ga interaction stronger t
the In-In one. In the same way, we have determined that
A states are sensitive to the Ga-Se~In-Se! bond. This is con-
sistent with the larger dispersion of theA band in InSe than
in GaSe, as the In-Se distance is smaller than the Ga
distance.

The matrix elementsVabg
d in Table III, as compared with

their initial values predicted for covalent bonding in Tab
IV, also reveal some aspects of the chemical bonding in
material. The largest matrix elements concerning the c
pling is the metal-metal interaction 2 which is then the stro
gest interaction. We have already argued in Sec. II that th
actually implied by the lattice geometry, and evidenced
optical experiments.22,23 The parameterVsss for this bond is
even increased~in absolute value! with respect to the value
in Table IV, at the expense ofVpps . This is due to the fact
that thepz orbital of the metal is not only involved in the
M -M interaction2, but also involved in theM -Se bond1
inside the semilayers. We also note that theVspp matrix is
non-negligible, and compares well with the initial value
Table IV. This is in essence the reason for the failure of
pioneering works which only took thepz orbitals into
account.56 We note that the matrix elements corresponding
this bond 2 are slightly smaller in InSe than in GaSe, wh
is consistent with the difference in the bonding length. O
another hand, theVsss ,Vsps ,Vppp elements for the inter-
layer Se-Se interaction5 are very small. The interlayer bond
ing then comes essentially from theVpps coupling, which is
increased by 0.3 eV in the fitting process. As a result, t
interlayer interaction, although much smaller than the int
layer interactions, is not negligible and places these mate
in an intermediate position between three-dimensional co
pounds and truly layered compounds such as graphite
mica. This result is consistent with the ratioC33/C11 of the
elastic constants, which characterizes the dimensionality
the material.57 This is also consistent with most recent firs
principles pseudopotential calculations of the structural a
dynamical properties, which point out a temperature dep
dence of the lattice specific heat different from what is e
pected for truly layered materials.58

The above discussion concerning partial densities ill
trates the complexity of the mixing betweens andp states of

e
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the metal and the chalcogen in the eigenwave functions. T
is attributable to the low symmetry of the layered co
pounds, at contrast with the highly symmetric zinc-blen
lattice. This is in essence the reason why the spin-orbit in
action has much smaller effects in the IV-VI compounds th
in II-V compounds, where the states in the vicinity of th
energy gap are purep states, although the spin-orbit couplin
is roughly the same in GaSe and GaAs. For the same rea
the coupling betweens* andp orbitals has small effects o
the dispersion relation of the lower conduction band. A
consequence, in GaSe, we found it necessary to adjus
matrix elementsVs* ss andVs* s* s , while they are set equa
to zero in the zinc-blende semiconductors.12 They could be
set equal to zero only in InSe, because this is a direct-
material, so that the corrections introduced bys* are smaller.

VII. CONCLUSION

We have reported a tight-binding calculation of the IV-V
layered compounds GaSe and InSe, in the framework of
sp3s* model. The parameters of the pseudo-Hamilton
vo
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have been determined by constrained minimization of
departure from the nonlocal pseudopotential dispersion r
tions by the conjugate gradient method. The results are
overall agreement with the optical experiments and pho
emission experiments, concerning the dispersion relati
and the density of states of the valence bands, and the
conduction bands as well. The deviation of the matrix e
ments with respect to the scaling laws appropriate to co
lent bonding in zinc-blende materials is small~a fraction of
eV only!. In particular, the interaction between the layers
much larger than in graphite, and cannot be reduced to
small van der Waals coupling only, as it has been sugge
in the literature.
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