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Dynamic correlations of the spinless Coulomb Luttinger liquid
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The dynamic density response function, structure factor, and spectral function of a Luttinger liquid with
Coulomb interaction are studied with the emphasis on the short-range electron correlations. The Coulomb
interaction changes dramatically the density response function as compared to the case of the short-ranged
interaction. The coordinate dependence of the density response is smoothing with time, and the oscillatory
structure appears. However, the spectral functions remain qualitatively the same. The dynamic structure factor
contains thes peak in the long-wave region, corresponding to one-boson excitations. In addition, the multi-
boson-excitations band exists in the wave-number region nedtp\@herekg is the Fermi wave number. We
develop a method to analyze the asymptotic behavior of the spectral functions near to the edges of the
multi-boson-excitations band at zero temperature. The dynamic structure factor diverges at the edges of this
band, while the dielectric function goes to zero there. Hence, a new collective charge mode appears in the
one-dimensional electron liquid as a consequence of short-range dynamic correlations. The mode energy goes
to zero at X, which means that thek? mode is soft.
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[. INTRODUCTION sity response contains thé& component, in addition to the
usual long-wave one. In what follows th&g2term is also
Electron-electron €-e) interaction is known to produce referred to as the charge-density wa@bW).

the most pronounced effects in one-dimensiofid)) sys- The g susceptibility ycpw(d,w) was considered by
tems, where a strongly correlated state appears even if thaither and Peschlfor the LL with short-range@-e inter-
interaction is weak. The dynamic electron correlations are action. They have found thajcpw(g,») diverges as
now the most fascinating topic in this field. |q—2kg| — w/v, wherev is the velocity of the LL bosonic
~ Many attempts were made to treat correlations in 1D USgxcitations. We stress that the divergency of the susceptibil-
ing the approaches, devised for 2D and 3D. They are baseg, s very important because it corresponds to the presence
on the random phase approximati@PA) with various ver- ¢ 4 collective mode in the system.

Zions _Og_sﬁﬁ local :eljd (_:orrectionsl,_ b_OtrI‘ static ar|1d In real 1D structures-e interaction is, generally speaking,
ynamic. ese methods give no qualitatively new results, ng ranged, unless it is screened by a metallic gate. It is well
as compared to higher dimensions, leading to the picture qf

o X nown that Coulomb interaction can highly modify the
charge excitations that is exhausted by common long-wave . .
plasr%on§.‘8 However, this way to cons}?der electron c?orre- ground state and transport properties of 1D systems. Thus, in

lations has obvious shortcomings, especially in what con? Luttinger liquid with Coulomb interactio@LL) the static
cerns the dynamic short-range correlations, inherent in 1pForrelations become much stronger than in the short-ranged

The flaws of the RPA-like approaches become worse as thel With the short-range & (4K in a spinful casgcompo-
dimensionality is reduceliin 1D a number of unphysical Nent being the dominating orfe. _
results appear such as the negative dynamic structure HOW the dynamic LL correlations are affected by Cou-
factorl® the violation of the compressibility sum rule and lomb interaction is the highly intriguing question. However,
negative pair correlation function, the latter two being alsoconsidering only the long-wave density component does not
present in 2D and 3B° lead to the qualitatively new behavior of the dynamic struc-
Another way to treat the dynamic correlations uses théure factor and collective modég>~2The results are very
Hartree-Fock decoupling schertie'? It takes into consider- close to those obtained in RPA.
ation only the exchange-correlation hole but ignores the The present paper concentrates on the CDW contribution
Coulomb one. This approach leads to the nonrealistic cornto the dynamic response functions and spectral characteris-
clusion that the 3D electron gas is unstable against #e 2 tics of the spinless Coulomb Luttinger liquid at zero tem-
fluctuations due te-e interaction'® This was not confirmed perature. We show analytically that Coulomb interaction
by subsequent theories and experiments. What concerns 1drengthens the divergency of the dynamic density suscepti-
systems, the HF approach, on the contrary, did not give anlility in comparison with that of the short-ranged LL. The
sharp peculiarities of the susceptibility near tio-2* singularity of the CDW susceptibility leads to the new be-
Presently, the most advanced way to treat dynamic elediavior of the collective charge mode that is immanent only in
tron correlations in 1D is based on the Luttinger liquid. ) 1D. The strong spatial dispersion arises in the vicinitygof
theory!*>~*¥The short-range correlatiot’s>*appear here in  =2kq, with the mode frequency going to zero @s> 2k .
a natural way, because this model takes properly into accoufithis means that the soft mode appears. Such soft mode is
the nesting of the Fermi surface for the wave number equadbsent in 2D and 3D systems, because the short-range dy-
to 2ke. Owing to the short-range correlations, the LL den-namic electron correlations are much weaker there. Note that

0163-1829/2002/68.2)/1251098)/$20.00 65 125109-1 ©2002 The American Physical Society



YASHA GINDIKIN AND V. A. SABLIKOV PHYSICAL REVIEW B 65 125109

the Zkg mode cannot be obtained within the RPA approach,
even with local field corrections.

Our results concerning the CLL spectral function diverge
from those of Ref. 27, where it was argued that the non-
linear dispersion of bosons, which appears in the presence ¢
Coulomb interaction, Kills the spectral function singularities.
Instead, a flattened maximum was found in a spectral func- s
tion, the position of the maximum being shifted from the ™
resonant frequency. We show that the Coulomb interaction,
on the contrary, only strengthens the divergency, which is a
rather general result for the CLL correlation functions.

The outline of the paper is as follows. In Sec. Il we in-
vestigate the dynamic density response function, structure Distance, x Distance, x
factor, spectral function, dissipative conductance, and dielec-
tric function of a CLL, comparing them with the short-  FIG. 1. The long-wave(@) and CDW (b) components of the
ranged LL results. The methods to calculate the dynamiéiensity response function for the short-ranged (dash ling and

structure factor of a short-ranged LL and CLL are presente@LL (solid line). In the CDW response function thekg filling is
in Appendixes A and B, respectively. not shown. Arrows show the direction of wave propagation.

Xepw

A. The density response function

Il. DYNAMIC CORRELATIONS For the two density components of E@), the density

We start with a bosonized spinless LL Hamiltorfian response functiofDRF) is calculated via the Kubo formula
to give

_ +
H=ZXpfiwpb, by, XX, 1) = xiw (X, 1) + xcow(X, 1),

where b (b,) are boson creatiofannihilation) operators. where
The boson frequency is given hy,=|plv(p), where the

velocity of excitations i (p) =vg/g(p), with the interac- Xiw(X,1)= ﬁzﬁifz(xvt),

tion parameteg(p) and the Fermi velocity . The interac- 77

tion parameter equalg(p)=[1+V(p)/7hve] Y% V(p) o)

being the Fourier transformeste interaction potential. For Yeow(X,1) = ﬁ(9)2({67fl(x,t)sir{fz(xit)]coiszx)}'

the short-range interactiog is constant (6<g<<1 for e-e
repulsion. For Coulomb interactio/(r)=e?/\r?+d?, the
interaction parameter in the long-wave limipd|/<1 is
g(p)=B|In|pd|~*?, d being the quantum wire diametes,  f,(x,t)

The functionsf 1(x,t) andf,(x,t) are as follows:

=[mwhv /26?12, -
The electron-density-fluctuation operator in the Luttinger _ J *ap 2_co t+DX) = Co t—px)le” P
model is written a&%: UF wp[ S wpt+px)—cogwpt—px)Je P,

2
1 1 i

pX)== bt odxsin2kex—2¢), (D) edp | )
fz(x,t)zvpjo w—[sm(wpt+ pX)+sin(wpt—px)Je” P,
¢(x) being the bosonic phase. The first component of the P
density operatop,,, describes long-wave excitations and rep- a= kgl ) 3
resents the sum of the densities of the right- and left-movin ) ] .
electrons. The corresponding excitations come about sep&o the short-rangYeZeli—zg interaction these functions can be
rately within each branch of electron spectrum and have mo=alculated exactly’ "
mentumqg<kg. The second componeptpy, Which rap-
idly oscillates in space, is due to the interference of the right-
and left-moving electrons. This corresponds to excitations _ 2,2 U2
with momentumg~2kg . It is this term that describes the F2(x,)=mgf(vt"=x7).
short-range electron correlations. Note that the presentefhe DRF behavior is illustrated by Fig. 1 for both short-
form of pcpyw differs from the conventional ofhen that the  ranged and Coulomb LL’s.
former is the exact differential. The exact differential form of ~ As is seen, the DRF of a short-ranged LL is presented by
the density fluctuation operator guarantees the particle nunmwo wave fronts, propagating in opposite directions with
ber conservation in an isolated 1D system. The conventionalonstant velocity. The Coulomb DRF, as distinct from the
form of pcpw does not conserve the number of particles andshort-ranged one, has no sharp fronts. The wave form is
thus violates the electroneutrality of the 1D systém. smoothing because of the nonlinear dispersion of CLL boson

e—fl(x,t) — a29[vzt2_ X2] —g,
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excitations. The characteristic space scale of the Coulombf two single-particle Wigner functions and tlstatic pair
DRF depends on time as~t\/nt, where dimensionless  correlation functiorg(x), that is,

andt are normalized, respectively, by and Bd/vg. The

nonperiodic oscillatory structure of the DRF arises in the [ (X1:P1:X2,P2,8) # f(X1,p1,Df(Xz,P2,)9(X1 = X2)

CLL because the phase velocity diverges at wave nurgber jn 1D. Thus the basic assumption of the Singwi-Tosi-Land-
=0. This divergency leads to the appearance of the statiorsjolander theor§® is violated in 1D, which explains why the
ary phasegg in integrals(2),(3). The oscillatory structure, 2k. collective mode is overlooked in the excitation spectrum
owing to the strong Coulomb dispersion, complements theyithin this approach.

smoothing of the wave form, usual for the wave propagation

in weakly disper_sive media._The asymptotic decay of the B. The dynamic structure factor

Coulomb DRF with the time is extremely slow, and has the _

form similar to the decay of the static CLL correlator with ~ NOw we turn to the LL dynamic structure fact8(q, »),

the distancé? Devoid of a sharp front, the Coulomb DRF which is the Fourier transform of the density-density cor-
contains a slowly decaying tail at large distancet./Int. relator R(x,t) =(p(x,1)p(0,0)). At zero temperature the

Introducing the characteristic distange=tInt and sta-  Structure factor coincides with the imaginary part of the sus-
tionary phasg p=tyint ceptibility S(q, ) = — 2% y" (0, ). Although the form of the

Coulomb DRFy,,(x,t) differs dramatically from the short-
2

t X X 3 ranged one, the long-wave part of the structure factor
=——|2-2-+ +0| — ,») has the universal expressfon
¢St 2\/E \/— t \/Etz t3) Slw(q ) p
. . W)= S(w—wy).
the asymptotic behavior of; and f, can be presented as Sw(a,)=lalg(a) 5w ©q)
follows: Thus, the boson dispersion results only in the shift of the
(i) x>x; S-peak position. This is clear physically, sing,(q,w) de-
termines the probability to createsingle boson when ab-
f1(x,0)~2B(VIn(x—xX¢) + VIn(x+ X)), sorbing the quantunk w, which fixes the singularity posi-
tion.
B x? The CDW structure factoB-pw(q,w) describes the exci-
fa(X, )~ —- =, tation of several bosons and is much more interesting. For
X the short-range interactiorScpw(q,w) can be exactly
) calculated-"?1#
(i) x<<xg
1 9 q\?
Sc (q.w>:——(—)
F1(,1)~ 28| VIn(x;—x) + In(x; + x) o VE 4911772(g) | ke
heo\? q 21g—1
77\/% T X 2 (98_) _(k__zr) , (4)
— CO{ ¢st+_ , r=x1 F F
2t 4 e being the Fermi energy. The entire complex susceptibility
is
fo(x,t)~2 { !
L(x,1)~28 - 1 g q)\?
\/In(x —X) \/In(x +X) 0)=—— <_)
f f Yoot ) = 25 T2 g )sin mg) | K
m2e 7 2 {9 270-1
; ho+i0\<]?
- SIN ¢St+_ . X |:(i_2r) _( ) :| .
2t 4 r=2il Ke J €F
We draw attention to the fact that in 1D there are two 5
different mechanisms of the density evolutfdrFirst of all,  The details of the calculation are presented in Appendix A.

there exist soundlike waves, caused by forward scatteringstice that the CDW structure factor is zero out of the

and described by the long-wave DRF component. In thigyang||q| — 2ke| < gw/ve and diverges at the band edges. For
kind of motion neighboring electrons move almost in thesimplicity in what follows we consideg>0.

same phase, so that the corresponding correlations are aImost,:or the CLL the CDW structure factor can not be calcu-

static. Secondly, electrons suffer the backward scatteringyaq exactly, but its general properties are easily understood,
from the nearest particles and interfere, which gives rise tsting the formula

2ke density oscillations. Electron correlations, related to the
2ke mechanism of electron density response, are essentially

— 2 2
dynamic. Therefore, taking into account the short-range elec- Scow( 4, @) = (27m) % [{m[pcowl0)]
tron correlations, the two-particle Wigner function
f(X1,P1,X2,P2,t) in no way can be represented as a product X 8(w—wm) 8(gd—gm— 2Kg),
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which can be obtained directly from the expressiéd) for
the CDW density correlator. This formula differs from the
conventional on® in that the wave number argument of the
6 function is additionally shifted by - . The conventional 1 2
derivation of the structure factor representation gigunc-
tions pays no attention to thekg modulation of the density
operator of Eq(1). _
- L . <
The sum in the last expression is taken over all stationary &,
|m) states of the systentw,, being the state energy and z
fg, the state momentum. The state consists of a number o
bosons, excited above the vacuum. The specific form of the
matrix element is not of interest now, but what is important is

that (m|pcpw|0), in contrast to{m|p,,|0), is nonzero for

excited states, containing more than one boson. Thus all pos — —Hf— T
sible boson systems of the total energy and momentum 0.00 18 1.9 20 2.1
f(g—2kg) contribute toScpw(q, ). glk

”

The boson dispersion curve=w, is convex, i.e.,w,
<0. Therefore, if the boson system has the total momentum FIG. 2. The CLL dynamic structure factor as a function of wave
#ip, then its energy can not be less tham,. Whence, the numberq. The 5 peak in the long-wave region corresponds to one-
structure factoiScpw(q,w) is zero Whenw<wq,2kF. When  boson excitations. The multi-boson-excitations band exists in the

®=wq_p_, only one boson can be excited. As one increase¥icinity of 4=2k .

o from the threshold value,_,_, the number of different .
R nonzero wave numbers. The static structure factor was cal-
boson systems of the given total energy and momentum ¢ jated via direct integration of the static density-density cor-

fi(q—2kg) increases rapidly, and their contribution to the yq|5i0r to give the following asymptotic behavior fQr=q
structure factor is increasing too. The formation of boson_szHO

systems occurs whea is being shifted from the threshold

on the scalevg/L, wherelL is the length of the system. K2 o46lnQIY2
. . e . e

Hence, taking the thermodynamic limit, i.é.;—«, we find Seow(d) = B
the nonzero values @cpw(d, ®) asw— wq_ 2.+ 0. More- 472 Q|InQ|Y?
over, we show in Appendix B th&®-pw (0, ) diverges as ) )
e=w—wq_y.—+0, just like in the short-ranged LL: The dynamic structure factor determines the power

F P that is dissipated in a LL, disturbed by external electric

o o~ 46lIn €12 o potential ¢:
w W)™~ (.
q €lIn E|1/2 2 4o

e
P(0)= 7|  wS(g.0)le(@)da.
The CLL dynamic structure factor, containing both CDW o

and long-wave components, is shown in Fig. 2 as a functiofrpe contribution of the long-wave density response to the

of g at fixed w. _ . dissipated power was investigated in detail in Ref. 24. It was
In & similar way we find that the CLL spectral functids  shown there that the dissipated power determines the con-
zero whenw<wq and diverges ag= o — wq— +0: ductance of a LL, providing that no current-carrying leads
are taken into account. The CDW contribution to the dissi-
e ABln 51" pated power was calculated in Ref. 21 for the short-ranged
® p(q,®)~ W (7 LL.In a CLL, the frequency dependence Bfpy(w) is as
follows:
with A being[g~*(q) — 1]?. The last result contradicts to the
one obtained in Ref. 27, where it was claimed that the non- e 4ol 2 5
linear boson dispersion flattens the singularityp¢f], w) at Pcowl( @)~ W|‘P(ZKF)| ’

o= wy+0, producing a maximum instead, witl{q, ») go-

ing to zero at the resonant frequency. The approach of Refyhere is normalized by g /3d, so that the dimensionless

27, if applled to the CDW structure faCtOI’, W0u|d fOI’CG us t0w<1 For the Short_ranged LL the frequency dependence is
conclude that the CLL structure factor has a cusp instead of

a singularity. In the following subsection we argue that such Peow( ®) ~ 029 o(2kg) |2
conclusion is physically incorrect.

Notice that since the expressi@f) represents the exact In a CLL the powelPpyy diminishes very slowly withw, so
differential, the structure factor singularity is integrable, as itthat in the low-frequency regime the CDW dominates in the
should be, because the integralSaf,(q, w) with respectto  dissipatior?® since the power dissipated due to the long-
w gives the static structure fact8gpw(q), which is finite at ~ wave density component behavesRyg~ w?.
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0 2k, q

FIG. 3. The dispersion of the collective modes in a CLL. Line
(1) is a plasmon mode. Lin€2) is the Xz mode, related to the
short-range electron correlations.

C. The dielectric function

The dielectric functiore(q,w) is connected with the dy-

namic susceptibility via
e 1(q,0)=1+V(q)x(q,0).

When the structure factor goes to infinity, the dielectric func-
tion evidently turns to zero. The collective modes of the

system under consideration are determined by zeros of

e(q,w). Since the structure factor has singularities in two
wave number regions, we find two regions, where the collec
tive modes can propagate. The dispersion of the collectiv
modes in a LL is illustrated by Fig. 3.

The first region corresponds to the singularity of the long-
wave structure factor compone8,(q,w), which occurs at

PHYSICAL REVIEW B 65 125109

ferent from that of a short-ranged LL. The nonlinear disper-
sion of bosonic excitations in a CLL results in that the DRF
has no sharp front, and as the wave propagates, its form is
smoothing with the appearance of the oscillatory structure.

(i) The dynamic CDW structure factor is nonzero only
in a region where Wq—2k. <@, which is a conse-

quence of energy and momentum conservation laws,
applied to LL bosons. The CDW structure factor is
diverging as 6=w—wq_2kF—>+O similar to S(q,w)
~exp(—4p|In dY?)/€|In Y2 The similar result was obtained
for the spectral function.

(iii) Owing to the CDW contribution, the dielectric func-
tion goes to zero as— g2 1+0. This means that the

nondecaying mode appears in the region neagq+@kg.

The frequency of the mode tends to zerogas 2k, which
means that the mode is soft. ThikZmode exists because
the short-range dynamic electron correlations are highly pro-
nounced in 1D, which is due to th&g nesting of the Fermi
surface of 1D electrons. RPA-like approaches are unable to
describe the R- mode since the dynamic nature of the short-
range correlations is neglected there.
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o= wgq. This mode is just long-wave plasmons, almost iden-

tical to the RPA one$242°

The singularities of the CDW structure fact®gpw(q, )
give the new mode, situated nearge 2kg . The dispersion
of this mode is as followsw = wq_z_. Herew is pure real,
which means that thekz mode is nondecaying. This is be-
cause the structure fact@-pw(q,w) has the true diver-
gency. The cusp instead of a singularitySgHw(d, ) would

APPENDIX A:
THE CDW STRUCTURE FACTOR
OF THE SHORT-RANGED LL

In this section we calculate the CDW structure factor and
the entire complex CDW susceptibility of a short-ranged LL.
Consider the CDW density correlator

lead to the complex frequency solutions of the equation

£(q,w)=0 and thus to the strong damping of the collective
mode. We believe that such damping is physically absurd
Indeed, the boson excitations are noninteracting in the fram

of the Luttinger model. They cannot decay into Landau qua-
siparticles either. Hence, there is no possibility for a collec-

tive mode in a CLL to transfer its energy to some other

+ocdp

(1_e—iwpt—ipX)
@Wp

Repw(X,t)=
e

1 2
- ﬁ&x ex _UFJ

cos(2kFx)) .

— o0

x g alpl (A1)

excitations and thus to damp. This is clear with the bosonizaThe structure factor is, by definition, the Fourier tranform of
tion approach, which explains also why the usual Iong—waqu(X,t);

plasmons are not damping in 1D.

An important conclusion is that the mode frequency goes

to zero atg— 2k, in other words, the mode is soft. It is the
presence of the & mode that principally distinguishes the
LL picture of collective excitations from the RPA one.

S(q,w)= fj:dx équ:dt e9R(x,1). (A2)

First of all, we reduce the calculation of ti8pw(q,®) to

the calculation of an auxiliary functioR(q, ). Substituting

IIl. CONCLUSION

In the present work we have investigated the response

functions of a spinless Luttinger liquid with Coulomb inter-
action at zero temperature. We have found the following.
(i) The CLL density response function is qualitatively dif-

Eqg. (A1) into Eq.(A2), we get

2

SCDW(qiw): [F(q_ZkFiw)+F(q+2kFlw)]i

(A3)

1672
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where case it is not possible to calculate exactly the double Fourier
transform of CDW density correlator, given by EG1).
+ o + o .
F(q,w)=f dxéqxf dt etF(x,1), (Ad) Ins.tead, we propose to formulate the equationS¢g, ),
—w which would contain only the spectral parametgrand w.
Then we solve this equation near the thresheld wq_o_.
First of all, just as in Appendix A, we reduce the calcula-
+o dp tion of the Scpw(q,w) to the calculation of an auxiliary
F(x,t)= exr{ _UFJ —(1 e lopt=iPXygalpl | function F(q,w). Substituting Eq.(A5) into Eq. (A4) and
(A5) performing once integration by parts with respect, twe get

our main equation:
For the short-range interaction the dispersion is linggy:
=v|p|, and the functiorF(x,t) is easily calculated to give

and

w oo

“Faw=-| doRa-Qu-wy. (B
F(x,t)=a®[a+i(vt—x)] a+i(vt+x)]79. F o
o _ We stress that this equation contains only spectral-parameter
Denoteg=vt—x, {=vt+x to get dependence. The advantage of this equation is that the reso-

229 nant frequencies turn out to be specified here, and it is much

+ oo
F(q, w)— —_— dge‘ag(a+|§) gj dze®é(a+i¢) 9, easier to extract the information about the spectral depen-
- * dence of the structure factor from this equation, rather than
where from the direct expression of E¢A4).
Let us shift the integration variabl@ by g, so that
1w 1w
a=§ ——q| and b=§ —+q). 1) +oo
: 2 “F@o- | dQFQu-wge. (82

Thus we have reduced the double Fourier-tranform to the _ .
single one. The integrals are easily calculated by closing coriHere we used the fact th&t(g,w) is an even function of
tours upwards or downwards, dependingecandb signs, to  [sinceR(x,t) is an even function ok]. Now let us expand

give the RHS of Eq.(B2) with respect toQ that is contained in
the frequency argumenty(— g, g):
8m? o \? w? 9t 2
F(q,w)=—— ——q 0| —-q?|. 1) +o
v 12T(9) v? —FQe)=| dQF(Q -y
F — oo

Substituting the last expression into E43) finally leads to )
Eqg. (4). Now we have the imaginary part of the susceptibil- Q

+ 5 Faa(Qo—wg)+ -+ (B3)

ity. How can we restore the entire complgéq, ), avoiding

the direct use of Kramers-Kronig relations? We propose ©rhis expansion gives us all the necessary information.

guess it (i) Since the functiorF(x,t) is analytic in the lower half-
2 plane of complex time [which is seen from Eq(A5)], we
Yeow(d, @)= — — 9 : (i) find that F(q,w)=0 when w<0. (It is, of course, clear
hve 494112(g)sin(rg) | Ke physically, why the structure factor at zero temperature is

2 0|29 1 zero whenw<0: there is no possibility to create an excita-
(E—Zr) _ ( g © ) } tion below the ground stajeSo, the RHS of Eq(B3) is zero
k eF when e=w— wy<0.

Whence, the LHS, i.eF(q,w) has the threshold: when
€>0, F(q,w) is nonzero, whereas foe<0, F(q,w)=0.
Indeed, the first term on the right-hand side correctly givesthe existence of this threshold was also explained from the
the imaginary part of(q,w). Thus the unknown functiog,  Physical background in the main text.
is a pure real function. On the other hand, is analytic in (i) The first term on the RHS, ie., the integral
the upper half-plane ab (because both the LHS and the first /~%dQ F(Q,€) equals 2rFg,{ €), where
term on the RHS are analytic functions in the upper half- .
plane ofw, and y, is their d|ffer§ncéz V\./hence,)(lzo as a static(f)zf dt <'F(x=0}). (B4)
consequence of Kramers-Kronig relations. This way we get —

Eq. (5).

x 2

r==x1

+ (unknowny).

Using integration by parts, all the terms on the RHS of
Eqg. (B3) can be expressed via the Fourier-transform of the
functions, depending ohonly. So, the expansiofB3) al-
lows one to reduce the calculation of the dynamic, two-

Here we present a method to fiBdpw(q,w) for the CLL ~ argument-dependent functida(g,w) to the calculation of
in the region near the threshole= wq_ 5. In the Coulomb  static functions, depending oa only. The calculation of

APPENDIX B:
THE CDW STRUCTURE FACTOR OF THE COULOMB LL
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these static functions takeseintegration only, and is much because the singularity &.;i{ &) at £=0, which gives the
more easily performed. Using the direct calculation, it can bemajor contribution to the RHS of E¢B7), is then integrated
shown that the functior ¢,{ €) diverges ass—0, and so  with a correct weight. Then, multiplying both sides of Eq.
do all the terms on the RHS of E@B3). For a short-ranged (B7) on

LL, all the terms diverge as a power law efwith the same

exponent, therefore it would take us to sum all the expansion w

to get the correct exponent on the LHS In a CLL, the first \/In—zd

term divergencyF q.id €) is the strongest one, and the fol- UF
lowing terms divergencies were found to be weaker.
So, in the leading order of divergendy(q,») in the CLL is
given by

and then differentiating with respect &n we get the follow-
ing differential equation foF gid ®):

1) d /
U_F(q'w)NZWFStatiC(w_wq)’ w_wqﬂo' (B5) _(‘” lnﬁﬁdFstatic(w)) :ZBFstatiL(w):
= d(x) Vg

Using the asymptotic form of (x=0,) at larget, we can
find (via the direct integrationthe form of Fg.;d{€) as e
—0. But we prefer to get the result by another way. It is easy

to show thatF i €) satisfies the integral equation, similar 4p 1)
to Eq.(B1): e In;ﬂd

Fstaid 0)=C

1) +oo I e
Pt )2 | 0Q Fao—wg).  (86) m/miﬂd

Denoteé=w— wq to rewrite the last equation in the form

whose solution is

(B8)

C being a constant. Of course, this result can also be found

) © Bdé by direct integration in Eq(B4).

—Fstatid ) =2 f ——Fgaid ). (B7) Substituting the expression fd¥g.i{ w) into Eq. (B5),

UF 0 /I w—§ d we get Eq.(6) of the main text. We see, that the CDW struc-
VAL vE B ture factor is diverging near the threshold, and the diver-

o ] ) ] gency in a CLL is very strong, almost 1/e, which would
The limits of integration are dictated by the property thatcorrespond to the limig—0 in the short-ranged case. The

Fstaid @) =0 atw<0. It is a good approximation to replace givergency in a CLL is, nevertheless, integrafsince the

the kernel expression in Eq(6) is the exact differential
— The LL spectral function satisfies the integral equation,
\/InZ gﬂd with \/In— ad, similar to Eq.(B1). Using the above procedure, we solve it
UE UF and get the Eq(7) of the main text.
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