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Dynamic correlations of the spinless Coulomb Luttinger liquid
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The dynamic density response function, structure factor, and spectral function of a Luttinger liquid with
Coulomb interaction are studied with the emphasis on the short-range electron correlations. The Coulomb
interaction changes dramatically the density response function as compared to the case of the short-ranged
interaction. The coordinate dependence of the density response is smoothing with time, and the oscillatory
structure appears. However, the spectral functions remain qualitatively the same. The dynamic structure factor
contains thed peak in the long-wave region, corresponding to one-boson excitations. In addition, the multi-
boson-excitations band exists in the wave-number region near to 2kF , wherekF is the Fermi wave number. We
develop a method to analyze the asymptotic behavior of the spectral functions near to the edges of the
multi-boson-excitations band at zero temperature. The dynamic structure factor diverges at the edges of this
band, while the dielectric function goes to zero there. Hence, a new collective charge mode appears in the
one-dimensional electron liquid as a consequence of short-range dynamic correlations. The mode energy goes
to zero at 2kF , which means that the 2kF mode is soft.

DOI: 10.1103/PhysRevB.65.125109 PACS number~s!: 71.10.Pm, 71.27.1a, 73.21.Hb, 71.45.2d
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I. INTRODUCTION

Electron-electron (e-e) interaction is known to produce
the most pronounced effects in one-dimensional~1D! sys-
tems, where a strongly correlated state appears even i
interaction is weak.1 The dynamic electron correlations a
now the most fascinating topic in this field.

Many attempts were made to treat correlations in 1D
ing the approaches, devised for 2D and 3D. They are ba
on the random phase approximation~RPA! with various ver-
sions of the local field corrections, both static a
dynamic.2–5 These methods give no qualitatively new resu
as compared to higher dimensions, leading to the pictur
charge excitations that is exhausted by common long-w
plasmons.6–8 However, this way to consider electron corr
lations has obvious shortcomings, especially in what c
cerns the dynamic short-range correlations, inherent in
The flaws of the RPA-like approaches become worse as
dimensionality is reduced.9 In 1D a number of unphysica
results appear such as the negative dynamic struc
factor,10 the violation of the compressibility sum rule an
negative pair correlation function, the latter two being a
present in 2D and 3D.4,5

Another way to treat the dynamic correlations uses
Hartree-Fock decoupling scheme.11,12 It takes into consider-
ation only the exchange-correlation hole but ignores
Coulomb one. This approach leads to the nonrealistic c
clusion that the 3D electron gas is unstable against thekF
fluctuations due toe-e interaction.13 This was not confirmed
by subsequent theories and experiments. What concern
systems, the HF approach, on the contrary, did not give
sharp peculiarities of the susceptibility near to 2kF .14

Presently, the most advanced way to treat dynamic e
tron correlations in 1D is based on the Luttinger liquid~LL !
theory.1,15–18The short-range correlations19–21appear here in
a natural way, because this model takes properly into acc
the nesting of the Fermi surface for the wave number eq
to 2kF . Owing to the short-range correlations, the LL de
0163-1829/2002/65~12!/125109~8!/$20.00 65 1251
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sity response contains the 2kF component, in addition to the
usual long-wave one. In what follows the 2kF term is also
referred to as the charge-density wave~CDW!.

The 2kF susceptibility xCDW(q,v) was considered by
Luther and Peschel17 for the LL with short-rangede-e inter-
action. They have found thatxCDW(q,v) diverges as
uq22kFu→v/v, wherev is the velocity of the LL bosonic
excitations. We stress that the divergency of the suscept
ity is very important because it corresponds to the prese
of a collective mode in the system.

In real 1D structurese-e interaction is, generally speaking
long ranged, unless it is screened by a metallic gate. It is w
known that Coulomb interaction can highly modify th
ground state and transport properties of 1D systems. Thu
a Luttinger liquid with Coulomb interaction~CLL! the static
correlations become much stronger than in the short-ran
LL, with the short-range 2kF (4kF in a spinful case! compo-
nent being the dominating one.22

How the dynamic LL correlations are affected by Co
lomb interaction is the highly intriguing question. Howeve
considering only the long-wave density component does
lead to the qualitatively new behavior of the dynamic stru
ture factor and collective modes.1,23–26The results are very
close to those obtained in RPA.

The present paper concentrates on the CDW contribu
to the dynamic response functions and spectral charact
tics of the spinless Coulomb Luttinger liquid at zero tem
perature. We show analytically that Coulomb interacti
strengthens the divergency of the dynamic density susce
bility in comparison with that of the short-ranged LL. Th
singularity of the CDW susceptibility leads to the new b
havior of the collective charge mode that is immanent only
1D. The strong spatial dispersion arises in the vicinity ofq
52kF , with the mode frequency going to zero asq→2kF .
This means that the soft mode appears. Such soft mod
absent in 2D and 3D systems, because the short-range
namic electron correlations are much weaker there. Note
©2002 The American Physical Society09-1
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YASHA GINDIKIN AND V. A. SABLIKOV PHYSICAL REVIEW B 65 125109
the 2kF mode cannot be obtained within the RPA approa
even with local field corrections.

Our results concerning the CLL spectral function diver
from those of Ref. 27, where it was argued that the n
linear dispersion of bosons, which appears in the presenc
Coulomb interaction, kills the spectral function singularitie
Instead, a flattened maximum was found in a spectral fu
tion, the position of the maximum being shifted from th
resonant frequency. We show that the Coulomb interact
on the contrary, only strengthens the divergency, which
rather general result for the CLL correlation functions.

The outline of the paper is as follows. In Sec. II we i
vestigate the dynamic density response function, struc
factor, spectral function, dissipative conductance, and die
tric function of a CLL, comparing them with the shor
ranged LL results. The methods to calculate the dyna
structure factor of a short-ranged LL and CLL are presen
in Appendixes A and B, respectively.

II. DYNAMIC CORRELATIONS

We start with a bosonized spinless LL Hamiltonian1

H5(p\vpbp
1bp ,

where bp
1(bp) are boson creation~annihilation! operators.

The boson frequency is given byvp5upuv(p), where the
velocity of excitations isv(p)5vF /g(p), with the interac-
tion parameterg(p) and the Fermi velocityvF . The interac-
tion parameter equalsg(p)5@11V(p)/p\vF#21/2, V(p)
being the Fourier transformede-e interaction potential. For
the short-range interactiong is constant (0,g,1 for e-e
repulsion!. For Coulomb interactionV(r )5e2/Ar 21d2, the
interaction parameter in the long-wave limitupdu!1 is
g(p)5bu lnupduu21/2, d being the quantum wire diameter,b
5@p\vF/2e2#1/2.

The electron-density-fluctuation operator in the Lutting
model is written as20,21

r~x!52
1

p
]xf1

1

2p
]x sin~2kFx22f!, ~1!

f(x) being the bosonic phase. The first component of
density operatorr lw describes long-wave excitations and re
resents the sum of the densities of the right- and left-mov
electrons. The corresponding excitations come about s
rately within each branch of electron spectrum and have
mentumq!kF . The second componentrCDW, which rap-
idly oscillates in space, is due to the interference of the rig
and left-moving electrons. This corresponds to excitatio
with momentumq'2kF . It is this term that describes th
short-range electron correlations. Note that the prese
form of rCDW differs from the conventional one1 in that the
former is the exact differential. The exact differential form
the density fluctuation operator guarantees the particle n
ber conservation in an isolated 1D system. The conventio
form of rCDW does not conserve the number of particles a
thus violates the electroneutrality of the 1D system.21
12510
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A. The density response function

For the two density components of Eq.~1!, the density
response function~DRF! is calculated via the Kubo formula
to give

x~x,t !5x lw~x,t !1xCDW~x,t !,

where

x lw~x,t !5
u~ t !

ph
]x

2f 2~x,t !,

xCDW~x,t !5
u~ t !

2ph
]x

2$e2 f 1(x,t)sin@ f 2~x,t !#cos~2kFx!%.

The functionsf 1(x,t) and f 2(x,t) are as follows:

f 1~x,t !

5vFE
0

1` dp

vp
@22cos~vpt1px!2cos~vpt2px!#e2ap,

~2!

f 2~x,t !5vFE
0

1`dp

vp
@sin~vpt1px!1sin~vpt2px!#e2ap,

a5kF
21 . ~3!

For the short-rangede-e interaction these functions can b
calculated exactly:17,21,23

e2 f 1(x,t)5a2g@v2t22x2#2g,

f 2~x,t !5pgu~v2t22x2!.

The DRF behavior is illustrated by Fig. 1 for both sho
ranged and Coulomb LL’s.

As is seen, the DRF of a short-ranged LL is presented
two wave fronts, propagating in opposite directions w
constant velocityv. The Coulomb DRF, as distinct from th
short-ranged one, has no sharp fronts. The wave form
smoothing because of the nonlinear dispersion of CLL bo

FIG. 1. The long-wave~a! and CDW ~b! components of the
density response function for the short-ranged LL~dash line! and
CLL ~solid line!. In the CDW response function the 2kF filling is
not shown. Arrows show the direction of wave propagation.
9-2
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DYNAMIC CORRELATIONS OF THE SPINLESS . . . PHYSICAL REVIEW B 65 125109
excitations. The characteristic space scale of the Coulo
DRF depends on time asx'tAln t, where dimensionlessx
and t are normalized, respectively, byd and bd/vF . The
nonperiodic oscillatory structure of the DRF arises in t
CLL because the phase velocity diverges at wave numbq
50. This divergency leads to the appearance of the stat
ary phasefst in integrals~2!,~3!. The oscillatory structure
owing to the strong Coulomb dispersion, complements
smoothing of the wave form, usual for the wave propagat
in weakly dispersive media. The asymptotic decay of
Coulomb DRF with the time is extremely slow, and has t
form similar to the decay of the static CLL correlator wi
the distance.22 Devoid of a sharp front, the Coulomb DR
contains a slowly decaying tail at large distancex@tAln t.

Introducing the characteristic distancexf5tAln t and sta-
tionary phase

fst52
t

2Ae
FA222

x

t
1

x2

A2t2
1OS x3

t3 D G ,

the asymptotic behavior off 1 and f 2 can be presented a
follows:

~i! x@xf

f 1~x,t !;2b~Aln~x2xf !1Aln~x1xf !!,

f 2~x,t !;
pb

2

xf
3

x3
,

~ii ! x!xf

f 1~x,t !;2bFAln~xf2x!1Aln~xf1x!

2ApA2e

2t
cosS fst1

p

4
D G ,

f 2~x,t !;2bF 1

Aln~xf2x!
1

1

Aln~xf1x!

2ApA2e

2t
sinS fst1

p

4
D G .

We draw attention to the fact that in 1D there are tw
different mechanisms of the density evolution.21 First of all,
there exist soundlike waves, caused by forward scatte
and described by the long-wave DRF component. In t
kind of motion neighboring electrons move almost in t
same phase, so that the corresponding correlations are a
static. Secondly, electrons suffer the backward scatte
from the nearest particles and interfere, which gives rise
2kF density oscillations. Electron correlations, related to
2kF mechanism of electron density response, are essent
dynamic. Therefore, taking into account the short-range e
tron correlations, the two-particle Wigner functio
f (x1 ,p1 ,x2 ,p2 ,t) in no way can be represented as a prod
12510
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of two single-particle Wigner functions and thestatic pair
correlation functiong(x), that is,

f ~x1 ,p1 ,x2 ,p2 ,t !Þ f ~x1 ,p1 ,t ! f ~x2 ,p2 ,t !g~x12x2!

in 1D. Thus the basic assumption of the Singwi-Tosi-Lan
Sjölander theory4,5 is violated in 1D, which explains why the
2kF collective mode is overlooked in the excitation spectru
within this approach.

B. The dynamic structure factor

Now we turn to the LL dynamic structure factorS(q,v),
which is the Fourier transform of the density-density co
relator R(x,t)5^r(x,t)r(0,0)&. At zero temperature the
structure factor coincides with the imaginary part of the s
ceptibility S(q,v)522\x9(q,v). Although the form of the
Coulomb DRFx lw(x,t) differs dramatically from the short
ranged one, the long-wave part of the structure fac
Slw(q,v) has the universal expression1

Slw~q,v!5uqug~q!d~v2vq!.

Thus, the boson dispersion results only in the shift of
d-peak position. This is clear physically, sinceSlw(q,v) de-
termines the probability to create asingle boson when ab-
sorbing the quantum\v, which fixes the singularity posi-
tion.

The CDW structure factorSCDW(q,v) describes the exci-
tation of several bosons and is much more interesting.
the short-range interactionSCDW(q,v) can be exactly
calculated:17,21,23

SCDW~q,v!5
1

vF

g

4g11/2G2~g!
S q

kF
D 2

3 (
r 561

F S g
\v

«F
D 2

2S q

kF
22r D 2Gg21

, ~4!

«F being the Fermi energy. The entire complex susceptibi
is

xCDW~q,v!52
1

\vF

g

4g11G2~g!sin~pg!
S q

kF
D 2

3 (
r 561

F S q

kF
22r D 2

2S g
\v1 i0

«F
D 2Gg21

.

~5!

The details of the calculation are presented in Appendix
Notice that the CDW structure factor is zero out of theq
banduuqu22kFu,gv/vF and diverges at the band edges. F
simplicity, in what follows we considerq.0.

For the CLL the CDW structure factor can not be calc
lated exactly, but its general properties are easily underst
using the formula

SCDW~q,v!5~2p!2(
m

u^murCDWu0&u2

3d~v2vm!d~q2qm22kF!,
9-3
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which can be obtained directly from the expression~A1! for
the CDW density correlator. This formula differs from th
conventional one28 in that the wave number argument of th
d function is additionally shifted by 2kF . The conventional
derivation of the structure factor representation viad func-
tions pays no attention to the 2kF modulation of the density
operator of Eq.~1!.

The sum in the last expression is taken over all station
um& states of the system,\vm being the state energy an
\qm the state momentum. The state consists of a numbe
bosons, excited above the vacuum. The specific form of
matrix element is not of interest now, but what is importan
that ^murCDWu0&, in contrast to^mur lwu0&, is nonzero for
excited states, containing more than one boson. Thus all
sible boson systems of the total energy\v and momentum
\(q22kF) contribute toSCDW(q,v).

The boson dispersion curvev5vp is convex, i.e.,vp9
,0. Therefore, if the boson system has the total momen
\p, then its energy can not be less than\vp . Whence, the
structure factorSCDW(q,v) is zero whenv,vq22kF

. When

v5vq22kF
, only one boson can be excited. As one increa

v from the threshold valuevq22kF
, the number of different

boson systems of the given total energy\v and momentum
\(q22kF) increases rapidly, and their contribution to th
structure factor is increasing too. The formation of bos
systems occurs whenv is being shifted from the threshol
on the scalevF /L, where L is the length of the system
Hence, taking the thermodynamic limit, i.e.,L→`, we find
the nonzero values ofSCDW(q,v) asv→vq22kF

10. More-

over, we show in Appendix B thatSCDW(q,v) diverges as
e5v2vq22kF

→10, just like in the short-ranged LL:

vS~q,v!;
e24bu ln eu1/2

eu ln eu1/2
. ~6!

The CLL dynamic structure factor, containing both CD
and long-wave components, is shown in Fig. 2 as a func
of q at fixedv.

In a similar way we find that the CLL spectral function1 is
zero whenv,vq and diverges asd5v2vq→10:

v r~q,v!;
e2Abu ln du1/2

du ln du1/2
, ~7!

with A being@g21(q)21#2. The last result contradicts to th
one obtained in Ref. 27, where it was claimed that the n
linear boson dispersion flattens the singularity ofr(q,v) at
v5vq10, producing a maximum instead, withr(q,v) go-
ing to zero at the resonant frequency. The approach of
27, if applied to the CDW structure factor, would force us
conclude that the CLL structure factor has a cusp instea
a singularity. In the following subsection we argue that su
conclusion is physically incorrect.

Notice that since the expression~6! represents the exac
differential, the structure factor singularity is integrable, a
should be, because the integral ofSCDW(q,v) with respect to
v gives the static structure factorSCDW(q), which is finite at
12510
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nonzero wave numbers. The static structure factor was
culated via direct integration of the static density-density c
relator to give the following asymptotic behavior forQ5q
22kF→0

SCDW~q!5
kF

2

4p2

e24bu ln Qu1/2

Qu ln Qu1/2
.

The dynamic structure factor determines the pow
P that is dissipated in a LL, disturbed by external elect
potentialw:

P~v!5
e2

4hE2`

1`

vS~q,v!uw~q!u2dq.

The contribution of the long-wave density response to
dissipated power was investigated in detail in Ref. 24. It w
shown there that the dissipated power determines the
ductance of a LL, providing that no current-carrying lea
are taken into account. The CDW contribution to the dis
pated power was calculated in Ref. 21 for the short-ran
LL. In a CLL, the frequency dependence ofPCDW(v) is as
follows:

PCDW~v!;
e24bu ln vu1/2

u ln vu1/2
uw~2kF!u2,

wherev is normalized byvF /bd, so that the dimensionles
v!1. For the short-ranged LL the frequency dependenc

PCDW~v!;v2guw~2kF!u2.

In a CLL the powerPCDW diminishes very slowly withv, so
that in the low-frequency regime the CDW dominates in t
dissipation,21 since the power dissipated due to the lon
wave density component behaves asPlw;v2.

FIG. 2. The CLL dynamic structure factor as a function of wa
numberq. Thed peak in the long-wave region corresponds to on
boson excitations. The multi-boson-excitations band exists in
vicinity of q52kF .
9-4
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C. The dielectric function

The dielectric function«(q,v) is connected with the dy
namic susceptibility via

«21~q,v!511V~q!x~q,v!.

When the structure factor goes to infinity, the dielectric fun
tion evidently turns to zero. The collective modes of t
system under consideration are determined by zeros
«(q,v). Since the structure factor has singularities in tw
wave number regions, we find two regions, where the col
tive modes can propagate. The dispersion of the collec
modes in a LL is illustrated by Fig. 3.

The first region corresponds to the singularity of the lon
wave structure factor componentSlw(q,v), which occurs at
v5vq . This mode is just long-wave plasmons, almost ide
tical to the RPA ones.2,24,26

The singularities of the CDW structure factorSCDW(q,v)
give the new mode, situated near toq52kF . The dispersion
of this mode is as follows:v5vq22kF

. Herev is pure real,

which means that the 2kF mode is nondecaying. This is be
cause the structure factorSCDW(q,v) has the true diver-
gency. The cusp instead of a singularity inSCDW(q,v) would
lead to the complex frequency solutions of the equat
«(q,v)50 and thus to the strong damping of the collecti
mode. We believe that such damping is physically absu
Indeed, the boson excitations are noninteracting in the fra
of the Luttinger model. They cannot decay into Landau q
siparticles either. Hence, there is no possibility for a coll
tive mode in a CLL to transfer its energy to some oth
excitations and thus to damp. This is clear with the boson
tion approach, which explains also why the usual long-wa
plasmons are not damping in 1D.

An important conclusion is that the mode frequency go
to zero atq→2kF , in other words, the mode is soft. It is th
presence of the 2kF mode that principally distinguishes th
LL picture of collective excitations from the RPA one.

III. CONCLUSION

In the present work we have investigated the respo
functions of a spinless Luttinger liquid with Coulomb inte
action at zero temperature. We have found the following

~i! The CLL density response function is qualitatively d

FIG. 3. The dispersion of the collective modes in a CLL. Li
~1! is a plasmon mode. Line~2! is the 2kF mode, related to the
short-range electron correlations.
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ferent from that of a short-ranged LL. The nonlinear disp
sion of bosonic excitations in a CLL results in that the DR
has no sharp front, and as the wave propagates, its for
smoothing with the appearance of the oscillatory structur

~ii ! The dynamic CDW structure factor is nonzero on
in a region where vq22kF

,v, which is a conse-
quence of energy and momentum conservation la
applied to LL bosons. The CDW structure factor
diverging as e5v2vq22kF

→10 similar to S(q,v)

;exp(24buln eu1/2)/eu ln eu1/2. The similar result was obtaine
for the spectral function.

~iii ! Owing to the CDW contribution, the dielectric func
tion goes to zero asv→vq22kF

10. This means that the

nondecaying mode appears in the region near toq52kF .
The frequency of the mode tends to zero asq→2kF , which
means that the mode is soft. This 2kF mode exists becaus
the short-range dynamic electron correlations are highly p
nounced in 1D, which is due to the 2kF nesting of the Fermi
surface of 1D electrons. RPA-like approaches are unabl
describe the 2kF mode since the dynamic nature of the sho
range correlations is neglected there.
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APPENDIX A:
THE CDW STRUCTURE FACTOR

OF THE SHORT-RANGED LL

In this section we calculate the CDW structure factor a
the entire complex CDW susceptibility of a short-ranged L
Consider the CDW density correlator

RCDW~x,t !52
1

8p2
]x

2S expF2vFE
2`

1`dp

vp
~12e2 ivpt2 ipx!

3e2aupuGcos~2kFx! D . ~A1!

The structure factor is, by definition, the Fourier tranform
R(x,t):

S~q,v!5E
2`

1`

dx eiqxE
2`

1`

dt eivtR~x,t !. ~A2!

First of all, we reduce the calculation of theSCDW(q,v) to
the calculation of an auxiliary functionF(q,v). Substituting
Eq. ~A1! into Eq. ~A2!, we get

SCDW~q,v!5
q2

16p2
@F~q22kF ,v!1F~q12kF ,v!#,

~A3!
9-5
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where

F~q,v!5E
2`

1`

dx eiqxE
2`

1`

dt eivtF~x,t !, ~A4!

and

F~x,t !5expS 2vFE
2`

1` dp

vp
~12e2 ivpt2 ipx!e2aupu D .

~A5!

For the short-range interaction the dispersion is linear:vp
5vupu, and the functionF(x,t) is easily calculated to give

F~x,t !5a2g@a1 i ~vt2x!#2g@a1 i ~vt1x!#2g.

Denotej5vt2x, z5vt1x to get

F~q,v!5
a2g

2v E2`

1`

djeiaj~a1 i j!2gE
2`

1`

dzeibz~a1 i z!2g,

where

a5
1

2 S v

v
2qD and b5

1

2 S v

v
1qD .

Thus we have reduced the double Fourier-tranform to
single one. The integrals are easily calculated by closing c
tours upwards or downwards, depending ona andb signs, to
give

F~q,v!5
8p2

v S ag

2gG~g!
D 2S v2

v2
2q2D g21

QS v2

v2
2q2D .

Substituting the last expression into Eq.~A3! finally leads to
Eq. ~4!. Now we have the imaginary part of the susceptib
ity. How can we restore the entire complexx(q,v), avoiding
the direct use of Kramers-Kronig relations? We propose
guess it:

xCDW~q,v!52
1

\vF

g

4g11G2~g!sin~pg!
S q

kF
D 2

3 (
r 561

F S q

kF
22r D 2

2S g
\v1 i0

«F
D 2Gg21

1~unknownx1!.

Indeed, the first term on the right-hand side correctly giv
the imaginary part ofx(q,v). Thus the unknown functionx1
is a pure real function. On the other hand,x1 is analytic in
the upper half-plane ofv ~because both the LHS and the fir
term on the RHS are analytic functions in the upper ha
plane ofv, andx1 is their difference!. Whence,x150 as a
consequence of Kramers-Kronig relations. This way we
Eq. ~5!.

APPENDIX B:
THE CDW STRUCTURE FACTOR OF THE COULOMB LL

Here we present a method to findSCDW(q,v) for the CLL
in the region near the thresholdv5vq22kF

. In the Coulomb
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case it is not possible to calculate exactly the double Fou
transform of CDW density correlator, given by Eq.~A1!.
Instead, we propose to formulate the equation onS(q,v),
which would contain only the spectral parametersq andv.
Then we solve this equation near the thresholdv5vq22kF

.
First of all, just as in Appendix A, we reduce the calcul

tion of the SCDW(q,v) to the calculation of an auxiliary
function F(q,v). Substituting Eq.~A5! into Eq. ~A4! and
performing once integration by parts with respect tot, we get
our main equation:

v

vF
F~q,v!5E

2`

1`

dQ F~q2Q,v2vQ!. ~B1!

We stress that this equation contains only spectral-param
dependence. The advantage of this equation is that the r
nant frequencies turn out to be specified here, and it is m
easier to extract the information about the spectral dep
dence of the structure factor from this equation, rather th
from the direct expression of Eq.~A4!.

Let us shift the integration variableQ by q, so that

v

vF
F~q,v!5E

2`

1`

dQ F~Q,v2vq1Q!. ~B2!

Here we used the fact thatF(q,v) is an even function ofq
@sinceR(x,t) is an even function ofx#. Now let us expand
the RHS of Eq.~B2! with respect toQ that is contained in
the frequency argument (v2vq1Q):

v

vF
F~q,v!5E

2`

1`

dQFF~Q,v2vq!

1
Q2

2!
Fqq~Q,v2vq!1•••G . ~B3!

This expansion gives us all the necessary information.
~i! Since the functionF(x,t) is analytic in the lower half-

plane of complex timet @which is seen from Eq.~A5!#, we
find that F(q,v)50 when v,0. ~It is, of course, clear
physically, why the structure factor at zero temperature
zero whenv,0: there is no possibility to create an excit
tion below the ground state.! So, the RHS of Eq.~B3! is zero
whene5v2vq,0.

Whence, the LHS, i.e.,F(q,v) has the threshold: when
e.0, F(q,v) is nonzero, whereas fore,0, F(q,v)50.
The existence of this threshold was also explained from
physical background in the main text.

~ii ! The first term on the RHS, i.e., the integr
*2`

1`dQ F(Q,e) equals 2pFstatic(e), where

Fstatic~e!5E
2`

1`

dt ei etF~x50,t !. ~B4!

Using integration by parts, all the terms on the RHS
Eq. ~B3! can be expressed via the Fourier-transform of
functions, depending ont only. So, the expansion~B3! al-
lows one to reduce the calculation of the dynamic, tw
argument-dependent functionF(q,v) to the calculation of
static functions, depending one only. The calculation of
9-6



b

io
rs
l-
e

s
r

a
e

q.

und

c-
er-

e

n,
it

DYNAMIC CORRELATIONS OF THE SPINLESS . . . PHYSICAL REVIEW B 65 125109
these static functions takesoneintegration only, and is much
more easily performed. Using the direct calculation, it can
shown that the functionFstatic(e) diverges ase→0, and so
do all the terms on the RHS of Eq.~B3!. For a short-ranged
LL, all the terms diverge as a power law ofe with the same
exponent, therefore it would take us to sum all the expans
to get the correct exponent on the LHS In a CLL, the fi
term divergencyFstatic(e) is the strongest one, and the fo
lowing terms divergencies were found to be weak
So, in the leading order of divergency,F(q,v) in the CLL is
given by

v

vF
F~q,v!;2pFstatic~v2vq!, v2vq→0. ~B5!

Using the asymptotic form ofF(x50,t) at larget, we can
find ~via the direct integration! the form of Fstatic(e) as e
→0. But we prefer to get the result by another way. It is ea
to show thatFstatic(e) satisfies the integral equation, simila
to Eq. ~B1!:

v

vF
Fstatic~v!52E

0

1`

dQ Fstatic~v2vQ!. ~B6!

Denotej5v2vQ to rewrite the last equation in the form

v

vF
Fstatic~v!52E

0

v bdj

vFAln
v2j

vF
bd

Fstatic~j!. ~B7!

The limits of integration are dictated by the property th
Fstatic(v)50 at v,0. It is a good approximation to replac
the kernel

Aln
v2j

vF
bd with Aln

v

vF
bd,
-
e,

s.

.
,
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because the singularity ofFstatic(j) at j50, which gives the
major contribution to the RHS of Eq.~B7!, is then integrated
with a correct weight. Then, multiplying both sides of E
~B7! on

Aln
v

vF
bd

and then differentiating with respect tov, we get the follow-
ing differential equation forFstatic(v):

d

dv S vAln
v

vF
bdFstatic~v! D 52bFstatic~v!,

whose solution is

Fstatic~v!5C

e24bAln
v

vF
bd

vAln
v

vF
bd

, ~B8!

C being a constant. Of course, this result can also be fo
by direct integration in Eq.~B4!.

Substituting the expression forFstatic(v) into Eq. ~B5!,
we get Eq.~6! of the main text. We see, that the CDW stru
ture factor is diverging near the threshold, and the div
gency in a CLL is very strong, almost;1/e, which would
correspond to the limitg→0 in the short-ranged case. Th
divergency in a CLL is, nevertheless, integrable@since the
expression in Eq.~6! is the exact differential#.

The LL spectral function satisfies the integral equatio
similar to Eq.~B1!. Using the above procedure, we solve
and get the Eq.~7! of the main text.
ys.

olidi
ns,

F
in

tatus
s,
truly
1J. Voit, Rep. Prog. Phys.58, 977 ~1995!; A. O. Gogolin, A. A.
Nersesyan, and A. M. Tsvelik,Bosonization and Strongly Cor
related Systems~Cambridge University Press, Cambridg
1998!.

2G. D. Mahan,Many-Particle Physics, 2nd ed. ~Plenum Press,
New York, 1990!.

3J. Hubbard, Proc. R. Soc. London, Ser. A243, 336 ~1957!.
4K.S. Singwi, M.P. Tosi, R.H. Land, and A. Sjo¨lander, Phys. Rev.

179, 589 ~1968!; K.S. Singwi and M.P. Tosi, Solid State Phy
36, 177 ~1981!.

5T. Hasegawa and M. Shimuzu, J. Phys. Soc. Jpn.38, 965 ~1975!;
A. Holas and S. Rahman, Phys. Rev. B35, 2720 ~1987!; R.K.
Moudgil, P.K. Ahluwalia, and K.N. Pathak,ibid. 52, 11 945
~1995!.

6L. Calmels and A. Gold, Phys. Rev. B52, 10 841 ~1995!; 56,
1762 ~1997!; 58, 3497~1998!.

7Q.P. Li and S. Das Sarma, Phys. Rev. B40, 5860 ~1989!; 41,
10 268~1990!; 43, 11 768~1991!; Q.P. Li, S. Das Sarma, and R
Joynt, ibid. 45, 13 713~1992!; S. Das Sarma and E.H. Hwang
ibid. 54, 1936~1996!.
8D. Agosti, F. Pederiva, E. Lipparini, and K. Takayanagi, Ph

Rev. B57, 14 869~1998!.
9M. Johnson, J. Phys. C9, 3055~1976!.

10B. Tanatar and C. Bulutay, Phys. Rev. B59, 15 019~1999!.
11F. Toigo and T.O. Woodruff, Phys. Rev. B2, 3958~1970!; 4, 371

~1971!; 4, 4312~1971!.
12F. Brosens, L.F. Lemmens, and J.T. Devreese, Phys. Status S

B 74, 45 ~1976!; J.T. Devreese, F. Brosens, and L.F. Lemme
Phys. Rev. B21, 1349~1980!; 21, 1363~1980!; F. Brosens and
J.T. Devreese, Phys. Status Solidi B111, 365 ~1982!.

13This situation is similar to the effective mass problem in the H
theory. Ignoring the Coulomb correlations is known to result
the effective mass divergency at the Fermi surface~Ref. 2!.
Treating electron correlations properly kills such effects.

14F. Brosens and J.T. Devreese, Phys. Rev. B19, 762 ~1979!; F.
Brosens, J.T. Devreese, L.M. Kahn, and J. Ruvalds, Phys. S
Solidi B 111, 95 ~1982!. Note that the many strand system
considered in these works, are closer to 3D systems than to
9-7



41

YASHA GINDIKIN AND V. A. SABLIKOV PHYSICAL REVIEW B 65 125109
1D quantum wires.
15S. Tomonaga, Prog. Theor. Phys.5, 544~1950!; J.M. Luttinger, J.

Math. Phys.4, 1154~1963!.
16D.C. Mattis and E.H. Lieb, J. Math. Phys.6, 375 ~1965!.
17A. Luther and I. Peschel, Phys. Rev. B9, 2911~1974!.
18F.D.M. Haldane, J. Phys. C14, 2585~1981!.
19V. J. Emery, inHighly Conducting One-Dimensional Solids, ed-

ited by J. T. Devreese, R. E. Evrard, and V. E. van Doren~Ple-
num Press, New York, 1979!.

20F.D.M. Haldane, Phys. Rev. Lett.47, 1840~1981!.
21V.A. Sablikov and Yasha Gindikin, Phys. Rev. B61, 12 766

~2000!.
12510
22H.J. Schulz, Phys. Rev. Lett.71, 1864~1993!.
23J. Voit, cond-mat/9806174~unpublished!.
24G. Cuniberti, M. Sassetti, and B. Kramer, Phys. Rev. B57, 1515

~1998!.
25V.A. Sablikov and B.S. Shchamkhalova, Phys. Rev. B58, 13 847

~1998!.
26D.W. Wang and S. Das Sarma, cond-mat/0101061~unpublished!.
27D.W. Wang, A.J. Millis, and S. Das Sarma, cond-mat/00102

~unpublished!.
28E. M. Lifshitz and L. P. Pitaevskii,Statistical Physics~Pergamon

Press, New York, 1980!, Pt. 2.
9-8


