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Staggered orbital currents in the half-filled two-leg ladder
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Using Abelian bosonization with a careful treatment of the Klein factors, we show that a certain phase of the
half-filled two-leg ladder, previously identified as having spin-Peierls order, instead exhibits staggered orbital
currents with no dimerization.
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I. INTRODUCTION

One of the most intriguing phases of strongly correla
electrons is known variously as the ‘‘orbita
antiferromagnet,’’1–3 the ‘‘staggered flux phase,’’4–9 or the
‘‘ d-density wave.’’10,11 It is characterized by circulating cur
rents which produce local magnetic moments aligned in
antiferromagnetic~staggered! way. As a consequence, time
reversal symmetry as well as translational and rotatio
symmetries are spontaneously broken. Another phase,
‘‘circulating current phase,’’12 is somewhat similar, but doe
not break translational symmetry. These phases have
ceived considerable attention lately, due to their possible
evance to the pseudogap region in the phase diagram o
cuprates.12,11A recent neutron scattering experiment13 on un-
derdoped YBa2Cu3O6.6 has been interpreted14 as evidence for
these staggered orbital currents.

In this paper we focus on the half-filled two-leg ladde
which is the simplest system that can support the stagg
flux ~SF! phase~see Fig. 1!. As the order parameter of thi
phase breaks a discrete (Z2) symmetry, the possibility of true
long-range order~LRO! of the currents is nota priori ex-
cluded at zero temperature in this one-dimensional system
contrast to the situation for order parameters that break c
tinuous symmetries, which causes their correlations to
hibit at most quasi-LRO with power-law decay.

For weak interactions, the ladder can be treated us
bosonization and the perturbative renormalization gro
~RG!. For this case, the SF phase has been found in the p
diagram for spinless electrons at half-filling.15 Furthermore,
away from half-filling, regions with dominant tendencies t
ward SF ordering have been found both for spinless16 and
spinful17 electrons. Note that for general~i.e., incommensu-
rate! fillings, true LRO of the currents is not possible due
the absence of Umklapp interactions~see Sec. V for a more
detailed discussion!. The results for the doped ladder wit
and without spin were summarized in Ref. 18, which a
investigated the effects of disorder.

Here we are concerned with the SF phase for spinful e
trons in a weakly interacting half-filled two-leg ladder.
contrast to the other weak-interaction studies mentioned
far, in the approach used here the nearest-neighbor hop
parameterst' and t along the rungs and legs, respective
can be of the same order. We reanalyze the nature of a
cific phase found in Ref. 19, and demonstrate that this ph
previously identified to be of spin-Peierls~SP! type, actually
exhibits staggered orbital currents with no dimerization, a
0163-1829/2002/65~12!/125106~8!/$20.00 65 1251
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therefore in fact is the SF phase. In contrast to the infiniteU
half-filled case, where the constraint of no double occup
cies makes the currents an unobservable gauge artifact
LRO currents found here are observable. Furthermore, s
all excitations are gapped, the SF phase at half-filling is
sulating.

We perform our calculations using Abelian bosonizatio
paying careful attention to the Klein factors in th
formalism.20,21 As a check of our treatment, we also repr
duce the identification of the CDW phase found in Ref. 1
Furthermore, we show that our results are consistent w
those found for the doped ladder.18

The paper is organized as follows. In Secs. II and III w
discuss the ladder model and its continuum limit a
bosonized form, closely following the approach of Ref. 1
In Sec. IV we define various local order parameters, der
their bosonized expressions, and calculate their expecta
values in the SF phase. The results are discussed furth
Sec. V. Some of the technical details have been placed in
appendices.

II. THE HALF-FILLED TWO-LEG LADDER AND ITS
CONTINUUM LIMIT

A. Kinetic energy

We consider a two-leg ladder where the electrons can
only between nearest-neighbor sites along the rungs and
The kinetic energy then reads

H052t(
lms

cls
† ~m11!cls~m!2t'(

ms
c1s

† ~m!c2s~m!1H.c.

~2.1!

The operatorscls(m), and cls
† (m), respectively, annihilate

and create an electron on sitem51, . . . ,N on leg l 51,2
with spin s5↑,↓, and obey $cls(m),cl 8s8

† (m8)%
5d l l 8dmm8dss8 , with all other anticommutators vanishing
Periodic~open! boundary conditions are used along~perpen-
dicular to! the leg direction. Introducing even and odd com
binations

FIG. 1. Current flow in the staggered flux phase of the half-fill
two-leg ladder. Reversing the currents gives the time-reversed s
©2002 The American Physical Society06-1
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ce/o,s5
1

A2
~c1s6c2s! ~2.2!

and Fourier transforming along the leg direction, the kine
energy becomes diagonal in momentum space, descri
two uncoupled bands with dispersion«e/o(k)522t coska
7t' , wherea is the lattice constant. Takingt' positive, the
even~odd! combination gives a bonding~antibonding! band.
We consider a half-filled system andt',2t, in which case
the Fermi level is at zero energy and crosses both bands,
giving rise to four Fermi points6kFe/o which satisfykFe
1kFo5p/a.

We will assume weak interactions and focus on the lo
energy, long-wavelength properties of the model, so that
may linearizeH0 around the Fermi points. It will be mos
convenient to work with a coordinate-space representatio
the Hamiltonian. For this purpose we decompose the b
operatorcls(m) (l5e,o) into a sum of left- and right-
moving slowly varying~on the scale of the lattice constan!
continuum fields,

cls~m!5Aa@e2 ikFlxcLls~x!1eikFlxcRls~x!#, ~2.3!

where x[ma. The linearized kinetic energy can then b
written H05*dxH0, where

H052 ivF(
ls

@cRls
† ]xcRls2cLls

† ]xcLls#. ~2.4!

In this expression and throughout the paper it is underst
that products of fermionic~and bosonic! operators that may
be evaluated at the same point are to be normal-ordered.
bare Fermi velocityvF is the same for both bands and
given byvF5aA(2t)22t'

2 .

B. Interactions

The continuum description of general, but weak, fini
ranged, spin-independent interactions, to leading order in
interaction strengths, was carefully discussed in Refs. 19,
and 23. One can restrict attention to terms which are b
marginal~i.e., consisting of four-fermion interactions with n
spatial derivatives! and nonchiral~i.e., containing two right-
moving and two left-moving fermions!. These terms can b
classified according to whether they conserve momentum
not. The Hamiltonian density for momentum-conservi
terms reads

H I
(1)5(

lm
$blm

r JRlmJLlm2blm
s JRlm•JLlm

1 f lm
r JRllJLmm2 f lm

s JRll•JLmm%. ~2.5!

Here f and b refer to forward and backward scattering pr
cesses, respectively, and

JPlm5(
s

cPls
† cPms , ~2.6!
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2 (
ss8

cPls
† sss8cPms8 , ~2.7!

wheresx, sy, andsz are the Pauli matrices. The followin
general symmetries hold:beo

n 5boe
n and f eo

n 5 f oe
n , wheren

5r,s. To avoid double-counting, we setf ll
n 50. At half-

filling the model also has particle-hole symmetry, which im
plies boo

n 5bee
n , leaving six independent couplings of th

type.
Half-filling also allows for non-momentum-conservin

~i.e., Umklapp! terms. The Hamiltonian density for these in
teractions reads

H I
(2)5(

lm
$ulm

r I Rlm
† I Ll̄m̄2ulm

s IRlm
†

•ILl̄m̄1H.c.%,

~2.8!

whereē5o and ō5e. Here we have defined

I Plm5(
ss8

cPlsess8cPms8 , ~2.9!

I Plm5
1

2 (
ss8

cPls~es!ss8cPms8 , ~2.10!

where e52 isy. We may takeueo
n 5uoe

n since I Plm5I Pml

andI Plm52I Pml . The latter result also impliesI Pll50, so
that we can takeull

s 50. In addition, particle-hole symmetr
gives uee

r 5uoo
r , leaving three independent Umklapp co

plings. Thus a total of nine independent coupling consta
must be taken into account in this model of the half-fill
two-leg ladder.

III. BOSONIZATION

In the Abelian bosonization formalism,20,21,24 the fermi-
onic field operatorscPls can be expressed in terms of du
Hermitian bosonic fieldsfls anduls as25

cPls5
1

A2pe
kls exp@ i ~Pfls1uls!#, ~3.1!

where e is a short-distance cutoff, andP5R/L561. The
bosonic fields satisfy the commutation relations

@fls~x!,fl8s8~x8!#5@uls~x!,ul8s8~x8!#50, ~3.2a!

@fls~x!,ul8s8~x8!#5 ipdll8dss8Q~x2x8!, ~3.2b!

the latter result written fore→0. HereQ(x) is the Heaviside
function. The long-wavelength normal-ordered fermion
densities can be expressed in terms of the bosonic field
cPls

† cPls5]x(fls1Puls)/2p.
The Klein factorskls commute with the bosonic fields

and satisfy

$kls ,kl8s8%52dll8dss8 . ~3.3!
6-2
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STAGGERED ORBITAL CURRENTS IN THE HALF- . . . PHYSICAL REVIEW B65 125106
Note that the Klein factors used here are Hermitian~instead
of unitary!, since we follow the common procedure of n
glecting the number-changing property of the Klein facto
in the thermodynamic limit.20

Charge and spin operators are now defined as

flr5
1

A2
~fl↑1fl↓!, ~3.4a!

fls5
1

A2
~fl↑2fl↓!, ~3.4b!

with similar definitions of theu operators. We also define

f rn5
1

A2
~fen1rfon!, ~3.5!

wherer 56 andn5r,s. Again, similar definitions apply to
the u operators. Both Eqs.~3.4! and ~3.5! are unitary trans-
formations, which implies that the commutation relations
the new sets of operators are of the same type as those in
~3.2!.

Next we consider the bosonized form of the Hamiltoni
densityH5H01H I

(1)1H I
(2) , which is most succinctly ex-

pressed in terms of the variablesf rn andu rn . The kinetic-
energy density reads

H05
vF

2p (
rn

@~]xf rn!21~]xu rn!2#. ~3.6!

The momentum-conserving part of the interactions can
written H I

(1)5H I
(1a)1H I

(1b) , where

H I
(1a)5

1

2p2 (
rn

Arn@~]xf rn!22~]xu rn!2#. ~3.7!

Here Arn5hn@bee
n 1r f eo

n # with hr51, hs521/4. Further-
more,

H I
(1b)52

1

~2pe!2
@2Ĝbeo

s cos 2u2rcos 2f1s

2cos 2f1s~2bee
s cos 2f2s12Ĝ f eo

s cos 2u2s!

1cos 2u2r~ Ĝbeo
1 cos 2f2s1beo

2 cos 2u2s!#,

~3.8!

with beo
6 5beo

s 64beo
r and Ĝ5ke↑ke↓ko↑ko↓ . Finally, the

bosonized form of the Umklapp interaction density reads

H I
(2)52

2

~2pe!2
cos 2f1r@8Ĝuee

r cos 2u2r12ueo
s cos 2f1s

1ueo
1 cos 2f2s1Ĝueo

2 cos 2u2s#, ~3.9!

with ueo
6 5ueo

s 64ueo
r .
12510
s
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Since the Hermitian operatorĜ obeysĜ25I , Ĝ has ei-
genvaluesG561. Furthermore, since@H,Ĝ#50, H and Ĝ
can be simultaneously diagonalized.

IV. THE STAGGERED FLUX PHASE

A. Pinned fields

Numerical integration of the one-loop RG equations
the couplings shows19,22,23that some of the couplings remai
small, while the others grow~sometimes after a sign chang!
and eventually diverge. The weak-coupling RG flow must
cut off before it leaves the regime of its perturbative validi
The ratios of the diverging couplings at the cutoff scale
found to approach fixed constants in the limit of asympto
cally small bare couplings, with different sets of ratios co
responding to different phases of the ladder. In the SF ph
bee

r andbee
s are negligible, while the diverging couplings a

given by19

f eo
r 52

1

4
f eo

s 52beo
r 5

1

4
beo

s 5
1

2
ueo

s 522ueo
r 52uee

r [g.0.

~4.1!

The resulting low-energy effective Hamiltonian can
mapped onto an SO~8! Gross-Neveu model, whose integr
bility may be exploited to extract the exact energies, deg
eracies and quantum numbers of all the low-energy exc
states.19 However, for our discussion, a semiclassical reas
ing will suffice. Since the single coupling constantg flows
toward large values, in the semiclassical ground state
bosonic fields in the Hamiltonian will be pinned to valu
which minimize the cosine interactionH I

(1b)1H I
(2) . Note

that this argument would not be valid if the cosine intera
tions were to contain both the dual fieldsf2s and u2s ,
since then the uncertainty principle would forbid both fiel
to be pinned. However,f2s disappears from the cosine in
teraction becausebee

s is negligible andbeo
1 5ueo

1 50. The
pinned fields are thenf1r , f1s , u2r , andu2s . Since all
four bosonic modesrn are pinned, the SF phase has no ga
less excitations at half-filling.

The possible solutions for the pinned fields are found
minimizing ^GuHuG&, whereuG& is the eigenstate ofĜ with
eigenvalueG ~these solutions will depend onG, but the
physics will of course not, as will be seen explicitly in Se
III B !. There are infinitely many solutions for the pinne
fields that minimize^GuHuG&. However, this multitude of
solutions is only apparent; taking into account the fact t
the bosonic fields are not gauge-invariant, it can be sho
that there are only two physically distinct ground states19

The pinned-field configurations that we will use to spec
these ground states are given in Table I.

B. Order parameters

In this subsection we explicitly show that the phase ch
acterized by the couplings in Eq.~4.1! is not of spin-Peierls
type with a (p,p) modulation in the kinetic energy,19 but
instead is the SF phase. We first define the relevant o
6-3
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J. O. FJÆRESTAD AND J. B. MARSTON PHYSICAL REVIEW B65 125106
parameters. The fundamental definition of the current op
tor comes from interpreting the Heisenberg equation of m
tion for the number operator

nl~m!5(
s

cls
† ~m!cls~m! ~4.2!

as a discretized continuity equation. We will assume that
SF phase is a low-energy phase of a lattice Hamilton
whose interactions commute withnl(m). This is, e.g., the
case for density-density and spin-exchange interactio
Then the components of the current operator take their c
ventional forms~see Fig. 2!

j'~m!5 i t'a(
s

@c2s
† ~m!c1s~m!2H.c.#, ~4.3!

j l~m!5 i ta(
s

@cls
† ~m11!cls~m!2H.c.#. ~4.4!

Furthermore, the local kinetic-energy operator is

kl~m!52t(
s

@cls
† ~m11!cls~m!1H.c.#. ~4.5!

For completeness, in our discussion we also include
number operatornl(m) itself, since we will later check tha
our calculations reproduce the results for the CDW ph
found in Ref. 19.

Next we outline the derivation of the bosonized expr
sions for these order parameters. It will be convenient
define an auxiliary operator,

TABLE I. The G-dependent pinned-field configurations used
the ground states in the SF and CDW phases~we choose
^Guke↑ko↑uG&5 i ; see Appendix A!. The two configurations listed
here for a given ground state are physically equivalent, as ca
seen from Table II.

Ground state G ^f1r& ^f1s& ^u2r& ^u2s&

SF 1 1 0 0 0 0
SF 2 1 p 0 0 0
SF 1 21 p 0 p/2 p/2
SF 2 21 0 0 p/2 p/2
CDW 1 1 0 0 p/2 0
CDW 2 1 p 0 p/2 0
CDW 1 21 0 0 0 p/2
CDW 2 21 p 0 0 p/2

FIG. 2. Currents as defined in Eqs.~4.3! and ~4.4!. Current
conservation is expressed by Eq.~4.13!.
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Gl~m,u,v !5(
s

@cls
† ~m1u!cls~m!1v•H.c.#. ~4.6!

Then j l(m)5 i taGl(m,1,21), kl(m)52tGl(m,1,1), and
nl(m)5Gl(m,0,1). The continuum version ofGl(m,u,v)
will contain products of type :cPls

† (x1ua)cP8l8s8(x):, i.e.,
with the argument of the field operators differing by a latti
constant whenu51 ~here we have temporarily included th
normal-ordering symbol explicitly!. One can safely Taylor-
expand within the normal-ordering symbol to obta
:cPls

† (x)cP8l8s8(x):1ua:]xcPls
† (x)cP8l8s8(x): ~note that

due to the normal-ordering, all order parameters will be m
sured with respect to their values in the noninteract
ground state!. For now, we only keep the zeroth-order ter
in the Taylor expansion, and comment briefly on high
order terms later. We find

Gl~m,u,v !5
a

2 (
Pls

$cPls
† cPls~e2 iPkFlua1veiPkFlua!

1cPls
† c2Plse

22iPkFlxe2 iPkFlua~11v !

2~21! l@cPls
† cPl̄se

2 iP(kFl2kFl̄)x

3~e2 iPkFlua1veiPkFl̄ua!

1cPls
† c2Pl̄se

2 iP(kFl1kFl̄)x

3~e2 iPkFlua1ve2 iPkFl̄ua!#%. ~4.7!

The expectation value of the normal-ordered lon
wavelength density cPls

† cPls is zero. Bosonizing
cPls

† c2Pls produces exponentials containing the fiel
f1r , f1s , f2r andf2s . BosonizingcPls

† cPl̄s produces
exponentials containing the fieldsu2r , u2s , f2r andf2s .
Sincef2r and f2s are dual to the pinned fieldsu2r and
u2s , respectively, they will fluctuate strongly due to th
uncertainty principle, and the expectation value of expon
tials of these fields will vanish. We are therefore left with
term which contains products of typecPls

† c2Pl̄s . Bosoniz-
ing this produces exponentials containing the four pinn
fields, so this term will have a nonzero expectation value

Next considerj'(m). Its continuum expression only con
tains products of typecPls

† cPl̄s andcPls
† c2Pl̄s . Thus only

the latter product will contribute to the expectation value
this operator. Note that in order to calculatej'(m) no Taylor
expansion is necessary, since both fermion operators
taken at the same value ofm from the outset.

Using kFe1kFo5p/a and 2t coskFoa5t' to simplify ex-
pressions, we find

^ j'~m!&5 i t'a2~21!m^F21~x!&1c.c., ~4.8!

^ j l~m!&5 1
2 i t'a2~21! l 1m^F21~x!&1c.c., ~4.9!

^kl~m!&5 iaAt22~ t'/2!2~21! l 1m^F1~x!&1c.c.,
~4.10!

^nl~m!&52a~21! l 1m^F1~x!&1c.c. ~4.11!

Here we have defined the operator

r

be
6-4
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Fp~x!5(
s

@cLes
† cRos1pcLos

† cRes#. ~4.12!

The expectation value ofFp(x) is independent ofx. It then
follows from Eqs.~4.8! and ~4.9! that if currents exist, they
will flow around the plaquettes in a staggered pattern
shown in Fig. 1. Current conservation is expressed by

^ j l~m!&5^ j l~m21!&1~21! l^ j'~m!& ~4.13!

~see Fig. 2!. Since expression~4.9! for ^ j l(m)& only contains
the zeroth-order term in the Taylor series expansion of
field operators, we conclude from Eq.~4.13! that the higher-
order terms do not contribute to the plaquette currents.

The bosonized expression forFp(x) can be written

Fp~x!5
1

2pe (
ls

dll̄
a(p)

klskl̄s

3exp@ i ~f1r1sf1s2dll̄u2r2sdll̄u2s!#.

~4.14!

Here we have defineddeo52doe51, s5↑↓561, and

a~p!5H 1, p521

2, p51.
~4.15!

Let un;G&[un(G)& ^ uG& be a simultaneous eigenstate ofH

and Ĝ. The eigenstateun(G)& lives in the Hilbert space
where the bosonic operators act, whileuG& was introduced in
Sec. IV A. We now consider a particular ground state,
noted byu0;G&, and calculate the expectation value ofFp(x)
in this state. First we insert the completeness relation~A8!
between the rightmost Klein factor and the exponential
Eq. ~4.14!, and use Eq.~A9!. Upon introducingf̃1r5f1r

2^f1r& etc., we encounter the expression

^exp@ i ~f̃1r1sf̃1s2dll̄ũ2r2sdll̄ũ2s!#&. ~4.16!

By construction, the pinned tilde-fields have zero expecta
values. We also defineũ1r5u1r etc., for the fields dual to
the pinned fields. As the Hamiltonian is invariant under
sign change of any of these tilde-fields, and their commu
tion relations are invariant under a combined sign chang
any two dual fields, this expectation value is independen
s anddll̄ , as these variables can only be61. A qualitative
estimate for this expectation value is calculated in Appen
B. Denoting the expectation value byB, we obtain

^Fp~x!&5
B

2pe (
ls

dll̄
a(p)

^klskl̄s&

3exp@i~^f1r&1ŝ f1s&2dll̄^u2r&2sdll̄^u2s&!#.

~4.17!

Here we have suppressed theG dependence of the expect
tion values appearing after the summation sign. This exp
sion can now be evaluated for the ground-state config
tions for the SF phase in Table I by inserting values for
pinned fields and using Eqs.~3.3! and ~A3!. The results are
12510
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listed in Table II. In the SF phasêF21(x)& is nonzero and
imaginary, which implies that the currents are nonzero. E
plicitly, we find

^ j'~m!&52~21! l^ j l~m!&57
B

2pe
8t'a2~21!m,

~4.18!

where the upper~lower! sign refers to ground state SF 1~SF
2!. Furthermore,̂F1(x)& vanishes identically, so that there
no modulation in neither̂kl(m)& nor ^nl(m)&. We have also
shown that the first order contribution to^kl(m)& is zero in
the SF phase.26

Finally, we note that the ground-state degeneracy can
broken in a formal way by adding to the Hamiltonian a te
proportional to the order parameter. Thus, for the SF pha
one can letH→H2h j'(1), whereh is an infinitesimal con-
stant. Depending on whetherh:0, ground state SF 1 or SF
2 will have the lower energy. The small imaginary-valu
symmetry breaking term perturbs the purely real-valu
Hamiltonian, selecting a particular ground state which is
trinsically complex-valued with large imaginary componen
in the many-body amplitude.

V. DISCUSSION

As an additional check of our calculations, we have a
reproduced the results for the CDW phase found in Ref.
In this phase, the signs ofbeo

r , beo
s , anduee

r are opposite to
the ones given in Eq.~4.1!. The same bosonic fields ar
pinned as in the SF phase, but their expectation values
different. The CDW phase also has a twofold-degener
ground state; the pinned-field configurations we have u
are listed in Table I. The rest of the calculation is identical
the one presented in Sec. IV, including the calculation ofB in
Appendix B. Our results for̂Fp(x)& for the CDW phase are
summarized in Table II. We find that^F1(x)& is nonzero and
real, so that^nl(m)& is modulated. This phase has no cu
rents, sincê F21(x)&50.

It is perhaps worth commenting more explicitly on ho
the Klein factors affect the calculation of the expectati
values of the various order parameters considered in S
IV B. Two aspects are important. First, the^klskl̄s& in Eq.
~4.17! contribute relative signs to the various terms in t
(l,s) summation. These signs are crucial for determin
whether^Fp(x)& is nonzero, or if it instead vanishes ident
cally due to cancellations. Second, if^Fp(x)& is nonzero, the

TABLE II. The quantity F̃p[2pe^Fp(x)&/B, as calculated
from Eq.~4.17!, for the ground states in Table I. The physical pro
erties of these states are seen to be independent of the ‘‘gaugG,
as they should be.

Ground state G F̃1 F̃21

SF 1 61 0 4i
SF 2 61 0 24i
CDW 1 61 4 0
CDW 2 61 24 0
6-5
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fact that ^klskl̄s& is purely imaginary affects whethe
^Fp(x)& is real or imaginary, which in turn determine
whether the expectation value of a given order parameter
depends on̂Fp(x)& will be nonzero; see Eqs.~4.8!–~4.11!.

In this paper we have used the so-called ‘‘field-theoret
bosonization.24 We have also performed the calculations u
ing the more rigorous ‘‘constructive’’ bosonization21 ~how-
ever, we still neglect the number-changing property of
Klein factors!. In the latter approach, Eq.~3.2b! is replaced
by @fls(x),ul8s8(x8)#5 i (p/2)dll8dss8sgn(x2x8). Conse-
quently, the anticommutation between right- and left-mov
fermions with the same band and spin indices must now
taken care of by the Klein factors, which therefore acquire

additionalR/L index. As a result, 12 different productsĜ i of
four Klein factors appear in the Hamiltonian. One must ide
tify all relations between theĜ i , as these relations put re
strictions on the permissible sets of eigenvaluesG i .20 Thus
the treatment of Klein factors is more complicated than
the field-theoretic approach, where a single operatorĜ ap-
pears. However, the final results for the expectation value
the order parameters are found to be the same.26

Our results imply that the SF phase occurs in the ph
diagram of a weakly interacting general SO~5! invariant
model on the half-filled two-leg ladder.19 However, the basin
of attraction of the SF phase is not restricted to have SO~5!
symmetry. In fact, for all bare couplings studied in Ref. 1
including attractive interactions thatbreakSO~5! symmetry,
it was found that the RG flow goes to the SO~5! subspace,
where the SF phase is one of the ‘‘attracting directions.’
would be very interesting to undertake a complete explo
tion of the parameter space, to see if the SF phase c
possibly be reached from purely repulsive off-site dens
density interactions, supplemented by various spin-excha
interactions.

Next, we discuss the possibility of SF order away fro
half-filling. For generic incommensurate fillings, Umklap
interactions are absent. Thus the total charge modef1r will
be gapless~making the system metallic!, so that̂ exp(if1r)&
will vanish. The currents will then only show
quasi-LRO.17,18,27 Strictly speaking, the system is then n
longer in the SF phase, but shows a dominant tendency
ward SF ordering. On the other hand, for commensurate
ings, higher-order Umklapp interactions are present,28,29 so
that if these interactions are not irrelevant,30 f1r may be
pinned, making true LRO possible. These conclusions
consistent with those obtained from symmetry arguments
the absence of Umklapp interactions, the Hamiltonian is
variant under the continuous symmetryf1r→f1r1c ~i.e.,
the constantc can take arbitrary values!, and pinning off1r

is forbidden by the Mermin-Wagner theorem. This theor
no longer applies when Umklapp interactions are pres
since then the symmetry is reduced to a discrete one~i.e., c
can only take particular values!.

Finally, we show that our results for the half-filled S
phase are consistent with the results obtained for the do
ladder for generic incommensurate fillings. In Table II
Ref. 18 the values of the three pinned fields in the phase w
dominant tendency toward SF ordering are taken to
12510
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^f1s&5p/2, ^u2r&50, ^u2s&50. Using the SF couplings
in Eq. ~4.1!, and takingG521, one sees that these expe
tation values of the pinned fields indeed minimizeHI

(1b) , and
also HI

(2) at half-filling when ^f1r& is taken to be an odd
multiple of p/2.
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APPENDIX A: MATRIX ELEMENTS OF PRODUCTS OF
KLEIN FACTORS

The Hermitian operatorĜ5ke↑ke↓ko↑ko↓ enters into
bosonic expressions forH I

(1b) and H I
(2) @Eqs. ~3.8!–~3.9!#.

Its eigenvalues areG561, and the associated eigenstat
uG& obey ^GuG8&5dGG8 . The completeness relation in th
space spanned by these eigenstates is

(
G561

uG&^Gu5I . ~A1!

We want to calculate various matrix elements ofkeskos ,
which appear in the expectation values of the order par
eters considered in Sec. IV B. We have

ke↑ko↑Ĝ5ke↑ko↑ke↑ke↓ko↑ko↓5ke↓ko↓ . ~A2!

Using ĜuG&5GuG&, one obtains

^Guke↑ko↑uG&5G^Guke↓ko↓uG&, ~A3!

^2Guke↑ko↑uG&5G^2Guke↓ko↓uG&. ~A4!

The complex conjugate of Eq.~A4! can be rewritten as
^Guke↑ko↑u2G&5G^Guke↓ko↓u2G&. LettingG→2G in this
relation, and comparing with Eq.~A4!, shows that the off-
diagonal matrix elements are zero;

^2GukeskosuG&50. ~A5!

Next, consider the equation^GuĜuG&5G. Anticommuting the
two inner Klein factors and inserting Eq.~A1! gives

(
G8561

^Guke↑ko↑uG8&^G8uke↓ko↓uG&52G. ~A6!

Using Eqs.~A5! and ~A3!, we obtain^GukeskosuG&2521,
i.e.

^GukeskosuG&56 i . ~A7!
6-6
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This result is consistent withkeskos being an anti-Hermitian
operator, thus having a purely imaginary expectation val

In order to determine the matrix elements, one can, e
fix the two diagonal matrix elements for one of the sp
directions. The other matrix elements are then determi
from Eqs. ~A3! and ~A5!. In this paper we choose to se
^Guke↑ko↑uG&51 i .

Finally, we consider the space spanned by the statesun;G&
defined in Sec. IV B. The completeness relation in this sp
reads

(
n

(
G561

un;G&^n;Gu5I . ~A8!

We will also need the matrix element

^0;Guklskl̄sun;G8&5^Guklskl̄suG8&^0~G!un~G8!&

5^Guklskl̄suG&dGG8dn0 . ~A9!

APPENDIX B: EXPECTATION VALUES OF
EXPONENTIALS OF PINNED FIELDS

In this appendix, we calculate a qualitative estimate of
expectation value in Eq.~4.16! by employing a simplified
treatment of the Hamiltonian, in which the pinned fields a
expanded to quadratic order around their expectation val
This gives^GuHuG&5( rnHrn with @Hrn ,Hr 8n8#50, where
Hrn is of Klein-Gordon form,

H1n5
1

2p FuK~]xũ1n!21
u

K
~]xf̃1n!21w2f̃1n

2 G ,
~B1!

H2n5
1

2p FuK~]xf̃2n!21
u

K
~]xũ2n!21w2ũ2n

2 G ,
~B2!

wherew2524g/(pe2), and

u5AvF
22~g/p!2, K5AvF2g/p

vF1g/p
. ~B3!

Furthermore, we have definedf̃1r5f1r2^f1r& etc. for
the pinned fields, andũ1r5u1r etc. for the fields dual to
them. Written in terms of these fields,Hrn is independent of
G ~and also of whether we consider the SF or CDW pha!.
Clearly, H2n can be obtained fromH1n by letting ũ1n

→f̃2n and f̃1n→ ũ2n . In addition,

@]xũ1n~x!,f̃1n~x8!#5@]xf̃2n8~x!,ũ2n8~x8!#. ~B4!

Thus all HamiltoniansHrn are equivalent. It therefore suf
fices to consider, e.g.,H1n . We expand the fields as

f̃1n~x,t !5AuKAp

L (
qÞ0

e2euqu/2 1

A2vq

3$a1nqei (qx2vqt)1a1nq
† e2 i (qx2vqt)%, ~B5!
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]xũ1n~x,t !5
i

AuK
Ap

L (
qÞ0

e2euqu/2Avq

2

3$a1nqei (qx2vqt)2a1nq
† e2 i (qx2vqt)%, ~B6!

where vq5v2q , and a1nq and a1nq
† are canonical boson

operators satisfying@a1nq ,a1nq8
†

#5dqq8 . These expansions
give the correct equal-time commutation relations and eq
tions of motion. The Hamiltonian can then be written o
diagonal form,

H1n5 (
qÞ0

e2euquvqa1nq
† a1nq , ~B7!

with vq5Au2q21uKw2.
Next we consider the ground-state expectation value

exp@icf̃1n(x)#, wherec is an arbitraryc-number. Let

f̃1n[F1n1F1n
† , ~B8!

whereF1n (F1n
† ) contains the annihilation~creation! part

of f̃1n . The ground-state expectation value can be writt

^exp@ icf̃1n~x!#&5expS 2
c2

2
@F1n~x!,F1n

† ~x!# D ,

~B9!

where

@F1n~x!,F1n
† ~x!#5

p

L
uK(

q.0

e2eq

vq
. ~B10!

In actuality the coupling constantg is not constant up to
arbitrarily high momenta. Rather,g is really a functiong(q),
with g(q→0)5g, and g(q→`)50. It follows that u, K,
and w also become momentum dependent, andvq acquires
an additional momentum dependence. Thus a more cor
expression for the commutator is

@F1n~x!,F1n
† ~x!#5

p

L (
q.0

u~q!K~q!
e2eq

vq~q!
. ~B11!

For simplicity, we will assume that there is a characteris
momentum cutoff 1/L such that forq!1/L, g(q) is well
approximated byg, and for q@1/L, g(q)'0. Multiplying
the integrand by@e2Lq1(12e2Lq)#, we then approximate
g(q)'g in the term containinge2Lq, and g(q)'0 in the
term containing (12e2Lq). With L@e, this gives

@F1n~x!,F1n
† ~x!#'

p

L (
q.0

S uK
e2Lq

vq
1

e2eq2e2Lq

q D
5

pK

4
@H0~z!2Y0~z!#1

1

2
ln~L/e!,

~B12!

where z[LwAK/u. Here H0(z) is a Struve function, and
Y0(z) is a Bessel function of the second kind.

Due to the equivalence of the HamiltoniansHrn , we have

^eicf̃1r&5^eicf̃1s&5^eic ũ2r&5^eic ũ2s&. ~B13!
6-7
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It then follows from Eq.~B9! that the expectation value i
Eq. ~4.16! is independent ofs anddll̄ , as these variables ar
restricted to be61. Denoting this expectation value byB,
we find

B'
e

L
expH 2

pK

2
@H0~z!2Y0~z!#J . ~B14!
s

12510
The e in the prefactor cancels the 1/e in the prefactor of Eq.
~4.17!. In the unpinned limit (g→0), B'A24g/pvF→0,
while in the limit of maximum pinning (g→pvF),

B'
e

L
expS 2

e

L
ApvF2g

24g D→ e

L
.

and

ef.

e

than
vant
nd-
m-
xed
ian
*Electronic address: jof@physics.brown.edu
†Electronic address: marston@physics.brown.edu
1B. I. Halperin and T. M. Rice, Solid State Phys.21, 115 ~1968!.
2A. A. Nersesyan and A. Luther~unpublished!; A. A. Nersesyan

and G. E. Vachnadze, J. Low. Temp.77, 293 ~1989!.
3H. J. Schulz, Phys. Rev. B39, 2940~1989!.
4I. Affleck and J. B. Marston, Phys. Rev. B37, 3774~1988!.
5J. B. Marston and I. Affleck, Phys. Rev. B39, 11538~1989!.
6T. C. Hsu, J. B. Marston, and I. Affleck, Phys. Rev. B43, 2866

~1991!.
7D. Poilblanc, E. Dagotto, and J. Riera, Phys. Rev. B43, 7899

~1991!.
8D. A. Ivanov, P. A. Lee, and X.-G. Wen, Phys. Rev. Lett.84, 3958

~2000!.
9P. W. Leung, Phys. Rev. B62, R6112~2000!.

10C. Nayak, Phys. Rev. B62, 4880~2000!.
11S. Chakravarty, R. B. Laughlin, D. K. Morr, and C. Nayak, Phy

Rev. B63, 094503~2001!.
12C. M. Varma, Phys. Rev. B55, 14554~1997!; Phys. Rev. Lett.83,

3538 ~1999!.
13H. A. Mook, P. Dai, and F. Dog˘an, Phys. Rev. B64, 012502

~2001!.
14S. Chakravarty, H.-Y. Kee, and C. Nayak, Int. J. Mod. Phys. B15,

2901 ~2001!.
15A. A. Nersesyan, Phys. Lett. A153, 49 ~1991!.
16A. A. Nersesyan, A. Luther, and F. Kusmartsev, Phys. Lett. A176,

363 ~1993!.
17H. J. Schulz, Phys. Rev. B53, R2959~1996!.
.

18E. Orignac and T. Giamarchi, Phys. Rev. B56, 7167~1997!.
19H.-H. Lin, L. Balents, and M. P. A. Fisher, Phys. Rev. B58, 1794

~1998!.
20H. J. Schulz, G. Cuniberti, and P. Pieri, inField Theories for

Low-Dimensional Condensed Matter Systems: Spin Systems
Strongly Correlated Electrons, edited by G. Morandiet al.
~Springer, New York, 2000!.

21J. von Delft and H. Schoeller, Ann. Phys.~Leipzig! 7, 225~1998!.
22L. Balents and M. P. A. Fisher, Phys. Rev. B53, 12133~1996!.
23H.-H. Lin, L. Balents, and M. P. A. Fisher, Phys. Rev. B56, 6569

~1997!.
24R. Shankar, Acta Phys. Pol. B26, 1835~1995!.
25To go from the dual fields defined here to those defined in R

20, let (f,u)→(u,w)/2.
26J. O. Fjærestad and J. B. Marston~unpublished!.
27D. J. Scalapino, S. R. White, and I. Affleck, Phys. Rev. B64,

100506~2001!.
28H. J. Schulz, inStrongly Correlated Electronic Materials: Th

Los Alamos Symposium 1993, edited by K. S. Bedellet al.
~Addison-Wesley, Reading, MA, 1994!.

29T. Giamarchi, Physica B230-232, 975 ~1997!.
30Note that since these Umklapp interactions transport more

two electrons across the Fermi sea, they are always irrele
with respect to the noninteracting fixed point. However, depe
ing on the underlying lattice model and the values of its para
eters, they may be relevant with respect to the bosonic fi
point defined by the quadratic part of the bosonized Hamilton
~including the contribution from the chiral interaction terms!.
6-8


