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Staggered orbital currents in the half-filled two-leg ladder
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Using Abelian bosonization with a careful treatment of the Klein factors, we show that a certain phase of the
half-filled two-leg ladder, previously identified as having spin-Peierls order, instead exhibits staggered orbital
currents with no dimerization.
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[. INTRODUCTION therefore in fact is the SF phase. In contrast to the infidite-
half-filled case, where the constraint of no double occupan-
One of the most intriguing phases of strongly correlatedcies makes the currents an unobservable gauge artifact, the
electrons is known variously as the “orbital LRO currents found here are observable. Furthermore, since
antiferromagnet,i’—3 the “staggered flux phase“,’*9 or the all excitations are gapped, the SF phase at half-filling is in-
“ d-density wave. %! |t is characterized by circulating cur- sulating.
rents which produce local magnetic moments aligned in an We perform our calculations using Abelian bosonization,
antiferromagneti¢staggerefiway. As a consequence, time- paying careful attention to the Klein factors in this
reversal symmetry as well as translational and rotationaformalism®®**As a check of our treatment, we also repro-
symmetries are spontaneously broken. Another phase, tifiéice the identification of the CDW phase found in Ref. 19.
“circulating current phase,]"z is somewhat similar, but does Furthermore, we show that our results are consistent with
not break translational symmetry. These phases have réhose found for the doped laddér.
ceived considerable attention lately, due to their possible rel- The paper is organized as follows. In Secs. Il and Il we
evance to the pseudogap region in the phase diagram of tigiscuss the ladder model and its continuum limit and
cuprates?!A recent neutron scattering experimeran un-  bosonized form, closely following the approach of Ref. 19.

derdoped YBsCw,Og ¢ has been interpretétias evidence for  In Sec. IV we define various local order parameters, derive
these staggered orbital currents. their bosonized expressions, and calculate their expectation

In this paper we focus on the half-filled two-leg ladder, values in the SF phase. The results are discussed further in
which is the simplest system that can support the Staggereﬁec. V. Some of the technical details have been placed in two
flux (SP phase(see Fig. 1L As the order parameter of this appendices.
phase breaks a discretg,) symmetry, the possibility of true
long-range ordefLRO) of the currents is noa priori ex- Il. THE HALF-FILLED TWO-LEG LADDER AND ITS
cluded at zero temperature in this one-dimensional system, in CONTINUUM LIMIT
contrast to the situation for order parameters that break con-
tinuous symmetries, which causes their correlations to ex-
hibit at most quasi-LRO with power-law decay. We consider a two-leg ladder where the electrons can hop

For weak interactions, the ladder can be treated usingnly between nearest-neighbor sites along the rungs and legs.
bosonization and the perturbative renormalization grouprhe kinetic energy then reads
(RG). For this case, the SF phase has beeﬁ%found in the phase
diagram for spinless electrons at half-fillingFurthermore, — + _ T
away from half-filling, regions with dominant tendencies to- Ho t;s Cis(m+1)cis(m) tL;s C1s(M)Cas(m) +H.C.
ward S;: ordering have been found both for spirfiéssd (2.1
spmfu_ll_ electrons. Note that for gene_réaJe., incommensu- - p,q operatorsc;g(m), and c[‘(m), respectively, annihilate
rate fillings, true LRO of the currents is not possible due to v -

. ) and create an electron on site=1,... N on legl=1,2
the absence of Umklapp interactio(see Sec. V for a more . . T |
detailed discussion The results for the doped ladder with With ~ spins=T1,l, ~and obey {cis(m),c;;(m)}
and without spin were summarized in Ref. 18, which also= 9’ émm Sss » With all other anticommutators vanishing.
investigated the effects of disorder. P_erlodlc(oper) boundary conditions are used alofpgrpen-

Here we are concerned with the SF phase for spinful elecdicular to the leg direction. Introducing even and odd com-
trons in a weakly interacting half-filled two-leg ladder. In binations
contrast to the other weak-interaction studies mentioned so
far, in the approach used here the nearest-neighbor hoppinT .-=~ T - =~ 7 ==~ 7 ,-7 "~ -7~ ] ,7 " "~ ] -~~~
parameters, andt along the rungs and legs, respectively, |’ N NN HE j
can be of the same order. We reanalyze the nature of a spel»._-" L < 4 % /[~ 1% /|~ 4% -
cific phase found in Ref. 19, and demonstrate that this phase,
previously identified to be of spin-PeiellSP) type, actually FIG. 1. Current flow in the staggered flux phase of the half-filled
exhibits staggered orbital currents with no dimerization, andwo-leg ladder. Reversing the currents gives the time-reversed state.

A. Kinetic energy
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1 1
Coros= 5 (€16 020 (2.2 Ienu=3 2 YersOss Uoys 2.7

and Fourier transforming along the leg direction, the kineticVheres”, o”, ando* are the Pauli matrices. The following
energy becomes diagonal in momentum space, describirgeneral symmetries holdg,=b,. and f¢,=fo., wherev
two uncoupled bands with dispersian, (k)=—2tcoska  =p,o. To avoid double-counting, we séf,=0. At half-
Tt,, wherea is the lattice constant. Taking positive, the filling the model also has particle-hole symmetry, which im-
even(odd combination gives a bondin@ntibonding band.  plies bg,=bg,, leaving six independent couplings of this
We consider a half-filled system angd<2t, in which case type.
the Fermi level is at zero energy and crosses both bands, thus Half-filling also allows for non-momentum-conserving
giving rise to four Fermi pointstkgy, Which satisfykg,  (i.., Umklapp terms. The Hamiltonian density for these in-
+Kpo=7/a. teractions reads

We will assume weak interactions and focus on the low-
energy, Ion_g-wavelength propertle§ of _the mod(_el, so that we H(2)=E fue e A HC),
may linearizeH, around the Fermi points. It will be most I UM R E TR 5
convenient to work with a coordinate-space representation of (2.9
the Hamiltonian. For this purpose we decompose the band o o
operatorc,¢(m) (A=e,0) into a sum of left- and right- wheree=0 ando=e. Here we have defined
moving slowly varying(on the scale of the lattice constant
continuum fields,
loau= 2 Wens€ss Ypus' 2.9

SS

Crs(m) = ale ke, (x) + ey ()], (2.3

_ . . L 1
where x=ma. The linearized kinetic energy can then be lon == ) ) 21
written Hy= [ dxH,, where PAu2 g Yrs(€0)ss Vpust (2.10

where e=—io”. We may takeug,=ug, sincelp,,=lp,\
- T T ol
Ho= _|UF)\Z [drasOxibrs— Pasdx¥nsl- (24 andlp,,=—1p,, . The latter result also impligs, , =0, so
s that we can takey, =0. In addition, particle-hole symmetry

In this expression and throughout the paper it is understoo8liVes Uge=Ug,, leaving three independent Umklapp cou-
that products of fermioni¢and bosonig operators that may plings. Thus a total of nine independent coupling constants
be evaluated at the same point are to be normal-ordered. Tteust be taken into account in this model of the half-filled
bare Fermi velocityvg is the same for both bands and is two-leg ladder.

given byvr=a\/(2t)2—t2.

IIl. BOSONIZATION

B. Interactions In the Abelian bosonization formalisf:?***the fermi-
The continuum description of general, but weak, finite-onic field operators)p, s can be expressed in terms of dual

ranged, spin-independent interactions, to leading order in thelermitian bosonic fields,s and 6,5 as”
interaction strengths, was carefully discussed in Refs. 19, 22,
and 23. One can restrict attention to terms which are both 1 )
marginal(i.e., consisting of four-fermion interactions with no lﬂpxs:\/:sz exi(Pérst Ohs)], 3.1
spatial derivativesand nonchirali.e., containing two right- 2me
moving and two left-moving fermionsThese terms can be where € is a short-distance cutoff, an@=R/L=+1. The
classified according to whether they conserve momentum g§,<qnic fields satisfy the commutation relations
not. The Hamiltonian density for momentum-conserving

terms reads [Brs(X), rre (X )]=[ Oys(X), Oy 15 (x')]=0, (3.23

H|(l):)\2 {b)F\),LL‘]R)\M‘]L)\M_b;\r,u‘]R)\,u'JL)\,u. [¢)\S(X)1a)\’s’(x’)]:i775)\)\’533’®(X_X’)1 (32b)
y2
the latter result written foe— 0. Here®(x) is the Heaviside

L Iradi s = IR L pult- (2.5 function. The long-wavelength normal-ordered fermionic

Heref andb refer to forward and backward tering br densities can be expressed in terms of the bosonic fields as
eref a efer to forward a ackward scattering pro leg)\swP)\s:&x((b)\s_’_Pa)\s)/Zﬂ'-

cesses, respectively, and The Klein factorsk,s commute with the bosonic fields,

and satisfy

Jo. = 1 , 2.6
P\ u ES wp)\slppus ( ) {K)\SaK)\’S’}:25)\>\,5SS,' (33)
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Note that the Klein factors used here are Hermitiamstead

of unitary), since we follow the common procedure of ne-
glecting the number-changing property of the Klein factors

in the thermodynamic limit°
Charge and spin operators are now defined as

1

¢XPZE(¢XT+ dr1),s (3.49
1

¢)\U:E(¢}\T_¢)\l)l (3.4b

with similar definitions of thed operators. We also define

1
d)rv_ﬁ(d)ev—i_rd)m})! (35)

wherer =+ andv=p,o. Again, similar definitions apply to
the 6 operators. Both Eqg3.4) and(3.5) are unitary trans-

formations, which implies that the commutation relations for f0,=— -
the new sets of operators are of the same type as those in Eq.

(3.2.
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Since the Hermitian operatdr obeysi'?=1, T' has ei-

genvalued' =+ 1. Furthermore, sincgH,I']=0, H and T’
can be simultaneously diagonalized.

IV. THE STAGGERED FLUX PHASE
A. Pinned fields

Numerical integration of the one-loop RG equations for
the couplings shows?2%that some of the couplings remain
small, while the others grovisometimes after a sign change
and eventually diverge. The weak-coupling RG flow must be
cut off before it leaves the regime of its perturbative validity.
The ratios of the diverging couplings at the cutoff scale are
found to approach fixed constants in the limit of asymptoti-
cally small bare couplings, with different sets of ratios cor-
responding to different phases of the ladder. In the SF phase
b?. andbg, are negligible, while the diverging couplings are
given b

[

1
- bgozzbgo=—u” =—2uf,=2uf=09>0.

ngo: 2 “eo
(4.1

Next we consider the bosonized form of the Hamiltonian

density H=Ho+H (P +H ), which is most succinctly ex-
pressed in terms of the variablégs, and 6,,. The kinetic-
energy density reads

Homge 3 [(Gxb)2+ (56,7 (39

The momentum-conserving part of the interactions can b

written H (V=1 (1 + 1 (1P where

1
Hl(la):ﬁ % ATV[(aXd)rV)Z_(axery)z]- (37)

Here A, ,=h,[bgetrfg,] with h,=1, h,=—1/4. Further-
more,

1b
HI( )—

(2me)? [2f be,COS 20_,c0S 20, ,

—cos 2., ,(2bJcos 2+ 21 cos20_,)

+cos20_ ,(I'bi,cos 2p_,+b,cos20_,)],
(3.9

With bey=bZo+4b2, and I'= ke ke koiko, - Finally, the
bosonized form of the Umklapp interaction density reads

H@=— 7Te)zcos 2. ,[8TULCOS 20 ,+2ulcos 2.,

+ulcos2p_,+Tugcos20_,], (3.9

with ug,=uZ = 4u’ .

The resulting low-energy effective Hamiltonian can be
mapped onto an S@) Gross-Neveu model, whose integra-
bility may be exploited to extract the exact energies, degen-
eracies and quantum numbers of all the low-energy excited
states-® However, for our discussion, a semiclassical reason-
ing will suffice. Since the single coupling constanflows
toward large values, in the semiclassical ground state the
bosonic fields in the Hamiltonian will be pinned to values
Which minimize the cosine interactiok (*” + (2. Note
that this argument would not be valid if the cosine interac-
tions were to contain both the dual fields , and 6_,,,
since then the uncertainty principle would forbid both fields
to be pinned. Howevelp _, disappears from the cosine in-
teraction becaus®?, is negligible andb_ ,=uj,=0. The
pinned fields are theg, ,, ¢,,, 6_,, and6_,. Since all
four bosonic modesv are pinned, the SF phase has no gap-
less excitations at half-filling.

The possible solutions for the pinned fields are found by
minimizing (T'|H|T), where|T') is the eigenstate df with
eigenvaluel” (these solutions will depend oh, but the
physics will of course not, as will be seen explicitly in Sec.
I1B). There are infinitely many solutions for the pinned
fields that minimize(I'|H|T"). However, this multitude of
solutions is only apparent; taking into account the fact that
the bosonic fields are not gauge-invariant, it can be shown
that there are only two physically distinct ground stdfes.
The pinned-field configurations that we will use to specify
these ground states are given in Table I.

B. Order parameters

In this subsection we explicitly show that the phase char-
acterized by the couplings in E¢4.1) is not of spin-Peierls
type with a (r,7) modulation in the kinetic enerdy, but
instead is the SF phase. We first define the relevant order
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TABLE I. The I'-dependent pinned-field configurations used for
the ground states in the SF and CDW phage& choose G|(m,u,v)=2 [C,TS(m+ u)ci(m)+uv-H.c]. (4.6
(T|kero1|T)y=i; see Appendix A The two configurations listed s
here for a given ground state are physically equivalent, as can bghen j,(m)=itaG,(m,1,—1), k(m)=-tG,;(m,1,1), and
seen from Table II. n(m)=G,(m,0,1). The continuum version oB,(m,u,v)
will contain products of typedf{,xs(er ua) ey g (X):, i.e.,
Ground state I (bep)  (beo) (0 (0-0) with the argument of the field operators differing by a lattice

SF1 1 0 0 0 0 constant wheru=1 (here we have temporarily included the
SF 2 1 - 0 0 0 normal-ordering symbol explicitly One can safely Taylor-
SF 1 _1 - 0 w2 a2 expand within the normal-ordering symbol to obtain
SF 2 -1 0 0 w2 w2 SPins(X) pry s (X): U Iy, (X) Pprars (X): (nOte that
CDW 1 1 0 0 /2 0 due to the normal-ordering, all order parameters will be mea-
CDW 2 1 - 0 w2 0 sured with respect to their values in the noninteracting
CDW 1 -1 0 0 0 2 ground state For now, we only keep the zeroth-order term
CDW 2 _1 . 0 0 /2 in the Taylor expansion, and comment briefly on higher-

order terms later. We find

. a . .
parameters. The_ fundamental def|n_|t|on of the current opera- G (m,u,v)= - 2 {lr//;)\slpp)\s(e—lpkp)\ua_{_velPkF}\ua)
tor comes from interpreting the Heisenberg equation of mo- 2 Bxs

tion for the number operator 4 .
+ ¢LAS¢7 p)\se_ZIPkF}‘Xe_IPkF)‘ua(1+U)

ny(m)=2 ciy(mcs(m) 4.2 (— 1) [, e Pl ke

. . L . . —iPkgjua iPkpyua
as a discretized continuity equation. We will assume that the x(e tue )

SF phase is a low-energy phase of a lattice Hamiltonian +l/,‘FrmS¢_m—se*iP(kFﬁkFDx
whose interactions commute witly(m). This is, e.g., the . o
case for density-density and spin-exchange interactions. X (e Pkruat g IPkeua) Ty 4.7

Then the components of the current operator take their co

. . Mhe expectation value of the normal-ordered long-
ventional forms(see Fig. 2

wavelength  density l//:;)\sl,/fp)\s is zero. Bosonizing
z,/;I,XSd/, prs produces exponentials containing the fields
jL(my=it,a>; [chy(m)c;(m)—H.c], 43 $,,, ¢io, b, and¢_,. Bosonizingyp,sthers Produces
° exponentials containing the fields ,, 6_,, ¢_,and¢_,.
Since¢_, and ¢_, are dual to the pinned field8_, and
j|(m)=ita2 [C,TS(m+ 1)ci(m)—H.c.]. (4.4 0_,, respectively, they will fluctuate strongly due to the
s uncertainty principle, and the expectation value of exponen-
Furthermore, the local kinetic-energy operator is tials of these fields will vanish. We are therefore left with a
term which contains products of typ,aﬁmw, prs- BOsoniz-
ing this produces exponentials containing the four pinned
fields, so this term will have a nonzero expectation value.
For completeness, in our discussion we also include th Next consideer(m).Tlts continuun: expression only con-
number (?peratom(’m) itself, since we will later check that Tains products of WP@prsiprs ANdipyspis. Thus only
' the latter product will contribute to the expectation value of

our calculations reproduce the results for the CDW phasg,;q operator. Note that in order to calculjtém) no Taylor

found in Ref. 19. expansion is necessary, since both fermion operators are

Next we outline the derivation of the bosonized expres-,,on at the same value of from the outset.

Slofr_ws for thes_le_z order pa}{rameters. It will be convenient to Using Keo + keo = 7r/a and 2 coskeqa=t, to simplify ex-
efine an auxiliary operator, pressions, we find

k(m)=—t> [chim+1)cs(m+Hec]. (4.5

m-1 m m+1 , (. (m))=it, a®(—1)™(F_1(x))+c.c., (4.9
(i(m)y=3it, a* (- )" ™F_y(x))+cc, (4.9

(k(m))y=iat?—(t,/22(—1)""™(F,(x))+c.c.,
1 (4.10

n(m)y=—a(—1)""™F;(x))+c.c. 4.1
FIG. 2. Currents as defined in Eq&l.3 and (4.4). Current {m(m)) ( ) THFA00) (.19
conservation is expressed by H4.13. Here we have defined the operator
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TABLE Il. The quantity EDEZﬂ'e(Fp(X))/B, as calculated
Fp(X) = 2 [¢Ees¢Ros+ p‘ﬂzoslﬂRes]- (4.12 from Eq.(4.17), for the ground states in Table I. The physical prop-
S erties of these states are seen to be independent of the “gduyge”
The expectation value df,(x) is independent ok. It then  as they should be.
follows from Eqgs.(4.8) and(4.9) that if currents exist, they — —
will flow around the plaquettes in a staggered pattern a§round state r Fi Fo
shown in Fig. 1. Current conservation is expressed by

SF1 *1 0 4i
j(m)y=(j;(m=1))+(—=1)"(j_ (m 413 SF2 1 0 —4i
Gm)=(im=1)+(=DKj(m) - @13 27 o ) :

(see Fig. 2 Since expressio#.9) for (j;(m)) only contains  cpw 2 1 —4 0

the zeroth-order term in the Taylor series expansion of the
field operators, we conclude from E@.13 that the higher-

order terms do not contribute to the plaquette currents. listed in Table Il. In the SF phasg=_,(x)) is nonzero and
The bosonized expression fBr,(x) can be written imaginary, which implies that the currents are nonzero. Ex-
plicitly, we find

1
F,(x)= 2 da@)K)\sts B
T 2mess (i (m)=2(=1)(ji(m))=F5—8t, a’(~ 1",

><exqi(¢+p+s¢+o’_d}\;07p_Sd)\xafo')]' (418)
(4.14 where the uppeflower) sign refers to ground state SH3F
Here we have defined,,= —dy.=1, s=7|=*1, and 2). Furthermore(F,(x)) vanishes identically, so that there is
no modulation in neithetk,(m)) nor (n,(m)). We have also
1, p=-1 shown that the first order contribution {& (m)) is zero in
a(p)= 2, p=1. (419 the SF phasé®

Finally, we note that the ground-state degeneracy can be
Let [n;T")=[n(I"))®|T") be a simultaneous eigenstatetdf  broken in a formal way by adding to the Hamiltonian a term
and I". The eigenstatdn(I')) lives in the Hilbert space proportional to the order parameter. Thus, for the SF phase,
where the bosonic operators act, wHil® was introduced in  one can leH—H — »5j, (1), where is an infinitesimal con-
Sec. IV A. We now consider a particular ground state, destant. Depending on whethef=0, ground state SF 1 or SF
noted by|0;T"), and calculate the expectation valuergf(x) 2 will have the lower energy. The small imaginary-valued
in this state. First we insert the completeness relat/s) symmetry breaking term perturbs the purely real-valued
between the rightmost Klein factor and the exponential inHamiltonian, selecting a particular ground state which is in-
Eq. (4.14), and use Eq(A9). Upon introducing?&w: b, trinsically complex-valued with large imaginary components
—(¢+,) etc., we encounter the expression in the many-body amplitude.

(exfi(d,+5d:,— A0 ,—shi0-,)]). (4.16 V. DISCUSSION

By construction, the pinned tilde-fields have zero expectation As an additional check of our calculations, we .have also
values. We also definé, ,= 6., etc., for the fields dual to reproduced the results for the CDW phase found in Ref. 19.

the pinned fields. As the Hamiltonian is invariant under aln this phase, the signs o, bg,, andug, are opposite to
sign change of any of these tilde-fields, and their commutathe ones given in Eq(4.1). The same bosonic fields are
tion relations are invariant under a combined sign change dpinned as in the SF phase, but their expectation values are
any two dual fields, this expectation value is independent oflifferent. The CDW phase also has a twofold-degenerate
s and d}\;' as these variables can On|y bel . A qua“tative ground state; the pinned—field Configurations we have used
estimate for this expectation value is calculated in Appendi@re listed in Table I. The rest of the calculation is identical to

B. Denoting the expectation value By we obtain the one presented in Sec. 1V, including the calculatioB of
Appendix B. Our results fo(F,(x)) for the CDW phase are

B a(p) - summarized in Table II. We find thé&F,(x)) is nonzero and
(Fp(x))= 2me % dyx (Kaskis) real, so that(n;(m)) is modulated. This phase has no cur-
rents, sinc€F _,(x))=0.
X exgi((d )+ Do)~ h(0- ) —SAO-,) ]. It is perhaps worth commenting more explicitly on how

the Klein factors affect the calculation of the expectation
(4.17 . . .
values of the various order parameters considered in Sec.
Here we have suppressed thedependence of the expecta- IV B. Two aspects are important. First, the,xys) in Eq.
tion values appearing after the summation sign. This expreg4.17) contribute relative signs to the various terms in the
sion can now be evaluated for the ground-state configurat\,s) summation. These signs are crucial for determining
tions for the SF phase in Table | by inserting values for thewhether(F ,(x)) is nonzero, or if it instead vanishes identi-
pinned fields and using Eqé3.3) and (A3). The results are cally due to cancellations. Second(ﬁ,,(x)) is nonzero, the
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fact that (k,sxys) is purely imaginary affects whether (¢, ,)=mu/2,(6_,)=0, (6_,)=0. Using the SF couplings

(Fp(x)) is real or imaginary, which in turn determines in Eq. (4.1), and takingl’= —1, one sees that these expec-

whether the expectation value of a given order parameter thaation values of the pinned fields indeed minimizg® , and

depends ofF ,(x)) will be nonzero; see Eq$4.8)—(4.11). also H,(z) at half-filing when(¢_ ) is taken to be an odd
In this paper we have used the so-called “field-theoretic”multiple of 7/2.

bosonizatiort* We have also performed the calculations us-

ing the more rigorous “constructive” bosonizatfdn(how- ACKNOWLEDGMENTS
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pears. However, the final results for the expectation values of

the order parameters are found to be the séine. APPENDIX A: MATRIX ELEMENTS OF PRODUCTS OF
Our results imply that the SF phase occurs in the phase KLEIN FACTORS

diagram of a weakly interacting general &D invariant . - ,

model on the half-filled two-leg laddét.However, the basin The Hermitian operat((lngl)“z e Ko} Kof o] enters into

of attraction of the SF phase is not restricted to havésso POSonic expressions fdt ;= and H;~ [Egs. (3.8 —(3.9].

symmetry. In fact, for all bare couplings studied in Ref. 19,!tS €igenvalues aré¢'==1, and the associated eigenstates

including attractive interactions thateak SO(5) symmetry, |I') obey(I'|I'")= &, . The completeness relation in the

it was found that the RG flow goes to the GDsubspace, SPace spanned by these eigenstates is

where the SF phase is one of the “attracting directions.” It

would be very interesting to undertake a complete explora- DINEE (A1)

tion of the parameter space, to see if the SF phase could r==x1

possibly be reached from purely repulsive off-site density\ya want to calculate various matrix elements P

density interactions, supplemented by various spin—exchanqﬁhich appear in the expectation values of the order param-

interactions. : . eters considered in Sec. IV B. We have
Next, we discuss the possibility of SF order away from

half-filling. For generic incommensurate fillings, Umklapp
interactions are absent. Thus the total charge mbdgwill A
be gaplesgmaking the system metallicso that(exp(¢,,))  UsingI'|T")=T'|T"), one obtains
will  vanish. The currents will then only show

KeKotl'= Key Koy Key Ke| Kot Ko| = Ke| Ko - (A2)

quasi-LROY18?7 Strictly speaking, the system is then no (T kerrop| TY=T(T | ke ko |T'), (A3)
longer in the SF phase, but shows a dominant tendency to-
ward SF ordering. On the other hand, for commensurate fill- (=Tlxero Iy =T (=T xe o |T). (A4)

ings, higher-order Umklapp interactions are preséft,so  The complex conjugate of EqA4) can be rewritten as

that if these interactions are not irrelevatg., , may be  (T'|ky ko;|~T)=T(T'|ke ko |~ T). Lettingl' — —T in this

pinned, making true LRO possible. These conclusions arge|ation, and comparing with E§A4), shows that the off-

consistent with those obtained from symmetry arguments: Igjiagonal matrix elements are zero;

the absence of Umklapp interactions, the Hamiltonian is in-

variant under the continuous symmetpy. ,— ¢, ,+c¢ (i.e., (=T |Kkesiod T')=0. (A5)

the constant can take arbitrary valugsand pinning of¢ .. ) A . .

is forbidden by the Mermin-Wagner theorem. This theorenNeXt, consider the equatidii’|I"|I") =T". Anticommuting the

no longer applies when Umklapp interactions are presenfV© inner Klein factors and inserting EGAL) gives

since then the symmetry is reduced to a discrete(oag c

can only take particular valugs > (Tlkerkor TN ke ko | TY==T.  (AB)
Finally, we show that our results for the half-filled SF I'=+1

phase are consistent with the results obtained for the dopadsing Eqs.(A5) and (A3), we obtain(T"| keskos I')2=—1,

ladder for generic incommensurate fillings. In Table Il ofj o

Ref. 18 the values of the three pinned fields in the phase with

dominant tendency toward SF ordering are taken to be (T | keskod Ty = =i (A7)
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This result is consistent witk.sx,s being an anti-Hermitian ~
operator, thus having a purely imaginary expectation value. 4,6, ,(x,t)= g el
#0

In order to determine the matrix elements, one can, e.g.,
fix the two diagonal matrix elements for one of the spin _ Cilax—
directions. Thegother matrix elements are then determ?ned X{a”qel(qx wqt)_aT”qe o wqt)}’ (B6)
from Egs. (A3) and (A5). In this paper we choose to set where wq=w_q, anda, q andal, , are canonical boson
(Tl ket kot T)=+i. operators satisfyinga ,ai qu]: dqq - These expansions
Finally, we consider the space spanned by the sfaté€y  give the correct equal-time commutation relations and equa-
defined in Sec. IV B. The completeness relation in this spacéons of motion. The Hamiltonian can then be written on

reads diagonal form,
> > mTYn;T|=I. (A8) Hiy,=2> e ddpal a,,,, (B7)
n '=+1 q#0
We will also need the matrix element with q=u"q +_UK;; : .
Next we consider the ground-state expectation value of
(0;T | kysiingl M T Y= (T | iy siins T/ )O(T) IN(T ")) exdice, ,(X)], wherec is an arbitraryc-number. Let
=(Clrysirs D) Srr 0. (A9) b =0, ,+00,, (B8)
where® (<I>T+V) contains the annihilatiofcreation part
APPENDIX B: EXPECTATION VALUES OF of ¢.,. The ground-state expectation value can be written

EXPONENTIALS OF PINNED FIELDS

2
In this appendix, we calculate a qualitative estimate of the <ex;{ic;{>+y(x)])=ex;{ - Cf[CIDJrV(x),CIDLV(x)] ,
expectation value in Eq4.16 by employing a simplified (BY)
treatment of the Hamiltonian, in which the pinned fields are
expanded to quadratic order around their expectation value¥/here
This gives(T'|H|T'y==, H,, with [H,, ,H,,,,]=0, where e
H,, is of Klein-Gordon form, (@, (X),qﬂ; (xX)]= zuKE € (B10)
v v L o wq
Hy,==—| UK (9B, )%+ E(aXZSH)ZerZZbi V}, In actuality the coupling constarg is not constant up to
2m K B1 arbitrarily high momenta. Ratheg,is really a functiong(q),
B \ith g(q—0)=g, andg(q—=)=0. It follows thatu, K.
andw also become momentum dependent, anpdacquires
H_,= uK(dyd_ )%+ ((9 0_,)%+w?6 |, an additional momentum dependence. Thus a more correct
2m expression for the commutator is
(B2)
o<
wherew® =24g/(me"), and [@,00.01L,001= T 3 u(@K(@ . ®11
q>
u= \/UZF—(Q/W)Z, K= w (B3) For simplicity, we will assume that there is a characteristic
vetglm momentum cutoff 14 such that forg<1/A, g(q) is well

Lo~ B approximated byg, and forg>1/A, g(q)~0. Multiplying
Furthermore, we have definefl, ,= . ,~(4.,) etc. for the integrand bye 9+ (1—e 9], we then approximate

the pinned fields, an@+p=0+p etc. for the fields dual to 9(q)=g in the term containing~ 9, andg(g)=0 in the
them. Written in terms of these fieldd, , is independent of o containing (e~ A9%). With A> e, this gives
I' (and also of whether we consider the SF or CDW phase '

Clearly, H_, can be obtained front,, by letting 4., o o T '<e‘A‘4+e‘€f‘—e‘Aq
—¢_,and, ,—0_,. In addition, [P,0%), *V(X)]Nf o ! wyq q
D p N1=T 5.7 y ' 7K 1
[0x0+,(0), B ,(X)]=[0xb— (%), 0o (X)].  (B4) T Ho(2)~ Yo(2) ]+ 3In(Ale)
Thus all Hamiltonian$H,, are equivalent. It therefore suf-
fices to consider, e.gH . ,. We expand the fields as (B12
where z=Aw+K/u. Here Hy(z) is a Struve function, and
(x,t UK e-dalz_—__ Yo(2) is a Bessel function of the second kind.
Buixt)= qZ'o V2w, Due to the equivalence of the Hamiltoniafs, , we have
><{El+]}(]ei(cq><— wgt) 4 a: qu—i(qx— wqt)}' (B5) <eic<~;§+p>: <eic:p+g> :<ei079,p> :<eic~0,a>_ (B13)
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It then follows from Eq.(B9) that the expectation value in
Eqg.(4.16 is independent o andd, y, as these variables are
restricted to bet 1. Denoting this expectation value B
we find

€ K
BmXex —T[Ho(z)—Yo(z)] . (B14)

PHYSICAL REVIEW B5 125106
The € in the prefactor cancels theelih the prefactor of Eq.

(4.17. In the unpinned limit §—0), B~ 249/ mvg—0,
while in the limit of maximum pinning §— 7vg),

B € € [mveg—g €
~K€X X W—)K
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%0Note that since these Umklapp interactions transport more than
two electrons across the Fermi sea, they are always irrelevant
with respect to the noninteracting fixed point. However, depend-
ing on the underlying lattice model and the values of its param-
eters, they may be relevant with respect to the bosonic fixed
point defined by the quadratic part of the bosonized Hamiltonian
(including the contribution from the chiral interaction tepms
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