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Solitons in polarized double-layer quantum Hall systems
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A new manifestation of interlayer coherence in strongly polarized double-layer quantum Hall systems with
total filling factorn51 in the presence of a small or zero tunneling is theoretically predicted. It is shown that
moving ~for small tunneling! and spatially localized~for zero tunneling! stable pseudospin solitons develop
which could be interpreted as mobile or static charge-density excitations. The possibility of their experimental
observation is also discussed.
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Much study has been devoted to the dynamical proper
of charge-density excitations in double-layer quantum H
systems with total Landau filling factorn51. An effective
field-theoretical pseudospin model was developed in orde
explain the experimentally observed spontaneous phase
herence even in the absence of tunneling1–3 as well as for
nonzero tunneling and in the presence of an applied in-p
magnetic field.4 The main prediction5–7 of this model, the
existence of the broken symmetry Goldstone mode8, has
been confirmed by the observation9 of split off peaks in the
tunneling conductance in the presence of in-plane magn
field.

However, the study of double layer~pseudo! ferromagnets
is usually restricted to the charge balanced state~see, e.g.,
Ref. 10, and references therein!, although very recently the
existence of a stable unbalanced state~the so-called canted
phase11,12! in the presence of in-plane magnetic field w
predicted. To date, static structures have dominated the
ical and experimental investigations. Only recently was
creation of a slowly moving pseudospin solito
investigated,13 but again this was done near the balanc
state.

In this communication we study the dynamical problem
a strongly unbalanced double layer system in the presenc
small or zero tunneling. Under such conditions the system
in highly nonequilibrium state but it is hard to reach t
ground state if the interlayer tunneling amplitude is small,
even impossible if the amplitude is zero. On the other ha
the nonlinear coupling induced by interlayer coherence
still present and thus the appearance of different exotic n
linear creations might be expected. Indeed, as we will sh
below, stable, mobile, or spatially localized pseudospin t
tures arise which could be described in terms of ac dri
nonlinear Schro¨dinger ~NLS! equation widely studied in the
literature~see, e.g., Refs. 14 and 15!. This circumstance re
lates quantum Hall~pseudo!ferromagnets with completely
different physical systems, such as yttrium iron garnet t
magnetic films,16 long Josephson junctions,17 relativistic
electron-positron plasma,18 etc., which are governed by th
same NLS equation and where similar localized excitati
are well studied both experimentally and theoretically.

The phenomelogical model for double-layer quantum H
~pseudo! ferromagnets, which is based upon microsco
considerations1,2, is effectively described by the following
Hamiltonian:1–3,10
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1S ]ny

]x D 2J 1bnz
2

2DSAS$nxcos~Qx!1ny sin~Qx!%, ~1!

where rE is in-plane spin stiffness;b is the a hard axis
anisotropy; DSAS is a tunneling amplitude,Q;Bi is the
‘‘wave vector’’ associated with the tumbling of the electron
phase due to the in-plane magnetic field;V describes the gate
voltage;e is an electron charge;\51 andn̂(x,t) is an order
parameter unit vector. The componentnz(x,t) is the local
charge imbalance between the layers and can be express
terms of local filling factors of top and bottom layers,nz
5n12n2; the local filling factorsn1 andn2 are proportional
to the local electric densitiesN1 andN2 in the corresponding
layers. For example, in the fully balanced case,n15n2
51/2 ~i.e. nz50) andN15N2[N. In typical experiments9

on double-layer systemsN53.031010 cm22. In the
strongly unbalanced situation which is a subject of study
the present paper, one hasnz.1 and thus the densities of to
and bottom layers are close to 2N and 0, respectively.

The time-space behavior of ordering vector could be
scribed in terms of Landau-Lifshitz equation:19

]n̂

]t
5~ n̂3He f f!, ~2!

He f f522H ]H
]n̂

2
]

]xF ]H

]
]n̂

]x
G J ,

whereHe f f is the effective~pseudo!magnetic field. We intro-
duce the variables

n6[nx6 i ny ~3!

so that Eq.~2! has the following form:

]n1

]t
52 ieVn114ibnzn112irEnz

]2n1

]x2
22iDSASnze

iQx.

~4!

We will seek for the solution of this equation aroundnz51.
This state corresponds to the highest energy value static
lution. Any dynamical fluctuation around this state is t
©2002 The American Physical Society10-1
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precession aroundnz which is allowed by the equations o
motion. In the limit of small deviations from this state an
small tunneling it is possible to apply the multiple sca
approach:20,21

n15«m1~j,t!ei (Qx2vt),

nz5A12un1u2512«2
um1u2

2
, ~5!

DSAS[«3D̃SAS

wherem6(j,t) is a slowly varying functions of the variable

j5«~x2vt !; t5«2t ~6!

and« is a formal small parameter expressing the smalln
or ‘‘slowness’’ of the object before which it appears, allow
ing for a multiple scale analysis of the problem. The range
acceptable« will be determined in the course of the calcul
tion. We are working in the regime

un1u5um1u!1. ~7!

To study the perturbative solution we substitute Eq.~5! into
Eq. ~4!, and collect terms of the same order of«. In the first
order of« the following equality is obtained:

v5eV12~rEQ222b!, ~8!

while to second order we get the expression for the gr
velocity v:

v54rEQ. ~9!

Finally, to third order in« we come to the following nonlin-
ear equation:

i
]m1

]t
12rE

]2m1

]j2
1~rEQ222b!um1u2m1522D̃SAS eivt,

~10!

which in the case of

rEQ2.2b;
eV12rEQ224b

rEQ222b
;«2 ~11!

reduces to the exactly solvable ac driven NLS equation c
sidered in Refs. 14 and 15.

The physical meaning of the second expression from~11!
together with definition~8! is that one has a near resonan
driving of pseudospin mode with a wave numberQ. The
possibility of soliton, chaotic, or other exotic solutions of t
NLS equation~10! is studied in details in Refs. 14 and 1
and we direct the reader there for more information. Here
only mention that the stable solutions of Eq.~10! could be
interpreted as envelope solitons of order parametern̂ moving
with a group velocity proportional to applied in-plane ma
netic field @see expression~9!# and characterized by carrie
wave vectorQ which is also proportional to in-plane mag
netic field. Note that according to the restriction of Eq.~11!,
the in-plane magnetic field should be nonzero.
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In Fig. 1 this excitation is presented as a moving bump
electric density through each layer. Note that envelope s
ton nature only characterizes the transverse component o
order parameter, while the physically measurable quantit
local charge imbalance—is just an ordinary soliton.

According to the general results of Refs. 14 and 15
stability of the mentioned soliton is restricted to the follow
ing condition:

h[
DSASArEQ222b

~eV12rEQ224b!3/2
,S 1

27D
1/2

. ~12!

This quantity stands for the driving force in the NL
equation14 and therefore defines the soliton amplitude.

FIG. 1. ~a! Local electric density of each layer versusx in the
case of small tunneling. Top and bottom graphs correspond to
local electric densities of top and bottom layer, respectively.N is an
electric density of each layer in the fully balanced state.~b! One of
the transverse components of ordering vector~the second one is
shifted in phase by 90°) with carrier wave numberQ. This envelope
soliton moves with velocityv proportional to the applied in-plane
magnetic field@see also Eq.~9!#.
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Here we also present the solutions for simple, but phy
cally very important case of zero tunneling (DSAS50),
which do not directly follow from the exact solutions fo
nonzeroDSAS presented in Ref. 14. In the case of zero tu
neling the in-plane magnetic field has no effect on the s
tem. For simplicity we assume alsoV50. Then the solution
of the initial equation of motion~4! is sought for in the
following simple form:

n15«m1~x,t !e4ibt, nz512«2
um1u2

2
. ~13!

Substituting this expression into Eq.~4! we come to the or-
dinary NLS equation:

i
]m1

]t
12rE

]2m1

]x2
22bum1u2m150, ~14!

which has a stable ‘‘dark soliton’’ solution.22 Since the physi-
cally measurable variable isnz ~the local charge imbalanc
between the layers! we present here only an expression f
its profile:

nz512
D2

2
U A12A2

A
1 i •tanhH x

LJ U2

, ~15!

where D is a soliton amplitude;A denotes the contrast o
dark soliton ~if A51 one has a ‘‘black’’ dark soliton and
‘‘gray’’ dark for 0,A,1) and soliton widthL is defined as
follows:

L5S 2rE

b D 1/2 1

D
. ~16!

The difference between gray dark and black dark solit
can be expressed in terms of the charge densities in the
and bottom layers~see also Fig. 2!: In a black dark soliton
solution there exists some point along thex axis where the
local electric density of top layer reaches the value 2N, while
the local density of bottom layer in the same point a
proaches zero. On the other hand, there always exists s
deviation of the charge densities from 2N and 0 for top and
bottom layers, respectively, for the gray dark soliton so
tion.

Unlike the previous case of small tunneling where t
soliton is characterized by nonzero carrier wave numberQ,
in the case of zero tunneling that is not the case and co
quently transverse components of ordering vector have
similar form to thez component and are not presented
Fig. 2.

We should emphasize again one more difference betw
two considered cases: In the case of nonzero~but small!
ha
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tunneling the envelope soliton amplitude is linked with t
driving coefficientDSAS, while in the absence of tunnelin
the dark soliton amplitude is arbitrary within the restrictio
~7!.

The above considerations are only valid for quasi-o
dimensional samples, i.e., quantum Hall bars. Thus the m
requirement for stability of soliton solutions is that the tran
verse dimension of the double-layer system should be
than soliton width. In this case the large wavelength mo
lations do not grow~which destabilize the soliton! and soli-
tons remain stable.23,24Future work will investigate their sta
bility.

In conclusion, we have found stable~mobile or static!
charge-density excitations in strongly unbalanced doub
layer systems. For their observation the double layer qu
tum Hall system should be prepared so asnz.1. Then any
perturbation will cause the appearence of either stand
~zero tunneling! or moving ~for small tunneling and applied
in-plane magnetic field! charge-density train of ‘‘bumps,’
which could be easily detected experimentally. The pertur
tion could be induced by temporary application of local ele
tric field perpedicular to the layers.

The work at the University of Oklahoma was support
by the NSF under Grant No. EPS-9720651 and a grant fr
the Oklahoma State Regents for higher education. R.
was supported by NSF-NATO Grant No DGE-0075191. R
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FIG. 2. Static ‘‘bumps’’ of electric density for zero tunneling i
a strongly unbalanced double-layer system. Two types of solut
are presented: the solid line corresponds to black dark soliton s
tion, while the dashed line indicates gray dark soliton. Both soli
solutions are stable.
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