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First-principles density-functional calculations for optical spectra of clusters and nanocrystals
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Electronic and structural calculations for atomic clusters present many challenges for traditional theoretical
methods. While the computational framework for ground-state properties of clusters is relatively well estab-
lished, calculations for excited states remain difficult. In this paper we implement a linear-response theory
within the time-dependent local density approximation~TDLDA ! and apply this technique to calculate exci-
tation energies and optical absorption spectra for a variety of systems ranging from single atoms to semicon-
ductor quantum dots up to several hundred atoms in size. The TDLDA formalism represents a fullyab initio
formalism for excited states that avoids many of the drawbacks associated with empirical or semiempirical
methods. Compared to otherab initio techniques for excited states, the TDLDA method requires considerably
less computational effort and can be applied to much larger systems. We find the computed excitation energies,
photoabsorption spectra, and optical absorption gaps to be in good agreement with available experimental data.
Our calculations show that the accuracy of the TDLDA method in the range of lower transition energies is
often comparable to that of more computationally intensive techniques, such as methods based on the exact
exchange, optimized effective potential, or on solving the Bethe-Salpeter equation within theGW approxima-
tion.

DOI: 10.1103/PhysRevB.65.115416 PACS number~s!: 73.22.2f, 71.15.Mb, 71.15.Qe, 71.35.Cc
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I. INTRODUCTION

The influence of physical dimensions on the properties
materials becomes increasingly important as the size
semiconductor integrated circuits continues to shrink. T
study of atomic clusters and nanocrystals provide a key
microscopic understanding of size-related effects. Electro
and structural calculations for clusters can help explain s
phenomena as quantum confinement, surface reconstruc
and crystal growth, describe the formation of surface a
bulk defects, and predict the properties of porous and di
dered materials.

Because of a large number of atoms and the lack of g
eral symmetry, computer simulations for clusters pose for
dable challenges for traditional theoretical methods. Sim
and cost-efficient ‘‘classical’’ methods based on empiri
force fields or interatomic potentials often do not work w
for clusters. The reconstruction of surfaces and the str
electronic delocalization make clusters difficult to descr
through interatomic interactions derived from the crystall
state.1 For this reason, accurate calculations for clusters u
ally require a direct quantum mechanical approach. Amo
such methods,ab initio pseudopotential techniques based
density-functional theory~DFT! within the local density ap-
proximation~LDA ! attract special interest.2

The combination of the LDA and the pseudopotential a
proach has proved to be very successful for predicting
structural and cohesive properties of various solids.3 The
pseudopotential approximation removes the chemically in
core electrons from the problem, effectively reducing t
number of particles in the quantum mechanical equations
the absence of core states, pseudo-wave functions
smoothly varying and can be easily represented within
chosen basis. For localized systems such as clusters and
0163-1829/2002/65~11!/115416~18!/$20.00 65 1154
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ecules, a direct real-space implementation of this techni
is particularly advantageous.4 With this approach, the Schro¨-
dinger equation for electronic states is solved on a real-sp
three-dimensional grid within a spherical boundary doma
and the kinetic energy operator is approximated by a high
order finite difference expansion on grid points.5 Unlike ‘‘su-
percell’’ calculations in momentum space,6 real-space meth-
ods do not produce an artificial periodicity, and do n
impose restrictions on the net charge of the system.

One of the most significant limitations of convention
density functional formalism is its inability to deal with elec
tronic excitations. Within time-independent density fun
tional theory, the state of a quantum mechanical system
described through the ground-state electronic charge den
While this approach can be accurate for the ground state
many-electron system, the excited electronic states are
adequately represented by the time-independent formalis7

The inability to describe excitations severely restricts
range of applications for conventional density function
methods, since many important physical properties such
optical absorption and emission, response to time-depen
fields, the dynamic dielectric function, and the band gap
semiconductors are associated with excited states.

Explicit calculations for excited states present enormo
challenges for theoretical methods. Accurate calculations
excitation energies and absorption spectra typically req
complex computational techniques, such as the configura
interaction method,8 quantum Monte Carlo simulations,9 or
the Green’s function method based on the G
approximation.10 While these methods describe electron
excitations properly, they are usually limited to very sm
systems because of high computational demands. Alte
tively, our calculations for excited-state properties emplo
technique based on linear-response theory within thetime-
©2002 The American Physical Society16-1
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dependentdensity-functional formalism and the local dens
approximation~TDLDA !.7,11,12 The TDLDA technique can
be viewed as a natural extension of the ground-state den
functional LDA formalism, designed to include the prop
representation of excited states. Within TDLDA, the true e
citation energies of a many-electron system are compu
from the conventional, time-independent Kohn-Sham tran
tion energies and wave functions. Compared to other th
retical methods for excited states, the TDLDA technique
quires considerably less computational effort and can
applied to much larger systems. Despite its relative simp
ity, the TDLDA method incorporates screening and relev
correlation effects for electronic excitations.7,11 In this sense,
TDLDA represents a fullyab initio formalism for excited
states.

We implemented the TDLDA technique entirely in re
space within a higher-order finite-difference pseudopoten
method.4 The real-space implementation represents a nat
choice for this technique due to the real-space formulation
TDLDA theory. With other methods, such as the plane-wa
technique, TDLDA calculations usually require an interm
diate real-space basis,13 which complicates calculations an
could introduce implementation errors. The direct real-sp
approach simplifies implementation and allows calculat
of TDLDA optical response in a single step. We have appl
this technique to compute transition energies and optical
sorption spectra for many different systems ranging fr
single atoms to semiconductor quantum dots up to sev
hundred atoms in size.12,14,15In this paper, we provide a de
tailed description of the real-space TDLDA formalism a
present an overview of our TDLDA calculations for vario
systems.

II. THEORETICAL METHODS

A. Finite difference pseudopotential method

Prior to computing excitation energies and absorpt
spectra, we solve the general electronic problem for
structure of interest. Our computational approach is base
a higher-order finite-difference pseudopotential meth
within density functional theory.4 The electronic problem is
defined by a set of the Kohn-Sham equations in the form

S 2
¹2

2
1(

a
v ion~r2Ra!1vH@r#~r !1vxc@r#~r ! Dc i~r !

5e ic i~r !. ~1!

Atomic units are used throughout unless otherwise specifi
In Eq. ~1!, the true potential of each ion atRa is replaced by
a pseudopotentialv ion(r2Ra), which accounts for the inter
action with core electrons and nuclei, the Hartree poten
vH@r#(r ), describes the electrostatic interactions among
lence electrons, and the exchange-correlation poten
vxc@r#(r ), represents the nonclassical part of the Ham
tonian.r(r ) is the charge density. The single-electron Koh
Sham eigenvaluese i and eigen-wave functionsc i(r ) pertain
to valence electrons only.
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The potentials and electronic wave functions are set up
a simple Cartesian three-dimensional grid within a spher
domain, as shown schematically in Fig. 1. The grid poi
inside the sphere are described by their discrete space c
dinates,$x,y,z%. Outside the boundary domain wave fun
tions are required to vanish. The kinetic energy te
2¹2/2 is approximated by a higher-order finite-differen
expansion for the Laplacian operator, which replaces spa
derivatives with a weighted sum of the wave-function valu
at neighboring grid points,

¹2c i~x,y,z!5
1

h2 (
n52N

N

CN,n
$2% @c i~x1nh,y,z!

1c i~x,y1nh,z!1c i~x,y,z1nh!#. ~2!

In this equation,h is the grid spacing andCN,n
$2% are the coef-

ficients in the order-N finite-difference expansion for the sec
ond derivative. The numerical values of the expansion co
ficients are readily available in literature.16 For a given
accuracy of calculations, the finite-difference order should
chosen as a compromise between having a fine grid an
large but sparse Hamiltonian matrix, versus having a coa
grid and a small but less sparse matrix. In electronic struc
calculations, a finite difference expansion between the fou
and sixth orders typically presents the optimum choice.4

The nonlocal ionic pseudopotential simulates the angu
momentum-dependent interaction between the valence
core electrons. We employ the Kleinman-Bylander17 form of
the nonlocal pseudopotential,

v ion~r2Ra!c i~r !5v local~r2Ra!c i~r !

1(
l ,m

GlmDv l~r2Ra!f lm~r2Ra!,

~3!

where v local is the local ionic pseudopotential,Dv l5v l
2v local is the difference between the local potential and

FIG. 1. Schematic illustration of the boundary domain for
cluster.
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potential component with the angular momentuml, f lm are
the atomic pseudo-wave functions, and the projection coe
cientsGlm are calculated as

Glm5
^f lmuDv l uc i&

^f lmuDv l uf lm&
. ~4!

In real space, the Kleinman-Bylander form of the pseudo
tential limits the nonlocality to a small region around ea
atom. All calculations presented in this article employ
Troullier-Martins pseudopotentials.18

The exchange-correlation potential within LDA is a
proximated by a functional of the charge density. In our c
culations, we used a parametrized form of the Ceper
Alder functional.19 The parametrization formula and it
coefficients will be further discussed in later sections. Ow
to the nonlinear nature of the LDA exchange-correlat
functional, the accuracy of the approximation can be i
proved by correcting the formula to account for the co
charge density. The exchange-correlation potential is t
evaluated as a functional of thecore-correctedcharge den-
sity,

r~r !5rv~r !1(
a

rcore~ ur2Rau!, ~5!

wherercore(ur2Rau) is a fixed partial correction for the cor
charge density20 andrv(r ) is thevalencecharge density cal-
culated as

rv~r !5(
i

ni uc i~r !u2, ~6!

where c i(r ) are single-electron wave functions andni are
occupation numbers.

Within this recipe, the off-diagonal elements of th
Hamiltonian matrix are produced only by the kinetic ener
and the nonlocal part of the ionic pseudopotential. All oth
terms, including the local part of the pseudopotential,
Hartree potential, and the exchange-correlation poten
contribute only to the main diagonal of the Hamiltonian. T
Hartree potential is obtained by setting up and solving
Poisson equation for the charge density by the conjug
gradient method,21

¹2vH@r#~r !524prv~r !. ~7!

To solve the Poisson equation numerically, we use a hig
order finite difference expansion for the Laplacian opera
similar to one given by Eq.~2!. The boundary conditions fo
the Poisson equation on points outside of the main dom
are determined by a multipole expansion of the charge d
sity. For large systems, the Poisson equation method is
nificantly more efficient than the direct summation over t
grid points.

After the Hamiltonian matrix is set up, the system
Kohn-Sham equations for electronic states must be so
self-consistently. The initial charge-density distribution
constructed by superposing atomic charge densities. B
on the initial charge density, we calculate the Hartree a
exchange-correlation potentials, and set up the Hamilton
11541
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matrix. The matrix equation is solved numerically by iter
tive diagonalization using the generalized Davids
algorithm.21,22 From the solution of this matrix equation w
obtain a new distribution of the charge density. The se
consistent procedure is repeated until we achieve the des
convergence of the numerical solution. The convergence
terion in our calculations is defined by the root-mean-squ
difference between the input and output potentials. Typica
we require this difference to be less than 1024 a.u.

B. Time-dependent density-functional theory

The central theorem of density-functional theory sta
that the external potential and the ground-state energy
system of interacting electrons are uniquely determined
the ground-state charge density.2 However, the classic formu
lation of the density-functional formalism is restricted to t
time-independentcase only. A proper treatment of electron
excitations is not possible within the time-independe
framework and requires a generalization of DFT to the tim
dependent phenomena. This limitation has led to the de
opment of time-dependent density functional theory
~TDDFT!.23,24 Within TDDFT, the main theorem of the
density-functional formalism is extended to time-depend
systems. Similarly, to the case of time-independent DFT,
time-dependent formalism reduces the many-electron p
lem to a set of self-consistent single particle equations,24

S 2
¹2

2
1veff@r#~r ,t ! Dc i~r ,t !5 i

]

]t
c i~r ,t !. ~8!

In this case, the single-particle wave functionsc i(r ,t) and
the effective potentialveff@r#(r ,t) explicitly depend on time.
The effective potential is given by

veff@r#~r ,t !5(
a

v ion~r2Ra!1E rv~r 8,t !

ur2r 8u
dr 8

1vxc@r#~r ,t !. ~9!

The three terms on the right-hand side of Eq.~9! describe the
external ionic potential, the potential Hartree, and t
exchange-correlation potential, respectively. In the adiab
approximation, which is local intime, the exchange-
correlation potential and its first derivative can be expres
in terms of thetime-independentexchange-correlation en
ergy Exc@r#,

vxc@r#~r ,t !>
dExc@r#

dr~r !
,

dvxc@r#~r ,t !

dr~r 8,t8!
>d~ t2t8!

d2Exc@r#

dr~r !dr~r 8!
.

~10!

The energyExc@r# in Eq. ~10! can be further approximate
by a regular LDA exchange-correlation functional,

Exc@r#5E r~r !exc„r~r !…dr , ~11!
6-3
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IGOR VASILIEV, SERDAR ÖĞÜT, AND JAMES R. CHELIKOWSKY PHYSICAL REVIEW B65 115416
which is local inspace.

C. Linear response in TDDFT

The linear-response formalism within TDDFT provides
theoretical basis for the TDLDA method. In this section, w
illustrate how TDLDA excitation energies and oscillat
strengths are derived from single-electron Kohn-Sham eig
values and eigen-wave functions. A comprehensive anal
of time-dependent density-functional response theory can
found elsewhere.7,11 We use the general notation adapt
from the work of Casida.11

The response of the Kohn-Sham density matrix with
TDDFT is obtained by introducing a time-dependent pert
bation dvappl(r ,t). Due to the self-consistent nature of th
Kohn-Sham Hamiltonian, theeffectiveperturbation includes
the response of the self-consistent fielddvSCF@r#(r ,t),

dveff@r#~r ,t !5dvappl~r ,t !1dvSCF@r#~r ,t !, ~12!

where the self-consistent field is given by the last two ter
in Eq. ~9!,

vSCF@r#~r ,t !5E rv~r 8,t !

ur2r 8u
dr 81vxc@r#~r ,t !. ~13!

In frequency space, the response of the Kohn-Sham den
matrix dP(v) can be derived using the generalized susc
tibility x(v). For quasiindependent Kohn-Sham particl
the sum-over-states representation of the generalized su
tibility is given by

x i j s,klt~v!5d i ,kd j ,lds,t

l lkt

v2v lkt
, ~14!

wherel lkt5nl t2nkt is the difference between the occup
tion numbers, andv lkt5ekt2e l t is the difference between
the eigenvalues of thel th andkth single-particle states. Th
susceptibility in Eq.~14! is expressed in the basis of th
unperturbed Kohn-Sham orbitals$c is% and the indicesi, j,
ands (k, l, andt) refer to space and spin wave componen
respectively. The linear response of the density matrix is

dPi j s~v!5(
klt

x i j s,klt~v!dvklt
eff ~v!

5
l j i s

v2v j i s
@dv i j s

appl~v!1dv i j s
SCF~v!#. ~15!

Equation ~15! is, however, complicated by the fact th
dvSCF(v) depends on the response of the density matrix

dv i j s
SCF~v!5(

klt
Ki j s,kltdPklt~v!, ~16!

where the coupling matrixK describes the response of th
self-consistent field to changes in the charge density. Wi
the adiabatic approximation, this matrix is frequenc
independent. The analytical expression for the adiabatic c
pling matrix, Ki j s,klt5]v i j s

SCF/]Pklt , can be derived from
Eq. ~13! by making use of the functional chain rule,
11541
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Ki j s,klt5E E c is* ~r !c j s~r !S 1

ur2r 8u

1
d2Exc@r#

drs~r !drt~r 8!
D ckt~r 8!c l t* ~r 8!drdr 8.

~17!

The functional derivative in Eq.~17! is evaluated with re-
spect to theunperturbedcharge densities. By using the cou
pling matrix, Eq.~15! can be rewritten as

(
klt

lkltÞ0 Fd i ,kd j ,lds,t

v2v lkt

l lkt
2Ki j s,kltGdPklt~v!

5dv i j s
appl~v!. ~18!

Since the summation in Eq.~18! is performed over all occu-
pied and unoccupied orbitals, it contains both the partic
hole and hole-particle contributions. These contributions
be written as two separate equations: the particle-hole pa
vappl(v) is given by

(
klt

lklt.0 Fd i ,kd j ,lds,t

v2v lkt

l lkt
2Ki j s,kltGdPklt~v!

2 (
klt

lklt.0

Ki j s,lktdPlkt~v!5dv i j s
appl~v! ~19!

and the hole-particle part ofvappl(v) is

(
klt

lklt.0 Fd i ,kd j ,lds,t

v2vklt

lklt
2K ji s,lktGdPlkt~v!

2 (
klt

lklt.0

K ji s,kltdPklt~v!5dv j i s
appl~v!. ~20!

Combining Eqs.~19! and~20!, one can separate the real an
imaginary parts of the density-matrix responsedP(v). If the
basis functions$c is% in Eq. ~17! are real, the coupling matrix
K is also real and symmetric with respect to the intercha
of space indicesi↔ j and k↔ l . SincedP(v) is Hermitian
~i.e., dPji s5dPi j s* ), the real part ofdP(v) for a real pertur-
bationvappl(v) is given by

(
klt

lklt.0 Fd i ,kd j ,lds,t

lkltvklt
~v22vklt

2 !22Ki j s,kltGRe~dPklt!~v!

5dv i j s
appl~v!, ~21!

where Re(dPi j s)(v) denotes the Fourier transform of th
real part of dPi j s(t).

Equation~21! can be used to obtain the density-function
expression for the dynamic polarizability. This is accom
plished by introducing a perturbationd v̂appl(t)5ĝEg(t),
whereEg is an external electric field applied along theg axis,
g5$x,y,z%. The linear response of the dipole mome
dm(v), is expressed through of the real part ofdP(v) as
6-4
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dmb~v!522 (
i j s

l i j s.0

b j i sRe~dPi j s!~v!, b5$x,y,z%.

~22!

The components of the dynamic polarizability tensor
given by

abg~v!5
dmb~v!

Eg~v!

52
2

Eg~v! (
i j s

l i j s.0

b j i sRe~dPi j s!~v!,

b,g5$x,y,z%. ~23!

Solving Eq.~21! with respect to Re(dPi j s)(v) and substi-
tuting the result into Eq.~23!, one obtains the following ma
trix equation for the polarizability components:

abg~v!52b̂R1/2@Q2v21#21R1/2ĝ, b,g5$x,y,z%,
~24!

where the matricesR andQ are given by

Ri j s,klt5d i ,kd j ,lds,tlkltvklt , ~25!

Qi j s,klt5d i ,kd j ,lds,tvklt
2 12Al i j sv i j sKi j s,kltAlkltvklt .

~26!

The TDLDA expressions for excitation energies and osci
tor strengths can be derived by comparing Eq.~24! with the
general sum-over-states formula for the average dynamic
larizability, ^a(v)&5tr„abg(v)…/35( I f I /(V I

22v2). The
true excitation energiesV I , which correspond to thepolesof
the dynamic polarizability, are obtained from the solution
the eigenvalue problem,

QFI5V I
2FI . ~27!

The oscillator strengthsf I , which correspond to theresidues
of the dynamic polarizability, are given by

f I5
2

3 (
b5$x,y,z%

ub̂R1/2FI u2, ~28!

whereFI are the eigenvectors of Eq.~27!.

D. Real-space implementation

The adiabatic TDLDA calculations for optical spectra r
quire only the knowledge of the time-independent sing
electron Kohn-Sham transition energies and wave functio
The most computationally demanding part in such calcu
tions is the evaluation of the coupling matrix given by E
~17!. This equation can be split into two parts:K5K (I )

1K (II ). The first term represents a double integral ov
1/ur2r 8u. Instead of performing the costly double integr
tion by direct summation, we calculate this term by solvi
the Poisson equation within the boundary domain. We e
ploy the conjugate-gradient method to solve

¹2F i j s~r !524pc is~r !c j s~r !. ~29!
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The first term in Eq.~17! is calculated as

Ki j s,klt
(I ) 5E F i j s~r !ckt~r !c l t~r !dr . ~30!

The Poisson equation method provides a considera
speed-up as compared to the direct summation. The se
term in Eq.~17! represents a double integral over the fun
tional derivative of the exchange-correlation energ
d2Exc@r#/drs(r )drt(r 8). Within the local approximation of
the exchange-correlation potential this term is reduced t
single integral,

Ki j s,klt
(II ) 5E c is~r !c j s~r !

d2Exc@r#

drs~r !drt~r !
ckt~r !c l t~r !dr ,

~31!

where the LDA exchange-correlation energyExc@r# is given
by Eq. ~11!.

Equation~31! requires the evaluation of the second d
rivatives for the LDA exchange-correlation energy with r
spect to spin-up and spin-down charge densities. The L
exchangeenergy per particle is normally approximated b
that of the homogeneous electron gas,25

ex„rs~r !…52
3

4p
@6p2rs~r !#1/3, s5$↑,↓%. ~32!

The first derivative of the total exchange energy determi
the LDA exchange potential,

dEx@r#

drs
5vx@rs#52

1

p
~6p2rs!1/3, s5$↑,↓%. ~33!

The second derivatives are

d2Ex@r#

dr↑dr↑
52S 2

9p D 1/3

r↑
22/3,

d2Ex@r#

dr↑dr↓
50. ~34!

We employ the Ceperley-Alder functional19 for the LDA
correlation energy. The Perdew-Zunger parametrization26 of
this functional is based on two different analytical expre
sions forr s,1 andr s>1, wherer s5(3/4pr)1/3 is the local
Seitz radius andr5r↑1r↓ . We slightly adjust the param
etrization forr s,1 to guarantee a continuous second deri
tive of the correlation energy. The adjusted interpolation f
mula for the correlation energy per particle is given by27

ec
U,P5H Alnr s1B1Crslnr s1Dr s1Xrs

2lnr s , r s,1

g/~11b1Ar s1b2r s!, r s>1,
~35!

where two separate sets of coefficients are used for thepo-
larized spin~P! andunpolarized spin~U! cases. The numeri
cal values of all fitting parameters appearing in Eq.~35! are
listed in Table I. Based on this interpolation formula, the fi
and second derivatives of the total correlation energy can
calculated as
6-5
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TABLE I. Fitting parameters in the interpolation formula for the correlation energy given by Eq.~35!. The
majority of the interpolation coefficients, with the exception ofC andX, coincide with the values suggeste
by Perdew and Zunger.26 All values are in atomic units.

Spin A B C D X g b1 b2

Unpolarized 0.0311 20.048 20.0015 20.0116 0.0036 20.1423 1.0529 0.3334
Polarized 0.01555 20.0269 20.0005 20.0048 0.0012 20.0843 1.3981 0.2611
ad
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pin
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ten
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i

e

dEc
U,P

dr
5

1

3
@3Alnr s13B2A12Crslnr s

1~2D2C!r s1Xrs
2~ lnr s21!#, ~36!

d2Ec
U,P

dr2
52

1

9r
@3A1~2D1C!r s12Crslnr s

1Xrs
2~2lnr s21!#, ~37!

for r s,1 and

dEc
U,P

dr
5

g~617b1Ar s18b2r s!

6~11b1Ar s1b2r s!
2

, ~38!

d2Ec
U,P

dr2

5
g@5b1Ar s1~7b1

218b2!r s121b1b2r s
3/2116b2

2r s
2#

36r~11b1Ar s1b2r s!
3

,

~39!

for r s>1. The behavior ofd2Ec
U,P/dr2 in the vicinity of r s

51 is shown in Fig. 2. The plot demonstrates that the
justed interpolation formula for the correlation energy is

FIG. 2. Second derivative of the electronic correlation energy
the vicinity of r s51. For r s,1, our parametrization slightly differ
from that of Perdew and Zunger.26 Both parametrizations coincid
for r s>1.
11541
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deed continuous up to its second derivative, while the or
nal Perdew-Zunger parametrization is not.26

Equations~35!–~39! describe only the cases of the com
pletely polarized and unpolarized spin. For intermediate s
polarizations, the correlation energy can be obtained wit
simple interpolation formula,

ec5ec
U1j~r!@ec

P2ec
U#, ~40!

where

j~r!5
1

12221/3
~x↑

4/31x↓
4/32221/3!; x↑5

r↑
r

, x↓5
r↓
r

.

~41!

The expression for the second derivative of the correlat
energy in case of an arbitrary spin polarization can be writ
as

d2Ec@r#

drsdrt
5

d2Ec
U

dr2
1j~r!S d2Ec

P

dr2
2

d2Ec
U

dr2 D 1S ]j~r!

]rs

1
]j~r!

]rt
D S dEc

P

dr
2

dEc
U

dr D 1
]2j~r!

]rs]rt

3r~ec
P2ec

U!, s,t5$↑,↓%, ~42!

where the spin polarization functionj(r) and its derivatives
are given by

]j~r!

]r↑
5

4

3r~12221/3!
~x↑

1/32x↑
4/32x↓

4/3!, ~43!

]2j~r!

]r↑]r↑
5

4

9r2~12221/3!
@x↑

22/328x↑
1/317~x↑

4/31x↓
4/3!#,

~44!

]2j~r!

]r↑]r↓
5

4

9r2~12221/3!
@7~x↑

4/31x↓
4/3!24~x↑

1/31x↓
1/3!#.

~45!

E. Systems with unpolarized spin

The TDLDA formalism presented in previous sections c
be further simplified for systems with the unpolarized sp
In this case, the spin-up and spin-down charge densities
equal,r↑5r↓ , and Eqs.~41!, ~43!–~45! yield

n

6-6
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j~r!50,
]2j~r!

]r↑]r↑
5

4

9r2~21/321!
,

]j~r!

]r↑
50,

]2j~r!

]r↑]r↓
52

4

9r2~21/321!
. ~46!

Since the coordinate parts of spin-up and spin-down Ko
Sham wave functions for systems with the unpolarized s
are identical,c i↑5c i↓ , it follows thatQi j ↑,kl↑5Qi j ↓,kl↓ and
Qi j ↑,kl↓5Qi j ↓,kl↑ . This allows us to separate ‘‘singlet’’ an
‘‘triplet’’ transitions by representing Eq.~27! in the basis set
of $F1 ,F2%, chosen as

Fi j
$1,2%5

1

A2
~Fi j ↑6Fi j ↓!. ~47!

In this basis, the matrixQ becomes

Qi j ,kl
$1,2%5d i ,kd j ,lvkl

2 12Al i j v i j Ki j ,kl
$1,2%Alklvkl, ~48!

where Ki j ,kl
$1,2%5Ki j ↑,kl↑6Ki j ↑,kl↓ . The components o

K $1,2% in their explicit form are given by

Ki j ,kl
1 52E E c i~r !c j~r !ck~r 8!c l~r 8!

ur2r 8u
drdr 8

12E c i~r !c j~r !S d2Ec
U

dr2

2
1

~9p!1/3r2/3D ck~r !c l~r !dr , ~49!

Ki j ,kl
2 52E c i~r !c j~r !S 4~ec

P2ec
U!

9~21/321!

2
1

~9p!1/3r2/3D ck~r !c l~r !dr . ~50!

For most practical applications, only ‘‘singlet’’ transition
represented by theF1 basis vectors are of interest. Triple
transitions described by theF2 vectors have zero dipole os
cillator strength and do not contribute to optical absorpti
By solving Eq.~27! for the F1 vectors only, we reduce th
dimension of the eigenvalue problem by a factor of 2. Eq
tions ~48!–~50!, however, can only be applied to system
with the unpolarized spin. In case of an arbitrary spin po
ization, the general form of the matrixQ presented by Eq
~26! with the coupling matrix given by Eq.~17! and the
functional derivatives given by Eqs.~33! through~45! must
be used.

The coupling matrixK in general case includes transition
to both bound and unbound~continuum! electronic levels.
While the eigenvalues and wave functions of bound sta
are relatively basis independent, the levels representing
tinuum strongly depend on the selected basis and boun
conditions imposed on the system. Unlike computatio
methods based on localized Gaussian-type orbitals,28 calcu-
11541
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lations on a real-space grid do not require a special exten
of the basis set to describe continuum states. Instead,
continuum is approximated by a finite number of unbou
levels withpositiveKohn-Sham eigenvalues localized insid
the boundary domain. The accuracy of this approximat
depends only on the size of the boundary domain and
number of unbound levels included in calculations. As su
it is always important to check for convergence of t
TDLDA transition energies and oscillator strengths with r
spect to the size of the boundary domain and the numbe
unoccupied states included in the calculation of the coup
matrix.

So far, other than the adiabatic local density approxim
tion, no other approximations have been made. The e
solution of the matrix equation~27! incorporates all relevan
correlations among single-particle transitions. Assuming,
simplicity, the unpolarized spin case, we can derive appro
mate expressions for the TDLDA excitation energies. Let
assume that the coupling between different one-electron t
sitions is weak. Under this assumption we can neglect
matrix elements withiÞk and j Þ l . As a result, the coupling
matrix becomes diagonal in the basis of$F1 ,F2%, and tran-
sition energies can be calculated using a simplesinglet-
triplet formula,12,29

V i j
$1,2%'Av i j ~v i j 12l i j Ki j ,kl

$1,2%!, ~51!

whereV i j
1 andV i j

2 correspond to the singlet and triplet tra
sitions, respectively. This approximation can be viewed as
attempt to correct Kohn-Sham excitation energies individ
ally, without including correlations among different singl
particle transitions. If the TDLDA corrections to Kohn-Sha
transition energies are relatively small, we can simplify E
~51! by taking a linear expansion aroundv i j ,

V i j 'v i j 1l i j Ki j ,kl
$1,2% ~52!

Equation~52!, also known as thesingle-poleapproximation,
is identical to the approximate TDLDA formula derived
Ref. 7.

III. RESULTS AND DISCUSSION

A. Excitation energies of atoms

To assess the accuracy of the TDLDA formalism, w
computed excitation energies for several closed-shell ato
Calculations were performed inside a spherical boundary
main with a radius of 15 a.u. For all atoms, we included
least 25 unoccupied states, which described transition
both bound and continuum levels. We observed no noticea
change in the computed excitation energies and oscill
strengths upon further increase of the boundary domain
the number of unoccupied states included in calculatio
The results of our calculations for the1S→1P singlet tran-
sitions are presented in Table II. Along with the transiti
energies calculated using the full-matrix TDLDA formalis
@Eq. ~27!#, we include the values from the approxima
singlet-triplet@Eq. ~51!# and single-pole@Eq. ~52!# formulas.
The analysis of data in Table II leads us to the followi
conclusions: First, although all three TDLDA equations im
6-7
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TABLE II. Singlet 1S→ 1P excitation energies of atoms. The energies were evaluated using
full-matrix TDLDA expression@Eq. ~27!#, as well as the approximate singlet-triplet@Eq. ~51!# and single-
pole @Eq. ~52!# formulas. Experimental values are taken from Ref. 30. The time-independent Kohn-
transition energiesvKS are included for comparison.2eHOMO

LDA and V ion
SCF are the negative values of th

energies for the highest-occupied molecular orbitals~Kohn-Sham LDA ‘‘ionization’’ energies! and self-
consistent LDA ionization potentials, respectively. All values are in eV.

Atom Experiment Full matrix Singlet-triplet Single pole vKS 2eHOMO
LDA V ion

SCF

Be 5.28 4.94 5.07 5.43 3.50 5.61 9.04
Mg 4.34 4.34 4.56 4.76 3.39 4.78 7.74
Ca 2.94 3.22 3.36 3.56 2.39 3.85 6.23
Sr 2.69 2.96 3.10 3.28 2.22 3.59 5.80
Zn 5.79 5.71 6.30 6.54 4.79 6.07 9.72
Cd 5.41 5.10 5.60 5.86 4.12 5.56 8.88
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prove upon time-independent Kohn-Sham transition en
gies, the values obtained with the full-matrix formula a
clearly the best. The full-matrix TDLDA excitation energie
agree with experiment within 5–10 % for all atoms. Seco
the discrepancy between the exact full-matrix and appro
mate singlet-triplet transition energies demonstrates the
portant role of correlation effects among single-electron
citations. These correlations are particularly large in case
the Zn and Cd atoms, where they are caused by the pres
of d levels that are close in energy to the valence electro
states. Third, our values calculated with the single-pole
mula closely reproduce the TDLDA singlet excitation en
gies reported in Ref. 7. Poor agreement between these va
and experiment has led the authors of Ref. 7 to the con
sion that the TDLDA formalism is not accurate because
the intrinsic errors associated with the local density appro
mation. In particular, the authors of Ref. 7 have attributed
discrepancy to the wrong asymptotic tail behavior of t
LDA potential, which decays exponentially, whereas the
act potential should fall off as;21/r . However, our calcu-
lations show that the observed discrepancy should be at
uted to the inaccuracy of the single-pole formula itself, rat
than to a principal failure of TDLDA. A similar conclusion
about the limitations of the single-pole approximation h
been made in the work of van Gisbergenat al.31 As such, we
find the asymptotic behavior of the potential to be of le
importance for the low-energy excitations than was pre
ously thought. Our observations agree with the majority
other TDLDA calculations for atoms and sma
molecules,32,28 which demonstrate that despite the wro
asymptotic behavior of the potential, TDLDA often work
remarkably well in the limit of lower transition energies.

In Table III we compare the singlet1S→1P and triplet
1S→3P atomic excitation energies, calculated with differe
techniques. The comparison indicates that TDLDA transit
energies are in better general agreement with experim
than the values obtained with either the optimized effect
potential ~OEP! or the self-consistent field~SCF! method.7

The singlet OEP excitation energies in Table III are almos
accurate as those calculated with TDLDA. However,
TDLDA values for triplet transitions are much better than t
corresponding OEP energies due to the fact that
11541
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exchange-only OEP method does not account for correla
effects, which are believed to be important for triplets.33 The
TDLDA values for both singlets and triplets are also super
to the ordinary self-consistent excitation energies. At
same time, the TDLDA method is more efficient than t
SCF approach, since TDLDA requires only a single se
consistent calculation to obtain the entire excitation sp
trum.

B. Absorption spectra of sodium clusters

We applied the TDLDA technique to calculate absorpti
spectra of small Nan clusters. We selected sodium cluste
because of the availability of a large body of experimen
data related to their optical properties.34,35 Ground-state
structures for the clusters of interest were determined
Langevin simulated annealing, followed by minimization
forces.36 To obtain more accurate cluster geometries, the
nal structural optimization was performed with the gener
ized gradient approximation for the exchange-correlat

TABLE III. Singlet and triplet excitation energies of atoms, ca
culated with TDLDA @Eq. ~27!#, optimized effective potential
~OEP!, and the self-consistent field~SCF! methods~Ref. 7!. OEP
energies of Ref. 7 were calculated using the single-pole form
@Eq. ~52!#. Experimental triplet transition energies are averag
over different spin-orbit components. All values are in eV.

Atom Transition Experiment TDLDA OEP SCF

Be
1S→1P 5.28 4.94 5.33 4.50
1S→3P 2.72 2.45 1.88 2.46

Mg
1S→1P 4.34 4.34 4.45 4.07
1S→3P 2.72 2.79 2.05 2.80

Ca
1S→1P 2.94 3.22 3.18 2.87
1S→3P 1.89 1.93 1.22 1.96

Sr
1S→1P 2.69 2.96 2.86 2.62
1S→3P 1.82 1.82 1.10 1.84

Zn
1S→1P 5.79 5.71 5.74 5.48
1S→3P 4.05 4.27 3.40 4.30

Cd
1S→1P 5.41 5.10 5.11 4.71
1S→3P 3.88 3.69 2.87 3.70
6-8
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FIG. 3. Calculated and experimental absor
tion spectra of Na2, Na4, and Na8 clusters.~a!
Time-independent Kohn-Sham absorption spe
tra. The other plots show the TDLDA spectra ca
culated with ~b! the single-pole approximation
@Eq. ~52!#, ~c! the singlet-triplet approximation
@Eq. ~51!#, and ~d! the full-matrix formula
@Eq. ~27!#. Experimental spectra are adapte
from Ref. 35. A Gaussian convolution of 0.06 e
was used to simulate finite broadening of all ca
culated spectra.
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potential.37 Our structures for the Na3 to Na8 clusters agree
with those reported previously38 and all bond lengths agre
to within ;1%. The calculated interatomic distance of 3.
Å for the Na2 dimer is in excellent agreement with the e
perimental value of 3.0789 Å.39 Since wave functions for
unoccupied electronic states are very sensitive to the bo
ary conditions, TDLDA calculations need to be performed
a relatively large boundary domain. For sodium clusters,
used a spherical domain with a radius of 25 a.u. and a
spacing of 0.8 a.u. We carefully tested for convergence of
calculated TDLDA excitation energies with respect to the
parameters and with respect to the number of unoccu
states included in the calculation of the coupling matrix.

Calculated absorption spectra of three closed-shell c
ters Na2 , Na4, and Na8 are shown in Fig. 3. In all cases, th
time-independent Kohn-Sham LDA calculations subst
tially underestimate the energies of optical transitions. Of
three different TDLDA expressions, only the spectra cal
lated with the full matrix formula given by Eq.~27! agree
with experiment. The large discrepancy between the ex
@Fig. 3~d!# and the approximate@Fig. 3~c!# TDLDA spectra
implies a significant degree of correlation among sing
electron transitions. The role of correlation effects increa
with increasing cluster size. When all electronic correlat
effects are included, agreement between TDLDA and exp
ment is quite remarkable: The full-matrix TDLDA formalism
correctly reproduces the experimental spectral shapes,
the calculated peak positions agree with experiment to wi
0.1–0.2 eV. The comparison with other theoretical work
veals a close similarity between our full-matrix TDLD
spectra and the results of CI calculations.40 Furthermore, our
TDLDA spectrum for the Na4 cluster better agrees with ex
periment than the GW absorption spectrum.41 Calculated
spectra of other Nan clusters withn,8 are shown in Fig. 4.
Again, the full-matrix TDLDA method greatly improves th
quality of computed optical spectra with respect to the tim
11541
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independent LDA calculations. The TDLDA spectra for Na5 ,
Na6, and Na7 closely match the available experimental me
surements. A somewhat poorer agreement between ex
ment and the calculated absorption spectrum of Na3 could be
explained by the ‘‘floppy’’ structure of this cluster, i.e., th
absence of a single pronounced minimum in its poten
energy surface.37 The lack of the stable ground-state stru
ture for Na3 makes its absorption spectrum more sensitive
temperature. The possible influence of experimental clu
temperature was not accounted for by our static TDLDA c
culations and could be responsible for the observed disag
ment.

FIG. 4. Absorption spectra of Na3, Na5, Na6, and Na7 clusters.
The TDLDA spectra~solid lines! were calculated with the full-
matrix equation~27!. The time-independent Kohn-Sham spec
~dotted lines! are shown for comparison. Experimental spec
~dashed lines! are adapted from Ref. 35. All calculated spectra a
broadened by 0.06 eV.
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Table IV shows the energies and oscillator strengths
selected transitions in the calculated absorption spectra.
reference, we include in Table IV the self-consistent ioni
tion potentials and the energies of the highest-occup
Kohn-Sham LDA orbitals. The self-consistent vertical io
ization potentialsV ion

SCF are calculated as the differences b

TABLE IV. Energies and oscillator strengths of selected tran
tions in the absorption spectra of sodium clusters. Experime
transition energies are adapted from Ref. 35. Kohn-Sham L
‘‘ionization’’ energies2eHOMO

LDA and self-consistent LDA ionization
potentialsV ion

SCF are given as a reference. The assignment of
higher-energy excitations for Na3 is somewhat ambiguous and the
excitations are simply listed in ascending order. All energies ar
eV.

Experimental TDLDA
transition Oscillator

Cluster energy Energy strength 2eHOMO
LDA V ion

SCF

Na2 1.91 2.10 0.64 3.21 5.17
2.52 2.71 1.06
3.71 3.58 0.15

Na3 1.67 1.73 0.43 2.47 4.29
2.05 2.09 0.37
2.21 2.47 0.62
2.59 2.85 0.25
3.02 3.10 0.48

Na4 1.80 1.85 1.03 2.77 4.38
1.95 2.09 0.15
2.18 2.27 0.11
2.51 2.70 0.88
2.81 3.04 0.40

Na5 2.04a 1.97 1.10 2.61 4.26
2.26 0.22
2.33 0.64
2.63 0.25

Na6 2.07 2.25 2.86 3.08 4.55
2.55 0.25
2.83 0.24

2.85 3.08 0.66
Na7 1.50 0.14 2.58 4.20

2.23 0.50
2.43a 2.48 2.42

2.73 0.46
2.87 0.36
2.95 0.22

Na8 1.79 0.08 3.09 4.52
2.11 0.20
2.63 0.66

2.55a 2.67 1.22
2.69 0.20
2.76 1.98
2.90 0.33

aExperimental absorption spectra of Na5 , Na7 , and Na8 show a
single broad band composed of several transitions not reso
individually.
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tween the total energies of the neutral and the positiv
charged clusters, computed at the equilibrium atomic coo
nates for the neutral clusters. The Kohn-Sham LDA ‘‘ioniz
tion’’ energies2eHOMO

LDA are given by the negative values o
the energies for the highest-occupied LDA molecular orb
als. It has been shown that while TDLDA calculations us
ally provide good agreement with experiment for the exci
tion energies below 2eHOMO

LDA , they often tend to
underestimate electronic excitation energies above
threshold.28 Although the energies of many optical trans
tions listed in Table IV are close to, or even higher th
2eHOMO

LDA , the TDLDA energies for these transitions do n
appear to be underestimated. The fact that the TDLDA f
malism works relatively well beyond the region of its rigo
ous theoretical justification could be related to the speci
of optical absorption in sodium clusters: more than 95%
the total oscillator strength in their absorption spectra co
sponds to transitions from bound to bound states. Con
quently, transitions to continuum states, which are not w
reproduced within TDLDA, do not contribute significantly t
the spectra of Nan clusters.

C. Optical absorption of benzene

While computational methods based on DFT are gener
successful in predicting electronic properties of semicond
tor and alkali metal clusters, organic molecules often p
more challenges for the density functional approach. T
presence of localized chemical bonds in organic compou
leads to rapid spatial variations of the charge density that
difficult to describe within the DFT formalism. Because
that, the benzene molecule presents a more complex tes
the TDLDA method than the systems we have considered
far. The experimental optical spectrum of benzene vapo
characterized by an extremely intense absorption peak
6.9–7.0 eV, which corresponds to collectivep-p* transi-
tions inside the aromatic hydrocarbon ring.42 Recently, the
optical spectrum of benzene was calculated using areal-time
TDLDA method.43 In contrast to our perturbation formalism
in frequency space, the authors of Ref. 43 computed opt
response in real time, by solving explicitly the time
dependent Schro¨dinger equation~8!. Reference 43 reports
good agreement between the real-time TDLDA calculatio
and experiment.

The ground-state structure of the benzene molecule
determined by LDA calculations. To minimize interatom
forces, we used a grid spacing of 0.3 a.u. and a bound
domain with a radius of 10 a.u. The calculated CuC ~1.38
Å! and CuH ~1.09 Å! bond lengths were in very goo
agreement with the experimental values of 1.399 Å a
1.101 Å, respectively. For the calculation of the TDLD
optical response we increased the radius of the bound
domain up to 15 a.u. and used a grid spacing of 0.4 a.u.
coupling matrix included transitions between 15 occup
and 45 unoccupied states.

Calculated and experimental absorption spectra are sh
in Fig. 5. The time-independent Kohn-Sham calculatio
substantially underestimate the transition energy of the m
p-p* absorption peak for benzene. The TDLDA calculatio
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produce a significant blue shift of thep-p* peak and greatly
improve agreement with experiment. Our spectrum a
agrees well with the real-time TDLDA calculations.43 We are
encouraged that despite considerable differences in the c
putational approach both TDLDA methods produce sim
results.

D. Absorption spectra of semiconductor clusters

Small semiconductor clusters exhibit properties rema
ably different from those of bulk materials.44 Understanding
the nature of these differences presents a challenging p
lem. The lack of reliable experimental tools and limitatio
of theoretical simulations make it difficult to study the pro
erties of clusters. In many cases, experimental informa
about cluster structures is available only through indir
measurements, such as measurements of op
absorption.35,45,46 In this regard, theoretical calculations fo
absorption spectra of clusters are important, because
offer the potential for a straightforward comparison of theo
and experiment.

For our calculations, we selected two semiconductor m
terials: silicon and gallium arsenide. As before, we us
Langevin simulated annealing, followed by minimization
forces36 to find ground-state structures for the clusters

FIG. 5. Calculated and experimental optical spectra of benz
The time-independent LDA spectrum~top! relates to the single-
electron Kohn-Sham transitions. The TDLDA spectrum~middle! is
based on Eq.~27!. The experimental spectrum~bottom! is adapted
from Ref. 42. Theoretical spectra are broadened by 0.1 eV.
Kohn-Sham LDA ‘‘ionization’’ energy of C6H6 is 6.53 eV and the
self-consistent ionization potential is 9.54 eV.
11541
o

m-
r

-

b-

n
t
al

ey

-
d

f

interest. During the annealing, clusters were deposited in
a spherical domain with a radius of 13 a.u. The mesh size
the imposed grid was taken to be 0.7 a.u., although at
final stages of the structural relaxation we used a grid sp
ing of 0.4 a.u. to resolve the energies of quasidegene
isomers. The choice of these parameters was justified by
fact that no significant changes in the total energy and
interatomic forces were detected with a further increase
the radius of the boundary sphere or decrease of the
spacing. The calculated interatomic distance of 2.20 Å
the Si2 dimer was close to the experimental bond length
2.246 Å.39 For the X3S2 ground state of the GaAs diatomi
molecule47 our equilibrium bond length of 2.51 Å was in
agreement with the experimental value of 2.53 Å.48 Opti-
mized ground-state geometries of Sin clusters containing up
to ten atoms are shown in Fig. 6. For the most part,
cluster structures agree with those predicted by otherab ini-
tio calculations.49 For example, in agreement with previou
calculations,36 we found two quasidegenerate isomers for t
Si6 cluster. Because of a large number of possible stoichio
etries, the geometries of GanAsm were determined only for
clusters with an almost equal number of gallium and arse
atoms (n5m,n5m61). Optimized ground-state structure
of GanAsm clusters are shown in Fig. 7. These structu
often resemble slightly distorted geometries of Sin clusters
with alternating Ga and As atoms. In two cases, we disc
ered two quasidegenerate isomers: for Ga4As4 the total en-
ergies of a bicapped octahedron and a tetracapped tetr
dron @the structures~I! and~II ! as shown in Fig. 7# coincided
within 0.02 eV, and for Ga5As5 the energy of a tetracappe
trigonal prism~I! was only by 0.05 eV higher than that of
previously suggested structure50 ~II !. Since TDLDA calcula-
tions are sensitive to the boundary conditions, we carefu
tested for convergence of the computed excitation ener
and absorption spectra with respect to the size of the bou

e.

e

FIG. 6. Structures of Sin clusters. Two quasidegenerate isome
are shown for Si6.
6-11
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ary domain, the grid spacing, and the total number of un
cupied single-electron states included in the TDLDA form
ism. Based on the results of our convergence test, the
TDLDA calculations were performed using a bounda
sphere with a radius of 21 a.u. and a grid spacing of 0.8
The number of unoccupied states included in the calcula
of the TDLDA coupling matrix was taken to be at least 3
5 times greater than that of occupied states.

Figures 8 and 9 show the calculated TDLDA absorpt
spectra of Sin and GanAsm clusters, respectively. For com
parison, both plots also show the spectra of time-indepen
Kohn-Sham LDA eigenvalues. For all silicon and galliu
arsenide clusters the TDLDA spectra display a substan
blue shift with respect to the Kohn-Sham eigenvalue spec
The differences between the TDLDA and time-independ
LDA spectra become more profound as the size of clus
increases. Our calculations also predict a substantial va
of spectral shapes for different clusters. It implies that cl
ters can be uniquely identified by their absorption spectra
some cases, even for clusters of the same chemical com
sition, such as Ga4As4 ~I! and~II !, TDLDA calculations pre-
dict easily distinguishable spectra. This demonstrates a
sensitivity of the calculated optical spectra to cluster geo
etries and suggests that a comparison of calculated and
perimental spectra can help identify isomers.

Practically all calculated TDLDA spectra for silicon an
gallium arsenide clusters exhibit long absorption tails
tending deep into the region of lower transition energi
Such behavior is noticeably absent in the optical absorp
of semiconductor quantum dots and cannot be describe
terms of a simple quantum confinement theory.51,52Quantum
dots are truncated fragments of the bulk structure that
passivated at the boundaries.53 Unlike the clusters considere
in this section, they do not possess free surfaces. On
basis, we believe that the low-energy absorption can be

FIG. 7. Structures of GanAsm clusters. Quasidegenerate isome
are shown for Ga4As4 and Ga5As5.
11541
-
-
al

u.
n

nt

al
a.
t

rs
ty
-

In
o-

gh
-
x-

-
.
n
in

re

is
t-

tributed to the existence of free surfaces in the cluste
These results appear to be consistent with calculations for
static polarizabilities of semiconductor clusters, which sh
a significant surface contribution toward cluster polarizab
ities. According to the sum-over-states formula for the av
age static polarizability,̂a&5( I f I /V I

2 , the presence of low-
energy transitions in absorption spectra increa
polarizabilities. This effect, in agreement with our previo
calculations,54 leads to higher polarizabilities for open
surface clusters as compared to that of quantum dots.

The optical absorption gap in clusters and molecules
be defined naturally as the energy of the first dipole-allow
transition in the excitation spectrum. Unfortunately, this de
nition is difficult to apply in cases when the intensity of th
first allowed excitation is too weak to be directly detected
experiment. In reported measurements for the optical abs
tion of gallium arsenide clusters46 the problem of a limited
experimental sensitivity was solved by defining aneffective
optical gapVg(p) at a small but nonzero fraction of th
integral oscillator strength,

E
0

Vg(p)

s~v!dv5p fe , ~53!

FIG. 8. Calculated TDLDA absorption spectra of silicon cluste
~solid lines!. The spectra of time-independent Kohn-Sham LDA
genvalues~dotted lines! are shown for comparison. All TDLDA
spectra are presented on the same relative scale. The Kohn-S
eigenvalue spectra are scaled to fit in the same plot. A Gaus
convolution of 0.1 eV was used to simulate finite broadening of
calculated spectra.
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FIRST-PRINCIPLES DENSITY FUNCTIONAL . . . PHYSICAL REVIEW B 65 115416
where s(v) is the photoabsorption cross section per el
tron, f e is the complete one-electron oscillator strength55

f e52p2\e2/mc>1.098 eV Å2, and p is a small positive
number. In the experimental work of Ref. 46 the value of t
parameter was taken to bep50.02.

Photoabsorption gaps for silicon and gallium arsen
clusters are given in Tables V and VI. Theoretical gaps w
computed atp50.02 andp→0. For practical reasons, th
p→0 limit was calculated by setting the value of this thres
old parameter to 1024. The chosen value of 1024 stands
above the level of numerical ‘‘noise,’’ but is sufficientl
small as to not suppress dipole-allowed transitions. Reg
less of the value of the onset parameterp, the time-
independent LDA calculations always severely undere
mate the experimental photoabsorption gaps for galli
arsenide clusters. For the TDLDA absorption, however,
presence of long and low intensity tails in the optical spec
results in substantial differences between the gaps estim

FIG. 9. Calculated TDLDA~solid lines! and time-independen
LDA ~dotted lines! absorption spectra of gallium arsenide cluste
The time-independent LDA spectra are scaled to fit in the same
All spectra are broadened by 0.1 eV using a Gaussian convolu
11541
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at p50.02 andp→0. As expected, thep→0 TDLDA gaps
for gallium arsenide clusters appear to be much smaller t
the experimental values of Ref. 46. At the same time, for
majority of our clusters we find the photoabsorption ga
defined as in the experimental work atp50.02 to be in good
agreement with experiment. We also note that for the
atomic GaAs molecule ourp→0 TDLDA gap of 2.97 eV is
very close to the experimental energy of 2.92 eV for t
lowest allowed electronic transition3P←X3S2.56

Tables V and VI also include the self-consistent ionizati
potentials and the energies of the highest-occupied Ko
Sham LDA orbitals. For a number of clusters, TDLDA ph
toabsorption gaps calculated atp50.02 appear to be close t
2eHOMO

LDA , which raises a question about the reliability
TDLDA calculations in that region. However, the fact th
the calculatedp50.02 gaps for most gallium arsenide clu
ters agree well with experiment seems to indicate that
values of these gaps were not strongly affected by their pr
imity to the 2eHOMO

LDA .
The variation of the photoabsorption gaps for gallium

senide clusters with cluster size is shown in Fig. 10. In
cases, the TDLDA gaps for clusters are greater than the
sorption gap of bulk gallium arsenide. At the same time, o
p→0 TDLDA gaps are much smaller than the typical g
values for semiconductor quantum dots in this size range.51,52

In contrast to the case of quantum dots, we observe on
weak dependence of the gap value on cluster size. Our
culations predict smaller gaps for clusters that contain
higher fraction of gallium atoms. This is consistent with t
fact that the excitation energy of atomic Ga is lower than t
of As.30 Due to the almost identical masses of the Ga and
atoms, the experimental measurements of Ref. 46 were
formed onn1m5const ensembles of GanAsm clusters. In
this respect, the observed discrepancy between the theo
cal and experimental absorption gaps forn1m54 and 5
may indicate a greater share of the Ga-rich structures am
very small gallium-arsenide clusters generated in the exp
ment.

E. Optical gaps in nanocrystalline silicon

The study of optical excitations in hydrogen-terminat
silicon clusters is essential for understanding absorption

TABLE V. Photoabsorption gaps and ionization thresholds
silicon clusters. All values are in eV.

LDA TDLDA
Cluster p→0 p50.02 p→0 p50.02 2eHOMO

LDA V ion
SCF

Si2 2.71 2.71 3.49 5.03 5.41 7.93
Si3 0.88 2.64 2.23 5.46 5.46 8.23
Si4 2.35 2.35 2.96 5.42 5.61 8.14
Si5 2.55 2.58 2.74 4.92 5.88 8.32
Si6 ~I! 3.46 3.46 3.99 5.52 5.70 7.99
Si6 ~II ! 2.62 3.43 3.74 5.50 5.67 7.99
Si7 2.66 3.18 4.46 6.13 5.86 8.12
Si8 2.30 2.68 3.44 5.57 5.31 7.40
Si9 1.96 2.71 3.49 5.77 5.63 7.72
Si10 2.12 2.54 2.81 5.58 6.04 8.02

.
t.
n.
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TABLE VI. Photoabsorption gaps and ionization thresholds of gallium arsenide clusters. Experim
gaps are adapted from Ref. 46. All values are in eV.

LDA TDLDA Experiment
Cluster p→0 p50.02 p→0 p50.02 p50.02 2eHOMO

LDA V ion
SCF

GaAs 2.59 3.09 2.97 4.95 4.99 7.68
GaAs2 1.02 3.10 3.74 5.43 4.78 7.77
Ga2As 1.94 3.07 2.42 4.59 5.24 8.09
Ga2As2 2.27 3.01 2.53 5.09 3.660.2 5.23 7.63
Ga2As3 2.55 2.55 2.78 5.57 4.360.3 4.87 7.52
Ga3As2 1.20 2.53 2.28 4.94 5.10 7.59
Ga3As3 1.20 2.51 2.86 5.24 5.560.3 5.45 7.69
Ga3As4 1.79 2.87 3.12 5.26 5.060.4 4.20 6.63
Ga4As3 0.90 2.04 1.59 4.90 4.97 7.31
Ga4As4 ~I! 1.66 2.57 3.00 5.53 5.260.2 4.60 6.67
Ga4As4 ~II ! 0.94 2.67 3.15 6.04 5.70 7.78
Ga4As5 1.21 2.90 2.47 5.67 5.160.2 4.76 6.88
Ga5As4 0.93 2.54 3.06 5.62 5.09 7.24
Ga5As5 ~I! 0.93 2.30 2.59 5.61 5.160.2 5.74 7.72
Ga5As5 ~II ! 1.75 2.60 2.75 5.69 5.55 7.53
m
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emission of visible light in porous silicon and quantu
dots.58 Over the last decade, SinHm clusters in the form of
quantum dots have been the subject of intens
experimental59–61 and theoretical52,53,62–67 research. How-
ever, disagreements among different theoretical models u
for describing electronic excitations in these systems rem
a subject of significant controversy. For the most part,
disagreements arise from the formulation of the optical g
in confined systems and the calculation of different com
nents, such as image charges, self-energies and exci
contributions that comprise the optical gap.68,69

Most theoretical studies focus primarily on the size d
pendence of photoluminescence energies and photoab
tion gaps.53,62–67 In many cases, such calculations do n

FIG. 10. Calculated and experimental photoabsorption gap
GanAsm clusters vs cluster size. The TDLDA gaps are shown
p→0 andp50.02. Forclusters with an odd number of atoms th
solid lines are drawn through the midpoint between the gaps
Ga-rich and As-rich structures. The dotted line corresponds to
absorption gap of bulk gallium arsenide.57
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evaluate oscillator strengths and cannot explicitly ident
optically allowed and dark transitions. This creates an unc
tainty in the theoretical interpretation of the experimenta
measured optical absorption. Only one of the publish
works52 presents calculations for the entire absorptionspec-
tra of a few small (n1m<34) SinHm clusters. The lack of
theoretical studies dealing with the optical spectra for lar
clusters can be explained by the extreme complexity of s
calculations, e.g., the difficulty in describing many-body e
fects in confined systems. TDLDA represents a fullyab initio
formalism for excited states. It is not constrained to a sin
electronic transition, but explicitly evaluates oscillat
strengths for all transitions in the vicinity of the absorptio
gap. As such, our calculations are removed from the theo
ical disagreements mentioned above. Unlike tim
independent LDA calculations for clusters, the TDLDA a
proach does not require any additional artificial adjustm
of the obtained electronic excitation energies and absorp
gaps.

Structures of SinHm clusters were obtained by startin
with the coordinates of bulk silicon and minimizing the in
teratomic forces acting on silicon and hydrogen atoms.
completely optimized the structures of all clusters up
Si35H36. Larger clusters were built by using spherical fra
ments of the LDA-optimized silicon bulk lattice and furthe
relaxing the outer layers by minimizing forces acting on t
surface hydrogen atoms. The structures of selected SinHm
clusters are shown in Fig. 11. Before proceeding w
TDLDA calculations, we carefully tested the computed ex
tation energies and absorption spectra for convergence.
all clusters, we required at least a 10–12 a.u. separation
tween the surface atoms and the boundary of the comp
tional domain. In the calculation of the TDLDA transitio
matrix elements, we included at least two to three times
many unoccupied states as the number of occupied electr
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r
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FIRST-PRINCIPLES DENSITY FUNCTIONAL . . . PHYSICAL REVIEW B 65 115416
states. These conditions were sufficient to achieve con
gence of the computed spectra in the experimentally imp
tant region below 10 eV.

The calculated absorption spectra of SinHm clusters are
shown in Fig. 12. To reduce the memory requirements
the overall computational load, spectra of the last four cl
ters were calculated including only electronic transitions
low a chosen energy threshold. Along with the TDLDA spe
tra, we show the spectra of time-independent Kohn-Sh
LDA eigenvalues. As in the case of metallic and semico
ductor clusters with open surfaces, the TDLDA spectra
SinHm clusters are blueshifted with respect to the Koh
Sham eigenvalue spectra. Unlike optical spectra of ‘‘ba
semiconductor clusters considered in the preceding sec
the spectra of hydrogenated silicon clusters do not disp
low-energy transitions associated with the surface sta
Photoabsorption gaps for SinHm clusters are much large
than those of Sin clusters with open surfaces. As the size
clusters increases, the absorption gaps gradually decr
and the discrete spectra for small clusters evolve into qu
continuous spectra for silicon nanocrystals. Figure 13 de
onstrates that the oscillator strength of dipole-allowed tr
sitions near the absorption edge decreases with increa
cluster size. This fact is consistent with the formation of
indirect band gap in the limit of bulk silicon.66

FIG. 11. Structures of SinHm clusters.
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In Table VII, we compare TDLDA values for the excita
tion energies of the first three SinHm clusters with experi-
mental data59,66 as well as with the values calculated usin
the Bethe-Salpeter technique.52 Table VII also shows the
Kohn-Sham LDA ‘‘ionization’’ energies of the clusters
2eHOMO

LDA , given by the negative values of the energies
the highest-occupied LDA electronic orbitals. The table de
onstrates that the calculated TDLDA excitation energies
the transitions below or close to2eHOMO

LDA agree well with the
experimental data and the Bethe-Salpeter values. This ag
ment, however, deteriorates for higher excitations, which
above2eHOMO

LDA . As the size of clusters increases, the ene
of the first-allowed excitation moves further down from th
LDA ‘‘ionization’’ energy, and the agreement with exper
ment improves. For large SinHm clusters, the first-allowed
optical transitions are always located below2eHOMO

LDA . The
LDA HOMO energy gradually diminishes from 6.8 eV fo
Si10H16 to 5.6 eV for Si147H100, but remains considerably
larger than the values of the TDLDA absorption gaps.
this basis, we believe that TDLDA should provide an acc
rate description of the photoabsorption gaps and the l
energy optical transitions in larger SinHm clusters.

FIG. 12. Calculated TDLDA absorption spectra of SinHm clus-
ters ~solid lines!. Spectra of time-independent Kohn-Sham LD
eigenvalues~dotted lines! are shown for comparison. All spectra a
broadened by 0.1 eV using a Gaussian convolution.
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The optical absorption gaps for small clusters can be
fined directly by the energy of the first dipole-allowed tra
sition in their absorption spectra. For large clusters, the
sorption spectra become essentially quasicontinuous. A l
number of low-intensity transitions exist near the absorpt
edge. Taken individually, the oscillator strengths of the
transitions would be located far below the experimenta
detectable limit. As a result, identifying the first-allowed o
tical transition in the case of large clusters is not a triv
task. Rather than associating the optical gaps with the i
vidual transitions, we define them through the integral os
lator strength according to Eq.~53!. Similarly, as we did in
case of GanAsm clusters, we calculate the photoabsorpti
gaps for SinHm clusters in the limit ofp→0 by setting the
actual value of this threshold parameter to 1024. Defining the
absorption gaps in such a way does not affect the value
the optical gaps for small SinHm clusters, since the intensit
of their first-allowed transitions is much higher than the
lected threshold. At the same time, Eq.~53! offers a conve-
nient way for the evaluation of optical gaps in large cluste
which is consistent with methods commonly used in exp
mental work.

TABLE VII. Excitation energies of hydrogenated silicon clu
ters. The experimental optical absorption energies are taken
Ref. 59 ~silane and disilane!, and Ref. 66~neopentasilane!. The
assignment of electronic excitations for silane and disilane co
sponds to the Rydberg transitions. The Bethe-Salpeter~BS! excita-
tion energies are adapted from Ref. 52.2eHOMO

LDA are Kohn-Sham
LDA ‘‘ionization’’energies andV ion

SCF are self-consistent LDA ion-
ization potentials. All values are in eV.

Cluster Transition Experiment BS TDLDA2eHOMO
LDA V ion

SCF

SiH4 4s 8.8 9.0 8.2 8.6 12.3
4p 9.7 10.2 9.2
4d 10.7 11.2 9.7

Si2H6 4s 7.6 7.6 7.3 7.5 10.8
4p 8.4 9.0 7.8

Si5H12 6.5 7.2 6.6 7.3 9.6

FIG. 13. Oscillator strength of dipole-allowed transitions ne
the absorption edge vs cluster diameter.
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The variation of the optical absorption gaps as a funct
of the cluster size is shown in Fig. 14. Along with th
TDLDA values, we included optical gaps calculated by t
Bethe-Salpeter~BS! technique.52 For very small clusters,
SiH4 , Si2H6, and Si5H12, the gaps computed by the TDLDA
method are close to the BS values, although for Si10H16 and
Si14H20 our gaps are considerably smaller than the BS ga
At the same time, our TDLDA gaps for clusters in the si
range from 5 to 71 silicon atoms are larger by;1 eV than
the gaps calculated by the Hartree-Fock technique with
correlation correction included through the configuratio
interaction approximation~HF-CI!.67 These differences are
consistent with the fact that the BS calculations system
cally overestimate and the HF-CI calculations of Ref.
underestimate the experimental absorption gaps. For
ample, for the optical absorption gap of Si5H12 the BS,
TDLDA, and HF-CI methods predict the values of 7.2, 6
and 5.3 eV, respectively, compared to the experimental va
of 6.5 eV. However, it is not clear whether the gaps of R
67 refer to the optically allowed or optically forbidden tra
sitions, which may offer a possible explanation for the o
served discrepancy. In the limit of large clusters, we find
TDLDA optical gaps to be in generally good agreement w
the photoabsorption gaps evaluated by the majority of s
energy corrected LDA~Refs. 53 and 66! and empirical64,65

techniques. At present, the full TDLDA calculations for clu
ters larger than 20 Å in diameter remain beyond our ca
bilities. Nevertheless, the extrapolation of the TDLDA cur
in the limit of large clusters comes very close to the expe
mental values for the photoabsorption gaps.

It is well known that time-independent LDA calculation
typically underestimate the experimental photoabsorpt
gaps. Recent calculations for the frequency-dependent
electric function in crystals70 suggest that TDLDA and LDA

m

e-

r FIG. 14. Variation of optical absorption gaps as a function
cluster diameter. Theoretical values shown in the plot include
gaps calculated by the TDLDA method~this paper!, by the Bethe-
Salpeter~BS! technique~Ref. 52!, and by the Hartree-Fock metho
with the correlation included through the configuration-interact
approximation~HF-CI! @Ref. 67#. Experimental values are take
from Refs. 59, 60, and 66. The dashed lines are a guide to the
6-16
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gaps might converge for an infinite system. We did not o
serve this trend for the clusters we have examined in
work. On the contrary, for all clusters considered, our cal
lations show a substantial difference between the opt
spectra and photoabsorption gaps calculated by the TDL
and the time-independent LDA methods. We do not rule
the possibility that the TDLDA optical transitions will con
verge with the regular time-independent LDA spectra
much larger systems. Nevertheless, our calculations sug
that such convergence does not occur at least up to se
hundred atoms, which is sufficient for a large variety of p
spective TDLDA applications. As such, it is not necessary
invoke ad hoc empirical assumptions to examine system
comparable in size to experimentally measured quan
dots.65

IV. CONCLUSIONS

We have implemented linear-response theory within
time-dependentdensity-functional formalism and the loca
density approximation~TDLDA ! to compute excitation en
ergies and optical absorption spectra of atomic clusters.
calculated TDLDA excitation energies and absorption sp
tra for atoms, semiconductor and metallic clusters, a
hydrogen-terminated silicon dots were found to be in go
s

ev

.

l

ar

U
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agreement with the experiment. The comparison of the sp
tra calculated with the exact and the approximate TDLD
expressions indicates an important role of collective el
tronic effects. The structural sensitivity of the calculated o
tical spectra for clusters suggests the possibility of using
sorption spectra to identify clusters and separate isomer

We have shown that the TDLDA formalism can provid
an efficient alternative to more complex theoretical meth
for excited state properties. Compared to other fir
principles techniques for excited states, the TDLDA meth
requires considerably less computational effort and can
used for much larger systems. At the same time, as a fullyab
initio technique, TDLDA avoids many of the controversi
associated with empirical or semiempirical methods. Theab
initio nature of the TDLDA formalism makes it flexible i
application to a variety of systems composed of differ
chemical elements.
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12I. Vasiliev, S. Öǧüt, and J.R. Chelikowsky, Phys. Rev. Lett.82,
1919 ~1999!.

13X. Blase, A. Rubio, S.G. Louie, and M.L. Cohen, Phys. Rev.
52, R2225~1995!.
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Koutecký, P. Fantucci, and J. Koutecky´, Chem. Rev.91, 1035
~1991!.

35C. R. C. Wang, S. Pollack, D. Cameron, and M.M. Kappes
Chem. Phys.93, 3787~1990!; Chem. Phys. Lett.165, 26 ~1990!;
C.R.C. Wang, S. Pollack, T.A. Dahlseid, G.M. Koretsky, a
M.M. Kappes, J. Chem. Phys.96, 7931~1992!; S.P. Sinha, Proc
Phys. Soc. London62, 124 ~1949!; W.R. Fredrickson and W.W
Watson, Phys. Rev.30, 429 ~1927!.

36X. Jing, N. Troullier, D. Dean, N. Binggeli, J.R. Chelikowsky, K
Wu, and Y. Saad, Phys. Rev. B50, 12 234~1994!

37L. Kronik, I. Vasiliev, and J.R. Chelikowsky, Phys. Rev. B62,
9992 ~2000!; L. Kronik, I. Vasiliev, M. Jain, and J. R. Che
likowsky, J. Chem. Phys.115, 4322 ~2001!; ibid. 115, 8714
~2001!.

38P. Calaminici, K. Jug, and A.M. Ko¨ster, J. Chem. Phys.111, 4613
~1999!.

39CRC Handbook of Chemistry and Physics, edited by D. R. Lide,
81st ed.~CRC Press, New York, 2000!, pp. 9-1729-43.
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