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First-principles density-functional calculations for optical spectra of clusters and nanocrystals
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Electronic and structural calculations for atomic clusters present many challenges for traditional theoretical
methods. While the computational framework for ground-state properties of clusters is relatively well estab-
lished, calculations for excited states remain difficult. In this paper we implement a linear-response theory
within the time-dependent local density approximati@®LDA) and apply this technique to calculate exci-
tation energies and optical absorption spectra for a variety of systems ranging from single atoms to semicon-
ductor quantum dots up to several hundred atoms in size. The TDLDA formalism representsadb furlio
formalism for excited states that avoids many of the drawbacks associated with empirical or semiempirical
methods. Compared to othab initio techniques for excited states, the TDLDA method requires considerably
less computational effort and can be applied to much larger systems. We find the computed excitation energies,
photoabsorption spectra, and optical absorption gaps to be in good agreement with available experimental data.
Our calculations show that the accuracy of the TDLDA method in the range of lower transition energies is
often comparable to that of more computationally intensive techniques, such as methods based on the exact
exchange, optimized effective potential, or on solving the Bethe-Salpeter equation witl@Wthagproxima-
tion.
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[. INTRODUCTION ecules, a direct real-space implementation of this technique
is particularly advantageoddwith this approach, the Schro

The influence of physical dimensions on the properties oflinger equation for electronic states is solved on a real-space
materials becomes increasingly important as the size dhree-dimensional grid within a spherical boundary domain,
semiconductor integrated circuits continues to shrink. Thend the kinetic energy operator is approximated by a higher-
study of atomic clusters and nanocrystals provide a key torder finite difference expansion on grid pointsnlike “su-
microscopic understanding of size-related effects. Electronipercell” calculations in momentum spateeal-space meth-
and structural calculations for clusters can help explain sucbds do not produce an artificial periodicity, and do not
phenomena as quantum confinement, surface reconstructiampose restrictions on the net charge of the system.
and crystal growth, describe the formation of surface and One of the most significant limitations of conventional
bulk defects, and predict the properties of porous and disodensity functional formalism is its inability to deal with elec-
dered materials. tronic excitations. Within time-independent density func-

Because of a large number of atoms and the lack of gertional theory, the state of a quantum mechanical system is
eral symmetry, computer simulations for clusters pose formidescribed through the ground-state electronic charge density.
dable challenges for traditional theoretical methods. Simpl&Vhile this approach can be accurate for the ground state of a
and cost-efficient “classical” methods based on empiricalmany-electron system, the excited electronic states are not
force fields or interatomic potentials often do not work well adequately represented by the time-independent formdlism.
for clusters. The reconstruction of surfaces and the stronghe inability to describe excitations severely restricts the
electronic delocalization make clusters difficult to describerange of applications for conventional density functional
through interatomic interactions derived from the crystallinemethods, since many important physical properties such as
state! For this reason, accurate calculations for clusters usueptical absorption and emission, response to time-dependent
ally require a direct quantum mechanical approach. Amondields, the dynamic dielectric function, and the band gap in
such methodsab initio pseudopotential techniques based onsemiconductors are associated with excited states.
density-functional theoryDFT) within the local density ap- Explicit calculations for excited states present enormous
proximation(LDA) attract special interest. challenges for theoretical methods. Accurate calculations for

The combination of the LDA and the pseudopotential ap-excitation energies and absorption spectra typically require
proach has proved to be very successful for predicting theomplex computational techniques, such as the configuration
structural and cohesive properties of various solid&e interaction method,quantum Monte Carlo simulatiofisor
pseudopotential approximation removes the chemically inerthe Green’'s function method based on the GW
core electrons from the problem, effectively reducing theapproximation'® While these methods describe electronic
number of particles in the quantum mechanical equations. lexcitations properly, they are usually limited to very small
the absence of core states, pseudo-wave functions asystems because of high computational demands. Alterna-
smoothly varying and can be easily represented within anyively, our calculations for excited-state properties employ a
chosen basis. For localized systems such as clusters and mtdehnique based on linear-response theory withintitme-
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dependentlensity-functional formalism and the local density
approximation(TDLDA).”*12 The TDLDA technique can
be viewed as a natural extension of the ground-state density-
functional LDA formalism, designed to include the proper
representation of excited states. Within TDLDA, the true ex-
citation energies of a many-electron system are computed
from the conventional, time-independent Kohn-Sham transi-
tion energies and wave functions. Compared to other theo-
retical methods for excited states, the TDLDA technique re-
quires considerably less computational effort and can be
applied to much larger systems. Despite its relative simplic-
ity, the TDLDA method incorporates screening and relevant : |
correlation effects for electronic excitatioh&: In this sense, Z| ) A !
TDLDA represents a fullyab initio formalism for excited #
states.

We implemented the TDLDA technique entirely in real
space within a higher-order finite-difference pseudopotential
method? The real-space implementation represents a natural . ) )
choice for this technique due to the real-space formulation of /G- 1. Schematic illustration of the boundary domain for a
TDLDA theory. With other methods, such as the plane—wavedUSter'
technique, TDLDA calculations usually require an interme-
diate real-space basiswhich complicates calculations and
could introduce implementation errors. The direct real-spac
approach simplifies implementation and allows caIcuIatiog
of TDLDA optical response in a single step. We have applied,. . .
this techniqﬁe to con?pute transitio% energies and optiggl ameates,{x,y,z}. Outside the boundary domain wave func-

) : ; tions are required to vanish. The kinetic energy term
t tra f diff t t fi : ) . S
Sorption spectra for many dierent systems ranging rOm—V2/2 is approximated by a higher-order finite-difference

single atoms to semiconductor quantum dots up to several . . - ;
hundred atoms in siz&:*1%In this paper, we provide a de- expansion for the Laplacian operator, which replaces spatial

tailed description of the real-space TDLDA formalism and derivatives with a weighted sum of the wave-function values

present an overview of our TDLDA calculations for various at neighboring grid points,
systems.

The potentials and electronic wave functions are set up on

simple Cartesian three-dimensional grid within a spherical
omain, as shown schematically in Fig. 1. The grid points
nside the sphere are described by their discrete space coor-

N
1
VY, 2)= 5 2 CRldi(xtnhy2)
<
Il. THEORETICAL METHODS
A. Finite difference pseudopotential method iy +nhz)+gi(xy.z+nh)]. (2
Prior to computing excitation energies and absorptionin this equationh is the grid spacing an@{¢}, are the coef-
spectra, we solve the general electronic problem for thdicients in the ordeN finite-difference expansion for the sec-
structure of interest. Our computational approach is based d@nd derivative. The numerical values of the expansion coef-
a higher-order finite-difference pseudopotential methodicients are readily available in literatut®.For a given
within density functional theor§.The electronic problem is accuracy of calculations, the finite-difference order should be

defined by a set of the Kohn-Sham equations in the form chosen as a compror‘.nise.between having a fing grid and a
large but sparse Hamiltonian matrix, versus having a coarse

V2 grid and a small but less sparse matrix. In electronic structure
—— 4> vion(r=R) vl pl(D) + v, p1(r) | (1) calculations, a finite difference expansion between the fourth
2 a and sixth orders typically presents the optimum chéice.
B 1 The nonlocal ionic pseudopotential simulates the angular-
=€ti(r). (1) momentum-dependent interaction between the valence and

o _ _ core electrons. We employ the Kleinman-Bylartdéorm of
Atomic units are used throughout unless otherwise specifiedhe nonlocal pseudopotential,

In Eq. (1), the true potential of each ion B is replaced by

a pseudopotential;,,(r —R,), which accounts for the inter- Vion(r —R2) (1) =v9cal(r — Ra) ¢ (1)

action with core electrons and nuclei, the Hartree potential,

vulp](r), describes the electrostatic interactions among va- +2 GimAvi(r—Ry) dym(r — Ry),

lence electrons, and the exchange-correlation potential, im

vyd p]1(r), represents the nonclassical part of the Hamil- 3)
tonian.p(r) is the charge density. The single-electron Kohn-

Sham eigenvalues and eigen-wave functiong;(r) pertain ~ where v,,5 is the local ionic pseudopotentiabhv,=v,

to valence electrons only. —Ujecal IS the difference between the local potential and the
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potential component with the angular momentyna,,, are  matrix. The matrix equation is solved numerically by itera-
the atomic pseudo-wave functions, and the projection coeffitive diagonalization using the generalized Davidson

cientsG,,,, are calculated as algorithm?'?2 From the solution of this matrix equation we
obtain a new distribution of the charge density. The self-
(biml Avi| 1) consistent procedure is repeated until we achieve the desired

(4)

convergence of the numerical solution. The convergence cri-
terion in our calculations is defined by the root-mean-square
difference between the input and output potentials. Typically,
we require this difference to be less than 10a.u.

G = gl Ao Sy

In real space, the Kleinman-Bylander form of the pseudopo
tential limits the nonlocality to a small region around each
atom. All calculations presented in this article employed
Troullier-Martins pseudopotentiaté.

The exchange-correlation potential within LDA is ap-
proximated by a functional of the charge density. In our cal- The central theorem of density-functional theory states
culations, we used a parametrized form of the Ceperleythat the external potential and the ground-state energy of a
Alder functional®® The parametrization formula and its system of interacting electrons are uniquely determined by
coefficients will be further discussed in later sections. Owingthe ground-state charge dengitfiowever, the classic formu-
to the nonlinear nature of the LDA exchange-correlationlation of the density-functional formalism is restricted to the
functional, the accuracy of the approximation can be im-time-independentase only. A proper treatment of electronic
proved by correcting the formula to account for the coreexcitations is not possible within the time-independent
charge density. The exchange-correlation potential is theframework and requires a generalization of DFT to the time-
evaluated as a functional of there-correctedcharge den- dependent phenomena. This limitation has led to the devel-
sity, opment of time-dependentdensity functional theory

(TDDFT).2%24 Within TDDFT, the main theorem of the
_ _ density-functional formalism is extended to time-dependent
p(r)—pv(r)+§ peord T =Ral), ® systems. Similarly, to the case of time-independent DFT, the
time-dependent formalism reduces the many-electron prob-
lem to a set of self-consistent single particle equatf@ns,

B. Time-dependent density-functional theory

wherep..d|[r —R,|) is a fixed partial correction for the core
charge densif{ andp,(r) is thevalencecharge density cal-
culated as V2

0
_7+Ueﬁ[P](r,t))i//i(r,t):|ﬁlﬂi(r,t)- (8)
— st 2
po(r) Z Ol © In this case, the single-particle wave functiopgr,t) and
the effective potentiab ¢4 p](r,t) explicitly depend on time.

where i;(r) are single-electron wave functions andare  The effective potential is given by

occupation numbers.

Within this recipe, the off-diagonal elements of the p,(F 1)
Hamiltonian matrix are produced only by the kinetic energy Ve P1(r,1) =2 vion(r—Ra) + | ———dr’
and the nonlocal part of the ionic pseudopotential. All other a [r=r|

terms, including the local part of the pseudopotential, the todpl(rt) 9)
Hartree potential, and the exchange-correlation potential, xel PILT, L)

contribute only to the main diagonal of the Hamiltonian. TheThe three terms on the right-hand side of F).describe the
Hartree potential is obtained by setting up and solving theexternal ionic potential, the potential Hartree, and the
Poisson equation for the charge density by the conjugateaxchange-correlation potential, respectively. In the adiabatic

gradient method? approximation, which is local intime the exchange-
) correlation potential and its first derivative can be expressed
Veuulpl(r)=—4mp,(r). (7) " in terms of thetime-independenexchange-correlation en-

To solve the Poisson equation numerically, we use a highe@'9Y Exd p],
order finite difference expansion for the Laplacian operator,

similar to one given by Eq2). The boundary conditions for v, p](r,t)= OExd p]

the Poisson equation on points outside of the main domain X ’ op(r)

are determined by a multipole expansion of the charge den-

sity. For large systems, the Poisson equation method is sig- duyd pI(r,t) , Exd p]
nificantly more efficient than the direct summation over the W= (t— )m-
grid points. Pt P P

After the Hamiltonian matrix is set up, the system of
Kohn-Sham equations for electronic states must be solvedihe energyE,J p] in Eq. (10) can be further approximated
self-consistently. The initial charge-density distribution isby a regular LDA exchange-correlation functional,
constructed by superposing atomic charge densities. Based
on the initial charge density, we calculate the Hartree and
exchange-correlation potentials, and set up the Hamiltonian

Exc[p]:f p(r) exc(p(r))dr, (11)
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which is local inspace

1
Kija,klr:f f l//i*g(r)lﬂja(r)(—,
C. Linear response in TDDFT r=r|

The linear-response formalism within TDDFT provides a 5°E.d p] e ,
theoretical basis for the TDLDA method. In this section, we 5 P P (r") g (r')drdr’.
illustrate how TDLDA excitation energies and oscillator po(r)p(r')
strengths are derived from single-electron Kohn-Sham eigen- 17)

values and eigen-wave functions. A comprehensive analysish ¢ ional derivative i . | d with
of time-dependent density-functional response theory can b&€ functional derivative in Eq(17) is evaluated with re-
found elsewheré!! We use the general notation adaptedSpeCt to theunperturbedcharge densities. By using the cou-

from the work of Casidal pling matrix, Eq.(15) can be rewritten as
The response of the Kohn-Sham density matrix within Nt #0
TDDFT is obtained by introducing a time-dependent pertur- Sus s, LT Pk SP
bation Sv(r,t). Due to the self-consistent nature of the o |5k0i100s Nk iz | P @)
Kohn-Sham Hamiltonian, theffectiveperturbation includes app
the response of the self-consistent figldscd p](r,t), = v w). (18)

Sv Ft)= 60 400(F, 1)+ 60 rt), 12 Since the summation in E¢18) is performed over all occu-
ert P )_ ap?( ) _ se P11, (12 pied and unoccupied orbitals, it contains both the particle-
where the self-consistent field is given by the last two termshole and hole-particle contributions. These contributions can

in Eq. (9), be written as two separate equations: the particle-hole part of
Uapp( @) is given by
po(r',t)
vscp[p](r,t)=J ] dr'+u.dpl(r,t). (13 Mir>0 0— oy
> [5i,k5j,|50',7)\—7_Kij0',k|r} OPy )
In frequency space, the response of the Kohn-Sham density kiz lk7
matrix 6P(w) can be derived using the generalized suscep- M7= 0
tibility x(w). For quasiindependent Kohn-Sham particles, — %‘, Kij o, lks 0Pk (@) = 305 ) (19

the sum-over-states representation of the generalized suscep-

tibility is given by and the hole-particle part af,,p(w) is

XijokiA®)= 5i,k6j,léa,fwi%a (14 M0 w— oy,
' | lkr %; 5i,k5j,|5(r,TTlT_Kjirr,lkT 0P )
where\,,,=n,,—ny, is the difference between the occupa-
tion numbers, ando,= €¢,— €, is the difference between Meir=0 A
the eigenvalues of thith andkth single-particle states. The - ; Kji o ki- 0P ()= 30 w). (20
susceptibility in Eqg.(14) is expressed in the basis of the T
unperturbed Kohn-Sham orbitag;,} and the indices, j,  Combining Eqs(19) and(20), one can separate the real and

ando (k, I, and7) refer to space and spin wave componentsjmaginary parts of the density-matrix respor¥ ). If the
respectively. The linear response of the density matrix is  pasis functiong;,} in Eq. (17) are real, the coupling matrix
K is also real and symmetric with respect to the interchange
5pijg(w)22 Xija,k|r(w)5vﬁff7(w) qf space indice*si«—>j andk«<1. Since 6P(w) is Hermitian
k7 (i.e., 8P}, = 5P} ,), the real part oBP(w) for a real pertur-
A bationv 4pp( @) is given by
— 2 [0 w)+ v w)]. (15

0 — wji e e >0

5i,k5j,|5(r,r
Equation (15 is, however, complicated by the fact that €7 | Ag,ou,
Svscd w) depends on the response of the density matrix,

(0®— 0d,) = 2Kij 417 |RESPy) (@)

= 6vf}€f‘(w), (21)

Su ®) =2 Kijgk1:0Pki @), (16)  where RefP;;,)(») denotes the Fourier transform of the
Kz real part of 5P;; ,(t).

where the coupling matriX describes the response of the  Equation(21) can be used to obtain the density-functional
self-consistent field to changes in the charge density. Withigxpression for the dynamic polarizability. This is accom-
the adiabatic approximation, this matrix is frequency-plished by introducing a perturbatioﬂ{;app(t)= &gy(t),
independent. The analytical expression for the adiabatic cowhere, is an external electric field applied along thexis,
pling matrix, Kijgyk”:ﬁvﬁfflath, can be derived from y={x,y,z}. The linear response of the dipole moment,
Eq. (13) by making use of the functional chain rule, op(w), is expressed through of the real part&(w) as
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\ijo>0 The first term in Eq(17) is calculated as
Sup(@)==2 2 By RSP o)(w), B={xy. 2.
(22 Ki(jlzr,klr:f Djj o (1) thi(r) by (r)dr. (30)
The components of the dynamic polarizability tensor are
given by The Poisson equation method provides a considerable
speed-up as compared to the direct summation. The second
_ Sup(w) term in Eq.(17) represents a double integral over the func-
apy(w)= & (w) tional derivative of the exchange-correlation energy,
N S5%Ex pll 8p,(r)8p,(r'). Within thelocal approximation of
_ ”ﬁ’: R 5P the exchange-correlation potential this term is reduced to a
T (0 £ BijioREOPjj o) (w), single integral,
- 8°E
pry=xy.zh @ | wiamww(r)Wg[p](r)wer)mmdr,
Solving Eq.(21) with respect to RefP;;,,)(w) and substi- Po Pz (31)
tuting the result into Eq(23), one obtains the following ma-
trix equation for the polarizability components: where the LDA exchange-correlation eneiy p] is given
. . by Eqg.(11).
ag,(0)=2BRYIQ—w?1] 'RY?y, B,y={xy.2}, Equation(31) requires the evaluation of the second de-
(24 rivatives for the LDA exchange-correlation energy with re-
where the matriceR andQ are given by spect to spin-up and spin-down charge densities. The LDA
exchangeenergy per particle is normally approximated by
Rijokiz= 8 k0105, Nkl 0kl 7 (25)  that of the homogeneous electron gas,
o k17= 01 k61 185 2021+ 23N i 501 o Kif o k1 - VA K- QL - 3
Qijokir= 6i k6,105, ;0 ijo@ijofijokirVAKI kl(26) ex(po(1)=— E[Gwzpa(r)]m’ o={1,1}. (32

The TDLDA expressions for excitation energies and oscilla-_l_h first derivat f th | h d .
tor strengths can be derived by comparing E#) with the e first derivative of the total exchange energy determines

general sum-over-states formula for the average dynamic p&be LDA exchange potential,
larizability, (a(w)>=tr(a3y(w))/3=2|f|/(Q|2—w2). The

true excitation energieQ, , which correspond to thgolesof OB p] - - i 6m2p )13 o= (33
; TJIS . . vxlpol (67p,)"" o={T.l}. (33
the dynamic polarizability, are obtained from the solution of op, ™
the eigenvalue problem, o
The second derivatives are
QF = QfF. 27
. . . SEdp] 2\ . FEdp]
The oscillator strengthf , which correspond to theesidues ==lg. P ——F=0. (34
of the dynamic polarizability, are given by p10p ™ 5p16p,
2 P We employ the Ceperley-Alder function@ffor the LDA
fi=3 B:{g ) | BRYF |2, (28)  correlation energy. The Perdew-Zunger parametrizatfasf
i this functional is based on two different analytical expres-
whereF, are the eigenvectors of ER7). sions forr¢<1 andr =1, wherer ;= (3/4mp)*? is the local
Seitz radius angp=p;+p, . We slightly adjust the param-
D. Real-space implementation etrization forr¢<1 to guarantee a continuous second deriva-

. . . . tive of the correlation energy. The adjusted interpolation for-
The adiabatic TDLDA calculations for optical spectra '€~ ula for the correlation energy per particle is giveriby

quire only the knowledge of the time-independent single-
electron Kohn-Sham transition energies and wave functions.

The most computationally demanding part in such calcula- U P
tions is fthe evalqatlon of the Co.up.hng matrix given by Eq. ¢ 7/(1+,31\/r_s+ Bors), re=1,

(17). This equation can be split into two part&:=K® (35)
+K, The first term represents a double integral over

1/[r—r’|. Instead of performing the costly double integra- Where two separate sets of coefficients are used fopthe
tion by direct summation, we calculate this term by solvinglarized spin(P) andunpolarized spir{U) cases. The numeri-
the Poisson equation within the boundary domain. We emcal values of all fitting parameters appearing in E8p) are

Alnrg+B+Crgnrg+Drg+Xrélnrg, re<1

ploy the conjugate-gradient method to solve listed in Table |. Based on this interpolation formula, the first
and second derivatives of the total correlation energy can be
V2D (1) = =4 (1) h; (1), (290  calculated as
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TABLE I. Fitting parameters in the interpolation formula for the correlation energy given b{36g.The
majority of the interpolation coefficients, with the exception®and X, coincide with the values suggested
by Perdew and Zungéf.All values are in atomic units.

Spin A B C D X ¥ B B2
Unpolarized 0.0311 -—-0.048 —0.0015 -0.0116 0.0036 —0.1423 1.0529 0.3334
Polarized 0.01555 —-0.0269 —0.0005 -—0.0048 0.0012 -—0.0843 1.3981 0.2611
5ngp 1 deed continuous up to its second derivative, while the origi-
5= 5[3Alnr5+ 3B—A+2Crnrg nal Perdew-Zunger parametrization is Adt.
P Equations(35)—(39) describe only the cases of the com-
+(2D—C)rg+ Xri(Inrg—1)], (36)  Ppletely polarized and unpolarized spin. For intermediate spin

polarizations, the correlation energy can be obtained with a
simple interpolation formula,

52EU'P
Cc
———=——[3A+(2D+C)r +2Cr¢nr
s> 9 T ec=eg+E(p)ler— e, (40
+Xré(2lnrg—1)], (37 where
for re<1 and 1 o o
£(p)= ———a (PP x P27 1) == X ==
SEST  y(6+ 7B\ +8Bory) 1-271% P P
C _ S S (38) (41)

O 6(1+B\retBare)?

The expression for the second derivative of the correlation

S2EUP energy in case of an arbitrary spin polarization can be written
€ as
5p?
SBdpl _SE. [PEc SE +(a§<p>
_A5BTH (TB3+8B)r s+ 218151 37+ 168512 R R el R
36p(1+ B\t Bars)° ’
PET AT A2l 39 a§<p>)(5EE 5Et’) #¢(p)
+ - +
ap, |\ op  Sp | IpsIp,

for r¢=1. The behavior oB°E.""/§p? in the vicinity of rg
h . . P U _
=1 is shown in Fig. 2. The plot demonstrates that the ad- Xplec—€), o, m7={T,l}, (42

justed interpolation formula for the correlation energy is in- . o . . o
where the spin polarization functigf{p) and its derivatives

0 : . : are given by
- - = Perdew—Zunger
— This work
9€(p) 4 13_ 4/3_ ., 4I3
-0.05r = (X =X7=X7), (43
(7PT 3p(1_271/3) T 1 l
‘o 0.1
< >&(p) 1 "
) _ x-2B_ gyl 7()(4/3+ X4/3) ,
c3o ~0-15¢ (44)
FE(p) 4
-0.2 4/3 413 13, ,,1/3
= T(XTPHXT2) = 4(XP+ X7 ].
&pTﬁpl 9p2(1_2—1/3)[ T ! 1 ! ]
(45)
-0.25 ' - .
0 0.5 1 15 2
1‘s E. Systems with unpolarized spin

FIG. 2. Second derivative of the electronic correlation energy in  The TDLDA formalism presented in previous sections can
the vicinity of r¢=1. Forr,<1, our parametrization slightly differ be further simplified for systems with the unpolarized spin.
from that of Perdew and Zung&hBoth parametrizations coincide In this case, the spin-up and spin-down charge densities are
forrg=1. equal,p;=p,, and Eqs(41), (43)—(45) yield
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F2E(p) 4 lations on a real-space gric_i do not _require a special extension
&(p)=0, =173 , of the basis set to describe continuum states. Instead, the
dp1dpy 9p*(21°-1) continuum is approximated by a finite number of unbound
levels withpositiveKohn-Sham eigenvalues localized inside
d&(p) 9*E(p) 4 the boundary domain. The accuracy of this approximation
ap; — ap1ap, - 9p2(2%5— 1)’ (46) depends only on the size of the boundary domain and the

number of unbound levels included in calculations. As such,
Since the coordinate parts of spin-up and spin-down Kohnit is always important to check for convergence of the
Sham wave functions for systems with the unpolarized spirTDLDA transition energies and oscillator strengths with re-
are identical g, = ¢; , it follows thatQj;;, kn—Q.,l ki @and  spect to the size of the boundary domain and the number of
Qij1.x1;=Qij ki - This allows us to separate “singlet” and unoccupied states included in the calculation of the coupling
“triplet” transitions by representing Eq27) in the basis set matrix.
of {F, ,F_}, chosen as So far, other than the adiabatic local density approxima-
tion, no other approximations have been made. The exact
solution of the matrix equatio(®7) incorporates all relevant

{(r == (F. N ) _ . o :
Fii \/E(F'JTi Fij1)- (47) correlations among single-particle transitions. Assuming, for
_ _ _ simplicity, the unpolarized spin case, we can derive approxi-
In this basis, the matriQ) becomes mate expressions for the TDLDA excitation energies. Let us

5 (+.-) assume that the coupling between different one-electron tran-
QIJ K _5ivk5',lwkl+2\/)‘ij“’iJKiJ,kl kew, (48 sitions is weak. Under this assumption we can neglect all
where Kﬂ o= Kijtx1=Kijra - The components of matrix elements with#k andj #1. As a result, the coupling
K{*~} in their explicit form are given by matrix becomes diagonal in the basis{éf, ,F_}, and tran-
sition energies can be calculated using a simgileglet-

12,29
”w.um(r)wk OB triplet formula,
|] kI~
Ir—r’| Qlt = oy (0 + 20K ), (51)
5°EY where(Q);” and();; correspond to the singlet and triplet tran-

sitions, respectively. This approximation can be viewed as an
attempt to correct Kohn-Sham excitation energies individu-
1 ally, without including correlations among different single-
——) i(r) gy (r)dr, (49  particle transitions. If the TDLDA corrections to Kohn-Sham
(9m) 13?3 transition energies are relatively small, we can simplify Eq.
(51) by taking a linear expansion aroung; ,

+2 [ r)(

4(ef — )
Ij kI f ‘/ﬁ(”‘/ﬁ(”( (21/3_1) Qij%wu"')\ KI{] o ~} (52)
Equation(52), also known as thsingle-poleapproximation,
1 is identical to the approximate TDLDA formula derived in
_(977)1/3[)2/3) Pi(r) i (rydr. (50 Ref. 7.
For most practical applications, only “singlet” transitions [ll. RESULTS AND DISCUSSION

represented by th&, basis vectors are of interest. Triplet
transitions described by thHe_ vectors have zero dipole os-
cillator strength and do not contribute to optical absorption. To assess the accuracy of the TDLDA formalism, we
By solving Eq.(27) for the F, vectors only, we reduce the computed excitation energies for several closed-shell atoms.
dimension of the eigenvalue problem by a factor of 2. EquaCalculations were performed inside a spherical boundary do-
tions (48)—(50), however, can only be applied to systemsmain with a radius of 15 a.u. For all atoms, we included at
with the unpolarized spin. In case of an arbitrary spin polardfeast 25 unoccupied states, which described transitions to
ization, the general form of the matriQ presented by Eg. both bound and continuum levels. We observed no noticeable
(26) with the coupling matrix given by Eq(l7) and the change in the computed excitation energies and oscillator
functional derivatives given by Eq§33) through(45) must  strengths upon further increase of the boundary domain or
be used. the number of unoccupied states included in calculations.
The coupling matriXX in general case includes transitions The results of our calculations for the&s— 1P singlet tran-
to both bound and unboun@ontinuum electronic levels. sitions are presented in Table Il. Along with the transition
While the eigenvalues and wave functions of bound statesnergies calculated using the full-matrix TDLDA formalism
are relatively basis independent, the levels representing cofiEq. (27)], we include the values from the approximate
tinuum strongly depend on the selected basis and boundasinglet-triplet[Eq. (51)] and single-pol¢Eqg. (52)] formulas.
conditions imposed on the system. Unlike computationalThe analysis of data in Table Il leads us to the following
methods based on localized Gaussian-type ortitatsjcu-  conclusions: First, although all three TDLDA equations im-

A. Excitation energies of atoms
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TABLE II. Singlet 'S—!P excitation energies of atoms. The energies were evaluated using the
full-matrix TDLDA expressionEq. (27)], as well as the approximate singlet-trip[&q. (51)] and single-
pole [Eqg. (52)] formulas. Experimental values are taken from Ref. 30. The time-independent Kohn-Sham
transition energies®S are included for comparison- efyo and Q5CF are the negative values of the
energies for the highest-occupied molecular orbif@shn-Sham LDA “ionization” energies and self-

consistent LDA ionization potentials, respectively. All values are in eV.

Atom Experiment  Full matrix  Singlet-triplet  Single pole oS —e2,  QFCF

Be 5.28 4.94 5.07 5.43 3.50 5.61 9.04
Mg 4.34 4.34 4.56 4.76 3.39 4.78 7.74
Ca 2.94 3.22 3.36 3.56 2.39 3.85 6.23
Sr 2.69 2.96 3.10 3.28 2.22 3.59 5.80
Zn 5.79 5.71 6.30 6.54 4.79 6.07 9.72
Cd 5.41 5.10 5.60 5.86 4.12 5.56 8.88

prove upon time-independent Kohn-Sham transition enerexchange-only OEP method does not account for correlation
gies, the values obtained with the full-matrix formula areeffects, which are believed to be important for trip&t3he
clearly the best. The full-matrix TDLDA excitation energies TDLDA values for both singlets and triplets are also superior
agree with experiment within 5—10 % for all atoms. Secondto the ordinary self-consistent excitation energies. At the
the discrepancy between the exact full-matrix and approxisame time, the TDLDA method is more efficient than the
mate singlet-triplet transition energies demonstrates the imSCF approach, since TDLDA requires only a single self-
portant role of correlation effects among single-electron exconsistent calculation to obtain the entire excitation spec-
citations. These correlations are particularly large in case afrum.

the Zn and Cd atoms, where they are caused by the presence

of d levels that are close in energy to the valence electronic B. Absorption spectra of sodium clusters

states. Third, our values calculated with the single-pole for-

mula closely reproduce the TDLDA singlet excitation ener-

gies reported in Ref. 7. Poor agreement between these valu gectra of small Na_clu_s_ters. We selected sodium c_Iusters
and experiment has led the authors of Ref. 7 to the concl pecause of the availability of a large body of experimental

sion that the TDLDA formalism is not accurate because oidata related to their optical propertr@s”. Ground-state

the intrinsic errors associated with the local density approxi—Strucmr.es for the clusters.of interest were Q(ajte'rmlned by
angevin simulated annealing, followed by minimization of

mation. In particular, the authors of Ref. 7 have attributed th X . !
P orces>® To obtain more accurate cluster geometries, the fi-

discrepancy to the wrong asymptotic tail behavior of the S )
LDA potential, which decays exponentially, whereas the ex-_nal structqral optimization was performed with the gener_al-
act potential should fall off as- — 1/r. However, our calcu- ized gradient approximation for the exchange-correlation

lations ShO\,N that the Observed discrepancy ShOP'd be attrib- TABLE lIl. Singlet and triplet excitation energies of atoms, cal-
uted to the inaccuracy of the single-pole f(_)rr_nula itself, rf"‘therculated with TDLDA [Eq. (27)], optimized effective potential
than to a p_rln_t:lpal failure of T_DLDA. A similar c_oncl_u5|on (OEP, and the self-consistent fiekBCH methods(Ref. 7). OEP
about the limitations of the single-pole approximation hasgnergies of Ref. 7 were calculated using the single-pole formula

. - 31
t_)een made in the _Work of van Gisbergeral. “As such, we  [Eq. (52)]. Experimental triplet transition energies are averaged
find the asymptotic behavior of the potential to be of lessoyer different spin-orbit components. All values are in eV.

importance for the low-energy excitations than was previ
ously thought. Our observations agree with the majority ofatom Transition  Experiment TDLDA OEP  SCF
other TDLDA calculations for atoms and small

We applied the TDLDA technique to calculate absorption

molecules’??® which demonstrate that despite the wrongpe 'SP >.28 494 533 450
asymptotic behavior of the potential, TDLDA often works 'SP 2.72 2.45 188  2.46
remarkably well in the limit of lower transition energies. 'SP 4.34 4.34 445  4.07

In Table Ill we compare the singletS—'P and triplet 'SP 2.72 2.79 205 280
'S— 3P atomic excitation energies, calculated with different - 's—1p 2.94 3.22 318 287
techniques. The comparison indicates that TDLDA transition 's—3%p 1.89 1.93 122 1.96
energies are in better general agreement with experimerétr 's-1p 2.69 2.96 286 2.62
than the values obtained with either the optimized effective ls.3p 1.82 1.82 1.10 1.84
potential (OEP or the self-consistent fieldSCPH method’ Is1p 5.79 5.71 574 5.48
The singlet OEP excitation energies in Table Il are almost aé" 1s.3p 4.05 4.27 3.40 4.30
accurate as those calculated with TDLDA. However, the s ,1p 5.41 5.10 511 4.71
TDLDA values for triplet transitions are much better than theCd g ,3p 3.88 3.69 287 3.70

corresponding OEP energies due to the fact that the
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Na, oo | N2y .®' Nag @
a) A

FIG. 3. Calculated and experimental absorp-
tion spectra of Ng Na,, and Ng clusters.(a)
Time-independent Kohn-Sham absorption spec-
tra. The other plots show the TDLDA spectra cal-
culated with (b) the single-pole approximation
[Eq. (52)], (c) the singlet-triplet approximation

b /\f\ ]\W/\
[Eqg. (51)], and (d) the full-matrix formula

2 J\/\ M/\ M
[Eqg. (27)]. Experimental spectra are adapted
from Ref. 35. A Gaussian convolution of 0.06 eV
J\ was used to simulate finite broadening of all cal-
A culated spectra.
|1 2 3

0 1 2 3 0

d)

Absorption cross section (arbitrary units)

Experiment L

1 2 3 4
Energy (eV)

potential®” Our structures for the Nato Na; clusters agree independent LDA calculations. The TDLDA spectra forsNa
with those reported previousfand all bond lengths agree Nas, and Na closely match the available experimental mea-
to within ~1%. The calculated interatomic distance of 3.08surements. A somewhat poorer agreement between experi-
A for the Na, dimer is in excellent agreement with the ex- ment and the calculated absorption spectrum of ddauld be
perimental value of 3.0789 & Since wave functions for explained by the “floppy” structure of this cluster, i.e., the
unoccupied electronic states are very sensitive to the boundbsence of a single pronounced minimum in its potential
ary conditions, TDLDA calculations need to be performed inenergy surfacé’ The lack of the stable ground-state struc-

a relatively large boundary domain. For sodium clusters, weure for Ng makes its absorption spectrum more sensitive to
used a spherical domain with a radius of 25 a.u. and a gritemperature. The possible influence of experimental cluster
spacing of 0.8 a.u. We carefully tested for convergence of théemperature was not accounted for by our static TDLDA cal-
calculated TDLDA excitation energies with respect to theseculations and could be responsible for the observed disagree-
parameters and with respect to the number of unoccupiethent.

states included in the calculation of the coupling matrix.

Calculated absorption spectra of three closed-shell clus- ' ' ' ' '
ters Na, Na,;, and Ng are shown in Fig. 3. In all cases, the
time-independent Kohn-Sham LDA calculations substan-
tially underestimate the energies of optical transitions. Of the
three different TDLDA expressions, only the spectra calcu-
lated with the full matrix formula given by Eq27) agree
with experiment. The large discrepancy between the exact
[Fig. 3(d)] and the approximatfFig. 3(c)] TDLDA spectra
implies a significant degree of correlation among single-
electron transitions. The role of correlation effects increases
with increasing cluster size. When all electronic correlation
effects are included, agreement between TDLDA and experi-
ment is quite remarkable: The full-matrix TDLDA formalism
correctly reproduces the experimental spectral shapes, and
the calculated peak positions agree with experiment to within
0.1-0.2 eV. The comparison with other theoretical work re-
veals a close similarity between our full-matrix TDLDA
spectra and the results of Cl calculatiéfgurthermore, our FIG. 4. Absorption spectra of NaNas, Nas, and Na clusters.
TDLDA spectrum for the Nacluster better agrees with ex- The TDLDA spectra(solid line§ were calculated with the full-
periment than the GW absorption spectrtimCalculated  matrix equation(27). The time-independent Kohn-Sham spectra
spectra of other Naclusters withn<8 are shown in Fig. 4. (dotted lineg are shown for comparison. Experimental spectra
Again, the full-matrix TDLDA method greatly improves the (dashed lingsare adapted from Ref. 35. All calculated spectra are
quality of computed optical spectra with respect to the time-broadened by 0.06 eV.

Absorption cross section (arbitrary units)

Energy (eV)

115416-9



IGOR VASILIEV, SERDAR béUT, AND JAMES R. CHELIKOWSKY PHYSICAL REVIEW B65 115416

TABLE IV. Energies and oscillator strengths of selected transi-tween the total energies of the neutral and the positively
tions in the absorption spectra of sodium clusters. Experimentatharged clusters, computed at the equilibrium atomic coordi-
transition energies are adapted from Ref. 35. Kohn-Sham LDMates for the neutral clusters. The Kohn-Sham LDA “ioniza-
“ionization” energies — efjomo and self-consistent LDA ionization  tjon” energies— €-22, are given by the negative values of
potentialsQii" are given as a reference. The assignment of thgpe energies for the highest-occupied LDA molecular orbit-
higher-energy excitations for Né somewhat ambiguous and these als. It has been shown that while TDLDA calculations usu-

excitations are simply listed in ascending order. All energies are ir}illy provide good agreement with experiment for the excita-

ev. tion energies below —efgyo. they often tend to
Experimental TDLDA underestirgate electronic exci_tation energies _ above this
transition Oscillator threshpld": Although the energies of many opnqal transi-
Cluster energy Energy  strength — lPA  (SCF tions listed in Table IV are close to, or even _hlgher than
HOMO  "Tion — ehivo. the TDLDA energies for these transitions do not
Na, 191 2.10 0.64 3.21 5.17 appear to be underestimated. The fact that the TDLDA for-
2.52 2.71 1.06 malism works relatively well beyond the region of its rigor-
3.71 3.58 0.15 ous theoretical justification could be related to the specifics
Nag 1.67 1.73 0.43 2.47 429 of optical absorption in sodium clusters: more than 95% of
2.05 2.09 0.37 the total oscillator strength in their absorption spectra corre-
221 247 0.62 sponds to transitions from bound to bound states. Conse-
259 285 0.25 quently, transitions to continuum states, which are not well
3.02 3.10 0.48 reproduced within TDLDA, do not contribute significantly to
Nay 1.80 1.85 1.03 277 a43g the spectra of Naclusters.
1.95 2.09 0.15
2.18 2.27 011 C. Optical absorption of benzene
;21 ;:;g g:ig While co.mputat_ior'\al methods.based on DFT are generally
Na. 2 0f 197 110 261 4.96 successful |n.pred|ct|ng electronic properties of semiconduc-
' ‘ ‘ ' ' tor and alkali metal clusters, organic molecules often pose
2.26 0.22 more challenges for the density functional approach. The
2.33 0.64 presence of localized chemical bonds in organic compounds
2.63 0.25 leads to rapid spatial variations of the charge density that are
Na 2.07 2.25 2.86 3.08 455 (ifficult to describe within the DFT formalism. Because of
2.55 0.25 that, the benzene molecule presents a more complex test for
2.83 0.24 the TDLDA method than the systems we have considered so
2.85 3.08 0.66 far. The experimental optical spectrum of benzene vapor is
Nay 1.50 0.14 2.58 4.20  characterized by an extremely intense absorption peak near
2.23 0.50 6.9-7.0 eV, which corresponds to collective#* transi-
2.43 2.48 2.42 tions inside the aromatic hydrocarbon ritfgRecently, the
2.73 0.46 optical spectrum of benzene was calculated usirepktime
2.87 0.36 TDLDA method?® In contrast to our perturbation formalism
2.95 0.22 in frequency space, the authors of Ref. 43 computed optical
Nag 1.79 0.08 3.09 452 response in real time, by solving explicitly the time-
211 0.20 dependent Schdinger equation(8). Reference 43 reports
263 0.66 good agreement between the real-time TDLDA calculations
258 267 1.22 and experiment.
269 0.20 The ground-state structure of the benzene molecule was
2.76 1.98 determined by LDA calculations. To minimize interatomic
290 0.33 forces, we used a grid spacing of 0.3 a.u. and a boundary

domain with a radius of 10 a.u. The calculated-C (1.38

“Experimental absorption spectra of JaNa;, and Ng show a  A) and G—H (1.09 A bond lengths were in very good
single broad band composed of several transitions not resolvedgreement with the experimental values of 1.399 A and
individually. 1.101 A, respectively. For the calculation of the TDLDA

optical response we increased the radius of the boundary
domain up to 15 a.u. and used a grid spacing of 0.4 a.u. The
Table 1V shows the energies and oscillator strengths otoupling matrix included transitions between 15 occupied
selected transitions in the calculated absorption spectra. Asand 45 unoccupied states.
reference, we include in Table IV the self-consistent ioniza- Calculated and experimental absorption spectra are shown
tion potentials and the energies of the highest-occupieth Fig. 5. The time-independent Kohn-Sham calculations
Kohn-Sham LDA orbitals. The self-consistent vertical ion- substantially underestimate the transition energy of the main
ization potential)C" are calculated as the differences be-m-7* absorption peak for benzene. The TDLDA calculations
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< FIG. 6. Structures of Giclusters. Two quasidegenerate isomers
. . A ) : are shown for Qi
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Photon Energy (eV) interest. During the annealing, clusters were deposited inside
a spherical domain with a radius of 13 a.u. The mesh size of
FIG. 5. Calculated and experimental optical spectra of benzenehe imposed grid was taken to be 0.7 a.u., although at the
The time-independent LDA spectrutop) relates to the single- final stages of the structural relaxation we used a grid spac-
electron Kohn-Sham transitions. The TDLDA spectr(middle) is ing of 0.4 a.u. to resolve the energies of quasidegenerate
based on Eq(27). The experimental spectruthottom is adapted  jsomers. The choice of these parameters was justified by the
from Ref. 42. The_ore_tlcgl spectra are broa_dened by 0.1 eV. Thesct that no significant changes in the total energy and the
Kohn-Sham LDA "ionization” energy of He is 6.53 eV and the  jnteratomic forces were detected with a further increase of
self-consistent ionization potential is 9.54 eV. the radius of the boundary sphere or decrease of the grid
spacing. The calculated interatomic distance of 2.20 A for
produce a significant blue shift of the-7* peak and greatly the S} dimer was close to the experimental bond length of
improve agreement with experiment. Our spectrum als®.246 A®° For the X3~ ground state of the GaAs diatomic
agrees well with the real-time TDLDA calculatiofféWe are  moleculé’ our equilibrium bond length of 2.51 A was in
encouraged that despite considerable differences in the coragreement with the experimental value of 2.53%0pti-
putational approach both TDLDA methods produce similarmized ground-state geometries of, lusters containing up
results. to ten atoms are shown in Fig. 6. For the most part, our
cluster structures agree with those predicted by odlfeini-
_ _ tio calculations’® For example, in agreement with previous
D. Absorption spectra of semiconductor clusters calculations’® we found two quasidegenerate isomers for the
Small semiconductor clusters exhibit properties remarkSig cluster. Because of a large number of possible stoichiom-
ably different from those of bulk materiaté Understanding etries, the geometries of (s, were determined only for
the nature of these differences presents a challenging prolsiusters with an almost equal number of gallium and arsenic
lem. The lack of reliable experimental tools and limitationsatoms fi=m,n=m=1). Optimized ground-state structures
of theoretical simulations make it difficult to study the prop- of Ga,As,, clusters are shown in Fig. 7. These structures
erties of clusters. In many cases, experimental informatioften resemble slightly distorted geometries of Siusters
about cluster structures is available only through indirectwith alternating Ga and As atoms. In two cases, we discov-
measurements, such as measurements of opticared two quasidegenerate isomers: for, &% the total en-
absorptior?>#*#®|n this regard, theoretical calculations for ergies of a bicapped octahedron and a tetracapped tetrahe-
absorption spectra of clusters are important, because thedron[the structuresl) and(ll) as shown in Fig. Ycoincided
offer the potential for a straightforward comparison of theorywithin 0.02 eV, and for GgAss the energy of a tetracapped
and experiment. trigonal prism(l) was only by 0.05 eV higher than that of a
For our calculations, we selected two semiconductor mapreviously suggested structd?dll). Since TDLDA calcula-
terials: silicon and gallium arsenide. As before, we usedions are sensitive to the boundary conditions, we carefully
Langevin simulated annealing, followed by minimization of tested for convergence of the computed excitation energies
forces® to find ground-state structures for the clusters ofand absorption spectra with respect to the size of the bound-

115416-11



IGOR VASILIEV, SERDAR deL"JT, AND JAMES R. CHELIKOWSKY PHYSICAL REVIEW B65 115416

GaAs, Ga,As Ga,As, Ga,As;
Ga;As, GasAs,
Ga,As, () Ga,As, (1)

Photoabsorption cross section (arbitrary units)

FIG. 7. Structures of GAs, clusters. Quasidegenerate isomers
are shown for GgAs, and GaAss.

ary domain, the grid spacing, and the total number of unoc- T L
cupied single-electron states included in the TDLDA formal- 1 2 3 4 5 6

ism. Based on the results of our convergence test, the final Photon energy (eV)
TDLDA calculations were performed using a boundary
sphere with a radius of 21 a.u. and a grid spacing of 0.8 a.
The number of unoccupied states included in the calculatio
of the TDLDA coupling matrix was taken to be at least 3 to

FIG. 8. Calculated TDLDA absorption spectra of silicon clusters
solid lineg. The spectra of time-independent Kohn-Sham LDA ei-
genvalues(dotted line$ are shown for comparison. All TDLDA
. . spectra are presented on the same relative scale. The Kohn-Sham
5 “”.‘es greater than that of occupied states. . __eigenvalue spectra are scaled to fit in the same plot. A Gaussian
Figures 8-and 9 show the calculated TDLDA absorpt'onconvolution of 0.1 eV was used to simulate finite broadening of the
spectra of §j and GaAs, clusters, respectively. For com- . culated spectra.

parison, both plots also show the spectra of time-independent
Kohn-Sham LDA eigenvalues. For all silicon and gallium v teq to the existence of free surfaces in the clusters.

arsenide clusters the TDLDA spectra display a substantiaryage regyits appear to be consistent with calculations for the
blue shift with respect to the Kohn-Sham eigenvalue spectrgyqiic olarizabilities of semiconductor clusters, which show
The differences between the TDLDA and time-independent, qjonificant surface contribution toward cluster polarizabil-
LDA spectra become more profound as the size of clustergies” according to the sum-over-states formula for the aver-

increases. Our calculations also predict a substantial varietg ; il 2
; oo e static polarizabilit =2>,f,/Qf, the presence of low-
of spectral shapes for different clusters. It implies that clus- 9 b Yap=2iF, 74, P

ters can be uniquely identified by their absorption spectra I neray 't.rgn5|t|or}s n gbsorphon spgctra INCreases
some cases, even for clusters of the same chemical corﬁp glanza_bllltl%s. This effect_, In agreement -V\-”-th Our previous
sition. such és Gas, (1) and(Il), TDLDA calculations pre- alculations* leads to higher polarizabilities for open-

o S O A ’ . P . quurface clusters as compared to that of quantum dots.
dict easily distinguishable spectra. This demonstrates a hig

o . The optical absorption gap in clusters and molecules can
sensitivity of the calculated optical spectra to cluster 9€0My . Gefined naturally as the energy of the first dipole-allowed
etries and suggests that a comparison of calculated and e

. : e ffansition in the excitation spectrum. Unfortunately, this defi-
perimental spectra can help identify isomers.

: . nition is difficult to apply in cases when the intensity of the
alﬁ&ﬁ:tlgsslgnﬂleCt?llﬁlsj':zidelr?iIk_)i[t)pl\o?]pe(:l;asl(:?rtizlgc?glsr‘e?(-firSt allowed excitation is too weak to be directly detected in
galiit ; ) 9 P .~ experiment. In reported measurements for the optical absorp-
tending deep into the region of lower transition energies

“>tion of gallium arsenide clustéfsthe problem of a limited
i'%xperimental sensitivity was solved by defining effective
8ptical gap{y(p) at a small but nonzero fraction of the
ientegral oscillator strength,

of semiconductor quantum dots and cannot be described
terms of a simple quantum confinement thedry? Quantum
dots are truncated fragments of the bulk structure that ar
passivated at the boundari®dJnlike the clusters considered 0
in this section, they do not possess free surfaces. On this f g(p)a.(w)dw:pf (53)
basis, we believe that the low-energy absorption can be at- &’
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TABLE V. Photoabsorption gaps and ionization thresholds of
silicon clusters. All values are in eV.

LDA TDLDA
Cluster p—0 p=0.02 p—0 p=0.02 —eho QCF

Si, 271 271 349 503 5.41 7.93
Siy 0.88 264 223 546 546  8.23
Si, 235 235 296 542 561  8.14
Sis 255 258 274 492 588  8.32
Sig(I) 346 346 399 552 5.70 7.99
Sig(I) 262 343 374 550 5.67 7.99
Si; 266 318 446  6.13 586  8.12
Sig 230 268 344 557 5.31 7.40
Sig 1.96 271 349 577 5.63 7.72
Siyo 212 254 281 558 6.04  8.02

at p=0.02 andp—0. As expected, the— 0 TDLDA gaps
for gallium arsenide clusters appear to be much smaller than
the experimental values of Ref. 46. At the same time, for the

Ga,As, () majority of our clusters we find the photoabsorption gaps
e S defined as in the experimental workgat 0.02 to be in good
Ga4As4 an agreement with experiment. We also note that for the di-

, o atomic GaAs molecule oyg—0 TDLDA gap of 2.97 eV is
Ga As ' very close to the experimental energy of 2.92 eV for the
475 : NS lowest allowed electronic transitioflT«— X33 ~.56
Tables V and VI also include the self-consistent ionization
potentials and the energies of the highest-occupied Kohn-
e T Sham LDA orbitals. For a number of clusters, TDLDA pho-
toabsorption gaps calculatedt 0.02 appear to be close to
RS — efiomo. Which raises a question about the reliability of
TDLDA calculations in that region. However, the fact that

the calculategp=0.02 gaps for most gallium arsenide clus-

GaSAs .
GaSAs5 (I)

Ga,As, (Il)

|
1 2 3 4 5 6 7 ters agree well with experiment seems to indicate that the
Photon energy (eV) values of these gaps were not strongly affected by their prox-
LDA

imity to the — e om0 -

FIG. 9. Calculated TDLDA(solid lines and time-independent The variation of the photoabsorption gaps for gallium ar-
LDA (dotted line$ absorption spectra of gallium arsenide clusters.senide clusters with cluster size is shown in Fig. 10. In all
The time-independent LDA spectra are scaled to fit in the same plotases, the TDLDA gaps for clusters are greater than the ab-
All spectra are broadened by 0.1 eV using a Gaussian convolutiosorption gap of bulk gallium arsenide. At the same time, our

p— 0 TDLDA gaps are much smaller than the typical gap

where o(w) is the photoabsorption cross section per elecvalues for semiconductor quantum dots in this size rahge.
tron, f, is the complete one-electron oscillator strentjth, In contrast to the case of quantum dots, we observe only a
fo=2mhe’/mc=1.098 eV A, andp is a small positive Weak dependence of the gap value on cluster size. Our cal-

number. In the experimental work of Ref. 46 the value of thisculations predict smaller gaps for clusters that contain a
parameter was taken to lpe=0.02. higher fraction of gallium atoms. This is consistent with the
Photoabsorption gaps for silicon and gallium arsenidefact that the excitation energy of atomic Ga is lower than that
. . . 30 ; H
clusters are given in Tables V and VI. Theoretical gaps wer&f As.”" Due to the almost identical masses of the Ga and As
Computed atp=0.02 andp_>0_ For practica| reasons, the atoms, the experlmental measurements of Ref. 46 were per-
p— 0 limit was calculated by setting the value of this thresh-formed onn+m=const ensembles of Gas,, clusters. In
old parameter to 10°. The chosen value of 10 stands this respect, the observed discrepancy between the theoreti-
above the level of numerical “noise,” but is sufficiently cal and experimental absorption gaps fof m=4 and 5
small as to not suppress dipole-allowed transitions. Regardnay indicate a greater share of the Ga-rich structures among
less of the value of the onset paramefer the time- Very small gallium-arsenide clusters generated in the experi-
independent LDA calculations always severely underestiment.
mate the experimental photoabsorption gaps for gallium
arsenide clusters. For the TDLDA absorption, however, the
presence of long and low intensity tails in the optical spectra The study of optical excitations in hydrogen-terminated
results in substantial differences between the gaps estimatailicon clusters is essential for understanding absorption and

E. Optical gaps in nanocrystalline silicon
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TABLE VI. Photoabsorption gaps and ionization thresholds of gallium arsenide clusters. Experimental
gaps are adapted from Ref. 46. All values are in eV.

LDA TDLDA Experiment
Cluster p—0 p=0.02  p—0 p=0.02 p=0.02 — o QcF
GaAs 2.59 3.09 2.97 4.95 4.99 7.68
GaAs 1.02 3.10 3.74 5.43 478 7.77
GaAs 1.94 3.07 2.42 4.59 5.24 8.09
GaAs, 2.27 3.01 2.53 5.09 3:60.2 5.23 7.63
GaAs; 2.55 2.55 2.78 5.57 4:0.3 4.87 7.52
GaAs, 1.20 2.53 2.28 4.94 5.10 7.59
GasAs; 1.20 2.51 2.86 5.24 5:50.3 5.45 7.69
GaAs, 1.79 2.87 3.12 5.26 5:00.4 4.20 6.63
GaAs; 0.90 2.04 1.59 4.90 4.97 7.31
GaAs, (1) 1.66 2.57 3.00 5.53 5:20.2 4.60 6.67
Ga,As, (1) 0.94 2.67 3.15 6.04 5.70 7.78
GayAss 1.21 2.90 2.47 5.67 5:0.2 4.76 6.88
GaAs, 0.93 2.54 3.06 5.62 5.09 7.24
GaAss (1) 0.93 2.30 2.59 5.61 540.2 5.74 7.72
GaAss (II) 1.75 2.60 2.75 5.69 5.55 7.53

emission of visible light in porous silicon and quantum evaluate oscillator strengths and cannot explicitly identify

dots®® Over the last decade, $i,, clusters in the form of optically allowed and dark transitions. This creates an uncer-
quantum dots have been the subject of intensivaainty in the theoretical interpretation of the experimentally

experimenta® ® and theoreticaf>*%*~" research. How- measured optical absorption. Only one of the published
ever, disagreements among different theoretical models usegork<s? presents calculations for the entire absorptpec-

for describing electronic excitations in these systems remaifrg of 3 few small 0 +m=34) SjH,, clusters. The lack of

a subject of significant controversy. For the most part, thnheoretical studies dealing with the optical spectra for larger
disagreements arise from the formulation of the optical gaRysters can be explained by the extreme complexity of such
in confined systems and the calculation of different compoq 0 ations, e.g., the difficulty in describing many-body ef-

nents, such as image charges, self-energies and excitoig.s in confined systems. TDLDA represents a falyinitio

COﬁgzgt;ﬁgzrgiaﬁosrpﬂ;zg :‘giu%pmr:i?rl]g?ﬁﬁ on the size de formalism for excited states. It is not constrained to a single
P y electronic transition, but explicitly evaluates oscillator

Egrr:dggsgg%g_%g?;oIrl:]r:r']r;eigigge seuncehrgcl:?a\?cﬁg ?ioago?:b;gt@_rengths for all transitions in the vicinity of the absorption

gap. As such, our calculations are removed from the theoret-
ical disagreements mentioned above. Unlike time-

7 . .
independent LDA calculations for clusters, the TDLDA ap-
6f . proach does not require any additional artificial adjustment
N u u -9 of the obtained electronic excitation energies and absorption
@ 5t ._,_.————I/;L!é;‘\-;—_-;’ ] gaps. d P
§ al /! ] Structures of $H,, clusters were obtained by starting
= A 3 with the coordinates of bulk silicon and minimizing the in-
2 3f w 1 teratomic forces acting on silicon and hydrogen atoms. We
% A A A completely optimized the structures of all clusters up to
2 o A bulk GaAs | SigsHzg. Larger clusters were built by using spherical frag-
1} A-TDLDA (p =0 ) ments of the LDA-optimized silicon bulk lattice and further
B - TDLDA (p=0.02) @ - Experiment (p = 0.02) relaxing the outer layers by minimizing forces acting on the

surface hydrogen atoms. The structures of selectgH,Si
clusters are shown in Fig. 11. Before proceeding with
TDLDA calculations, we carefully tested the computed exci-

FIG. 10. Calculated and experimental photoabsorption gaps df@tion energies and absorption spectra for convergence. For

Gansm clusters vs cluster size. The TDLDA gaps are shown fora” ClusterS, we required at |eaSt a 10-12 a.u. Separation be'
p—0 andp=0.02. Forclusters with an odd number of atoms the tween the surface atoms and the boundary of the computa-

solid lines are drawn through the midpoint between the gaps ofional domain. In the calculation of the TDLDA transition
Ga-rich and As-rich structures. The dotted line corresponds to thenatrix elements, we included at least two to three times as
absorption gap of bulk gallium arsenitie. many unoccupied states as the number of occupied electronic

2 4 6 8 10
Cluster size (n+m)
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SiH,  Si,H SiH,

+ oL

SilOH16 Sil4H20
Si147HlOO

Photoabsorption (arbitrary units)

4 6 8 10
Photon energy (eV)

FIG. 12. Calculated TDLDA absorption spectra of%i, clus-
FIG. 11. Structures of $H,, clusters. ters (solid lineg. Spectra of time-independent Kohn-Sham LDA
eigenvaluegdotted line$ are shown for comparison. All spectra are
states. These conditions were sufficient to achieve convebroadened by 0.1 eV using a Gaussian convolution.
gence of the computed spectra in the experimentally impor-

tant region below 10 eV. In Table VII, we compare TDLDA values for the excita-

The calculated absorption spectra ofj, clusters are . . : . .
shown in Fig. 12. To reduce the memory requirements and°" energleseeof the first thr.ee Bl clusters with expert-
the overall computational load, spectra of the last four clus—mental dat¥®® as well as ,Wétg the values calculated using
ters were calculated including only electronic transitions be!€ Bethe-Salpeter techniqifeTable VIl also shows the

low a chosen energy threshold. Along with the TDLDAspec-KOTn;Sha”? LDA “ionization” energies of the clusters,
given by the negative values of the energies for

tra, we show the spectra of time-independent Kohn-Sham fH%_MO’ ) ¢ )
LDA eigenvalues. As in the case of metallic and semiconthe highest-occupied LDA electronic orbitals. The table dem-
ductor clusters with open surfaces, the TDLDA spectra ofonstrates that the calculated TDLDA excitation energies for
Si.H, clusters are blueshifted with respect to the Kohn-the transitions below or close teexgyo agree well with the
Sham eigenvalue spectra. Unlike optical spectra of “bare"experimental data and the Bethe-Salpeter values. This agree-
semiconductor clusters considered in the preceding sectiofent, however, deteriorates for higher excitations, which lie
the spectra of hydrogenated silicon clusters do not displagbove— epdyo- As the size of clusters increases, the energy
low-energy transitions associated with the surface state®f the first-allowed excitation moves further down from the
Photoabsorption gaps for $i,, clusters are much larger LDA ‘“ionization” energy, and the agreement with experi-
than those of Siclusters with open surfaces. As the size of ment improves. For large i, clusters, the first-allowed
clusters increases, the absorption gaps gradually decreasegtical transitions are always located beleve;dyo. The

and the discrete spectra for small clusters evolve into quasi-DA HOMO energy gradually diminishes from 6.8 eV for
continuous spectra for silicon nanocrystals. Figure 13 demSi;gHg to 5.6 eV for SizHigo, but remains considerably
onstrates that the oscillator strength of dipole-allowed tranlarger than the values of the TDLDA absorption gaps. On
sitions near the absorption edge decreases with increasiriis basis, we believe that TDLDA should provide an accu-
cluster size. This fact is consistent with the formation of anrate description of the photoabsorption gaps and the low-
indirect band gap in the limit of bulk silicof® energy optical transitions in larger8i,, clusters.
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FIG. 13._ Oscillator strength qf dipole-allowed transitions near  FIG. 14. Variation of optical absorption gaps as a function of
the absorption edge vs cluster diameter. cluster diameter. Theoretical values shown in the plot include the

The optical absorption gaps for small clusters can be ded2bs calculated by the TDLDA methdthis papey, by the Bethe-
fined directly by the energy of the first dipole-allowed tran- SalpeterBS) technique(Ref. 52, and by the Hartree-Fock method

sition in their absorption spectra. For large clusters, the abwlth the correlation included through the configuration-interaction

sorption spectra become essentially quasicontinuous. A larg proximation(HF-CI) [Ref. 67. Experimental values are taken

. . .. ! ’ . om Refs. 59, 60, and 66. The dashed lines are a guide to the eye.
number of low-intensity transitions exist near the absorption
edge. Taken individually, the oscillator strengths of these o ] ) )
transitions would be located far below the experimentally 1he variation of the optical absorption gaps as a function
detectable limit. As a result, identifying the first-allowed op- Of the cluster size is shown in Fig. 14. Along with the
tical transition in the case of large clusters is not a trivial TDLDA values, we included optical gaps calculated by the
task. Rather than associating the optical gaps with the indiBethe-Salpeter(BS) technique” For very small clusters,
vidual transitions, we define them through the integral oscil-SiHs, SkHs, and SiH;,, the gaps computed by the TDLDA
lator strength according to E€53). Similarly, as we did in method are close to the BS values, although fqpt&is and
case of GgAs, clusters, we calculate the photoabsorptionSiisHzo Our gaps are considerably smaller than the BS gaps.
gaps for SiH,, clusters in the limit ofp—0 by setting the At the same time, our TDLDA gaps for clusters in the size
actual value of this threshold parameter to 40Defining the ~ range from 5 to 71 silicon atoms are larger by eV than
absorption gaps in such a way does not affect the values dhe gaps calculated by the Hartree-Fock technique with the
the optical gaps for small §il,, clusters, since the intensity correlation correction included through the configuration-
of their first-allowed transitions is much higher than the sednteraction approximatiofHF-CI).°” These differences are
lected threshold. At the same time, H§3) offers a conve- consistent with the fact that the BS calculations systemati-
nient way for the evaluation of optical gaps in large clusterscally overestimate and the HF-CI calculations of Ref. 67

which is consistent with methods commonly used in experitinderestimate the experimental absorption gaps. For ex-
mental work. ample, for the optical absorption gap ofs8i, the BS,

o ) - TDLDA, and HF-CI methods predict the values of 7.2, 6.6,
TABLE VII. Excitation energies of hydrogenated silicon clus- and 5.3 eV, respectively, compared to the experimental value
ters. The experimental optical absorption energies are taken frorBf 6.5 eV. However, it is not clear whether the gaps of Ref
Ref. 59 (silane and disilane and Ref. 66(neopentasilane The g7 refer 1o the optically allowed or optically forbidden tran-
assignment of electronic excitations for silane and disilane corregivions. which may offer a possible explanation for the ob-
S.ponds to .the Rydberg transitions. The Bﬁ;ﬂe'salﬁas} excita- served discrepancy. In the limit of large clusters, we find the
tion energies are adapted frogsé?f' S2¢riono are Kohn-Sham — opy 'y optical gaps to be in generally good agreement with
the photoabsorption gaps evaluated by the majority of self-
energy corrected LDARefs. 53 and 6pand empiricai*®®

LDA “ionization”energies and() ;" are self-consistent LDA ion-

ization potentials. All values are in eV.

Cluster Transition Experiment BS TDLDA-e-2,, QSCF techniques. At present, thg full TDLDA cglculations for clus-
ters larger than 20 A in diameter remain beyond our capa-

SiH, 4s 8.8 9.0 8.2 8.6 12.3  bilities. Nevertheless, the extrapolation of the TDLDA curve
4p 9.7 102 9.2 in the limit of large clusters comes very close to the experi-
4d 10.7 112 97 mental values for the photoabsorption gaps.

Si,Hg 4s 7.6 7.6 7.3 7.5 10.8 It is well known that time-independent LDA calculations
4p 8.4 9.0 7.8 typically underestimate the experimental photoabsorption

SigH; 6.5 7.2 6.6 7.3 9.6 gaps. Recent calculations for the frequency-dependent di-

electric function in crystald suggest that TDLDA and LDA

115416-16



FIRST-PRINCIPLES DENSITY FUNCTIONA. .. PHYSICAL REVIEW B 65 115416

gaps might converge for an infinite system. We did not ob-agreement with the experiment. The comparison of the spec-
serve this trend for the clusters we have examined in outra calculated with the exact and the approximate TDLDA
work. On the contrary, for all clusters considered, our calcuexpressions indicates an important role of collective elec-
lations show a substantial difference between the opticalronic effects. The structural sensitivity of the calculated op-
spectra and photoabsorption gaps calculated by the TDLDAical spectra for clusters suggests the possibility of using ab-
and the time-independent LDA methods. We do not rule ousorption spectra to identify clusters and separate isomers.
the possibility that the TDLDA optical transitions will con- We have shown that the TDLDA formalism can provide
verge with the regular time-independent LDA spectra foran efficient alternative to more complex theoretical methods
much larger systems. Nevertheless, our calculations suggefstr excited state properties. Compared to other first-
that such convergence does not occur at least up to sevemalinciples techniques for excited states, the TDLDA method
hundred atoms, which is sufficient for a large variety of pro-requires considerably less computational effort and can be
spective TDLDA applications. As such, it is not necessary toused for much larger systems. At the same time, as a dllly
invoke ad hoc empirical assumptions to examine systemsinitio technique, TDLDA avoids many of the controversies
comparable in size to experimentally measured quanturassociated with empirical or semiempirical methods. @&he
dots®® initio nature of the TDLDA formalism makes it flexible in
application to a variety of systems composed of different

IV. CONCLUSIONS chemical elements.

We have implemented linear-response theory within the
time-dependentlensity-functional formalism and the local-
density approximatiof TDLDA) to compute excitation en- We acknowledge support for this work by the National
ergies and optical absorption spectra of atomic clusters. Th8cience Foundation, the United States Department of En-
calculated TDLDA excitation energies and absorption specergy, and Minnesota Supercomputing Institute. We also
tra for atoms, semiconductor and metallic clusters, andhank Leeor Kronik for useful discussions and help in revis-
hydrogen-terminated silicon dots were found to be in goodng the manuscript.
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