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Discrete structure of ultrathin dielectric films and their surface optical properties
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The boundary problem of linear classical optics about the interaction of electromagnetic radiation with a thin
dielectric film has been solved under explicit consideration of its discrete structure. The main attention has
been paid to the investigation of the near-zone optical response of dielectrics. The laws of reflection and
refraction for discrete structures in the case of a regular atomic distribution are studied and the structure of
evanescent harmonics induced by an external plane wave near the surface is investigated in details. It is shown
by means of analytical and numerical calculations that due to the existence of the evanescent harmonics the
laws of reflection and refraction at the distances from the surface less than two interatomic distances are
principally different from the Fresnel laws. From the practical point of view the results of this work might be
useful for the near-field optical microscopy of ultrahigh resolution.
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I. INTRODUCTION were started not very long ago. The laws of refraction and
reflection for discrete structures were shown to be different
Usually in the investigations of optical phenomena in di-from Fresnel law¥ and this leads to anomalies in the behav-
electrics a medium is considered as a continuous system @dr of the electromagnetic field near the surfaté3A theo-
radiators. Also, the macroscopic Maxwell equations are emrem of extinction for discrete structures has been derived and
ployed. This description works well if one considers the phe-the corrections to the Snell law were worked &tithe char-
nomena which take place at large enough distances fromcteristic features of the spontaneous emission prdceSs,
medium interfaces. However, in recent years the interest isuperradiatiod’ and optical bistabilit} in discrete struc-
the optical phenomena near the surfaces of different media &tires were investigated. The second-harmonic generation in
distances much less than the radiation wavelength has drdiscrete structures has been considered in Ref. 19, where a
matically increased. Besides a purely fundamental interesgood agreement with experimental data has been pointed out.
this is connected to the vigorous development of the scanit was also shown that the consideration of the discrete struc-
ning near-field optical microscopy. There were developed ture of the medium leads to the surface local-field effect
various schemes of optical near-field microscopes and thand surface induced optical anisotrépy®*
work in this direction is still currently underway. However,  Properties of the waves reflected from discrete structures
all the schemes have a common feature, namely, the me@ the wave and near zones have been studied as well. It has
surement of the optical response of the medium on the exseen shown that in the wave zone the reflected waves can be
ternal radiation is carried out in the near zone at the distancegescribed by plane wavé%?5-2’"However, the treatment
of the order of surface inhomogentty. in Refs. 25—27 does not take into account evanescent har-
The resolution obtained with the aid of near-field optical monics which give a considerable contribution to optical re-
microscopes permanently increases and at the moment it gponse of discrete dielectric structures in the near zone.
of the order of 10 nm. The probe scans the surface also at tHEhese evanescent harmonics are not related to the total inter-
distance of the order of 10 nfAt such a small distance it nal reflection and they exist even in the case of a single
becomes necessary to take into account the discrete structua®m?® Due to the neglect of the evanescent harmonics the
of the medium. Attempts at consideration of discrete mediunmethod developed in Refs. 25—27 can be employed for the
structures in the theoretical description of the near-field opdescription of the optical response of a thick enough medium
tical measurements have been undertaken in recent Yearin the wave zone only.
However, the main attention has been paid to the situations A more general approach which implicitly takes into ac-
when discrete dipoles model rather large surface inhomogesount the evanescent harmonics has been developed in Refs.
nities and the spatial distribution of these dipoles is asymi10 and 11. This allowed us to show that the fields of the
metric. The progress in the near-field optical microscopy alteflected waves in the near zone are periodic functions of
lows one to hope that it will be possible to observe thelongitudinal coordinates with the period equal to the lattice
atomic structure of surfaces. Then it will be necessary taconstant. This result confirms the assumption put forward in
interpret the optical response from single atoms more or lesRef. 7 that with the aid of near-field optical microscopes one
regularly distributed on the surfaces. Similar problems occucan observe the atomic structure of the medium surface. In
when one wants to describe the near field in the vicinity ofthe present paper we shall continue the investigations started
the surfaces of phot8nand plasmon crystals. Besides, it in Refs. 10 and 11. Employing the methods of the calculation
becomes more natural to employ microscopic equations. of the lattice sums developed in Refs. 12 and 24, we are
Intensive studies on optics of discrete dielectric mediagoing to investigate in more detail the behavior of evanes-
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cent harmonics near the surface of a dielectric film with anwherer =(x,y,z) is a radius vector of the probe positiom;
ideal crystal structure. We would like to note that the role ofis the microscopic polarizability of the atoms inside the film,
the evanescent harmonics in the near-zone optical responagiich is assumed to be independent of the fieB(R)
of dielectrics has been pointed out by SivukAinOn the  =exp(koR)/R is the Green function of Helmholtz equation,
basis of rather simple and intuitive physical arguments hé&,=w/c is the vacuum wave numbeRaj=r—raj, Ra
came _to the quahtaﬂ_ve conclusion th_at the Fresnel _Iaws °f=|Ra_|, ra-=(f!1. Z;). We have also introduced the notation
reflection and refraction have to be violated at the distances ! ! i
from the surface less than one interatomic distance. In the _
present paper we are going to undertake a quantitative analy- Ej(rﬂj)= E(fgj z), z=—(j—Da, j=1IN. (2
sis of this fundamental issue. It will also be shown that the
existence of the evanescent harmonics leads to principal dghe reference frame is chosen in such a mannerzthgis is
viations from Fresnel laws of reflection and refraction at theperpendicular to the film surface. The second term on the
distances from the surface of the order of a few interatomigight-hand sidgrhs) of Eq. (1) describes the Lorentz radia-
distances. tion damping®>3*In spite of the fact that the radiation damp-

The paper is organized as follows. In Sec. Il we shalling makes usually a small contribution into the resultant field
discuss the problem we are going to solve and the maitthe consideration of this term is of principal significance. If
equations which constitute the basis of the microscopic apene does not take it into account the energy conservation is
proach to the description of optical phenomena in the lineaviolated (see Ref. 35 and references thejein
classical optics. Section Il is devoted to the analyses of the Let ra,=(Xa,Ya,2) be a radius vector of some atom in
probe influence on the electromagnetic field distribution inge |th monolayer. Then for the local field at the position of
the film and the back influence of the perturbation caused byis atom we have
the probe, on the field magnitude on it. It is shown that in
some cases the probe influence can be neglected. In Sec. IV
we shall calculate the distribution of the local field in a di- Iy — I E 3 [

e R E|(ra)—E||(ra)+| kOaE|(ra)+aer XVr

electric film under the incidence of a plane wave. In Sec. V ! ! 3 ! a A
we shall analyze in detail the characteristic features in the

N
behavior of reflected and transmitted waves in the wave and > Ep(r)G(Ra)+ a2 2 Vv, XV,
near zones. ! =19 & a

XEj(rl)G(Raa), 1=1N, 3
Il. STATEMENT OF THE PROBLEM AND BASIC j 1%
EQUATION
QUATIONS whereE”(rll):A,(ral), Ralaj:|ral—raj|. Note that the term
Let a monochromatic light wave with frequeney and  with ra =Ta, has to be excluded from the summation.

electric-field strength vectdg,(r,t)=A,(r)exp(—iwt) be in- L
cident on a dielectric film with thickneds Above the film fiImV\{ﬁ fﬁ: fl(())rorTI? for the solution in thith monolayer of the

there is a probe which measures the electromagnetic field at
a certain point of space. The probe will be treated as a single
pointlike dipole with a linear polarizabilitya,. Such a
scheme can be realized in a real experiment using either a
single atom in a magneto-optical trfwr an admixed atom and in addition we impose a requirement that the field
implanted in the needle of a near-field microscépeOur E,O(rﬂ,ll) has to satisfy the equation

aim is to investigate the behavior of the electromagnetic field

in the film and to calculate the characteristics of the electro- N

magnetic field on the probe that is movéstanned along Eorly=E, (r! )+i3k3an(ru )+, > V. XV

the film surface at some fixed distantteThe field detection, e Al groTE Al T, S e Ty

which represents itself a separate problem, will not be
touched in the present paper.

We shall treat the dielectric film as a systemNbfnono-
layers located at a distan@efrom one another. The atoms Then from Eqgs(1) and (3) it follows that the fieldsEP and
inside the monolayers possess a discrete spatial distributiol,, will be the solutions of the system of equations
In a stationary case the equation for the local electric-field

Ei(rl)=EP(rh )+ EP(rL), @

XE](r})G(Raa)- 5

strength on the prob&(r,t)=E,(r)exp(—iwt) (Refs. 32 2 N
and 33 can be written down in the form Ep(r)=A(r)+i §k8apEp(l’)+a2 > VXV
j:]. aj
N N
2
Ep(r)=A(r)+i §k8apEp(r)+ajZl ; V.XV, xE?(rLj)G(Raj)+a;1 ; V.XV,
- ] - ]
XEj(rh)G(Ry), (1) XEP(r}, )G(Ra), (6)
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N
EP(rl )—|§k0aE”(r” )+ apV, XV XEp(NG(R,) a> > V. XV xEj"(rlj)G(RaIaj)
j=17a & &
N
3
+aY, 2V, XV, XEf(rQJ)G(RaIaj). 7 —>afpf V. XV, XEP(r")G(R)dr’, 9
=174 & & s,

with p being the macroscopic concentration of atorRs;
The physical meaning of the field andEf is the follow-  —|r—'| The integration in Eq(9) is carried out over the
ing. E is the local field inside the film without consideration film volume limited by the external surfacg. In order to
of the contribution made by the probe. This contribution isprevent the interaction of the atom with itself a small region
taken into account by means of the fiekl. Thus for the limited by the spherical surfacg, centered at the observa-
solution of the problem stated above it is necessary first tdion point has to be excluded from the integration. The size
solve the unperturbed proble(B). Then using the obtained of this small region is of the order of lattice constant. In Ref.
solution one can determine the perturbation of the field in-10 it was shown that in order to achieve the complete corre-
side the film caused by the probe and calculate the backpondence passing from discrete to continuous atomic distri-
influence of this perturbation on the field at the position ofbution one has to putr=3
the probe(6) and (7). However, before dealing with this Let us determine the region of space, atoms from which
general problem we shall estimate the perturbation in thenake the main contribution to the field on the atom nearest
film caused by the probe and find out under which conditionso the probe. Le® be a tolerance of the calculations of the

it is considerable. dipole field. Then
P
Ill. ESTIMATE OF THE PERTURBATION CAUSED BY 1-] V. XV, XEP(r")G(R)dr’
THE PROBE ol
: : . . b
In this section we shall estimat’ which enters Eq<(6) J' V,XV.XEP(r')dr'G(R)dr'=4.  (10)
and (7). For that purpose one can neglect radiation damping S,

terms in Eqs(6) and(7). Our starting point is the following.
The perturbation of the field in the mediug’, which is  Integration in the denominator and in the numerator in Eq.
caused by the probe, decreases rapidly with the increase 6f0) is carried out over the film volume and over the spheri-
the distance between the surface and the probe. If in additiosal segment with the radius centered at the position of the
we take into account that the influence of atoms on one armatom nearest to the probe, respectively. Taking into account
other also rapidly decreases with the distance, one can contsg. (8) we obtain from Eq(10) the following estimate for
to the conclusion that the probe as well as the nearby atontse radius of the spherke within which it is necessary to
will be influenced mainly by the atoms located in the nearestalculate the fields on the atoms:
vicinity around them. Thus it is necessary to find the field
EP(r,) in the direct vicinity of the probe. Let us estimate first L~gs 13 (11)
the size of this region.

One can assume that the behavior of the figldhas the | ot 5= 19

‘ , thenL~7a. Note that in the calculations one
same features as that induced by the probe

can use even lower values bf because in Eq.7) there is
also the field induced by the probe and compared to this field
the influence of the remote atoms is less. The conclusion that

I 3(EpRa)R,, Ep 3(EpRa))Ry, only the neighboring atoms contribute to the field at the site
E|p(fa,)°c R—S—R—g —iko| ———— of probe in the near-field regime is in agreement with the
a a a results of Ref. 36, where the influence on the probe caused

by microscopic dielectric spheres located at the surface has

E, 5 (EpRq)Ry, E, _ been calculated. It was shown that the lattice sff5spheres
_R_Z — o R—3_E explikoR,). makes the main contribution. The increase of this area does
& & ' not influence the final result.
(8 Performing analogous calculations for E§) we obtain

that the main contribution to the field on the probe is made

by the atoms located inside the sphere with the radius
Taking into account that the field on the probe is defined bytentered at the probe position. Thus the system of E)s.
the atoms in the near zone, one can keep in(Bonly the  and(7) is reduced to the system of few linear algebraic equa-
terms proportional tdR, °. We substitute the corresponding tions, which can be solved numerically after the fiefdiis
expression into Eq(7) and replace the summation by inte- obtained from Eq(5). However, as it will be shown below in
gration. As a result of this the expression for the third term inmany situations it is not even necessary to solve this system
the rhs of Eq(7) takes the form of equations due to the negligible contributionEf.
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For the sake of distinctness we assume the probe to bealculation of the dipole field near a dielectric surface. For
located above some surface atom of the film. The field inthe fieldEE'" at the probe position we get
duced by the probe at the position of this atom is determined
by the expression T @
ngf~ZT—§[Ep—3(Epn)n], 17)
Eerr~— apEp/d°, (12) 1+ 7C d
whered is the distance between the probe and the atom. In

formula (12) we have neglected the retardation and the fieldvheren=(0,0,1) is a unit vector perpendicular to the mono-
on the probe is chosen to be polarized parallel to the filmayer. We write here %,” because in the derivation of Eq.
surface assuming that the variations of the direction of thé17) we have used the Lorentz-Lorenz formula for the refrac-
polarization vector does not influence much the final resultstive indexn:

It has been shown above that in the calculations of the field

on the probe it is enough to take into account the atoms n2:1+(877/3)c (18)
located inside the sphere with the radiusThe rest of the 1-(4w/3)C’

film does not influence the probe much. So we shall estimate | . . . L
the influence on the probe, caused by the atoms Iocate‘@fhICh does_ nr%t describe _p_roperly optical properties in the
within the spherical segment centered at the position of th urface regior. The c_ond_mon which allows us to neglect
atom below the probe. Obviously, the microscopic field am- e last term in Eq(7) is given now by

plitude on the atom under consideration is larger than that on a3 C
the other atoms of the film. The upper estimate of the field —> 7 2 (19
amplitude at the position of this atoBy,, is given by @p 1+ 5770

Emad <|Eetd[1—1.7ICIn(L/o)] 2, 13
[Emasd <|Eerill (Llo)] a3 The condition(19) is in a good agreement with Eg16),

where the dimensionless paramet@rap is a volumic  albeit the former imposes less strict limitations a@n
polarizability?” We shall assume that the field on any atom Thus, at the distances between the probe and the surface
inside the spherical segment is constant and equal to the fielsf the order of one lattice constant, the back influence of the
on the central atonk,,,«. It is obvious that in this approxi- film on the probe can be safely neglected. In this approxima-
mation the influence on the probe caused by the sphericaion the field on the probe is determined by the field of the
segment is larger than it is. Our calculations are approximatesxternal wave and the field?. The problem of calculation

so we replace the summation by the integration. Calculatingsf the field E? will be discussed in the next section.
the field at the position of the probe we get an upper estimate

of the last term on the rhs of E¢®), IV. DISTRIBUTION OF THE FIELD INSIDE THE FILM
IES| < 1.71C|E,p o fIN( 1+ L/d). (14) (SOLUTION OF THE UNPERTURBED PROBLEM )

Taking into account Eq12)—(14), we get a condition under -6t the external wave be a plane one, i.e.,

which one can neglect this term: A((r) = Eq explikor),

d® . 1.71CIn(1+L/d)
a, [1-1.71CIn(L/o)]

(15) ko=Kq(sin®, cos®,, sin®, sind,,—cosO,), (20

» where ®, is an incident angle and the azimuthal andie
Note that the conditiort15) does not depend on the way of gefines the orientation of the incidence plane. The atoms of
excitation of the surface atoms. It remains the same if thegneg monolayers are assumed to form a regular periodic struc-

atoms are excited by a wave incident from the side of thg ¢ with elementary translations vectegsanda,. Without
probe, by an evanescent wave, or by the wave radiated by thgsg of generality one can put

probe itself.
In Eq. (15 In(L/d+1) and In{/o) are of the order of a;=2)(1,00, a=2a)(a,B,0). (22)

unity. Therefore one can rewrite E@L5) in a simpler form o
For the sake of simplicity the vectoes anda, are assumed

d® 1.71C to be the same for all monolayers. The generalization on
a—p> 1-1.71C" (16) different a; and a, for different monolayers can be easily
done. In these notations the radius vector of some atom in

Usually for dielectric mediaC~0.1 andd3/ap~ 10 at the the jth monolayer has the form

distances from the surface equal to one lattice constant.

Therefore inequality16) is satisfied at the distances equal to M= rJ-°+ ann= r?+ ma; + na,, (22

or greater than one lattice constant. :

At the distances between the probe and the surface susdherem andn are integers. The vectof has the following

that the influence of discrete atomic distribution is negligibleform:

but the retardation is still unimportant the calculation of the o

field on the probe reduces to the electrostatic problem of the r=ajay+azaptzn, O0sayp;<l. (23
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Nonvanishingx,j anda,; take into account possible parallel a,xn nxa
shifts of the atomic planes relative to one another. Q=27 7, ®=2m -7 (28
|ag X & lag X a|

Making use of the principle of parallel translational sym-
metry the solution for the local field in tHéh monolayer can

be written down in the fordf1320:22:24 The choice of the vectora, anda, can be arbitrary. How-

ever, it makes sense to choose them in such a manner that
EP(rl) =EP explikorl). (24)  they have a minimal length. Then the length of the veatgrs
and g, will be also minimal. Such a choice of the basis is
We substitute Eqs(20) and (24) into Eq. (5). Now it is  convenient, because in this case the decay coefficients of the
necessary to calculate the lattice sums in @& Due to the  evanescent waves for square lattices and for slightly aniso-
slow convergence of lattice sums their direct calculation is aropic lattices increase with the parameter p>+ g°.
very laborious and in fact impracticable computational prob-  Formula(25) is a useful representation of the lattice sums
lem. In order to compute them one can use “the Lorentzor numerical calculations because the sums qveg con-
method” according to which the atoms located near the obverge much faster than the sums owwr, provided that
servation point are treated as discretely distributed and the—z|=a,. The calculations carried out in the next section
atoms outside a fictitious boundary are treated as continushow that in the sum OV?’ g it is enough to keep only few
ously distributed. This method can be employed either fosymmands with minimaj;‘ .
well-ordered or for random media and for the observation On the other hand, formuk25) has a very clear physical
points either inside or outside of the media. This way ofinterpretation. It represents itself a decomposition of the field
computation has been employed in various modifications ifinduced by the monolayer of discrete atoms on propagating
distribution in the monolayers is regular, this separation of. s real and we have propagating R/(\]/aves. Otherwisg,
discrete and continuous regions is not necessary anymore. {&imaginary and we have exponentially decaying waves. A
this case there exists another way of computation of the lalygre detailed discussion of the role of propagating and eva-
tice sums which is rapidly convergent and more convenienfagcent waves will be given in the next section.
for the interpretation of the field behavior near the Note that the quantitied,4(r,z;) with p,q+0, i.e., the
surface'??* 1t is this latter way that will be employed in the : P o ons afidy
y ploy evanescent harmonics, are periodic functiong ehdy and

present paper. o _ they possess the following property of the translational sym-
If the observation point is not located in the monolayermetry:

over which the summation is carried oytX1) the lattice
sums can be converted to the form which is more appropriate
for numerical calculations, making use of the formula for the Apg(r+mag+nay,z) =Ap(r,z)). (29
dipole field induced by thg¢th monolayer at some poimt
which has been obtained in Ref. 24 by means of Fourier
transform(Ewald’s threefold integral transform As we shall see further on, this property of the evanescent
harmonics leads to the fact that the intensities of the reflected
and transmitted waves near the film surface are periodic
functions ofx andy.

If the observation point is at the position of some atom

” ] inside the monolayer over which the summation is carried

= fo Apq(r.z)expliker),  z#zj, (25 oyt (i=1), then for the calculation of the lattice sum it is

pa= convenient to employ the method based on Ewald’s onefold
integral transfornt? Separating the initial sum over the real

E(r.z)=a V,XV,XE’ exmkorlj)G(Raj)
8

A (r,z)= _ﬂ[k X (Koo X E9)] lattice on the sums over the real and reciprocal lattices one
pat |ag X @, PR gets the following expression for the dipole fiéfd:
Xex;{i(kpq—k‘(‘))(r—r?)]
P a> V.xV.xE%expikorl )G(R,)|
v r r j 0 a a;/1z=z
(Kp+ghg kpg)  if Z>7, )

_ (26) 2 R
PO (kb+0hq —kpg) if 2<7; +i§kgaE?exp(ik‘(‘)r)=af(ko)E?exp(ikﬂ)r),

ko= VKe—(Kb+dh)?  dh=Pai+ag, (27 (30)

ko=Ko(sin®, cos®,, sin®, sind, ,0).

where the term witrr”zr[,Lj has to be excluded from the

The vectors of the reciprocal latticg andg, are related to  summation. Tensof is a symmetric one and the components
the vectorsa; anda, as fyzs fyzs f2xs foy vanish. It has the forid
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The rate of convergence of the sums in E8l) is deter-
mined by the parametdf, which has a dimension of the
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Note that in the computer calculations of the dipole field
the algorithm based on Ewald’s onefold integral transform is
five to ten times faster than that based on the Lorentz
method.

Taking into account identitie€5) and(30) the system of
Egs.(5) can be rewritten in the following form:

N

©

[1-af(ko)]EP=E, —i27Ca,’ [KpaX (Kpg
=1 pg=-=
exti(Kq,—khy(ro—r°
<E9)) di( qu O (1] J)],
Pq
I=1N, (33)

whereC=a/(ala; X ay|),

I=1N.
(34)

The prime at the sum sign in E33) means that the sum-
mand withj =1 is excluded.

The results of numerical solution of the system of Egs.
(33) for the cubic lattice and-polarized incident wave are
shown in Fig. 1. In order to demonstrate to the fullest extent
the characteristic features of the field behavior near the film
surface we have used a rather high value of the volumic
polarizability (C=0.2). Normally in the optical rang&€
=0.04-0.15 which corresponds to the refractive indaex
=1.27-2.46° However, for some materiafs can be higher.
For instance ng,p(Aog=564 nm)=3.42 (Refs. 23 and 40
and ngi(Ao=620 nm)=3.94224 which corresponds to
Cgap=0.19 andCg;=0.2, respectively.

The results of the calculations according to the Airy for-
mulas are also shown for comparison in Fig. 1. We have used
the Airy formulas for two cased(i) the film occupies the
region of space-a(N—1)<z<0, and(ii) the film occupies

Ey=Eo explikyra, ) =Eq exp(—ikoc0s®,z),

inverse length. It appears as a result of the formal separatiofe region of space a(N—1/2)<z<a/2. In the former case
of the initial sum over the real lattice on the sums over thepe corresponding formula has the féfm

real and reciprocal lattices. This parameter has no physical

meaning, it must be only real and positive and its choice can
be arbitrary"?> However, it makes sense to choose the param- EY(r)=
eterE in such a manner that the rates of convergence for the

sums over [f,q) and (m,n) are the same. One can show that
this requirement is fulfilled, provided th&=/7/|a; X a,|.
Substituting this value into Eq.31) one can estimate the
maximal values of if,m) and (p,q) which has to be taken
for the calculation of the lattice sums with the tolerarce

Taking into account that at largex erfc(x)
~exp(—xd)/(x\/7), we get the condition
exp(— maZ,/|a X a|) ~e. (32

Exact numerical calculations for a square lattice show that if
the replacement—r —na/2, EY,— E}, exp(—ik,acos,/2).

the summation is restricted by the terms withm,p,q
=0,=1 the relative tolerance of the calculations of the di-
pole field is about 10°, which is in a good agreement with
the estimatg32). Therefore our choice of the parameter

t, [explikonst 1) —r, expli@)expikons;r)]
1-r? expli )

Ed

X 1-(@=i3)C’

(39

st*)=(—sin®+,0,% cosO1),o=2kohncosO+, (36)

where @+ is the angle of refractiont, andr, are Fresnel

coefficients of transmittance and reflectance $qguolariza-
tion, respectivelyh=a(N—1) is a film thicknessh is a
refractive index defined by the Lorentz-Lorenz relat{@s).
In the latter casé@=aN, and in Eq.(35) one has to make

It seems that the first form of the Airy formulas better corre-
sponds to the initial statement of the problem. However, the
results of numerical solution of the systdB8) are in a bet-

appears to be very convenient for carring out numerical calter agreement with the second form. The reason is that in the

culations.

former case the macroscopic dengityhich enters the Airy
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FIG. 1. Coordinate dependences of the amplitl@gand (c)] and the phasfb) and (d)] of the local electric-field strength inside the
film: —— numerical solution of the system of Eq®3); - —- — calculation according to the Airy formulas for the case when the film
occupies the region of spacea(N—1)<z<0; —— — calculation according to the Airy formulas for the case when the film occupies the

region of space-a(N—1/2)<z<a/2. The calculations are performed

for the cubic lattice. The external wave is polarized along one of the

translation vector of the lattices(polarization. The parameters atg=0.01 nm%; a=0.5 nm;N=20; ®,=30°; C=0.1[(a) and(b)];

C=0.2[(c) and(d)].

formulas appears to be higher than its true valaga
Xa,|) "1, but in the latter case in the Airy formulas is
equal to @|a; Xa,|) " as it should be.

As it follows from the numerical calculations, the consi
eration of the discrete structure influences the most signifi
cantly the behavior of the field amplitude near the film sur-
face where rapid oscillations of the local field take place. The
amplitude of these oscillations and the penetration depth into
the film volume increase with the parame@&rOne can also
see on Fig. 1 that the consideration of the discrete structure
does not influence much the phase of the field. This means
that the wave vector of the field remains almost the same at
any point inside the film. Therefore the real part of the re-

V. FIELD ON THE PROBE
When the system of Eq$33) is solved and all the quan-

g- tities EJQ, j=1)N are determined, one can calculate the field
at the probe position:

N o
E(r)=A|(r)—2wiCaJZl p qg_w [KpaX (KpgX E)]

Xwexqik%r?)_

(37

Kpq

fractive index of the field is constant. Far from the bound-Under the conditior{15) the fieldE(r) equals to the fieldE,
aries the distribution of the field is regular and approximatelyacting on the probe. Let us analyze in detail the expression

coincides the results given by the Airy formulas.
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f FIG. 2. Tlhel d;ﬁgrenge;g}weeg th_(:hrefltected \tlrlave flﬂ% in the FIG. 3. The dependence of the electric-field strength amplitude
i.r zon;aihcag_uaet u? et ) ?r;h w (C);_J Eor) ico?_s' er]: h of the reflected wavéEl?" on the incident angle of the external
afion of the discrete structure of the medium, as a function o ave 0, in the wave zone fos (1) andp (2) polarizations: ——

number ]?f mogolfyertsrllwhlchbf:onlsttl;[_ute tr]fhﬁlm' The C?Iculatlons under consideration of the discrete structure; — — — according to the
aj(e) Olier o[rrlw.ez 78r5 € .%u lcooa Ice. € parameters kge Airy formulas. The calculations are performed for the cubic lattice.
=0.0L hm= a=t.o nm, © =0 The parameters afg=0.01 nmi'!; a=0.5 nm;N=3; C=0.2.

A. Field in the wave zone ] . o
formulas give a satisfactory description of the reflected

Let us consider first the case when the observation pointi§ 5 es in the wave zone. In this situation our method of
in the wave zone, i.e|z—z|—. In this case the summands ., \cation becomes equivalent to that developed in Refs.
with p,q# 0 do not contribute to th(—ﬁ resultant field due to the,5_57  Ag for the dependence on the incident angle, the
following reason. All the quantitieg,q atp,q#0 are of the  maximal discrepancy between the amplitudes of the reflected
order of 27/a and they are much greater theqif kea<1.  \ave calculated under consideration and without consider-
Thereforex,,q (27) are purely imaginary and all the corre- ation of the discrete structure is observed at normal inci-
sponding summands in ES) decay rapidly with the in- ~ dence. With the increase of the incident angle this discrep-
crease of the distance from the surface. Only the term withyncy gradually vanishegFig. 3. In the calculations
Koo survives. Ifz>z;, koo represents itself the wave vector presented in Figs. 2 and 3 we used the Airy formulas for the
of the reflected wavkg, otherwisekoo=ko. Therefore inthe  case when the film occupies the region of the spacéN

wave zone we have plane propagating waves: —1/2)<z<al2®
A +ER explikgr), z>0;
E(r)= . _ i
OR 2 : 0 AR
N 1-r{explie)
E;;’fz—izwcL > [kpX (KgX E?)Jexp( —ikir?), _ _ .
kocosO, =1 y ! Here we use the same notations as in form{BB). Besides,
as for the field inside the film, the results of our calculations
f a N are in a better agreement with the Airy formulas compared to
Efar— EOI—iZWCm Zl [koX (kX E?)] the case when the film occupies the region of spacéN
0 H= —1)<z<0. We would like to note also that for the

><exp(—ik$r]°). (38)  p-polarized wave the field of the reflected wave near the
Brewster angle does not vanish.
These fields are transverse, becaugel®" =k E*'=0. The
amplitudesEf?", E'?" do not depend on the coordinates.
The discrepancy between the values of the field of the
reflected wave calculated under consideration of the discrete If the observation point is near the surface, one can ob-
structure and according to the Airy formulas can be of theserve a number of characteristic features in the field behavior
order of 10%. This discrepancy becomes larger with the dewhich we are going to discuss now. For the sake of simplic-
crease of the film thickness and with the increase of thdty we shall restrict ourselves, if the opposite is not stated
parametelC (Fig. 2). The plots in Fig. 2 lead to the conclu- explicitly, by the case of quadratic latticey(La,, a;=a,

sion that at high enough film thicknessé$=20) the Airy =a; g;=0,=0=27/a).

B. Field in the near zone
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FIG. 4. The ratio of the evanescent field amplitudes near the FIG. 5. Coordinate dependences of the ratio of the total ampli-
surfaceE, to the amplitude of the reflected field in the wave zonetude of the evanescent wave$’ to the amplitude of the reflected
Ef2". The calculations are performed for the cubic lattice. The pawave field in the wave zonE[2" . The calculations are performed
rameters aré,=0.01 nni%; ©,=0; the distance between the ob- for the cubic lattice. The parameters arg;=0.01 nm!; a
servation point and the surface is equalatol — |E;/EX'|; 2 —  =0.5 nm;®,=0°. The observation point is above an atom of the
|E,/ER'|; 3 — |[EL/ER|. film.

1. Contributions of propagating and evanescent harmonics follows that the contribution of the evanescent component is
I di f h ¢ h __essential at the distances less than two lattice constants. The
At a small distance from the surface the summands withie| radiated by the monolayers, which are located at larger

P.q#0 in Eq.(37) can make a noticeable contribution. Let gigiances from the observation point, can be treated as propa-
us estimate this contribution considering the following ting plane waves.

. . . ; . a
example. As it was mentioned above in the discussion 09 The distance, can be also analytically estimated on the

formula (25), it is convenient to single CH’“t in Ed37)  pasis of the following consideration. As it follows from the
evanescent waves, =32p2,q2- Apq€XPlker) with the  gependences depicted in Fig. 4 the leading contribution to
decay coefficients dependent an The ratio of the ampli- he decaying wave is made by the evanescent wave avith

tudes of the evanescent harmonig for «=0 (plane  — 1 Therefore the distande, can be approximately deter-
reflected wavg 1, 2, 4 is shown in Fig. 4. Note that \y,ined from the condition

the relative contribution of differenE, strongly depends
on the distance between the probe and the film surface. Lfa
The behavior shown in Fig. 4 is typical for the distances L6~
greater or equal to one lattice constant. Usually if one
takes into account the modes with,q=0,=1,=2 the
tolerance of the calculations is less than 1%. As it follows
from the dependences in Fig. 4, &a== (a typical
value for photonic crystals and optical latticéise monolay- L
ers do not fill the evanescent waves radiated by the
other monolayers. Az=2a and ko,a=0.005 the ratio of 0.8 —
decaying and nondecaying field components is about 1%
and rapidly decreases with the increasekgd. If a<1/k,,
theng>k,, and as it follows from Eqs25—(27) the form

of the evanescent waves is almost independent of the inci- 041

dence angle of the external wave. Coordinate dependences of L

the total amplitude of the evanescent harmonics is shown in

Fig. 5. 0.0 bt sl
The dependence of the distaricg, at which the ampli- 0.001 0.01 0.1 1 10

tudes of the evanescent and propagating components are kg

equal, on the parametépa is depicted in Fig. 6. Due tothe G, 6. The dependence of the distarige at which the ampli-

rapid decay of the evanescent harmonics the quabfityan  tudes of the evanescent and propagating parts of the reflected wave
be treated as a distance from the surface up to which thgeld are equal to one another, on the paraméter —— exact

contribution of the evanescent component to the resultariumerical calculations= —— an estimate according to formula
field is essential. From the dependence shown in Fig. 6 it42). The calculations are performed for the cubic latti®g=0°.
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|E | 2. Nontransversality of the total fields of reflected and
0o (40) transmitted waves

far
B In distinction to the wave zone the polarization vector of
the field in the near zone has no definite direction. Its mag-
nitude and the direction depend on all three spatial coordi-
nates. Indeed, the polarization vector of a certain evanescent
harmonic on the rhs of Eq37) is perpendicular to the wave
5 L vector kpq, which in its turn has different orientations de-
Z—Wex;{ _277_6) -1 (41) pending onp andg. In addition, each harmonic has its own
koa ' decay coefficienk,, and the behavior of the harmonic along
the surface is defined by its own vecdé;q. Carrying out the
summation over all the harmonics we get the properties of
the polarization vector mentioned above. In particular, in the
case of the normal incidence of the external wave with the
polarization vector along thg axis the field near the film
surface has nonvanishingandz component$Figs. 7a) and
7(0)].
As it follows from the dependences presented in Fig. 6, the For the purposes of further analysis let us estimate the
estimate(42) is in a good agreement with the results of exactratio of the evanescent component of the reflected wave field
numerical calculations at small to the incident wave field. From the Airy formulas for tee
We can approximate|y estimate the distahgéor a semi- polarization it follows that in the case of ultrathin film the
infinite medium in a similar manner assuming that the fieldlocal field inside the film isEq~Eg /[1—(4m/3)C]. The
of the reflected wave in the wave zone and the field of theevanescent field at the distance of one lattice constant from
transmitted wave in the medium are defined by Fresnel rethe surface is mainly determined by the harmdajc For the
flection and transmission coefficiemisandt , respectively. square lattice E;=—2(2)?C exp(—2m)Ey~0.14TC/[ 1
Then for s-polarized external wave after minor algebra we —(4m/3)C]Eq . Even for C=0.2 the ratioE;/Eq~0.2.
get Thus the amplitude of the evanescent wave at the distance
from the surface of the order of one lattice constant is usually
much less than the incident field amplitude. Therefore one

In the casekpa<l we havekpq~(gﬂ)q,igu)q). Then for a

monolayer we can write the conditigd0) anew as

from which we get

L

e 4
a

koa

_1| 42
=5-In : (42

L 1 872Cts can conclude that in the field of the probe the main contri-

e T —=F | (43) bution is made by the component of the field directed along

a 77 rs(l— 4_7TC) the polarization vector of the external wave. In particular,
F 3 comparing the intensities of theand z components of the

field [Figs. 4a) and 7c)] with the y componen{Fig. 7(b)]
In the case of the normal incideneg=—(n—1)/(n+1)  one can notice that the contribution of thkeand z compo-
andt}=2/(n+1). Taking into account the Lorentz-Lorenz nents is small and the field behavior near the surface is
formula (18), we obtain mainly determined by thg component.
One can come to one more conclusion regarding the di-
rection of the field polarization vector near the film surface.
1 Under the normal incidence of the external wave in the case
=—In[4m(n+1)]. (44)  when there are no parallel shifts of the atomic planes relative
2 . . .
to one another, i.eq;;=ay;=0, j=1,N, at the observation
From Eq.(44) it follows that if the refractive index is in the points _above Fhe at(_)ms the compone_nt pf the reflected
range 1.1-4.0, theh,/a is in the range 0.5-0.7. In fact "VaV€ field vanishegFig. 7). Indeed, taking into account the

L./a has to be higher, because as it follows from the numeriProperties of the tensdr and summing in Eq(33) the har-
cal calculations in Sec. IV the local field inside the film in monics with equalkyq (xpq=k—p —g), We get that E),,
the first atomic layer is higher than that in the “bulk.” are independent ofEf),. The z components of the field

In the case ofp-polarized external wave incident on a inside the film satisfy to the system of homogeneous equa-
semi-infinite medium the estimation af, will be given by  tions which has only the trivial solutiorE@)ZEO, j=1N.
an equation which has similar structure as Ep) with t¢ Then it follows immediately from Eq.37) that at the obser-
andr} replaced bytP andr, respectively. In this case near vation points above the atomg),=0.
the Brewster angle the reflection can be rather small but still
noticeable. In such a regime we get the values gfa which
are somewhat bigger than 1. Therefore our estimations show
that the propagating and evanescent harmonics can make The electromagnetic field intensity is defined by its
comparable contributions to the optical response of the mestrength squared. In a general case it can be calculated nu-
dium at the distances from the surface of the order of onenerically. But in the case of the normal incidend®, &0)
lattice constant. one can obtain rather simple analytical expressions. Let us

—<
a

3. Dependence of field intensity on the longitudinal coordinates
x and y
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4.0 Omitting the unimportant constant factor after an elementary
35 *eeeeeee algebra we obtain an approximate expression for the field

3.0 b 000028 intensity at the probe position:
A b b & & B 0 ] 000024

2.5 0.00020
LR R R R . (giEar)
I 0.00016 ~ ary __
Sty [ocoo |~| Eor+RaER)—4nCa % g
LR A R & & 2L ] 000004 .
LOPEEER - ).00000 X {Re(gE}cog g(r—r)]—giRe(EL,)sin gi(r—r)) ]}
0.5
o exp(—g;2)) 2
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 X—gi , (45)

(a) xla

which is valid for the films of arbitrary thickness. HefE§ is

an amplitude of the unperturbed part of the field in the first
(surface monolayer. In fact, this expression is the second
power of the real part of the field component at the probe
position, directed along the polarization vector of the exter-
nal field. The imaginary part of this component and all other
components are negligible.

From the expressiof45) one can see that in general the
intensity minima and maxima are shifted relative to the
atomic positions. This is due to the term which contdif]s.
Due to the fact that even in the case of the normal incidence

0.
. 60051015 i/g 25303540 the dependence of the direction of the ved&ron the di-
rection of Ey, is rather complicated, the location of the in-
4.0 tensity minima and maxima depends By in a complicated
35 manner as well. Let us consider the case when there are no
' parallel shifts of the atomic planes relative to one another. As
30 it was shown above, in this cags,=0 and the expression
25 (45) becomes simpler. In this case the intensity minima are
S 2.0 located exactly at the positions of the atoms. Indeed, at these
1.5 points coBg,(r—rd)]=codg,(r—rd)]=1. Thus formula
1.0 (45) explains the contrast reversal, which has been obtained
05 in Refs. 36 and 43 by means of numerical calculations.
' In an analogous manner one could assume that the inten-
0'8,0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 sity maxima are located in the centers of the elementary
() xla cells, where the cosines are equal-+td. However, this is

not exactly the case as one can see in Fig. 8. With the change
f the el " fiel h 5 of the mutual orientation of the polarization vector of the
componzents ° tze electromagnetic field on the probe-[E,|*,  oyternal wave and the lattice elementary translations vectors
ly~|EyI", 1:~|E,") to the intensity of the incident waug on the v 1o ation of the intensity maxima changes as well. The
.Coord'n".itey andy. The parameters are t,hle number of monOIayersreason is the following. Let the polarization vector of the
g t_hg(,f_'lg '362 O’TE e_igfg}l‘cl,(i?)/_ r?{i(r)nilm;nl o}r:s;(())ﬁz ?omt’hz_a?émi . external wave be perpendicular to one of the vectors of the
| — ) | — . . . . _ .
positions. In spite of the fact that the external wave is poIarizeo_reC'proc"jll lattice, for instanceFq,g;) =0. The field behav-

along they axis, optical response of the medium contains all three'o,r along the direc“?”al _in this case is determined _b_y
components. higher-order harmonics with the smallest decay coefficient
and with the nonvanishing component along the polarization

consider this case. From the plots in Fig. 6 it follows that thevector of the external wave. Obviously, these are harmonics
component of the field, which is a periodic function of lon- With [p[=[a[=1. In Eqg.(45) in the square brackets one has
gitudinal coordinates, is induced mainly by the surface atio add one more term,

oms. The bulk atoms produce only a constant background. min

Thus in order to analyze the behavior of the evanescent (911 EO|)ngTinEg)

FIG. 7. The ratio of the intensities of (a), y (b), andz (c)

. . —47Ca—r—
waves it is enough to consider only one surface monolayer Eq

[z;=0 in Eq.(37)]. For the qualitative analysis of the field min
behavior near the film surface it is enough to keep in(B@) min 0. EXN(— 011 2)

only the harmonics with §,q)=(1,0), (—~1,0), (0,1), X0t (M=) 1= nn

(0,—1) (we assume that the quantitigg andg, differ from _ H

one another no more that two time§he amplitudes of all whereg?}" is one of the vectorg,, with |p|=|q|=1, which
other harmonics are at least one order of magnitude*fess.has the minimal length. At the observation points above the
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4.0 depend on the mutual orientation of the field polarization and
3.5 the translation vectors of the lattice.
3.0 0.85 Formula(45) allows one to investigate the image contrast,
0.75 which is defined here as a maximal difference of the light
2.5 0.65 intensity along a certain direction. In Refs. 4, 36, and 44 it
= 20 0.55 was pointed out that the field component parallel to the scan
15 0.45 direction displays a better contrast than that perpendicular to
10 0.35 this direction. Let us consider this problem in more detail.
0.25 The image contrast in the directiaq is determined by the
0.5 mutual orientation of the vectoE, , E‘l), andg; . The maxi-
08005101520253035 4.0 mal contrast is reached at some angle betwggnand g;
(a) xla when the coefficientdEq ) Re(g; E?) takes the largest value.

This angle depends in general on the symmetry of the atomic

4.0 distribution at the surface and on the atomic polarizability.
3.5 We are going to come back to this issue in our subsequent
3 0.75 publications.
25 0.65 The minimal contrast along the directi@q for the lines
S 90 0.55 v_vhu:h pass through the atoms is achle\_/ed when the pola_rlza-
s tion vector of the external wave or the field vector in the film
L5 045 is perpendicular to the vector of the reciprocal lattigdpar-
1.0 0.35 allel to the vector of the real lattica) Eq. (45). Performing
05 0.25 numerical calculations, one can show that in general the con-
ditions (giEy)=0 and GEY)=0 are satisfied at different

0.
80 0.5 1.0 1.52.0 2.5 3.0 3.5 4.0 directions of the polarization vector of the external wave.
(b) xla Thus in general there exist two angles at which contrast
minima can be observed. The angle between the two direc-

0 tions of the polarization vector of the external field allows

3.5 one to get the information about the local field inside the film

3.0 0.75 and therefore about the atomic polarizability.

25 0.65 Another situation occurs for the contrast along the lines
S 90 0.55 which pass through the centers of the elementary cells. In
- e 0.45 this case the contrast minima are determined by the condition

' 0.35 of mutual compensation of the contributions from the har-
L0 ’ monics with decay coefficients; andg],". The compensa-
0.5 0.25 tion occurs at some anglg, between the polarization vector
of the field inside the film and the vectgi, which depends

0.
© 00510 1.5 )ng 25303540 on the symmetry of the atomic distribution at the surface.
The angleg,.. strongly depends on the distance from the sur-
FIG. 8. The ratio of the electromagnetic field intensity on the face.

probel to the incident wave intensity,. The parameters aril Let us consider the simplest case of the cubic lattice. Un-

=20; C=0.2; ko=0.01 nm’; a=0.5 nm;d=a; 0,=0°; ®, der the normal incidence of the external wave the direction

=0° (a); 30° (b); 45° (c). The electromagnetic field intensity is a of the polarization vector of the field inside the film coin-

periodic function of the coordinatesandy, and the period is equal cides with that of the external field. In this case there are two

to the lattice constana. The intensity minima correspond to the directions of the polarization vector of the external wave, for

atomic positions. which one can observe the contrast minima along the lines
which pass through the atoms. This corresponds to the situ-

atoms (H=r|,.|;1 ) this term is minimal, i.e., the intensity ations when the polarization vector coincides wathor a,.

minima are lstill above the atoms, even provided that™or the cubic lattice one can get an explicit expression for

(Eygy)=0 or (E%;,)=0. The locations of the intensity (€ angles, at which one observes the minimal contrast

maxima can be found from the Conditiog'{(“r)= 7+ 27K, along the lines which pass through thg centers of the cells.

wherek is an integer. This condition fulfills not in the centers The depgndenqe of the angjg on th? d|s_tance between the_

of the elementary cells, as in the case when the directions cﬂbservann point and the surface is given by the approxi-

the polarization vector of the external wakig, and the local mate formula

field inside the filmE? does not coincide with any of the

translation vectors of the lattid€igs. 8§b) and §c)], but at sing.=2Yexd — w(\/2—1)d/a], (46)

the pointsr| = rll+ a/2 orrl= r!llJr a,/2 [Fig. 8@]. Thus, in

distinction to the intensity minima locations, which are al- which is valid only ford=a. The dependencé.(d) for the

ways above the atoms, the locations of the intensity maximaubic lattice is shown in Fig. 9. As one can see in the figure,
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o, deg VI. CONCLUSIONS

20 - . .
We have solved a boundary problem of the linear classical

- optics devoted to the investigation of the electromagnetic
16 field behavior near the surface of a dielectric medium taking
into account its discrete structure. The main attention has
- been paid to the investigation of the near-zone optical prop-
L erties of dielectrics. It has been shown that at the distances
from the surface less than two lattice constants the behavior
- of the reflected and transmitted waves is entirely different
s b from what we have in the wave zone. The intensity distribu-
tion in the near zone allows one to determine the atomic
positions at the surface.
4 We have shown that at the distances from the surface
larger than the interatomic distance in the film the probe
which measures the field does not significantly influence the
ol 1)) field distribution in the film. In the present paper we have
dle suggested a method of the optical control of the distance
between the probe and the surface. The method is based on
FIG. 9. The angle between the minimal contrast direction andhe analysis of the near-field distribution at different direc-
the polarization vector of the external wayge as a function of the ~ tions of the polarization vector of the external radiation.
distance to the film surface. The calculations are performed for At first glance the system treated in our pajpetrathin
the cubic lattice®,=0°. dielectric film without any substratseems to be unrealistic.
However, it can be used for the investigation of the near-

the angles, can take the values of dozens of degrees at th zone optical properties of the films of _arbitrary thicknesses.
c %\s we have shown the near-zone optical response of a ma-

distance fr'om the surface of the qrder of one lattice cqnstan erial is defined mainly by the evanescent harmonics, which
The magnitude of the angle remains essential at the dlstancB%y an important role only within a few interatomic dis-
of several lattice constants.

; Lo L tances near the surface, because they decay very rapidly. This
Thus changing the direction of the polarization vector of yeang that the bulk monolayers influence significantly only

the external wave one can manipulate the image contrasfye wave-zone optical properties and does not change much
One can determine the atomic positions and the symmetry ghe ratio between propagating and evanescent harmonics.
the crystal lattice detecting the intensity minima. Measuring  Our results can be useful not only for the development of
the angle between the directions of the polarization vector ofhe ultrahigh resolution near-field microscopy, but also for
the external wave, at which the minimal image contrast ighe investigation of the optical properties of photonic crystals
reached, one can get the information about the local fieldf the long-wavelength approximation.
inside the film. Having on hand this information and measur- The results obtained in the present paper are valid not
ing the anglep. between the translation vectors of the lattice only in the case of an ideal crystal lattice, but also when the
and the polarization vector of the external wave one cammedium has only short-range order as in the case of real
determine the distance between the probe and the surfacesurfaces. Indeed, the methods based on the Fourier transform
The analysis based on E¢R5) allows one to say that and the Lorentz method give analogous results. At the same
formula (45) remains valid in the case of an arbitrary inci- time only the short-range order is important for the Lorentz
dent angle of thes-polarized wave as well. One has to note Method and the magnitude of the dipole field is mainly de-
that in the near-field optical measurements it is more usefdiermined by the atoms located at the distance from the ob-
to work with p-polarized wave@® In the case of arbitrary S€rvation point of the order of 2-3 lattice constants. The
incidence angle of the-polarized wave the distribution of atomic dlstr|bu_t|on outside of this region does not practically
the field in the near zone is essentially different. This hagnfluence the field.
been shown in Ref. 8 on the basis of numerical calculations. This work was supported in part by the Russian federal
We intend to give a detailed description of the field behaviomprogram “Integration”(grant A 0066. K.V.K. is also grate-
in the near zone at arbitrary incident angles in our subseful to Deutsche Forschungsgemeinschaft and Alexander-von-

guent publications. Humboldt Stiftung for financial support.
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