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Discrete structure of ultrathin dielectric films and their surface optical properties
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The boundary problem of linear classical optics about the interaction of electromagnetic radiation with a thin
dielectric film has been solved under explicit consideration of its discrete structure. The main attention has
been paid to the investigation of the near-zone optical response of dielectrics. The laws of reflection and
refraction for discrete structures in the case of a regular atomic distribution are studied and the structure of
evanescent harmonics induced by an external plane wave near the surface is investigated in details. It is shown
by means of analytical and numerical calculations that due to the existence of the evanescent harmonics the
laws of reflection and refraction at the distances from the surface less than two interatomic distances are
principally different from the Fresnel laws. From the practical point of view the results of this work might be
useful for the near-field optical microscopy of ultrahigh resolution.
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I. INTRODUCTION

Usually in the investigations of optical phenomena in
electrics a medium is considered as a continuous system
radiators. Also, the macroscopic Maxwell equations are e
ployed. This description works well if one considers the ph
nomena which take place at large enough distances f
medium interfaces. However, in recent years the interes
the optical phenomena near the surfaces of different med
distances much less than the radiation wavelength has
matically increased. Besides a purely fundamental inter
this is connected to the vigorous development of the sc
ning near-field optical microscopy.1–7 There were developed
various schemes of optical near-field microscopes and
work in this direction is still currently underway. Howeve
all the schemes have a common feature, namely, the m
surement of the optical response of the medium on the
ternal radiation is carried out in the near zone at the distan
of the order of surface inhomogenity.4,7

The resolution obtained with the aid of near-field optic
microscopes permanently increases and at the moment
of the order of 10 nm. The probe scans the surface also a
distance of the order of 10 nm.7 At such a small distance i
becomes necessary to take into account the discrete stru
of the medium. Attempts at consideration of discrete medi
structures in the theoretical description of the near-field
tical measurements have been undertaken in recent ye4

However, the main attention has been paid to the situat
when discrete dipoles model rather large surface inhomo
nities and the spatial distribution of these dipoles is asy
metric. The progress in the near-field optical microscopy
lows one to hope that it will be possible to observe t
atomic structure of surfaces. Then it will be necessary
interpret the optical response from single atoms more or
regularly distributed on the surfaces. Similar problems oc
when one wants to describe the near field in the vicinity
the surfaces of photon8 and plasmon9 crystals. Besides, i
becomes more natural to employ microscopic equations.

Intensive studies on optics of discrete dielectric me
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were started not very long ago. The laws of refraction a
reflection for discrete structures were shown to be differ
from Fresnel laws10 and this leads to anomalies in the beha
ior of the electromagnetic field near the surface.11–13A theo-
rem of extinction for discrete structures has been derived
the corrections to the Snell law were worked out.14 The char-
acteristic features of the spontaneous emission process15,16

superradiation,17 and optical bistability18 in discrete struc-
tures were investigated. The second-harmonic generatio
discrete structures has been considered in Ref. 19, whe
good agreement with experimental data has been pointed
It was also shown that the consideration of the discrete st
ture of the medium leads to the surface local-field effec20

and surface induced optical anisotropy.21–24

Properties of the waves reflected from discrete structu
in the wave and near zones have been studied as well. It
been shown that in the wave zone the reflected waves ca
described by plane waves.10,11,25–27However, the treatmen
in Refs. 25–27 does not take into account evanescent
monics which give a considerable contribution to optical
sponse of discrete dielectric structures in the near zo
These evanescent harmonics are not related to the total i
nal reflection and they exist even in the case of a sin
atom.28 Due to the neglect of the evanescent harmonics
method developed in Refs. 25–27 can be employed for
description of the optical response of a thick enough med
in the wave zone only.

A more general approach which implicitly takes into a
count the evanescent harmonics has been developed in
10 and 11. This allowed us to show that the fields of t
reflected waves in the near zone are periodic functions
longitudinal coordinates with the period equal to the latt
constant. This result confirms the assumption put forward
Ref. 7 that with the aid of near-field optical microscopes o
can observe the atomic structure of the medium surface
the present paper we shall continue the investigations sta
in Refs. 10 and 11. Employing the methods of the calculat
of the lattice sums developed in Refs. 12 and 24, we
going to investigate in more detail the behavior of evan
©2002 The American Physical Society07-1
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cent harmonics near the surface of a dielectric film with
ideal crystal structure. We would like to note that the role
the evanescent harmonics in the near-zone optical resp
of dielectrics has been pointed out by Sivukhin.29 On the
basis of rather simple and intuitive physical arguments
came to the qualitative conclusion that the Fresnel laws
reflection and refraction have to be violated at the distan
from the surface less than one interatomic distance. In
present paper we are going to undertake a quantitative an
sis of this fundamental issue. It will also be shown that
existence of the evanescent harmonics leads to principa
viations from Fresnel laws of reflection and refraction at
distances from the surface of the order of a few interato
distances.

The paper is organized as follows. In Sec. II we sh
discuss the problem we are going to solve and the m
equations which constitute the basis of the microscopic
proach to the description of optical phenomena in the lin
classical optics. Section III is devoted to the analyses of
probe influence on the electromagnetic field distribution
the film and the back influence of the perturbation caused
the probe, on the field magnitude on it. It is shown that
some cases the probe influence can be neglected. In Se
we shall calculate the distribution of the local field in a d
electric film under the incidence of a plane wave. In Sec
we shall analyze in detail the characteristic features in
behavior of reflected and transmitted waves in the wave
near zones.

II. STATEMENT OF THE PROBLEM AND BASIC
EQUATIONS

Let a monochromatic light wave with frequencyv and
electric-field strength vectorEI(r ,t)5AI(r )exp(2ivt) be in-
cident on a dielectric film with thicknessh. Above the film
there is a probe which measures the electromagnetic fie
a certain point of space. The probe will be treated as a sin
pointlike dipole with a linear polarizabilityap . Such a
scheme can be realized in a real experiment using eith
single atom in a magneto-optical trap30 or an admixed atom
implanted in the needle of a near-field microscope.7,31 Our
aim is to investigate the behavior of the electromagnetic fi
in the film and to calculate the characteristics of the elec
magnetic field on the probe that is moved~scanned! along
the film surface at some fixed distanced. The field detection,
which represents itself a separate problem, will not
touched in the present paper.

We shall treat the dielectric film as a system ofN mono-
layers located at a distancea from one another. The atom
inside the monolayers possess a discrete spatial distribu
In a stationary case the equation for the local electric-fi
strength on the probeEp8(r ,t)5Ep(r )exp(2ivt) ~Refs. 32
and 33! can be written down in the form

Ep~r !5AI~r !1 i
2

3
k0

3apEp~r !1a(
j 51

N

(
aj

¹r3¹r

3Ej~raj

i !G~Raj
!, ~1!
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wherer5(x,y,z) is a radius vector of the probe position;a
is the microscopic polarizability of the atoms inside the film
which is assumed to be independent of the field.G(R)
5exp(ik0R)/R is the Green function of Helmholtz equation
k05v/c is the vacuum wave number,Raj

5r2raj
, Raj

5uRaj
u, raj

5(raj

i ,zj ). We have also introduced the notatio

Ej~raj

i !5E~raj

i ,zj !, zj52~ j 21!a, j 51,N. ~2!

The reference frame is chosen in such a manner thatz axis is
perpendicular to the film surface. The second term on
right-hand side~rhs! of Eq. ~1! describes the Lorentz radia
tion damping.32,34In spite of the fact that the radiation damp
ing makes usually a small contribution into the resultant fi
the consideration of this term is of principal significance.
one does not take it into account the energy conservatio
violated ~see Ref. 35 and references therein!.

Let ral
5(xal

,yal
,zl) be a radius vector of some atom

the l th monolayer. Then for the local field at the position
this atom we have

El~ral

i !5EI l ~ral

i !1 i
2

3
k0

3aEl~ral

i !1ap¹ral
3¹ral

3Ep~r !G~Ral
!1a(

j 51

N

(
aj

¹ral
3¹ral

3Ej~raj

i !G~Ralaj
!, l 51,N, ~3!

whereEI l (ral

i )5AI(ral
), Ralaj

5ural
2raj

u. Note that the term

with raj
5ral

has to be excluded from the summation.

We can look for the solution in thel th monolayer of the
film in the form

El~ral

i !5El
0~ral

i !1El
p~ral

i !, ~4!

and in addition we impose a requirement that the fi
El

0(ral

i ) has to satisfy the equation

El
0~ral

i !5EI l ~ral

i !1 i
2

3
k0

3aEl
0~ral

i !1a(
j 51

N

(
aj

¹ral
3¹ral

3Ej
0~raj

i !G~Ralaj
!. ~5!

Then from Eqs.~1! and ~3! it follows that the fieldsEl
p and

Ep will be the solutions of the system of equations

Ep~r !5AI~r !1 i
2

3
k0

3apEp~r !1a(
j 51

N

(
aj

¹r3¹r

3Ej
0~raj

i !G~Raj
!1a(

j 51

N

(
aj

¹r3¹r

3Ej
p~raj

i !G~Raj
!, ~6!
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El
p~ral

i !5 i
2

3
k0

3aEl
p~ral

i !1ap¹ral
3¹ral

3Ep~r !G~Ral
!

1a(
j 51

N

(
aj

¹ral
3¹ral

3Ej
p~raj

i !G~Ralaj
!. ~7!

The physical meaning of the fieldsEl
0 andEl

p is the follow-
ing. El

0 is the local field inside the film without consideratio
of the contribution made by the probe. This contribution
taken into account by means of the fieldEl

p . Thus for the
solution of the problem stated above it is necessary firs
solve the unperturbed problem~5!. Then using the obtained
solution one can determine the perturbation of the field
side the film caused by the probe and calculate the b
influence of this perturbation on the field at the position
the probe~6! and ~7!. However, before dealing with thi
general problem we shall estimate the perturbation in
film caused by the probe and find out under which conditio
it is considerable.

III. ESTIMATE OF THE PERTURBATION CAUSED BY
THE PROBE

In this section we shall estimateEl
p which enters Eqs.~6!

and~7!. For that purpose one can neglect radiation damp
terms in Eqs.~6! and~7!. Our starting point is the following
The perturbation of the field in the mediumEl

p , which is
caused by the probe, decreases rapidly with the increas
the distance between the surface and the probe. If in add
we take into account that the influence of atoms on one
other also rapidly decreases with the distance, one can c
to the conclusion that the probe as well as the nearby at
will be influenced mainly by the atoms located in the near
vicinity around them. Thus it is necessary to find the fie
Ep(ra) in the direct vicinity of the probe. Let us estimate fir
the size of this region.

One can assume that the behavior of the fieldEl
p has the

same features as that induced by the probe

El
p~ral

i !}F S 3~EpRal
!Ral

Ral

5
2

Ep

Ral

3 D 2 ik0S 3~EpRal
!Ral

Ral

4

2
Ep

Ral

2 D 2k0
2S ~EpRal

!Ral

Ral

3
2

Ep

Ral
D Gexp~ ik0Ral

!.

~8!

Taking into account that the field on the probe is defined
the atoms in the near zone, one can keep in Eq.~8! only the
terms proportional toRal

23. We substitute the correspondin

expression into Eq.~7! and replace the summation by int
gration. As a result of this the expression for the third term
the rhs of Eq.~7! takes the form
11540
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(
aj

¹ral
3¹ral

3Ej
p~raj

i !G~Ralaj
!

→arE
Ss

S

¹r3¹r3Ep~r 8!G~R!dr 8, ~9!

with r being the macroscopic concentration of atoms;R
5ur2r 8u. The integration in Eq.~9! is carried out over the
film volume limited by the external surfaceS. In order to
prevent the interaction of the atom with itself a small regi
limited by the spherical surfaceSs centered at the observa
tion point has to be excluded from the integration. The sizes
of this small region is of the order of lattice constant. In R
10 it was shown that in order to achieve the complete co
spondence passing from discrete to continuous atomic di
bution one has to puts5 3

4 a.
Let us determine the region of space, atoms from wh

make the main contribution to the field on the atom near
to the probe. Letd be a tolerance of the calculations of th
dipole field. Then

12E
Ss

SL
¹ r3¹r3Ep~r 8!G~R!dr 8Y

E
Ss

S

¹ r3¹r3Ep~r 8!dr 8G~R!dr 85d. ~10!

Integration in the denominator and in the numerator in E
~10! is carried out over the film volume and over the sphe
cal segment with the radiusL centered at the position of th
atom nearest to the probe, respectively. Taking into acco
Eq. ~8! we obtain from Eq.~10! the following estimate for
the radius of the sphereL within which it is necessary to
calculate the fields on the atoms:

L'sd21/3. ~11!

Let d50.1%, thenL'7a. Note that in the calculations on
can use even lower values ofL, because in Eq.~7! there is
also the field induced by the probe and compared to this fi
the influence of the remote atoms is less. The conclusion
only the neighboring atoms contribute to the field at the s
of probe in the near-field regime is in agreement with t
results of Ref. 36, where the influence on the probe cau
by microscopic dielectric spheres located at the surface
been calculated. It was shown that the lattice of 535 spheres
makes the main contribution. The increase of this area d
not influence the final result.

Performing analogous calculations for Eq.~6! we obtain
that the main contribution to the field on the probe is ma
by the atoms located inside the sphere with the radiuL
centered at the probe position. Thus the system of Eqs.~6!
and~7! is reduced to the system of few linear algebraic eq
tions, which can be solved numerically after the fieldEl

0 is
obtained from Eq.~5!. However, as it will be shown below in
many situations it is not even necessary to solve this sys
of equations due to the negligible contribution ofEp.
7-3
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For the sake of distinctness we assume the probe to
located above some surface atom of the film. The field
duced by the probe at the position of this atom is determi
by the expression

Ee f f'2apEp /d3, ~12!

whered is the distance between the probe and the atom
formula ~12! we have neglected the retardation and the fi
on the probe is chosen to be polarized parallel to the fi
surface assuming that the variations of the direction of
polarization vector does not influence much the final resu
It has been shown above that in the calculations of the fi
on the probe it is enough to take into account the ato
located inside the sphere with the radiusL. The rest of the
film does not influence the probe much. So we shall estim
the influence on the probe, caused by the atoms loc
within the spherical segment centered at the position of
atom below the probe. Obviously, the microscopic field a
plitude on the atom under consideration is larger than tha
the other atoms of the film. The upper estimate of the fi
amplitude at the position of this atomEmax is given by

uEmaxu<uEe f fu@121.71C ln~L/s!#21, ~13!

where the dimensionless parameterC5ar is a volumic
polarizability.27 We shall assume that the field on any ato
inside the spherical segment is constant and equal to the
on the central atomEmax. It is obvious that in this approxi-
mation the influence on the probe caused by the sphe
segment is larger than it is. Our calculations are approxim
so we replace the summation by the integration. Calcula
the field at the position of the probe we get an upper estim
of the last term on the rhs of Eq.~6!,

uER
e f fu,1.71CuEmaxu ln~11L/d!. ~14!

Taking into account Eqs.~12!–~14!, we get a condition unde
which one can neglect this term:

d3

ap
@

1.71C ln~11L/d!

@121.71C ln~L/s!#
. ~15!

Note that the condition~15! does not depend on the way o
excitation of the surface atoms. It remains the same if
atoms are excited by a wave incident from the side of
probe, by an evanescent wave, or by the wave radiated by
probe itself.

In Eq. ~15! ln(L/d11) and ln(L/s) are of the order of
unity. Therefore one can rewrite Eq.~15! in a simpler form

d3

ap
@

1.71C

121.71C
. ~16!

Usually for dielectric mediaC;0.1 andd3/ap;10 at the
distances from the surface equal to one lattice const
Therefore inequality~16! is satisfied at the distances equal
or greater than one lattice constant.

At the distances between the probe and the surface
that the influence of discrete atomic distribution is negligib
but the retardation is still unimportant the calculation of t
field on the probe reduces to the electrostatic problem of
11540
be
-
d

In
d

e
s.
ld
s

te
ed
e
-
n

d

ld

al
e,
g
te

e
e
he

t.

ch

e

calculation of the dipole field near a dielectric surface. F
the fieldER

e f f at the probe position we get

ER
e f f'

p

4

C

11
2

3
pC

ap

d3
@Ep23~Epn!n#, ~17!

wheren5(0,0,1) is a unit vector perpendicular to the mon
layer. We write here ‘‘',’’ because in the derivation of Eq
~17! we have used the Lorentz-Lorenz formula for the refra
tive indexn:

n25
11~8p/3!C

12~4p/3!C
, ~18!

which does not describe properly optical properties in
surface region.37 The condition which allows us to neglec
the last term in Eq.~7! is given now by

d3

ap
@

p

4

C

11
2

3
pC

. ~19!

The condition~19! is in a good agreement with Eq.~16!,
albeit the former imposes less strict limitations ond.

Thus, at the distances between the probe and the sur
of the order of one lattice constant, the back influence of
film on the probe can be safely neglected. In this approxim
tion the field on the probe is determined by the field of t
external wave and the fieldEl

0 . The problem of calculation
of the fieldEl

0 will be discussed in the next section.

IV. DISTRIBUTION OF THE FIELD INSIDE THE FILM
„SOLUTION OF THE UNPERTURBED PROBLEM …

Let the external wave be a plane one, i.e.,

AI~r !5E0I exp~ ik0r !,

k05k0~sinQ I cosF I , sinQ I sinF I ,2cosQ I !, ~20!

whereQ I is an incident angle and the azimuthal angleF I
defines the orientation of the incidence plane. The atom
the monolayers are assumed to form a regular periodic st
ture with elementary translations vectorsa1 anda2. Without
loss of generality one can put

a15ai~1,0,0!, a25ai~a,b,0!. ~21!

For the sake of simplicity the vectorsa1 anda2 are assumed
to be the same for all monolayers. The generalization
different a1 and a2 for different monolayers can be easi
done. In these notations the radius vector of some atom
the j th monolayer has the form

raj
5r j

01amn5r j
01ma11na2, ~22!

wherem andn are integers. The vectorr j
0 has the following

form:

r j
05a1 ja11a2 ja21zjn, 0<a1(2)j,1. ~23!
7-4
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Nonvanishinga1 j anda2 j take into account possible parall
shifts of the atomic planes relative to one another.

Making use of the principle of parallel translational sym
metry the solution for the local field in thel th monolayer can
be written down in the form12,13,20,22,24

El
0~r i!5El

0 exp~ ik0r i!. ~24!

We substitute Eqs.~20! and ~24! into Eq. ~5!. Now it is
necessary to calculate the lattice sums in Eq.~5!. Due to the
slow convergence of lattice sums their direct calculation i
very laborious and in fact impracticable computational pro
lem. In order to compute them one can use ‘‘the Lore
method’’ according to which the atoms located near the
servation point are treated as discretely distributed and
atoms outside a fictitious boundary are treated as cont
ously distributed. This method can be employed either
well-ordered or for random media and for the observat
points either inside or outside of the media. This way
computation has been employed in various modifications
Refs. 10, 11, 20, 37, and 38. On the other hand, if the ato
distribution in the monolayers is regular, this separation
discrete and continuous regions is not necessary anymor
this case there exists another way of computation of the
tice sums which is rapidly convergent and more conven
for the interpretation of the field behavior near t
surface.12,24 It is this latter way that will be employed in th
present paper.

If the observation point is not located in the monolay
over which the summation is carried out (j Þ l ) the lattice
sums can be converted to the form which is more appropr
for numerical calculations, making use of the formula for t
dipole field induced by thej th monolayer at some pointr ,
which has been obtained in Ref. 24 by means of Fou
transform~Ewald’s threefold integral transform!:

E~r ,zj !5a(
aj

¹r3¹r3Ej
0 exp~ ik0raj

i !G~Raj
!

5 (
p,q52`

`

Apq~r ,zj !exp~ ik0
i r !, zÞzj , ~25!

Apq~r ,zj !52
2p ia

ua13a2u @kpq3~kpq3Ej
0!#

3
exp@ i ~kpq2k0

i !~r2r j
0!#

kpq
,

kpq5H ~k0
i 1gpq

i ,kpq! if z.zj ,

~k0
i 1gpq

i ,2kpq! if z,zj ;
~26!

kpq5Ak0
22~k0

i 1gpq
i !2, gpq

i 5pg11qg2 ~27!

k0
i 5k0~sinQ I cosF I , sinQ I sinF I ,0!.

The vectors of the reciprocal latticeg1 andg2 are related to
the vectorsa1 anda2 as
11540
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a23n

ua13a2u
, g252p

n3a1

ua13a2u
. ~28!

The choice of the vectorsa1 and a2 can be arbitrary. How-
ever, it makes sense to choose them in such a manner
they have a minimal length. Then the length of the vectorsg1
and g2 will be also minimal. Such a choice of the basis
convenient, because in this case the decay coefficients o
evanescent waves for square lattices and for slightly an
tropic lattices increase with the parameterk5p21q2.

Formula~25! is a useful representation of the lattice sum
for numerical calculations because the sums overp, q con-
verge much faster than the sums overaj , provided that
uz2zj u>ai . The calculations carried out in the next secti
show that in the sum overp, q it is enough to keep only few
summands with minimalgpq

i .
On the other hand, formula~25! has a very clear physica

interpretation. It represents itself a decomposition of the fi
induced by the monolayer of discrete atoms on propaga
and evanescent waves. Indeed, ifuk0

i 1gpq
i u,k0 the quantity

kpq is real and we have propagating waves. Otherwise,kpq
is imaginary and we have exponentially decaying waves
more detailed discussion of the role of propagating and e
nescent waves will be given in the next section.

Note that the quantitiesApq(r ,zj ) with p,qÞ0, i.e., the
evanescent harmonics, are periodic functions ofx andy and
they possess the following property of the translational sy
metry:

Apq~r1ma11na2 ,zj !5Apq~r ,zj !. ~29!

As we shall see further on, this property of the evanesc
harmonics leads to the fact that the intensities of the reflec
and transmitted waves near the film surface are perio
functions ofx andy.

If the observation pointr is at the position of some atom
inside the monolayer over which the summation is carr
out (j 5 l ), then for the calculation of the lattice sum it
convenient to employ the method based on Ewald’s one
integral transform.12 Separating the initial sum over the re
lattice on the sums over the real and reciprocal lattices
gets the following expression for the dipole field:12

a(
aj

¹r3¹r3Ej
0 exp~ ik0raj

i !G~Raj
!uz5zj

1 i
2

3
k0

3aEj
0 exp~ ik0

i r !5a f̂ ~k0!Ej
0 exp~ ik0

i r !,

~30!

where the term withr i5raj

i has to be excluded from th

summation. Tensorf̂ is a symmetric one and the componen
f xz , f yz , f zx , f zy vanish. It has the form12
7-5
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f nm~k!5cnm2F2

3
ik3erfcS ik

2ED
1

4E

3Ap
~k22E2!expS k2

4E2D 2
2

3
ik3Gdnm ,

cnm5
ip

ua13a2u (
p,q

Fk2dnm2kpqnkpqm

kpq
Dpq~11t!1hSpqG

1
1

2 (
n,m

exp~ ikanm!

anm
3 $Gnm

1 @dnmGnm
2 1anm

n anm
m Gnm

3 #

1Gnm
4 @2dnmanm1anm

n anm
m Gnm

5 #1c.c.%, ~31!

wheren,m5x,y,z, anm5uanmu,

h5dmzdnz , t5~21!dmz~21!dnz,

Dpq5erfcS 2
ikpq

2E D , Spq5
i4E

Ap
expS kpq

2

4E2D ,

Gnm
1 5exp~2 ikanm!erfcS anmE2

ik

2ED ,

Gnm
2 5212 ikanm1k2anm

2 ,

Gnm
3 52k21

3ik

anm
1

3

anm
2

,

Gnm
4 5

2E

Ap
expS 2E2anm

2 1
k2

4E2D , Gnm
5 5

3

anm
12E2anm .

The rate of convergence of the sums in Eq.~31! is deter-
mined by the parameterE, which has a dimension of th
inverse length. It appears as a result of the formal separa
of the initial sum over the real lattice on the sums over
real and reciprocal lattices. This parameter has no phys
meaning, it must be only real and positive and its choice
be arbitrary.12 However, it makes sense to choose the para
eterE in such a manner that the rates of convergence for
sums over (p,q) and (m,n) are the same. One can show th
this requirement is fulfilled, provided thatE5Ap/ua13a2u.
Substituting this value into Eq.~31! one can estimate th
maximal values of (n,m) and (p,q) which has to be taken
for the calculation of the lattice sums with the tolerance«.
Taking into account that at large x erfc(x)
'exp(2x2)/(xAp), we get the condition

exp~2panm
2 /ua13a2u!'«. ~32!

Exact numerical calculations for a square lattice show tha
the summation is restricted by the terms withn,m,p,q
50,61 the relative tolerance of the calculations of the
pole field is about 1026, which is in a good agreement wit
the estimate~32!. Therefore our choice of the parameterE
appears to be very convenient for carring out numerical
culations.
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Note that in the computer calculations of the dipole fie
the algorithm based on Ewald’s onefold integral transform
five to ten times faster than that based on the Lore
method.

Taking into account identities~25! and~30! the system of
Eqs.~5! can be rewritten in the following form:

@12a f̂ ~k0!#El
05EI l 2 i2pCa(

j 51

N

8 (
p,q52`

`

@kpq3~kpq

3Ej
0!#

exp@ i ~kpq2k0
i !~r l

02r j
0!#

kpq
,

l 51,N, ~33!

whereC5a/(aua13a2u),

EI l 5E0I exp~ ik0
'ral

!5E0I exp~2 ik0 cosQ Izl !, l 51,N.
~34!

The prime at the sum sign in Eq.~33! means that the sum
mand with j 5 l is excluded.

The results of numerical solution of the system of Eq
~33! for the cubic lattice ands-polarized incident wave are
shown in Fig. 1. In order to demonstrate to the fullest ext
the characteristic features of the field behavior near the
surface we have used a rather high value of the volu
polarizability (C50.2). Normally in the optical rangeC
50.04–0.15 which corresponds to the refractive indexn
51.27–2.46.39 However, for some materialsC can be higher.
For instance,nGaP(l05564 nm)53.42 ~Refs. 23 and 40!
and nSi(l05620 nm)53.94,22,40 which corresponds to
CGaP50.19 andCSi50.2, respectively.

The results of the calculations according to the Airy fo
mulas are also shown for comparison in Fig. 1. We have u
the Airy formulas for two cases:~i! the film occupies the
region of space2a(N21),z,0, and~ii ! the film occupies
the region of space2a(N21/2),z,a/2. In the former case
the corresponding formula has the form33

Ey~r !5
t'@exp~ ik0nsT

(2)r !2r' exp~ iw!exp~ ik0nsT
(1)r !#

12r'
2 exp~ iw!

3
E0I

y

12~4p/3!C
, ~35!

sT
(6)5~2sinQT,0,6cosQT!,w52k0hn cosQT, ~36!

whereQT is the angle of refraction,t' and r' are Fresnel
coefficients of transmittance and reflectance fors polariza-
tion, respectively,h5a(N21) is a film thickness,n is a
refractive index defined by the Lorentz-Lorenz relation~18!.

In the latter caseh5aN, and in Eq.~35! one has to make
the replacementr→r2na/2, E0I

y →E0I
y exp(2ik0acosQI/2).

It seems that the first form of the Airy formulas better corr
sponds to the initial statement of the problem. However,
results of numerical solution of the system~33! are in a bet-
ter agreement with the second form. The reason is that in
former case the macroscopic densityr which enters the Airy
7-6
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FIG. 1. Coordinate dependences of the amplitude@~a! and ~c!# and the phase@~b! and ~d!# of the local electric-field strength inside th
film: —— numerical solution of the system of Eqs.~33!; •2•2 calculation according to the Airy formulas for the case when the fi
occupies the region of space2a(N21),z,0; 222 calculation according to the Airy formulas for the case when the film occupies
region of space2a(N21/2),z,a/2. The calculations are performed for the cubic lattice. The external wave is polarized along one
translation vector of the lattice (s polarization!. The parameters arek050.01 nm21; a50.5 nm; N520; Q I530°; C50.1 @~a! and ~b!#;
C50.2 @~c! and ~d!#.
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formulas appears to be higher than its true value (aua1
3a2u)21, but in the latter caser in the Airy formulas is
equal to (aua13a2u)21 as it should be.

As it follows from the numerical calculations, the consi
eration of the discrete structure influences the most sig
cantly the behavior of the field amplitude near the film s
face where rapid oscillations of the local field take place. T
amplitude of these oscillations and the penetration depth
the film volume increase with the parameterC. One can also
see on Fig. 1 that the consideration of the discrete struc
does not influence much the phase of the field. This me
that the wave vector of the field remains almost the sam
any point inside the film. Therefore the real part of the
fractive index of the field is constant. Far from the boun
aries the distribution of the field is regular and approximat
coincides the results given by the Airy formulas.
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V. FIELD ON THE PROBE

When the system of Eqs.~33! is solved and all the quan
tities Ej

0 , j 51,N are determined, one can calculate the fie
at the probe position:

E~r !5AI~r !22p iCa(
j 51

N

(
p,q52`

`

@kpq3~kpq3Ej
0!#

3
exp@ ikpq~r2r j

0!#

kpq
exp~ ik0

i r j
0!. ~37!

Under the condition~15! the fieldE(r ) equals to the fieldEp
acting on the probe. Let us analyze in detail the express
~37!.
7-7
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A. Field in the wave zone

Let us consider first the case when the observation poin
in the wave zone, i.e.,uz2zj u→`. In this case the summand
with p,qÞ0 do not contribute to the resultant field due to t
following reason. All the quantitiesgpq

i at p,qÞ0 are of the
order of 2p/a and they are much greater thank0 if k0a!1.
Thereforekpq ~27! are purely imaginary and all the corre
sponding summands in Eq.~25! decay rapidly with the in-
crease of the distance from the surface. Only the term w
k00 survives. Ifz.zj , k00 represents itself the wave vecto
of the reflected wavekR , otherwisek005k0. Therefore in the
wave zone we have plane propagating waves:

E~r !5H AI~r !1ER
f ar exp~ ikRr !, z.0;

ET
f ar exp~ ik0r !, z,2a~N21!;

ER
f ar52 i2pC

a

k0 cosQ I
(
j 51

N

@kR3~kR3Ej
0!#exp~2 ikR

'r j
0!,

ET
f ar5E0I2 i2pC

a

k0 cosQ I
(
j 51

N

@k03~k03Ej
0!#

3exp~2 ik0
'r j

0!. ~38!

These fields are transverse, becausekRER
f ar5k0ET

f ar50. The
amplitudesER

f ar , ET
f ar do not depend on the coordinates.

The discrepancy between the values of the field of
reflected wave calculated under consideration of the disc
structure and according to the Airy formulas can be of
order of 10%. This discrepancy becomes larger with the
crease of the film thickness and with the increase of
parameterC ~Fig. 2!. The plots in Fig. 2 lead to the conclu
sion that at high enough film thicknesses (N>20) the Airy

FIG. 2. The difference between the reflected wave field in
far zone, calculated under (ER

f ar) and without (E0R) the consider-
ation of the discrete structure of the medium, as a function of
number of monolayersN which constitute the film. The calculation
are performed for the cubic lattice. The parameters arek0

50.01 nm21; a50.5 nm; Q I50°.
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formulas give a satisfactory description of the reflect
waves in the wave zone. In this situation our method
calculation becomes equivalent to that developed in R
25–27. As for the dependence on the incident angle,
maximal discrepancy between the amplitudes of the reflec
wave calculated under consideration and without consid
ation of the discrete structure is observed at normal in
dence. With the increase of the incident angle this discr
ancy gradually vanishes~Fig. 3!. In the calculations
presented in Figs. 2 and 3 we used the Airy formulas for
case when the film occupies the region of the space2a(N
21/2),z,a/2,33

E0R
y 5

r'@12exp~ iw!#

12r'
2 exp~ iw!

exp~2 ik0a cosQ I !E0I
y . ~39!

Here we use the same notations as in formula~35!. Besides,
as for the field inside the film, the results of our calculatio
are in a better agreement with the Airy formulas compared
the case when the film occupies the region of space2a(N
21),z,0. We would like to note also that for th
p-polarized wave the field of the reflected wave near
Brewster angle does not vanish.41

B. Field in the near zone

If the observation point is near the surface, one can
serve a number of characteristic features in the field beha
which we are going to discuss now. For the sake of simp
ity we shall restrict ourselves, if the opposite is not sta
explicitly, by the case of quadratic lattice (a1'a2 , a15a2
5a; g15g25g52p/a).

e

e

FIG. 3. The dependence of the electric-field strength amplit
of the reflected waveER

f ar on the incident angle of the externa
wave Q I in the wave zone fors ~1! and p ~2! polarizations: ——
under consideration of the discrete structure; – – – according to
Airy formulas. The calculations are performed for the cubic latti
The parameters arek050.01 nm21; a50.5 nm; N53; C50.2.
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DISCRETE STRUCTURE OF ULTRATHIN DIELECTRIC. . . PHYSICAL REVIEW B65 115407
1. Contributions of propagating and evanescent harmonics

At a small distance from the surface the summands w
p,qÞ0 in Eq. ~37! can make a noticeable contribution. L
us estimate this contribution considering the followi
example. As it was mentioned above in the discussion
formula ~25!, it is convenient to single out in Eq.~37!
evanescent wavesEk5(p21q25kApq exp(ik0

i r ) with the
decay coefficients dependent onk. The ratio of the ampli-
tudes of the evanescent harmonicsEk for k50 ~plane
reflected wave!, 1, 2, 4 is shown in Fig. 4. Note tha
the relative contribution of differentEk strongly depends
on the distance between the probe and the film surfa
The behavior shown in Fig. 4 is typical for the distanc
greater or equal to one lattice constant. Usually if o
takes into account the modes withp,q50,61,62 the
tolerance of the calculations is less than 1%. As it follo
from the dependences in Fig. 4, atk0a5p ~a typical
value for photonic crystals and optical lattices! the monolay-
ers do not fill the evanescent waves radiated by
other monolayers. Atz52a and k0a50.005 the ratio of
decaying and nondecaying field components is about
and rapidly decreases with the increase ofk0a. If a!1/k0,
theng@k0, and as it follows from Eqs.~25!–~27! the form
of the evanescent waves is almost independent of the
dence angle of the external wave. Coordinate dependenc
the total amplitude of the evanescent harmonics is show
Fig. 5.

The dependence of the distanceLe , at which the ampli-
tudes of the evanescent and propagating components
equal, on the parameterk0a is depicted in Fig. 6. Due to the
rapid decay of the evanescent harmonics the quantityLe can
be treated as a distance from the surface up to which
contribution of the evanescent component to the resul
field is essential. From the dependence shown in Fig.

FIG. 4. The ratio of the evanescent field amplitudes near
surfaceEk to the amplitude of the reflected field in the wave zo
ER

f ar . The calculations are performed for the cubic lattice. The
rameters arek050.01 nm21; Q I50; the distance between the ob
servation point and the surface is equal toa; 1 – uE1 /ER

f aru; 2 –
uE2 /ER

f aru; 3 – uE4 /ER
f aru.
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follows that the contribution of the evanescent componen
essential at the distances less than two lattice constants.
field radiated by the monolayers, which are located at lar
distances from the observation point, can be treated as pr
gating plane waves.

The distanceLe can be also analytically estimated on th
basis of the following consideration. As it follows from th
dependences depicted in Fig. 4 the leading contribution
the decaying wave is made by the evanescent wave witk
51. Therefore the distanceLe can be approximately deter
mined from the condition

e

-

FIG. 5. Coordinate dependences of the ratio of the total am
tude of the evanescent wavesEev to the amplitude of the reflected
wave field in the wave zoneER

f ar . The calculations are performe
for the cubic lattice. The parameters are:k050.01 nm21; a
50.5 nm; Q I50°. The observation point is above an atom of t
film.

FIG. 6. The dependence of the distanceLe , at which the ampli-
tudes of the evanescent and propagating parts of the reflected
field are equal to one another, on the parameterk0a: —— exact
numerical calculations;222 an estimate according to formul
~42!. The calculations are performed for the cubic lattice,Q I50°.
7-9
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uE1u

uER
f aru

51. ~40!

In the casek0a!1 we havekpq'(gpq
i ,igpq

i ). Then for a
monolayer we can write the condition~40! anew as

2
2p

k0a
expS 22p

Le

a D51, ~41!

from which we get

Le

a
5

1

2p
lnS 4p

k0aD . ~42!

As it follows from the dependences presented in Fig. 6,
estimate~42! is in a good agreement with the results of exa
numerical calculations at smalla.

We can approximately estimate the distanceLe for a semi-
infinite medium in a similar manner assuming that the fi
of the reflected wave in the wave zone and the field of
transmitted wave in the medium are defined by Fresnel
flection and transmission coefficientsr F andtF , respectively.
Then for s-polarized external wave after minor algebra w
get

Le

a
5

1

2p
lnU 8p2CtF

s

r F
s S 12

4p

3
CDU . ~43!

In the case of the normal incidencer F
s 52(n21)/(n11)

and tF
s 52/(n11). Taking into account the Lorentz-Loren

formula ~18!, we obtain

Le

a
5

1

2p
ln@4p~n11!#. ~44!

From Eq.~44! it follows that if the refractive indexn is in the
range 1.1–4.0, thenLe /a is in the range 0.5–0.7. In fac
Le /a has to be higher, because as it follows from the num
cal calculations in Sec. IV the local field inside the film
the first atomic layer is higher than that in the ‘‘bulk.’’

In the case ofp-polarized external wave incident on
semi-infinite medium the estimation ofLe will be given by
an equation which has similar structure as Eq.~43! with tF

s

andr F
s replaced bytF

p andr F
p , respectively. In this case nea

the Brewster angle the reflection can be rather small but
noticeable. In such a regime we get the values ofLe /a which
are somewhat bigger than 1. Therefore our estimations s
that the propagating and evanescent harmonics can m
comparable contributions to the optical response of the
dium at the distances from the surface of the order of
lattice constant.
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2. Nontransversality of the total fields of reflected and
transmitted waves

In distinction to the wave zone the polarization vector
the field in the near zone has no definite direction. Its m
nitude and the direction depend on all three spatial coo
nates. Indeed, the polarization vector of a certain evanes
harmonic on the rhs of Eq.~37! is perpendicular to the wave
vector kpq , which in its turn has different orientations de
pending onp andq. In addition, each harmonic has its ow
decay coefficientkpq and the behavior of the harmonic alon
the surface is defined by its own vectorgpq

i . Carrying out the
summation over all the harmonics we get the properties
the polarization vector mentioned above. In particular, in
case of the normal incidence of the external wave with
polarization vector along they axis the field near the film
surface has nonvanishingx andz components@Figs. 7~a! and
7~c!#.

For the purposes of further analysis let us estimate
ratio of the evanescent component of the reflected wave fi
to the incident wave field. From the Airy formulas for thes
polarization it follows that in the case of ultrathin film th
local field inside the film isE0'E0I /@12(4p/3)C#. The
evanescent field at the distance of one lattice constant f
the surface is mainly determined by the harmonicE1. For the
square lattice E1522(2p)2C exp(22p)E0'0.147C/@1
2(4p/3)C#E0I . Even for C50.2 the ratioE1 /E0I'0.2.
Thus the amplitude of the evanescent wave at the dista
from the surface of the order of one lattice constant is usu
much less than the incident field amplitude. Therefore o
can conclude that in the field of the probe the main con
bution is made by the component of the field directed alo
the polarization vector of the external wave. In particul
comparing the intensities of thex and z components of the
field @Figs. 7~a! and 7~c!# with the y component@Fig. 7~b!#
one can notice that the contribution of thex and z compo-
nents is small and the field behavior near the surface
mainly determined by they component.

One can come to one more conclusion regarding the
rection of the field polarization vector near the film surfac
Under the normal incidence of the external wave in the c
when there are no parallel shifts of the atomic planes rela
to one another, i.e.,a1 j5a2 j50, j 51,N, at the observation
points above the atoms thez component of the reflected
wave field vanishes~Fig. 7!. Indeed, taking into account th
properties of the tensorf̂ and summing in Eq.~33! the har-
monics with equalkpq (kpq5k2p,2q), we get that (Ej

0)x,y

are independent of (Ej
0)z . The z components of the field

inside the film satisfy to the system of homogeneous eq
tions which has only the trivial solution (Ej

0)z[0, j 51,N.
Then it follows immediately from Eq.~37! that at the obser-
vation points above the atoms (Ep)z50.

3. Dependence of field intensity on the longitudinal coordinate
x and y

The electromagnetic field intensity is defined by
strength squared. In a general case it can be calculated
merically. But in the case of the normal incidence (Q I50)
one can obtain rather simple analytical expressions. Le
7-10
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DISCRETE STRUCTURE OF ULTRATHIN DIELECTRIC. . . PHYSICAL REVIEW B65 115407
consider this case. From the plots in Fig. 6 it follows that
component of the field, which is a periodic function of lo
gitudinal coordinates, is induced mainly by the surface
oms. The bulk atoms produce only a constant backgrou
Thus in order to analyze the behavior of the evanesc
waves it is enough to consider only one surface monola
@zj50 in Eq. ~37!#. For the qualitative analysis of the fiel
behavior near the film surface it is enough to keep in Eq.~37!
only the harmonics with (p,q)5(1,0), (21,0), (0,1),
(0,21) ~we assume that the quantitiesg1 andg2 differ from
one another no more that two times!. The amplitudes of all
other harmonics are at least one order of magnitude le42

FIG. 7. The ratio of the intensities ofx ~a!, y ~b!, and z ~c!
components of the electromagnetic field on the probe (I x;uExu2,
I y;uEyu2, I z;uEzu2) to the intensity of the incident waveI 0 on the
coordinatesx andy. The parameters are the number of monolay
in the film N520; C50.2; k050.01 nm21; a50.5 nm; d5a;
Q I50°; F I50°. The intensity minima correspond to the atom
positions. In spite of the fact that the external wave is polariz
along they axis, optical response of the medium contains all th
components.
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Omitting the unimportant constant factor after an element
algebra we obtain an approximate expression for the fi
intensity at the probe position:

I'S E0I1Re~ER
f ar!24pCa (

i 51,2

~giE0I !

E0I

3$Re~giE1
0!cos@gi~r2r1

0!#2giRe~E1z
0 !sin@gi~r2r1

0!#%

3
exp~2giz!

gi
D 2

, ~45!

which is valid for the films of arbitrary thickness. HereE1
0 is

an amplitude of the unperturbed part of the field in the fi
~surface! monolayer. In fact, this expression is the seco
power of the real part of the field component at the pro
position, directed along the polarization vector of the ext
nal field. The imaginary part of this component and all oth
components are negligible.

From the expression~45! one can see that in general th
intensity minima and maxima are shifted relative to t
atomic positions. This is due to the term which containsE1z

0 .
Due to the fact that even in the case of the normal incide
the dependence of the direction of the vectorE1

0 on the di-
rection of E0I is rather complicated, the location of the in
tensity minima and maxima depends onE0I in a complicated
manner as well. Let us consider the case when there ar
parallel shifts of the atomic planes relative to one another.
it was shown above, in this caseE1z

0 50 and the expression
~45! becomes simpler. In this case the intensity minima
located exactly at the positions of the atoms. Indeed, at th
points cos@g1(r2r1

0)#5cos@g2(r2r1
0)#51. Thus formula

~45! explains the contrast reversal, which has been obtai
in Refs. 36 and 43 by means of numerical calculations.

In an analogous manner one could assume that the in
sity maxima are located in the centers of the element
cells, where the cosines are equal to21. However, this is
not exactly the case as one can see in Fig. 8. With the cha
of the mutual orientation of the polarization vector of th
external wave and the lattice elementary translations vec
the location of the intensity maxima changes as well. T
reason is the following. Let the polarization vector of th
external wave be perpendicular to one of the vectors of
reciprocal lattice, for instance, (E0Ig1)50. The field behav-
ior along the directiona1 in this case is determined b
higher-order harmonics with the smallest decay coeffici
and with the nonvanishing component along the polarizat
vector of the external wave. Obviously, these are harmon
with upu5uqu51. In Eq.~45! in the square brackets one ha
to add one more term,

24pCa
~g11

minE0I !

E0I
Re~g11

minE1
0!

3cos@g11
min~r2r1

0!#
exp~2g11

minz!

g11
min

,

whereg11
min is one of the vectorsgpq with upu5uqu51, which

has the minimal length. At the observation points above

s

d
e
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atoms (r i5ra1

i ) this term is minimal, i.e., the intensit

minima are still above the atoms, even provided t
(E0Ig1)50 or (E1

0g1)50. The locations of the intensity
maxima can be found from the condition (g11

minr )5p62pk,
wherek is an integer. This condition fulfills not in the cente
of the elementary cells, as in the case when the direction
the polarization vector of the external waveE0I and the local
field inside the filmE1

0 does not coincide with any of th
translation vectors of the lattice@Figs. 8~b! and 8~c!#, but at
the pointsr i5ra1

i 1a1/2 or r i5ra1

i 1a2/2 @Fig. 8~a!#. Thus, in

distinction to the intensity minima locations, which are a
ways above the atoms, the locations of the intensity max

FIG. 8. The ratio of the electromagnetic field intensity on t
probe I to the incident wave intensityI 0. The parameters areN
520; C50.2; k050.01 nm21; a50.5 nm; d5a; Q I50°; F I

50° ~a!; 30° ~b!; 45° ~c!. The electromagnetic field intensity is
periodic function of the coordinatesx andy, and the period is equa
to the lattice constanta. The intensity minima correspond to th
atomic positions.
11540
t

of

a

depend on the mutual orientation of the field polarization a
the translation vectors of the lattice.

Formula~45! allows one to investigate the image contra
which is defined here as a maximal difference of the lig
intensity along a certain direction. In Refs. 4, 36, and 44
was pointed out that the field component parallel to the s
direction displays a better contrast than that perpendicula
this direction. Let us consider this problem in more deta
The image contrast in the directionai is determined by the
mutual orientation of the vectorsE0I , E1

0, andgi . The maxi-
mal contrast is reached at some angle betweenE0I and gi

when the coefficient (giE0I)Re(giE1
0) takes the largest value

This angle depends in general on the symmetry of the ato
distribution at the surface and on the atomic polarizabil
We are going to come back to this issue in our subsequ
publications.

The minimal contrast along the directiona1 for the lines
which pass through the atoms is achieved when the polar
tion vector of the external wave or the field vector in the fi
is perpendicular to the vector of the reciprocal latticeg1 ~par-
allel to the vector of the real latticea2) Eq. ~45!. Performing
numerical calculations, one can show that in general the c
ditions (giE0I)50 and (giE1

0)50 are satisfied at differen
directions of the polarization vector of the external wav
Thus in general there exist two angles at which contr
minima can be observed. The angle between the two di
tions of the polarization vector of the external field allow
one to get the information about the local field inside the fi
and therefore about the atomic polarizability.

Another situation occurs for the contrast along the lin
which pass through the centers of the elementary cells
this case the contrast minima are determined by the cond
of mutual compensation of the contributions from the h
monics with decay coefficientsg1 andg11

min . The compensa-
tion occurs at some anglefc between the polarization vecto
of the field inside the film and the vectorg1, which depends
on the symmetry of the atomic distribution at the surfa
The anglefc strongly depends on the distance from the s
face.

Let us consider the simplest case of the cubic lattice. U
der the normal incidence of the external wave the direct
of the polarization vector of the field inside the film coin
cides with that of the external field. In this case there are t
directions of the polarization vector of the external wave,
which one can observe the contrast minima along the li
which pass through the atoms. This corresponds to the s
ations when the polarization vector coincides witha1 or a2.
For the cubic lattice one can get an explicit expression
the anglefc at which one observes the minimal contra
along the lines which pass through the centers of the ce
The dependence of the anglefc on the distance between th
observation point and the surface is given by the appro
mate formula

sinfc521/4exp@2p~A221!d/a#, ~46!

which is valid only ford>a. The dependencefc(d) for the
cubic lattice is shown in Fig. 9. As one can see in the figu
7-12
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the anglefc can take the values of dozens of degrees at
distance from the surface of the order of one lattice const
The magnitude of the angle remains essential at the dista
of several lattice constants.

Thus changing the direction of the polarization vector
the external wave one can manipulate the image cont
One can determine the atomic positions and the symmetr
the crystal lattice detecting the intensity minima. Measur
the angle between the directions of the polarization vecto
the external wave, at which the minimal image contras
reached, one can get the information about the local fie
inside the film. Having on hand this information and meas
ing the anglefc between the translation vectors of the latti
and the polarization vector of the external wave one c
determine the distance between the probe and the surfa

The analysis based on Eq.~25! allows one to say tha
formula ~45! remains valid in the case of an arbitrary inc
dent angle of thes-polarized wave as well. One has to no
that in the near-field optical measurements it is more us
to work with p-polarized waves.36 In the case of arbitrary
incidence angle of thep-polarized wave the distribution o
the field in the near zone is essentially different. This h
been shown in Ref. 8 on the basis of numerical calculatio
We intend to give a detailed description of the field behav
in the near zone at arbitrary incident angles in our sub
quent publications.

FIG. 9. The angle between the minimal contrast direction a
the polarization vector of the external wavefc as a function of the
distance to the film surfaced. The calculations are performed fo
the cubic lattice,Q I50°.
D
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VI. CONCLUSIONS

We have solved a boundary problem of the linear class
optics devoted to the investigation of the electromagn
field behavior near the surface of a dielectric medium tak
into account its discrete structure. The main attention
been paid to the investigation of the near-zone optical pr
erties of dielectrics. It has been shown that at the distan
from the surface less than two lattice constants the beha
of the reflected and transmitted waves is entirely differ
from what we have in the wave zone. The intensity distrib
tion in the near zone allows one to determine the ato
positions at the surface.

We have shown that at the distances from the surf
larger than the interatomic distance in the film the pro
which measures the field does not significantly influence
field distribution in the film. In the present paper we ha
suggested a method of the optical control of the dista
between the probe and the surface. The method is base
the analysis of the near-field distribution at different dire
tions of the polarization vector of the external radiation.

At first glance the system treated in our paper~ultrathin
dielectric film without any substrate! seems to be unrealistic
However, it can be used for the investigation of the ne
zone optical properties of the films of arbitrary thickness
As we have shown the near-zone optical response of a
terial is defined mainly by the evanescent harmonics, wh
play an important role only within a few interatomic di
tances near the surface, because they decay very rapidly.
means that the bulk monolayers influence significantly o
the wave-zone optical properties and does not change m
the ratio between propagating and evanescent harmonic

Our results can be useful not only for the developmen
the ultrahigh resolution near-field microscopy, but also
the investigation of the optical properties of photonic cryst
in the long-wavelength approximation.

The results obtained in the present paper are valid
only in the case of an ideal crystal lattice, but also when
medium has only short-range order as in the case of
surfaces. Indeed, the methods based on the Fourier trans
and the Lorentz method give analogous results. At the s
time only the short-range order is important for the Lore
method and the magnitude of the dipole field is mainly d
termined by the atoms located at the distance from the
servation point of the order of 2–3 lattice constants. T
atomic distribution outside of this region does not practica
influence the field.

This work was supported in part by the Russian fede
program ‘‘Integration’’~grant A 0066!. K.V.K. is also grate-
ful to Deutsche Forschungsgemeinschaft and Alexander-v
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