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Cotunneling thermopower of single electron transistors
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We study the thermopower of a quantum dot weakly coupled to two reservoirs by tunnel junctions. At low
temperatures the transport through the dot is suppressed by charging &ffeaksmb blockade As a result
the thermopower shows an oscillatory dependence on the gate voltage. We study this dependence in the limit
of low temperatures where transport through the dot is dominated by the processes of inelastic cotunneling. We
also obtain a crossover formula for intermediate temperatures which connects our cotunneling results to the
known sawtooth behavior in the sequential tunneling regime. As the temperature is lowered, the amplitude of
thermopower oscillations increases, and their shape changes qualitatively.
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[. INTRODUCTION tooth, and also the amplitude of the oscillations was far
smaller than the one predicted in Ref. 9.

In the last few years a number of experiments have been The most significant difference between the experiments
performed in order to investigate the transport of electron®f Ref. 5 and Ref. 7 was that the temperature in the latter
through small conductors, such as metallic particles anavork was very smallT~0.006&?/C, in comparison with the
semiconductor quantum doté.0ne of the most commonly estimated temperatufB~0.06%2/C in Ref. 5. The authors
studied types of devices is thgingle electron transistor of Ref. 7 attributed the deviation of their data from the
which consists of a quantum d@r a small metal particle theory to the fact that the theory neglected the effects of
connected to two leads by tunnel junctions. The particle ig/irtual tunneling(cotunneling of electrons through the dot.
usually also capacitively coupled to an additional gate elecindeed, it is known that in the case of very low temperatures
trode, Fig. 1. The transport of electrons through the quanturgotunneling process¥sgive a dominant contribution to the
dot is strongly affected by charging effects. Indeed, when agonductance of single electron transistors. One can therefore
electron tunnels into the dot from a lead, the electrostati€xpect that this mechanism will result in a different behavior
energy of the system increases BYE.=e?%/2C, whereeis  of the thermopower at low temperatures.
the elementary charge a@is the capacitance of the dot. In  In this paper we develop the theory of the thermopower of
a typical experiment the temperature is |W<E., and the ~ single electron transistors in the regime of inelastic cotunnel-
tunneling is strongly suppressed as only a very small fractiofng. This mechanism dominates the low-temperature electron
of electrons have energy of the orderif necessary for the transport in the case of relatively large dots, where the effects
tunneling to occur. This phenomenon is commonly referredf finite quantum level spacing can be neglected. We find the
to as the Coulomb blockade. In a single electron transistothermopower oscillations of the shape qualitatively similar to
the charging energy can be controlled by the gate voltaghat observed in the experimehand the amplitude of the
V. For instance, by applying a positive voltage to the gatepscillations is significantly lower than the result of the se-
one can lower the increase in electrostatic energy caused tjential tunneling theoryWe also study the crossover from
adding an extra electron to the dot. As a result at certain
values ofV, the electrostatic gap vanishes, and the transport

4
of electrons through the system is strongly enhanced. This
leads to a sequence of periodic peaks in the conductance of
the single electron transistor as a function\gf, which is

often observed in experimerttsThe positions and shape of

the peaks are in good agreement with the so-called sequential T+aT - - T

tunneling theory* of conductance which accounts for real -

processes of electron tunneling between the dot and leads.
In a number of more recent experiments the thermopower

S of a single electron transistor has been studi&dSimi- /{,\

larly to the case of conductance, the thermopower shows PN

periodic oscillations as a function of the gate voltage. The £ 1. Thermopower measurement in a single electron tran-
theory of the thermopower in a single electron transistor injstor. The quantum dot is coupled to the two leads by tunnel bar-
the framework of the sequential tunneling approach was dejers. The electrostatics of the system is controlled by the voltage
veloped by Beenakker and Starift. was confirmed by the V, applied to a gate coupled capacitively to the quantum dot. The
experimental data of Ref. 5, where the sawtooth shape of thgft and right leads are held at temperatufesAT and T, respec-
thermopower oscillations predicted in Ref. 9 was observedively. As a result a small voltagé is generated between the leads.
On the other hand, in a recent experinfghe observed ther- The resulting thermopowe$= —V/AT is measured as a function
mopower oscillations had a shape different from the sawef V.
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the cotunneling behavior of the thermopower to the sawtootlwhere G is the conductance of the system and the kinetic
regime of sequential tunneling which occurs as one raises theoefficientG describes the current response to the tempera-
temperaturel of the system above a certain crossover tem+ure difference. The conditioh=0 then results in the follow-
peratureT.. The latter is found to b& .=E./In[e/A(G, ing expression for the thermopower:

+G,)], whereG, andG, are the conductances of the tunnel-

ing junctions connecting the quantum dot to the left and right S— E ©6)
leads. Throughout the pap&; and G, are assumed to be G’

small, G, ,G,<e?/%. The opposite regime of strong tunnel-
ing, more relevant for the conditions of the experiméwas kinetic coefficientsG, andG.

recently addressed in Ref. 10. . .
y In this paper we concentrate on the case of relatively large

In the next section we introduce the theoretical model of ﬁ%uantum dots, where the effects of finite quantum level spac
single electron transistor used in this paper and discuss t . ' ) : )
g hap g ¢ in the dot can be ignored. In the limfi—0 the trans-

relevant mechanisms of electronic transport in the device. i o .
Sec. Il we review the known results for the thermopoger port of electrons in single electron transistors can be accom-

in the regime of sequential tunneling and obt&rin the plished .via either. sequential tun.neling or _inelastic
regime of inelastic cotunneling. In Sec. IV these results ar .otunnehng mechanisms. The respective contributions to the

unified in a single formula that correctly describes the cross; e conductancé are well known. The conductance as a

over between the two regimes. ;n;gi?]rt]sof the gate voltagé shows periodic peaks centered

Thus, one can find the thermopow8rby calculating the

II. MECHANISMS OF TRANSPORT e
¢N:E

1
: . : . . N+ —) : (7
To describe the single electron transistor, Fig. 1, we intro- 2
duce the Hamiltonian in the forrd=H,+V, where where the charging energies of the dot withand N+ 1
additional electrons are equal. Sequential tunneling tHéory
~ Q A accounts for the real events of electron tunneling between the
— i T t ~
HO_; gkakak“LEp gpapaP“qu: 8q8qdq T 2C +9Q, leads and the dot. When th&l ¢ 1)st electron tunnels into
(1)  the dot, the charging energy changesefyy—¢). At low
temperature§ <e| ¢y— ¢|, the density of electrons with en-
ergy sufficient to charge the dot is exponentially small, re-

A2

\A/Zl% (tk,plalapl_’_t:,plaglak) sulting in conductance peaks with exponential tails:
Pl
GG, e(¢p—n)IT
t t 0=
+ 2 (U, 08,80+, 0343, @ ¢ aGrc) snted- g @

On the other hand, the inelastic cotunneling mechatism
A + accounts for the second-order tunneling processes when, e.g.,
Q= —e% [apap = 0(=&p)]. ®) an electron tunnels from the left lead into the dot and then
another electron tunnels from the dot to the right lead. The
Hereay, a,, anda, are the annihilation operators for the initial and final states of such a process have the same charge
electrons in the left lead, quantum dot, and the right leadin the dot. The Coulomb blockade only affects the energy of
respectively; the electron energi€s, &,, and§, are mea- the virtual state, resulting in only a power-law suppression of
sured from the Fermi level; the tunneling in and out of thethe conductance at low temperatures:
dot is described by matrix elemertis, andt, .. Operator

A 2
Q represents the charge of the quantum dag, the elemen- co T ﬁ T
o ; G*°= GG——. 9
tary charge, and the potentidl is proportional to the gate 3 g2 [e(p—dn)]?
voltageVy .

Our goal is to find the thermopow& of the system as a The above expression formally diverges g ¢y, be-
function of the potential for a given temperature. The ther- cause the calculation in Ref. 11 neglected the contribution of
mopower is defined in terms of the voltage generated the quasiparticle energies to the energy of the virtual state.
across the single electron transistor when the temperatures ® estimate the cotunneling contribution at the center of a
the left and right lead$, andT, differ by AT<T,,T, and no  peak, i.e., al¢= ¢y, one can replace the charging energy
currentl through the system is allowed: differencee(¢— ¢y) in the denominator of Eq9) by the

temperatureT. This results inG°~ (4/€?)G,G, . The con-
.V tribution (8) of the sequential tunneling mechanism at the
S:_Algoﬁ Y @ peak isG"~G,G, /(G,+G,). Thus, near the centers of the
- peaks the conductance is dominated by sequential tunneling.
In the linear response regime the current can be presented asOn the other hand, between the peaks the sequential tun-
neling contribution(8) decays exponentially &—0, as op-
I=G{AT+GV, (5)  posed to the relatively slow depender®€&®=T? of the co-
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tunneling conductance(9). Therefore, at low enough processes are of the first order in the perturbation parameter
temperatures the cotunneling mechanism will dominate the&, . /(e?/%). The current in the stationary state can then be
conduction in the valleys between the peaks. By comparinglerived by means of a kinetic equation which involves the
the contribution$8) and(9) in the middle of a valley, i.e., for probabilities for the system being in a certain charge state
¢— dn=¢€l2C, we find that the sequential tunneling domi- and the tunneling rates obtained by Fermi’'s golden rule.
nates the conductance at any gate voltage only at tempera- In the linear-response regime the current can be due to

turesT>T,, where either a bias voltage or a temperature difference between the
two leads. The conductan€and the kinetic coefficien®
Ec 10 are found in Refs. 4 and 9, respectively:
c= .
In[e?/A(G,+
nfe“/h(G+G,)] - GG, 2 WOt En—En_1 13
At lower temperatureS <T,., the conductance in the re- G+G, & N T ’

gions of width

e T T 2

27T

e
n(G+Gy)

o 1 GG g W(No)f(EN—EN_l) En—En-y
N

In (12) Gy 2e G+ G, T T

(14)

around each peak is determined by the sequential t“””e“r‘lgereENEEch—Ne¢ is the electrostatic energy of the dot
processes, E@8), whereas outside those regions COt”nne"ngcontainingN electrons,f(x)=x/(1—e ) andW&O) stands

processes dominate, E(). Note that in our case of weak ¢ ihe equilibrium probability distribution of the dot charge
tunneling, G,,G,<e?/#, the region(11) is wider than the W(O)Ee’qEN’T/ENe’pEN’T y ge.

thermal _width of the _ peak;T/e. Thus, the cotunneling NAt low temperaturesT<E¢ at most two charge states
e o o Ao et Sontbute signfcanty to e sums i EGR3 and 19,

: . P . One can then neglect the exponentially small contributions

Thle change in thle transport rgechanlsm fLom sequinﬂa})f the other charge states and obtain B).for the conduc-

tunneling to cotunneling is more dramatic in the case of t . i
thermopower. Unlike the conductance, the thermopower iﬁanceG as well as an analogous expression G:
the sequential tunneling regime does not have the form of GG e(d— dy)2IT?
sharp peaks neap= ¢y ; in fact it reaches its maximum G3'= 1o : N }
values near the centers of the valleys between the peaks of 4(G+G,) sinffe(p— )/ T]
G(¢) (Ref. 9. At T<T, the transport in those regions is ysing Eq.(6) one then obtains the low-temperature limit of
strongly affected by the cotunneling mechanism, which leadgne thermopower:
to qualitative changes in both the amplitude and shape of the

Coulomb blockade oscillations of the thermopower. d— by

SSqZT. (16)

(15

IIl. THERMOPOWER IN THE REGIMES OF SEQUENTIAL
TUNNELING AND COTUNNELING Here, ¢\ defines the positiort7) of the conductance peak
) _ closest to¢. This is the sawtoothlike behavior described in
The thermopoweS of a system is a direct measure of the Ref. 9. The amplitude of the Coulomb blockade oscillations
average energy that the electrons carry during the tunnelings the thermopower is given bgs%, = e/(4CT).
processes. This follows from an Onsager reldfidretween This result can be understood in terms of the average

the Peltier coefficientl=—(&)/e and the thermopower: energy of tunneling electrons. Exactly in the middle between
n (& two conductance peak®.g., p=[¢n_1+ dn]/2) the same

S=_—=_2>1 (12) amountE of energy is required to either add or remove an

T et electron from the dot. Therefore, the two processes involving
electrons with energieg~E.; and é~—E¢ contribute

The two transport mechanisms in single electron Ilv to the electronic t ¢ and th f
transistors—sequential tunneling and cotunneling—involveequa y 1o the electronic transport, and the average energy o

electrons with typical energie§~E. and é~T, respec- tunneling electron¢¢) vanishes. However, if the gate poten-

tively. Thus the thermopowdi.2) is strongly affected by the gal f’ IS sllghtll(y chang?(:hbyth/e ;oward? ?ne_of the con:[' I
crossover between the two regimesTat T, . uctance peaks, one of the two charge states is exponentially

suppressed. In this case the average energy is found to be

(¢)~=*Ec. This means that the thermopower exhibits a

sharp jump between two conductance peaks. If the gate volt-
In this section we review the results for the thermopowerage is tuned further towardg, , the average tunneling elec-

in the sequential tunneling regime found by Beenakker andron energy is given byé)~u;=Ey.1—Eny=e(¢dn— )

Staring? The sequential tunneling current is determined byand thus changes linearly with. Using this qualitative con-

the following two elementary real transition procesgasan  siderations the resultl6) is reproduced except for an addi-

electron tunnels between the left lead and the dot(@h@n  tional numerical factor of 1/2. This factor 1/2 is due to the

electron tunnels between the dot and the right lead. Botlfiact that not only electrons with energy above the Fermi

A. Sequential tunneling regime
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level are involved in the transport. The probability foran |
electron with energy to tunnel into the dot is proportional ~ ______] i T T
to the average occupation numbee ™ ¢T in the lead and to -—-;7/ _p;:~2\ ———————

the density of holes-e™ (“179'T in the dot. Therefore, all “EY T 5;;,‘_7_7_,[”1
electrons with energies less than above the Fermi level _ | 9

have the same probability to tunnel into the dot. For that — ]
reason, one obtains for the average tunneling electron energy ]

(€)=u,/2 which then reproduces the res(l6).

B. Cotunneling regime

As we discussed in Sec. Il, at temperatures below the

crossover temperaturd0) cotunneling is the main mecha- q

nism of transport in a single electron transistor. A cotunnel- Lp---1 17 U
ing process consists of two steps. First, an electron close to ] A I 2o [
the Fermi level in one lead tunnels into the dot, thus chang- — [p

ing the energy by~u;. Since the energy is not conserved
during this process, the system is in a virtual intermediate
state. A second tunneling process has to follow which in- . ) .
volves an electron tunneling from the dot to the other lead FIG. 2. The two types of inelastic cotunneling processes trans-
and thus restoring the conservation of energy. Since th&jrnn_g electrons _from the left to the right lead. The first process
charge of the dot before and after a cotunneling process feonsists of following two §teps: an electron tunnels from a #téate

the same, the electronic transport is primarily due to elect® |éft 1ead to a state, in the dot, and then an electron from a
ons wih energe . Therelre, unlke sequentl - CPE 7 1 o Lves o s e Jo e T second
neling, .the cotunneling contribution to the currgnt IS not EX electron tunneling from the dot to the right lead and finishes with
ponentially suppressed al<E., and it dominates the

t tin th I f the Coulomb blockade. In the fol another electron tunneling from the left lead into the dot. The ener-
ransport in the valleys of the L.oulom ockade. In the 10 “gies of the virtual states in the two types of processes are affected

|0W'n9 only inelastic cotunnelln.g processes which 'n,V°|Veby the electrostatic energies andu_, required to either increase
two different electrons are considered, since the elg‘St'C ON&St decrease the charge of the dot by that of one electron. The dash-
are suppressed at small level spacing in the detT“/Ec  dotted lines show the positions of the Fermi level in the leads and
(Ref. 1. the dot.

The cotunneling contribution to the current is of second
order in the small paramet@, . /(e?/#) because two coher- and p,<p, in one of the products of occupation numbers

ent tunneling processes have to take place. For a given nunihich is possible because of the apparent left-right symme-
ber N of electrons in the dot there are two types of secondtg, of the system.

order processes which can transfer an electron from one lead The cotunneling contributio®°° to the conductance can

to the other(see Fig. 2 The current then reads be derived by linearizing Eq17) with respect to the bias
voltageV. After replacing the sums by integrals and the oc-
cupation numbers by Fermi functions, the conductance can

2 ’ .
|=— %e > [n(1- Np,)Np, (1 Ng) be presented as a single integral:
K.p1.P2.d
hG|G & 1 2

_nq(l_np )np (1_nk)]5(§k_§p +§p _gq) G°°= ! rf ‘ - dé. (18
o ' ’ 8me’T) & |&—uy §+U71‘ ¢ 18

_ ot 2 sinkf —

o Kpatpza  tkilead ‘ 17 2T
Sk ép, U Sk ép, T u,l‘ This expression formally diverges &t +u. ¢; we will dis-

cuss the proper regularization procedure in Sec. IV A. At low

whereny, n, , n, , andng are the occupation numbers of temperaturesT<u,,u_, the contributions of the regions

the respective stateg: ;=Ey.,—Ey, andN is determined near the singularities are exponentially small, and one can
1™ + ’ co . . f . .

by minimizing the electrostatic energy of the dot for a givener:""‘l(l;"j‘t‘aG . by neg_lrehctlnghthe qu(;e\smaét(lfcéle efnergdggsT llan

potential ¢. Note that the first product of the occupationt € denominators. Then the conducta Is found™to be

numbers corresponds to the current from the left to the right
lead, whereas the second one accounts for the current in the
opposite direction.

If the bias voltageV is zero and all three electrodes are at
the same temperatuii the current from the left lead to the If the potential ¢ is significantly closer to the peak @y
right lead cancels with the one flowing into the oppositethan to¢y_4, the term 1 _; can be neglected compared to
direction. This can most easily be seen by exchanging 1/uq, and Eq.(9) is reproduced.

1 1)2
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In order to calculate the kinetic coefficieBt we assume 1 1 i—¢
a slightly higher temperatur&+ AT in the left lead com- W(§) o ————=— 1+2—p). (24
pared to the dot and the right lead. Then the curté} is (§p—&+uy) uy U1

linearized with respect to the small temperature differencerpg expression clearly shows that the tunneling probability

AT<T. After replgcing the sums by int(_egrals and o_ccupatior\,v(g) is enhanced for electrons above the Fermi IgieD,
numbers by Fermi functions, the following expression@r 4 therefore the average enetdy will not vanish. In fact,

is obtained: with a typical energy~T for electrons involved in the tun-
neling and the probability24) we find for the average en-
GG, ergy (£)~T?/u;. Using the relation(12), the cotunneling
co_ _ _ !
Gr= 2red f dgkdgpldfpzdfqg(fk €p, 1 b, €q) contribution to the thermopowe23) is reproduced in the
correct order of magnitude.
1 1 PG dn(g)
X & &p,—Us & £t U—1‘ T dé& IV. THERMOPOWER AT ARBITRARY GATE VOLTAGE
In the previous section expressions for the thermopower
X — —
{[1=n(&p)In(£p,) L1~ N(4q)] in both the sequential tunneling and cotunneling regime were
+n(§pl)[1_n(§p2)]n(§q)}_ (20) presented. The sequential tunneling result is given by Eq.

(16). It dominates the thermopower for gate potentigis

The same expression is obtained in a more careful treatmeftoSe to the positions of the conductance pegks On the
where the temperature of the dot is not necessarily equal Bther hand, the cotunneling res(®3) gives the correct de-
the temperature of the right lead. Three of the four integral$cription of the thermopower between the conductance peaks

can be calculated exactly, resulting in the following expres-?n-1<¢<¢x if the temperaturel is below the crossover
sion for Gy : temperaturél ;. In this section we find the combined contri-

butions of both transport mechanisms and obtain an expres-
sion for the thermopower valid at any gate voltage.

w NhGG, 1 IS 1 1 \2 Th )
co= — | — - dé. e current through the quantum dot is the sum of the two
167e® T2) sintf(&/2T)|é—Uy  €+u_y contributions: sequential tunneling and cotunneling. There-
(21 fore using Eqgs(5) and(6) we find for the thermopower
As was the case for the conductarigehe main contribution GSI+ G0
to Gy comes from energie§ of the order of T<u,,u_;. =— (25
However, setting those terms in the denominators to zero G4+ G

yields a vanishingy as the integrand in Eq21) becomes g \yell-knowd® sequential tunneling contributions

an odd function ing. The first nonvanishing contribution t0 5044 are valid for the entire potential range. However, the
G+ is obtained by expanding the fractions in the integral chotunneIing result§19) and (22) are only valid away from

, . : co .
to first order in¢/u;. The final result foIGT” can be written o anters of the conductance peaks, i.@{®),(d

as — ¢n_1)>T/e, and diverge close to the peaks. In the follow-
ing we will show how to correctly regularize these diver-
o AT h 1 131 1 gences. First we discuss the thermopo(@&) in the limit of
T E;G'Gf u_1+ u_, U_i_ @, very low temperature§ <T.. Then we present the more
(22) general result valid for higher temperatures.
Using the expressioli6) for the thermopower we find A. Low-temperature thermopower
from Egs.(19) and (22 in the vicinity of a conductance peak
In the regime of very low temperatur@s<T, there are at
SC0_4772 T 1 1 ,g ~ Mmost two charge states—e.dN,andN+1 electrons in the
AT EN + b—bn_1) (23 got—that contribute significantly to the total current while

the contributions of all other states are exponentially sup-

This expression corresponds to the potential range betwedtiessed. The crossover between the sequential tunneling and
two conductance peakshy_ 1< ¢< dy, With the exception the cotunneling regimes takes place at a gate potential close
of the values of¢ very close to the peak: namelyg  to the conductance pealp— ¢y ~Ap, whereA ¢ is given
— &), (d— dy_1)>Tle. by Eq.(11). In order to find the behavior of the thermopower

The result(23) can be understood in terms of the average(25) in this potential range we can neglect terms/u_,
energy of tunneling electrons, E(L2). The transport in the occurring in the current17).
cotunneling regime is mainly due to the electrons with ener- To regularize the singularities &— &, =u; in the ex-
giesé~=T. In the low-temperature limiT <u, the tunnel-  pression(17) for the cotunneling current we follow the ap-
ing probability from a state with energyinto an intermedi- proach presented in Ref. 13 and add a small imaginarylpart
ate state with energy,, is proportional to to the energy of the intermediate virtual states in &q):

115332-5
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— nq(l—npz)npl(l—nk)]5(§k_§pl+§p2_fq)

typ t 2
P17P2.0
X L

§—&p,— Uil

In the limit '—=0 this expression can be divided into a
large part~1/I" and a smaller one that is independentlof

using the following procedure:

[

f(E)

E—=f dE
E%+T12

f(0)
E*+1I?

Ja

[nk(l—npl)npz(l—nq)

f(E)—f(0)
E*+TI?

- F(E)—f(0)
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sequential
---- cotunneling
— combined

(26) \

~~~~~ \ 10 AQ/(Tle)

27) 4

FIG. 3. The thermopowes of a single electron transistor in the

sponds to sequential tunneling. In particular, the req@ts

) ) __vicinity of a conductance peak. The distance from the pkakis
where the last integral is to be understood as the principadssumed to be small compared to the distance to the next peak,
value. As we show in the Appendix A, the first term corre- A¢<e/C. The solid curve is calculated foG,+G,=103

x 27e?lh by substituting the expressior8), (15), (29), and (30)
and(15) are restored in the linear-response regime using thinto Eq. (25). The asymptotics of cotunneling and sequential tun-

the correct nondivergent expression for the cotunneling. We

schemg27) and Eq.(A6) for I'. The second term represents neling are shown by dashed and dash-dotted lines, respectively.

apply the schemé&27) by rewriting the cotunneling conduc-

tance(18) and the kinetic coefficienf21) according to the
following rule:

f dEf(Ef)ﬂde—f(E)_f(o)

E2
JdEf(E)+f(—E)—2f(0)

2E?

(28)

Fr(x)=x|x| wd—z(—(lﬂ)g
=X | 2 sinfP[x(1+2)]

(1-2° ) 32
sint[x(1—-2)] sint?[x]/ (52

The final result for the thermopower is then obtained by
substituting the sequential tunneling resus and (15) and
the regularized cotunneling resulf9) and (30) into Eq.

(25). The dependence of the thermopower on the gate volt-
This regularization procedure coincides with the one dis-

age obtained from those expressions is illustrated in Fig. 3.

As can be seen in Fig. 3, the thermopower is dominated
cussed in Ref. 14 for the case of multichannel tunnelingoy the sequential tunneling contribution for smalp= ¢
junctions. The result foG°° and G$° then reads

co_ 1t e(6— by

G _4vTeZGIGr]:[ 2T }’
co_ e(p—on)

e

where the functions” and 7 are defined as

wd_z( (1+2)?
0 22\ sint?[x(1+2)]
(1-2)?

F(x)=|x]

(29

(30

2
" sink[x(1—2)] - Sinhz[X])’ Y
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— ¢y . After it reaches its maximum valug,,,y, the ther-
mopower falls off sharply to merge with the cotunneling re-
sult (23) for large A¢. To understand this behavior one
should notice that the crossover between the sequential tun-
neling and the cotunneling occurs at different valdeg;
andA ¢, for the conductanc& and forGy. The two cross-
over values of the gate voltage can be estimated by setting

G%9=G*®° and G}*=G%°. At small conductancey=#(G,

+G,)/(2me?)<1, Egs.(8), (19), (15), and(22) result in

3

eAT¢1z|n %(mé) , (33)
5

eATd)Z:ln %(Ing) . (34)

The thermopower a p<<A ¢, is given by the sequential
tunneling resuliS=A ¢/2T. In the narrow rangeé\ ¢;<A ¢

<A ¢, the conductance is already dominated by the cotun-
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neling, while the main contribution t6+ in the numerator of
Eq. (25) is still due to the sequential tunneling. Therefore we
find a steeply descending thermopov@&rexd —eAd/T] in
that region. Eventually, ap> ¢, both the numerator and
denominator in Eq(25) are governed by the cotunneling
contribution, andS~T/(eA ¢). Therefore the maximum of
the thermopower is reached Atp=A ¢, and can be ob-
tained using the sequential tunneling expressis):

1 1

2Ny’ (35

Smax=

To find the value of the thermopower after the exponentia
falloff, one can substitutd ¢, into the cotunneling expres-
sion (23), which givesS=(47?/5)e™ ! In"Y(1/9)<Sax-

B. Thermopower at arbitrary temperatures

In Sec. IV A we studied the thermopower at very low
temperature§ <T,. In this regime the thermopower in the
valleys between the conductance peaks centeréd=apy is
described by the simple cotunneling res(@8); sequential
tunneling contributes only in narrow regions arousd
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— T/E.=0.1
- T/E.=0.05
T/E.=0.025 {3

FIG. 4. The thermopower of a single electron transistor at dif-
ferent temperatures. Below the crossover temperayriéhe ther-
mopower in the valleys of Coulomb blockade is suppressed, and the
shape of the oscillations changes from the sawtgstiid line)
typical of sequential tunneling to the low-temperature behavior
shown by dotted line. The curves were calculated &r+G,
=10"3x 27e?/% by substituting Eqs(13), (14), (37), and(38) into

= ¢y - Another interesting regime is that of the temperature%q. (25).

of the order ofT;, where one can explore the crossover from
the sawtooth behaviofl6) to the correct low-temperature
limit.

The crossover takes places in the valleys between the

o

peaks, where more than two charge states give comparable

contributions to the current through the device. Thus we
present the total cotunneling current as a weighted sum of

the contributions of states with a different numibeof elec-
trons in the dot) =W, wherel { is given by

>

[N(1—=np )N, (1—ng)
k,p1.p2.9 P17 P2 a

2
|K|o= - 76

—nq(l— npz)npl(l_nk)]5(§k_§pl+§|02_§q)

tk,pltpz,q tk,pltpz,q
&—é&p,~Ens1tEn & &, tEn 1~ En|
(36)

‘ 2
X

Note that one has to keep termsl/iu_,=1/(Ey_1—Ey) if
the expression is to be valid not only close to the peakgat

i GG, En—En-
%02_5 4|77 N:E—Oc {(W&021+W§\|0))f1—(%)
4TC En—En-
EOI
where the functions™ and 7% are defined by
o (rdz[  (1+2)? el )
F*(x)=x|x| 02 (sian[x(1+Z)] sintP[x(1-2)]/’
(39
~dz[  (1+2)° ek )
—y2 =< -
Fr00=x |X|fo z (sinr?[x(1+z)] sinff[x(1-2)]/

(40)

The nondivergent cotunneling contributioB$® and G$° to-
gether with the well-known sequential tunneling res(ii’)
and(14) for G3% andG39 then give the thermopower accord-
ing to Eq.(25). This expression for the thermopow@is the

but also in the valleys between the peaks. Similarly to th&jna result of the calculation. It is valid at any gate voltage

discussion in the previous section, we linearize the curren

with respect to a small bias voltagéand to a small tem-
perature differencdT, yielding G andG+. The cotunneling

55. As the temperature changes, this result shows a crossover
from the sawtooth shape of the Coulomb blockade oscilla-
tions of the thermopower af>T, to the low-temperature

contributions have then to be regularized applying the rulg)ahavior discussed in Sec. IV A @<T, (see Fig. 4 The

(28) to each of the divergent terms. The result is

[

b

En—En-1
2T

|

. @37

. {(W,(\‘O)ﬁW(NO))f(

En—En-1
2T

low-temperature curve d&(¢) shown by dotted line in Fig.
4 is qualitatively similar to the experimentally measured
thermopower of Ref. 7.

V. SUMMARY

We have studied the thermopower of a single electron
transistor based on a quantum dot weakly coupled to two

115332-7
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leads, Fig. 1. The transport through the dot is governed byand R" can be obtained from the expressions Rirby re-
two different electronic transport mechanisms: sequentiaplacing the indicek—q.

tunneling and cotunneling. At temperatures above the cross- On the other hand, in sequential tunneling théotlye
over temperaturd . given by Eq.(10) sequential tunneling current is presented as

dominates. The thermopower in this regime was studied in
Ref. 9. At temperatures beloW, the cotunneling mechanism
gives the main contribution to the transport in the valleys
between the Coulomb blockade peaks of conductance. This
changes the shape of the Coulomb blockade oscillations of
the conductance dramatically, Fig. 4. We derived a singlevhereWy represents the probability of the system being in a
expression for the thermopower at arbitrary temperature instate withN electrons in the dot. These two expressions for
cluding both contributions. It is given by E5) in combi-  the currentl®9 arise from the condition that the current
nation with Eqs(13), (14), (37), and(38). As can be seen in through the left barrier equal the current through the right
Fig. 4, the resulting thermopower significantly changes itarrier. Employing this equality the curre(&2) can be re-

[99=— e(WNR:\JHN+1_WN+lR|N+lHN)

= —e(Wy RN+ 1.8~ WNRN N+ 1) (A2)

shape from sawtooth behavior for temperatures aliqvi®o
low-temperature behavior &t<T.. In the regime of low

temperatures the amplitude of the thermopower becomes '

temperature independent, E85). Near the maximum of the

thermopower the transport is determined by the balance of
the two mechanisms. The shape of the thermopower peaks is

studied in detail in Sec. IV A and illustrated in Fig. 3.
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APPENDIX: SEQUENTIAL TUNNELING LIMIT

In this appendix we show how the sequential tunneling

contribution 159 can be extracted from the curre(@6) by
taking theI'— 0 limit and keeping only large terms 1/T".
Using the schemé7) the fraction 1/(&— &, —u;)*+17]

is replaced bywé(gk—gpl—ul)ll“. The result can be pre-
sented as

| |
RN*)N‘FerN‘Fl*?N_ RN+1~>NRrN~>N+l
2I'/h '

where the tunneling ratd®are given by Fermi’s golden rule.
For tunneling between the left lead and the dot they are

|s9= —g (A1)

2@
Ruone1= 7 & Mol (1 =1p) 86— 6= ua),

2
R|N+1—>N=T kzp |tk'P|2np(1_ ) 6(€c— €p— ),

written as

r | r
sq RNHN+1RN+1~>N_RN+1~>NRN~>N+1
|>9= _eWN .

|
RN+1~>N+ RF\I+1~>N
(A3)

This is the same relation as E@\1) if we make the identi-
fication

h RIN+ l~>N+ RrN+ 1—N
= > Wy . (A4)

This expression coincides with the one proposed in Ref. 13:

I'= E(RII\HlHN—i_ Ris 1N Ryt 1+ RN 1)
(A5)

if one takes into account the balance equatiag) and the
conditionWy+ Wy 1=1. Our derivation shows that replac-
ing the denominator in Eq26) with a & function reproduces
the result of the sequential tunneling everel and/orAT

are not small compared to the temperatilirdn Sec. IV A

we use this result in the linear response regeWeAT<T to
conclude that this approximation reproduces the reg8lts
for G%9and(15) for G3°. In this case thé' is determined by
the equilibrium rates and can be calculated by replacing the
occupation numbers with Fermi functions,

h u;
FZ—(G|+Gr)u100t gy I8 (AG)
2¢?

2T

in agreement with Ref. 13.
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