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Cotunneling thermopower of single electron transistors

M. Turek* and K. A. Matveev
Department of Physics, Duke University, Durham, North Carolina 27708-0305

~Received 8 October 2001; published 8 March 2002!

We study the thermopower of a quantum dot weakly coupled to two reservoirs by tunnel junctions. At low
temperatures the transport through the dot is suppressed by charging effects~Coulomb blockade!. As a result
the thermopower shows an oscillatory dependence on the gate voltage. We study this dependence in the limit
of low temperatures where transport through the dot is dominated by the processes of inelastic cotunneling. We
also obtain a crossover formula for intermediate temperatures which connects our cotunneling results to the
known sawtooth behavior in the sequential tunneling regime. As the temperature is lowered, the amplitude of
thermopower oscillations increases, and their shape changes qualitatively.

DOI: 10.1103/PhysRevB.65.115332 PACS number~s!: 73.23.Hk, 73.50.Lw, 72.15.Jf
ee
on
an

lec
tu
a

at

n

tio

re
to
ag
te
d
ta
o
h
e

f
n
al
ds
w

ow
h
i

d

f t
e

-
w

far

nts
tter

e
of
.
res

fore
ior

of
el-

tron
cts
the
to

e-

an-
bar-
age
he

s.
n

I. INTRODUCTION

In the last few years a number of experiments have b
performed in order to investigate the transport of electr
through small conductors, such as metallic particles
semiconductor quantum dots.1,2 One of the most commonly
studied types of devices is thesingle electron transistor
which consists of a quantum dot~or a small metal particle!
connected to two leads by tunnel junctions. The particle
usually also capacitively coupled to an additional gate e
trode, Fig. 1. The transport of electrons through the quan
dot is strongly affected by charging effects. Indeed, when
electron tunnels into the dot from a lead, the electrost
energy of the system increases by;EC[e2/2C, wheree is
the elementary charge andC is the capacitance of the dot. I
a typical experiment the temperature is low,T!EC , and the
tunneling is strongly suppressed as only a very small frac
of electrons have energy of the order ofEC necessary for the
tunneling to occur. This phenomenon is commonly refer
to as the Coulomb blockade. In a single electron transis
the charging energy can be controlled by the gate volt
Vg . For instance, by applying a positive voltage to the ga
one can lower the increase in electrostatic energy cause
adding an extra electron to the dot. As a result at cer
values ofVg the electrostatic gap vanishes, and the transp
of electrons through the system is strongly enhanced. T
leads to a sequence of periodic peaks in the conductanc
the single electron transistor as a function ofVg , which is
often observed in experiments.2 The positions and shape o
the peaks are in good agreement with the so-called seque
tunneling theory3,4 of conductance which accounts for re
processes of electron tunneling between the dot and lea

In a number of more recent experiments the thermopo
S of a single electron transistor has been studied.5–8 Simi-
larly to the case of conductance, the thermopower sh
periodic oscillations as a function of the gate voltage. T
theory of the thermopower in a single electron transistor
the framework of the sequential tunneling approach was
veloped by Beenakker and Staring.9 It was confirmed by the
experimental data of Ref. 5, where the sawtooth shape o
thermopower oscillations predicted in Ref. 9 was observ
On the other hand, in a recent experiment7 the observed ther
mopower oscillations had a shape different from the sa
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tooth, and also the amplitude of the oscillations was
smaller than the one predicted in Ref. 9.

The most significant difference between the experime
of Ref. 5 and Ref. 7 was that the temperature in the la
work was very small,T;0.006e2/C, in comparison with the
estimated temperatureT;0.065e2/C in Ref. 5. The authors
of Ref. 7 attributed the deviation of their data from th
theory9 to the fact that the theory neglected the effects
virtual tunneling~cotunneling! of electrons through the dot
Indeed, it is known that in the case of very low temperatu
cotunneling processes11 give a dominant contribution to the
conductance of single electron transistors. One can there
expect that this mechanism will result in a different behav
of the thermopower at low temperatures.

In this paper we develop the theory of the thermopower
single electron transistors in the regime of inelastic cotunn
ing. This mechanism dominates the low-temperature elec
transport in the case of relatively large dots, where the effe
of finite quantum level spacing can be neglected. We find
thermopower oscillations of the shape qualitatively similar
that observed in the experiment,7 and the amplitude of the
oscillations is significantly lower than the result of the s
quential tunneling theory.9 We also study the crossover from

FIG. 1. Thermopower measurement in a single electron tr
sistor. The quantum dot is coupled to the two leads by tunnel
riers. The electrostatics of the system is controlled by the volt
Vg applied to a gate coupled capacitively to the quantum dot. T
left and right leads are held at temperaturesT1DT andT, respec-
tively. As a result a small voltageV is generated between the lead
The resulting thermopowerS52V/DT is measured as a functio
of Vg .
©2002 The American Physical Society32-1
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M. TUREK AND K. A. MATVEEV PHYSICAL REVIEW B 65 115332
the cotunneling behavior of the thermopower to the sawto
regime of sequential tunneling which occurs as one raises
temperatureT of the system above a certain crossover te
peratureTc . The latter is found to beTc.EC / ln@e2/\(Gl
1Gr)#, whereGl andGr are the conductances of the tunne
ing junctions connecting the quantum dot to the left and ri
leads. Throughout the paperGl and Gr are assumed to b
small, Gl ,Gr!e2/\. The opposite regime of strong tunne
ing, more relevant for the conditions of the experiment,8 was
recently addressed in Ref. 10.

In the next section we introduce the theoretical model o
single electron transistor used in this paper and discuss
relevant mechanisms of electronic transport in the device
Sec. III we review the known results for the thermopoweS
in the regime of sequential tunneling and obtainS in the
regime of inelastic cotunneling. In Sec. IV these results
unified in a single formula that correctly describes the cro
over between the two regimes.

II. MECHANISMS OF TRANSPORT

To describe the single electron transistor, Fig. 1, we int
duce the Hamiltonian in the formĤ5Ĥ01V̂, where

Ĥ05(
k

jkak
†ak1(

p
jpap

†ap1(
q

jqaq
†aq1

Q̂2

2C
1fQ̂,

~1!

V̂5(
k,p1

~ tk,p1
ak

†ap1
1tk,p1

* ap1

† ak!

1 (
p2 ,q

~ tp2 ,qap2

† aq1tp2 ,q* aq
†ap2

!, ~2!

Q̂52e(
p

@ap
†ap2u~2jp!#. ~3!

Here ak , ap , and aq are the annihilation operators for th
electrons in the left lead, quantum dot, and the right le
respectively; the electron energiesjk , jp , andjq are mea-
sured from the Fermi level; the tunneling in and out of t
dot is described by matrix elementstk,p1

andtp2 ,q . Operator

Q̂ represents the charge of the quantum dot,e is the elemen-
tary charge, and the potentialf is proportional to the gate
voltageVg .

Our goal is to find the thermopowerS of the system as a
function of the potentialf for a given temperature. The the
mopower is defined in terms of the voltageV generated
across the single electron transistor when the temperatur
the left and right leadsTl andTr differ by DT!Tl ,Tr and no
currentI through the system is allowed:

S[2 lim
DT→0

V

DTU
I 50

. ~4!

In the linear response regime the current can be presente

I 5GTDT1GV, ~5!
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where G is the conductance of the system and the kine
coefficientGT describes the current response to the tempe
ture difference. The conditionI 50 then results in the follow-
ing expression for the thermopower:

S5
GT

G
. ~6!

Thus, one can find the thermopowerS by calculating the
kinetic coefficientsGT andG.

In this paper we concentrate on the case of relatively la
quantum dots, where the effects of finite quantum level sp
ing d in the dot can be ignored. In the limitd→0 the trans-
port of electrons in single electron transistors can be acc
plished via either sequential tunneling or inelas
cotunneling mechanisms. The respective contributions to
linear conductanceG are well known. The conductance as
function of the gate voltagef shows periodic peaks centere
at points

fN5
e

C S N1
1

2D , ~7!

where the charging energies of the dot withN and N11
additional electrons are equal. Sequential tunneling theo3,4

accounts for the real events of electron tunneling between
leads and the dot. When the (N11)st electron tunnels into
the dot, the charging energy changes bye(fN2f). At low
temperaturesT!eufN2fu, the density of electrons with en
ergy sufficient to charge the dot is exponentially small,
sulting in conductance peaks with exponential tails:

Gsq5
GlGr

2~Gl1Gr !

e~f2fN!/T

sinh@e~f2fN!/T#
. ~8!

On the other hand, the inelastic cotunneling mechanis11

accounts for the second-order tunneling processes when,
an electron tunnels from the left lead into the dot and th
another electron tunnels from the dot to the right lead. T
initial and final states of such a process have the same ch
in the dot. The Coulomb blockade only affects the energy
the virtual state, resulting in only a power-law suppression
the conductance at low temperatures:

Gco5
p

3

\

e2
GlGr

T2

@e~f2fN!#2
. ~9!

The above expression formally diverges atf5fN , be-
cause the calculation in Ref. 11 neglected the contribution
the quasiparticle energies to the energy of the virtual st
To estimate the cotunneling contribution at the center o
peak, i.e., atf5fN , one can replace the charging ener
differencee(f2fN) in the denominator of Eq.~9! by the
temperatureT. This results inGco;(\/e2)GlGr . The con-
tribution ~8! of the sequential tunneling mechanism at t
peak isGsq;GlGr /(Gl1Gr). Thus, near the centers of th
peaks the conductance is dominated by sequential tunne

On the other hand, between the peaks the sequential
neling contribution~8! decays exponentially atT→0, as op-
posed to the relatively slow dependenceGco}T2 of the co-
2-2
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COTUNNELING THERMOPOWER OF SINGLE ELECTRON . . . PHYSICAL REVIEW B65 115332
tunneling conductance~9!. Therefore, at low enough
temperatures the cotunneling mechanism will dominate
conduction in the valleys between the peaks. By compa
the contributions~8! and~9! in the middle of a valley, i.e., for
f2fN5e/2C, we find that the sequential tunneling dom
nates the conductance at any gate voltage only at temp
turesT.Tc , where

Tc.
EC

ln@e2/\~Gl1Gr !#
. ~10!

At lower temperaturesT,Tc , the conductance in the re
gions of width

Df5
e

2C

T

Tc
.

T

e
lnF e2

\~Gl1Gr !
G ~11!

around each peak is determined by the sequential tunne
processes, Eq.~8!, whereas outside those regions cotunnel
processes dominate, Eq.~9!. Note that in our case of wea
tunneling,Gl ,Gr!e2/\, the region~11! is wider than the
thermal width of the peak,T/e. Thus, the cotunneling
mechanism becomes important only away from the pea
where the conductance is much smaller than its peak va

The change in the transport mechanism from sequen
tunneling to cotunneling is more dramatic in the case of
thermopower. Unlike the conductance, the thermopowe
the sequential tunneling regime does not have the form
sharp peaks nearf5fN ; in fact it reaches its maximum
values near the centers of the valleys between the peak
G(f) ~Ref. 9!. At T,Tc the transport in those regions
strongly affected by the cotunneling mechanism, which le
to qualitative changes in both the amplitude and shape of
Coulomb blockade oscillations of the thermopower.

III. THERMOPOWER IN THE REGIMES OF SEQUENTIAL
TUNNELING AND COTUNNELING

The thermopowerSof a system is a direct measure of th
average energy that the electrons carry during the tunne
processes. This follows from an Onsager relation12 between
the Peltier coefficientP52^j&/e and the thermopower:

S5
P

T
52

^j&
eT

. ~12!

The two transport mechanisms in single electr
transistors—sequential tunneling and cotunneling—invo
electrons with typical energiesj;EC and j;T, respec-
tively. Thus the thermopower~12! is strongly affected by the
crossover between the two regimes atT;Tc .

A. Sequential tunneling regime

In this section we review the results for the thermopow
in the sequential tunneling regime found by Beenakker
Staring.9 The sequential tunneling current is determined
the following two elementary real transition processes:~a! an
electron tunnels between the left lead and the dot and~b! an
electron tunnels between the dot and the right lead. B
11533
e
g

ra-

ng
g

s,
e.
al
e
in
of

of

s
e

g

e

r
d

y

th

processes are of the first order in the perturbation param
Gl ,r /(e2/\). The current in the stationary state can then
derived by means of a kinetic equation which involves t
probabilities for the system being in a certain charge s
and the tunneling rates obtained by Fermi’s golden rule.

In the linear-response regime the current can be due
either a bias voltage or a temperature difference between
two leads. The conductanceG and the kinetic coefficientGT
are found in Refs. 4 and 9, respectively:

Gsq5
GlGr

Gl1Gr
(
N

WN
(0)f S EN2EN21

T D , ~13!

GT
sq52

1

2e

GlGr

Gl1Gr
(
N

WN
(0)f S EN2EN21

T D EN2EN21

T
.

~14!

HereEN[ECN22Nef is the electrostatic energy of the do
containingN electrons,f (x)[x/(12e2x), andWN

(0) stands
for the equilibrium probability distribution of the dot charg
WN

(0)[e2EN /T/(Ne2EN /T.
At low temperaturesT!EC at most two charge state

contribute significantly to the sums in Eqs.~13! and ~14!.
One can then neglect the exponentially small contributio
of the other charge states and obtain Eq.~8! for the conduc-
tanceG as well as an analogous expression forGT :

GT
sq5

GlGr

4~Gl1Gr !

e~f2fN!2/T2

sinh@e~f2fN!/T#
. ~15!

Using Eq.~6! one then obtains the low-temperature limit
the thermopower:

Ssq5
f2fN

2T
. ~16!

Here, fN defines the position~7! of the conductance pea
closest tof. This is the sawtoothlike behavior described
Ref. 9. The amplitude of the Coulomb blockade oscillatio
of the thermopower is given bySmax

sq 5e/(4CT).
This result can be understood in terms of the aver

energy of tunneling electrons. Exactly in the middle betwe
two conductance peaks~e.g.,f5@fN211fN#/2) the same
amountEC of energy is required to either add or remove
electron from the dot. Therefore, the two processes involv
electrons with energiesj'EC and j'2EC contribute
equally to the electronic transport, and the average energ
tunneling electronŝj& vanishes. However, if the gate pote
tial f is slightly changed by;T/e towards one of the con
ductance peaks, one of the two charge states is exponen
suppressed. In this case the average energy is found t
^j&'6EC . This means that the thermopower exhibits
sharp jump between two conductance peaks. If the gate v
age is tuned further towardsfN , the average tunneling elec
tron energy is given bŷ j&;u1[EN112EN5e(fN2f)
and thus changes linearly withf. Using this qualitative con-
siderations the result~16! is reproduced except for an add
tional numerical factor of 1/2. This factor 1/2 is due to th
fact that not only electrons with energyu1 above the Fermi
2-3
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M. TUREK AND K. A. MATVEEV PHYSICAL REVIEW B 65 115332
level are involved in the transport. The probability for a
electron with energyj to tunnel into the dot is proportiona
to the average occupation number;e2j/T in the lead and to
the density of holes;e2(u12j)/T in the dot. Therefore, al
electrons with energies less thanu1 above the Fermi leve
have the same probability to tunnel into the dot. For t
reason, one obtains for the average tunneling electron en
^j&5u1 /2 which then reproduces the result~16!.

B. Cotunneling regime

As we discussed in Sec. II, at temperatures below
crossover temperature~10! cotunneling is the main mecha
nism of transport in a single electron transistor. A cotunn
ing process consists of two steps. First, an electron clos
the Fermi level in one lead tunnels into the dot, thus cha
ing the energy by;u1. Since the energy is not conserve
during this process, the system is in a virtual intermedi
state. A second tunneling process has to follow which
volves an electron tunneling from the dot to the other le
and thus restoring the conservation of energy. Since
charge of the dot before and after a cotunneling proces
the same, the electronic transport is primarily due to el
trons with energiesj;T. Therefore, unlike sequential tun
neling, the cotunneling contribution to the current is not e
ponentially suppressed atT!EC , and it dominates the
transport in the valleys of the Coulomb blockade. In the f
lowing only inelastic cotunneling processes which invol
two different electrons are considered, since the elastic o
are suppressed at small level spacing in the dot,d!T2/EC
~Ref. 11!.

The cotunneling contribution to the current is of seco
order in the small parameterGl ,r /(e2/\) because two coher
ent tunneling processes have to take place. For a given n
ber N of electrons in the dot there are two types of seco
order processes which can transfer an electron from one
to the other~see Fig. 2!. The current then reads

I 52
2p

\
e (

k,p1 ,p2 ,q
@nk~12np1

!np2
~12nq!

2nq~12np2
!np1

~12nk!#d~jk2jp1
1jp2

2jq!

3U tk,p1
tp2 ,q

jk2jp1
2u1

2
tk,p1

tp2 ,q

jk2jp1
1u21

U2

, ~17!

wherenk , np1
, np2

, and nq are the occupation numbers o

the respective states;u61[EN612EN , andN is determined
by minimizing the electrostatic energy of the dot for a giv
potential f. Note that the first product of the occupatio
numbers corresponds to the current from the left to the r
lead, whereas the second one accounts for the current in
opposite direction.

If the bias voltageV is zero and all three electrodes are
the same temperatureT, the current from the left lead to th
right lead cancels with the one flowing into the oppos
direction. This can most easily be seen by exchangingk↔q
11533
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and p1↔p2 in one of the products of occupation numbe
which is possible because of the apparent left-right symm
try of the system.

The cotunneling contributionGco to the conductance ca
be derived by linearizing Eq.~17! with respect to the bias
voltageV. After replacing the sums by integrals and the o
cupation numbers by Fermi functions, the conductance
be presented as a single integral:

Gco5
\GlGr

8pe2T
E j2

sinh2
j

2T

U 1

j2u1
2

1

j1u21
U2

dj. ~18!

This expression formally diverges atj56u61; we will dis-
cuss the proper regularization procedure in Sec. IV A. At l
temperaturesT!u1 ,u21 the contributions of the region
near the singularities are exponentially small, and one
evaluateGco by neglecting the quasiparticle energiesj;T in
the denominators. Then the conductanceGco is found11 to be

Gco5
p\

3e2
GlGrT

2S 1

u1
1

1

u21
D 2

. ~19!

If the potentialf is significantly closer to the peak atfN
than tofN21, the term 1/u21 can be neglected compared
1/u1, and Eq.~9! is reproduced.

FIG. 2. The two types of inelastic cotunneling processes tra
ferring electrons from the left to the right lead. The first proce
consists of following two steps: an electron tunnels from a statek in
the left lead to a statep1 in the dot, and then an electron from
statep2 in the dot tunnels to stateq in the right lead. The second
process transfers electrons in the opposite order: it starts with
electron tunneling from the dot to the right lead and finishes w
another electron tunneling from the left lead into the dot. The en
gies of the virtual states in the two types of processes are affe
by the electrostatic energiesu1 andu21 required to either increase
or decrease the charge of the dot by that of one electron. The d
dotted lines show the positions of the Fermi level in the leads
the dot.
2-4
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In order to calculate the kinetic coefficientGT we assume
a slightly higher temperatureT1DT in the left lead com-
pared to the dot and the right lead. Then the current~17! is
linearized with respect to the small temperature differe
DT!T. After replacing the sums by integrals and occupat
numbers by Fermi functions, the following expression forGT
is obtained:

GT
co5

\GlGr

2pe3 E djkdjp1
djp2

djqd~jk2jp1
1jp2

2jq!

3U 1

jk2jp1
2u1

2
1

jk2jp1
1u21

U2jk

T

dn~jk!

djk

3$@12n~jp1
!#n~jp2

!@12n~jq!#

1n~jp1
!@12n~jp2

!#n~jq!%. ~20!

The same expression is obtained in a more careful treatm
where the temperature of the dot is not necessarily equa
the temperature of the right lead. Three of the four integr
can be calculated exactly, resulting in the following expr
sion for GT :

GT
co52

\GlGr

16pe3

1

T2E j3

sinh2~j/2T!
U 1

j2u1
2

1

j1u21
U2

dj.

~21!

As was the case for the conductanceG, the main contribution
to GT comes from energiesj of the order ofT!u1 ,u21.
However, setting those terms in the denominators to z
yields a vanishingGT as the integrand in Eq.~21! becomes
an odd function inj. The first nonvanishing contribution t
GT is obtained by expanding the fractions in the integral
to first order inj/u1. The final result forGT

co can be written
as

GT
co52

4p3

15

\

e3
GlGrT

3S 1

u1
1

1

u21
D S 1

u1
2

2
1

u21
2 D .

~22!

Using the expression~6! for the thermopower we find
from Eqs.~19! and ~22!

Sco5
4p2

5

T

e2 S 1

f2fN
1

1

f2fN21
D . ~23!

This expression corresponds to the potential range betw
two conductance peaks,fN21,f,fN , with the exception
of the values off very close to the peak: namely, (fN
2f),(f2fN21)@T/e.

The result~23! can be understood in terms of the avera
energy of tunneling electrons, Eq.~12!. The transport in the
cotunneling regime is mainly due to the electrons with en
giesj;6T. In the low-temperature limitT!u1 the tunnel-
ing probability from a state with energyj into an intermedi-
ate state with energyjp is proportional to
11533
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w~j!}
1

~jp2j1u1!2
.

1

u1
2 S 112

j2jp

u1
D . ~24!

This expression clearly shows that the tunneling probabi
w(j) is enhanced for electrons above the Fermi levelj.0,
and therefore the average energy^j& will not vanish. In fact,
with a typical energyj;T for electrons involved in the tun
neling and the probability~24! we find for the average en
ergy ^j&;T2/u1. Using the relation~12!, the cotunneling
contribution to the thermopower~23! is reproduced in the
correct order of magnitude.

IV. THERMOPOWER AT ARBITRARY GATE VOLTAGE

In the previous section expressions for the thermopo
in both the sequential tunneling and cotunneling regime w
presented. The sequential tunneling result is given by
~16!. It dominates the thermopower for gate potentialsf
close to the positions of the conductance peaksfN . On the
other hand, the cotunneling result~23! gives the correct de-
scription of the thermopower between the conductance pe
fN21,f,fN if the temperatureT is below the crossove
temperatureTc . In this section we find the combined contr
butions of both transport mechanisms and obtain an exp
sion for the thermopower valid at any gate voltage.

The current through the quantum dot is the sum of the t
contributions: sequential tunneling and cotunneling. The
fore using Eqs.~5! and ~6! we find for the thermopower

S5
GT

sq1GT
co

Gsq1Gco
. ~25!

The well-known4,9 sequential tunneling contributionsGsq

andGT
sq are valid for the entire potential range. However, t

cotunneling results~19! and ~22! are only valid away from
the centers of the conductance peaks, i.e., (fN2f),(f
2fN21)@T/e, and diverge close to the peaks. In the follow
ing we will show how to correctly regularize these dive
gences. First we discuss the thermopower~25! in the limit of
very low temperaturesT!Tc . Then we present the mor
general result valid for higher temperatures.

A. Low-temperature thermopower
in the vicinity of a conductance peak

In the regime of very low temperaturesT!Tc there are at
most two charge states—e.g.,N and N11 electrons in the
dot—that contribute significantly to the total current whi
the contributions of all other states are exponentially s
pressed. The crossover between the sequential tunneling
the cotunneling regimes takes place at a gate potential c
to the conductance peakuf2fNu;Df, whereDf is given
by Eq.~11!. In order to find the behavior of the thermopow
~25! in this potential range we can neglect terms;1/u21
occurring in the current~17!.

To regularize the singularities atjk2jp1
5u1 in the ex-

pression~17! for the cotunneling current we follow the ap
proach presented in Ref. 13 and add a small imaginary paG
to the energy of the intermediate virtual states in Eq.~17!:
2-5



a

ip
e-

th
ts
W
-

is
in

by

olt-
3.

ted

e-
e
tun-

tting

l

un-

e

eak,

n-
y.

M. TUREK AND K. A. MATVEEV PHYSICAL REVIEW B 65 115332
I 52
2p

\
e (

k,p1 ,p2 ,q
@nk~12np1

!np2
~12nq!

2nq~12np2
!np1

~12nk!#d~jk2jp1
1jp2

2jq!

3U tk,p1
tp2 ,q

jk2jp1
2u12 iGU

2

. ~26!

In the limit G→0 this expression can be divided into
large part;1/G and a smaller one that is independent ofG
using the following procedure:

E dE
f ~E!

E21G2
5E dE

f ~0!

E21G2
1E dE

f ~E!2 f ~0!

E21G2

→ p

G
f ~0!1E dE

f ~E!2 f ~0!

E2
, ~27!

where the last integral is to be understood as the princ
value. As we show in the Appendix A, the first term corr
sponds to sequential tunneling. In particular, the results~8!
and~15! are restored in the linear-response regime using
scheme~27! and Eq.~A6! for G. The second term represen
the correct nondivergent expression for the cotunneling.
apply the scheme~27! by rewriting the cotunneling conduc
tance~18! and the kinetic coefficient~21! according to the
following rule:

E dE
f ~E!

E2
→E dE

f ~E!2 f ~0!

E2

5E dE
f ~E!1 f ~2E!22 f ~0!

2E2
. ~28!

This regularization procedure coincides with the one d
cussed in Ref. 14 for the case of multichannel tunnel
junctions. The result forGco andGT

co then reads

Gco5
\

4pe2
GlGrFFe~f2fN!

2T G , ~29!

GT
co5

\

4pe3
GlGrFTFe~f2fN!

2T G , ~30!

where the functionsF andFT are defined as

F~x![uxu E
0

`dz

z2 S ~11z!2

sinh2@x~11z!#

1
~12z!2

sinh2@x~12z!#
2

2

sinh2@x#
D , ~31!
11533
al

e

e

-
g

FT~x![xuxu E
0

`dz

z2 S ~11z!3

sinh2@x~11z!#

1
~12z!3

sinh2@x~12z!#
2

2

sinh2@x#
D . ~32!

The final result for the thermopower is then obtained
substituting the sequential tunneling results~8! and~15! and
the regularized cotunneling results~29! and ~30! into Eq.
~25!. The dependence of the thermopower on the gate v
age obtained from those expressions is illustrated in Fig.

As can be seen in Fig. 3, the thermopower is domina
by the sequential tunneling contribution for smallDf5f
2fN . After it reaches its maximum valueSmax, the ther-
mopower falls off sharply to merge with the cotunneling r
sult ~23! for large Df. To understand this behavior on
should notice that the crossover between the sequential
neling and the cotunneling occurs at different valuesDf1
andDf2 for the conductanceG and forGT . The two cross-
over values of the gate voltage can be estimated by se
Gsq5Gco and GT

sq5GT
co . At small conductanceg[\(Gl

1Gr)/(2pe2)!1, Eqs.~8!, ~19!, ~15!, and~22! result in

eDf1

T
. lnF1

g S ln
1

gD 3G , ~33!

eDf2

T
. lnF1

g S ln
1

gD 5G . ~34!

The thermopower atDf,Df1 is given by the sequentia
tunneling resultS.Df/2T. In the narrow rangeDf1,Df
,Df2 the conductance is already dominated by the cot

FIG. 3. The thermopowerSof a single electron transistor in th
vicinity of a conductance peak. The distance from the peakDf is
assumed to be small compared to the distance to the next p
Df!e/C. The solid curve is calculated forGl1Gr51023

32pe2/\ by substituting the expressions~8!, ~15!, ~29!, and ~30!
into Eq. ~25!. The asymptotics of cotunneling and sequential tu
neling are shown by dashed and dash-dotted lines, respectivel
2-6
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neling, while the main contribution toGT in the numerator of
Eq. ~25! is still due to the sequential tunneling. Therefore w
find a steeply descending thermopowerS}exp@2eDf/T# in
that region. Eventually, atf.f2 both the numerator and
denominator in Eq.~25! are governed by the cotunnelin
contribution, andS;T/(eDf). Therefore the maximum o
the thermopower is reached atDf.Df1 and can be ob-
tained using the sequential tunneling expression~16!:

Smax.
1

2e
ln

1

g
. ~35!

To find the value of the thermopower after the exponen
falloff, one can substituteDf2 into the cotunneling expres
sion ~23!, which givesS.(4p2/5)e21 ln21(1/g)!Smax.

B. Thermopower at arbitrary temperatures

In Sec. IV A we studied the thermopower at very lo
temperaturesT!Tc . In this regime the thermopower in th
valleys between the conductance peaks centered atf5fN is
described by the simple cotunneling result~23!; sequential
tunneling contributes only in narrow regions aroundf
5fN . Another interesting regime is that of the temperatu
of the order ofTc , where one can explore the crossover fro
the sawtooth behavior~16! to the correct low-temperatur
limit.

The crossover takes places in the valleys between
peaks, where more than two charge states give compar
contributions to the current through the device. Thus
present the total cotunneling current as a weighted sum
the contributions of states with a different numberN of elec-
trons in the dot,I 5(WN

(0)I N
co , whereI N

co is given by

I N
co52

2p

\
e (

k,p1 ,p2 ,q
@nk~12np1

!np2
~12nq!

2nq~12np2
!np1

~12nk!#d~jk2jp1
1jp2

2jq!

3U tk,p1
tp2 ,q

jk2jp1
2EN111EN

2
tk,p1

tp2 ,q

jk2jp1
1EN212EN

U2

.

~36!

Note that one has to keep terms;1/u2151/(EN212EN) if
the expression is to be valid not only close to the peaks atfN
but also in the valleys between the peaks. Similarly to
discussion in the previous section, we linearize the curr
with respect to a small bias voltageV and to a small tem-
perature differenceDT, yieldingG andGT . The cotunneling
contributions have then to be regularized applying the r
~28! to each of the divergent terms. The result is

Gco5
\

e2

GlGr

4p (
N52`

` F ~WN21
(0) 1WN

(0)!FS EN2EN21

2T D
2

4TC

e2
~WN21

(0) 2WN
(0)!F* S EN2EN21

2T D G , ~37!
11533
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GT
co52

\

e3

GlGr

4p (
N52`

` F ~WN21
(0) 1WN

(0)!FTS EN2EN21

2T D
2

4TC

e2
~WN21

(0) 2WN
(0)!FT* S EN2EN21

2T D G , ~38!

where the functionsF* andFT* are defined by

F* ~x![xuxu E
0

`dz

z S ~11z!2

sinh2@x~11z!#
2

~12z!2

sinh2@x~12z!#
D ,

~39!

FT* ~x![x2uxu E
0

`dz

z S ~11z!3

sinh2@x~11z!#
2

~12z!3

sinh2@x~12z!#
D .

~40!

The nondivergent cotunneling contributionsGco andGT
co to-

gether with the well-known sequential tunneling results~13!
and~14! for Gsq andGT

sq then give the thermopower accord
ing to Eq.~25!. This expression for the thermopowerS is the
final result of the calculation. It is valid at any gate volta
f. As the temperature changes, this result shows a cross
from the sawtooth shape of the Coulomb blockade osci
tions of the thermopower atT@Tc to the low-temperature
behavior discussed in Sec. IV A atT!Tc ~see Fig. 4!. The
low-temperature curve ofS(f) shown by dotted line in Fig.
4 is qualitatively similar to the experimentally measur
thermopower of Ref. 7.

V. SUMMARY

We have studied the thermopower of a single elect
transistor based on a quantum dot weakly coupled to

FIG. 4. The thermopower of a single electron transistor at d
ferent temperatures. Below the crossover temperatureTc the ther-
mopower in the valleys of Coulomb blockade is suppressed, and
shape of the oscillations changes from the sawtooth~solid line!
typical of sequential tunneling to the low-temperature behav
shown by dotted line. The curves were calculated forGl1Gr

5102332pe2/\ by substituting Eqs.~13!, ~14!, ~37!, and~38! into
Eq. ~25!.
2-7
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leads, Fig. 1. The transport through the dot is governed
two different electronic transport mechanisms: sequen
tunneling and cotunneling. At temperatures above the cr
over temperatureTc given by Eq.~10! sequential tunneling
dominates. The thermopower in this regime was studied
Ref. 9. At temperatures belowTc the cotunneling mechanism
gives the main contribution to the transport in the valle
between the Coulomb blockade peaks of conductance.
changes the shape of the Coulomb blockade oscillation
the conductance dramatically, Fig. 4. We derived a sin
expression for the thermopower at arbitrary temperature
cluding both contributions. It is given by Eq.~25! in combi-
nation with Eqs.~13!, ~14!, ~37!, and~38!. As can be seen in
Fig. 4, the resulting thermopower significantly changes
shape from sawtooth behavior for temperatures aboveTc to
low-temperature behavior atT!Tc . In the regime of low
temperatures the amplitude of the thermopower beco
temperature independent, Eq.~35!. Near the maximum of the
thermopower the transport is determined by the balance
the two mechanisms. The shape of the thermopower pea
studied in detail in Sec. IV A and illustrated in Fig. 3.
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APPENDIX: SEQUENTIAL TUNNELING LIMIT

In this appendix we show how the sequential tunnel
contribution I sq can be extracted from the current~26! by
taking theG→0 limit and keeping only large terms;1/G.
Using the scheme~27! the fraction 1/@(jk2jp1

2u1)21G2#

is replaced bypd(jk2jp1
2u1)/G. The result can be pre

sented as

I sq52e
RN→N11

l RN11→N
r 2RN11→N

l RN→N11
r

2G/\
, ~A1!

where the tunneling ratesR are given by Fermi’s golden rule
For tunneling between the left lead and the dot they are

RN→N11
l 5

2p

\ (
k,p

utk,pu2nk~12np!d~jk2jp2u1!,

RN11→N
l 5

2p

\ (
k,p

utk,pu2np~12nk!d~jk2jp2u1!,
re

t

S

,
r.

11533
y
l

s-
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is
of
e
-

s

s

of
is

-
ul

and Rr can be obtained from the expressions forRl by re-
placing the indicesk→q.

On the other hand, in sequential tunneling theory4 the
current is presented as

I sq52e~WNRN→N11
l 2WN11RN11→N

l !

52e~WN11RN11→N
r 2WNRN→N11

r !, ~A2!

whereWN represents the probability of the system being i
state withN electrons in the dot. These two expressions
the current I sq arise from the condition that the curre
through the left barrier equal the current through the ri
barrier. Employing this equality the current~A2! can be re-
written as

I sq52eWN

RN→N11
l RN11→N

r 2RN11→N
l RN→N11

r

RN11→N
l 1RN11→N

r
.

~A3!

This is the same relation as Eq.~A1! if we make the identi-
fication

G5
\

2

RN11→N
l 1RN11→N

r

WN
. ~A4!

This expression coincides with the one proposed in Ref.

G5
\

2
~RN11→N

l 1RN11→N
r 1RN→N11

l 1RN→N11
r !,

~A5!

if one takes into account the balance equation~A2! and the
conditionWN1WN1151. Our derivation shows that replac
ing the denominator in Eq.~26! with a d function reproduces
the result of the sequential tunneling even ifeV and/orDT
are not small compared to the temperatureT. In Sec. IV A
we use this result in the linear response regimeeV,DT!T to
conclude that this approximation reproduces the results~8!
for Gsq and~15! for GT

sq . In this case theG is determined by
the equilibrium rates and can be calculated by replacing
occupation numbers with Fermi functions,

G5
\

2e2
~Gl1Gr !u1cothF u1

2TG , ~A6!

in agreement with Ref. 13.
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8S. Möller, H. Buhmann, S. F. Godijn, and L. W. Molenkam
Phys. Rev. Lett.81, 5197~1998!.

9C. W. J. Beenakker and A. A. M. Staring, Phys. Rev. B46, 9667
~1992!.

10A. V. Andreev and K. A. Matveev, Phys. Rev. Lett.86, 280
11533
n. ~2001!; K. A. Matveev and A. V. Andreev, cond-mat/020116
~unpublished!.

11D. V. Averin and Yu. V. Nazarov, Phys. Rev. Lett.65, 2446
~1990!.

12See, e.g., A. A. Abrikosov,Fundamentals of the Theory of Meta
~North-Holland, Amsterdam, 1988!.

13D. V. Averin, Physica B194-196, 979 ~1994!.
14J. Koenig, H. Schoeller, and G. Scho¨n, Phys. Rev. Lett.78, 4482

~1997!.
2-9


