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Double quantum dot as a spin rotator
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It is shown that the low-energy spin states of double quantum @@D’s) with an even electron occupa-
tion numberN possess a symmetry $0 similar to that of a rigid rotator familiar in quantum mechanics
(rotational spectra of Himolecule, electron in Coulomb field, ¢tcThe “hidden symmetry” of the rotator
manifests itself in the tunneling properties of the DQD’s. In particular, Kondo resonance may arise under an
asymmetric gate voltage in spite of the even-electron occupation of the DQD. Various symmetry properties of
a spin rotator in the context of the Kondo effect are discussed, and an experimental realization of this unusual
scenario is proposed.
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[. INTRODUCTION quantum dots in an external magnetic field was developed in
Refs. 6-8.

In recent years, the physics of single-electron tunneling In the present paper we explore yet another device which
through a quantum d@@QD) under conditions of strong Cou- manifests the Kondo effect in QD’s with an even electron
lomb blockades has been at the focus of intenseaumberN, namely, a QD with two wells, which is referred to
investigationt The number of electronbl in a dot can be as a double quantum d¢éDQD). A systematic treatment of
regulated by a suitable gate voltayg applied to an elec- the physics of DQD’s with evelN coupled to metallic leads
trode coupled capacitively to a dot. The Coulomb blockadds presented below. Special attention is given to the symme-
suppresses the tunneling through the dot unless the res8y properties of a DQD, and its representation as a quantum
nance between its energies filled byand N+ 1 electrons ~ SPin rotator. Itis well knowhthat the tunneling Hamiltonian
occurs at certain values &y, when it compensates for the for a QD can be mapped on the Kondo Hamiltonian in the
charging energy, i.e £(N+1Vg)~&(N,V,). The differen- O-diamond window of the QD. In th&-diamond window,
tial conductancedl/dVgq of a QD forms diamondlike pat- the same procedure of e"”_“”aF'”g the charged V|rtua_1l states
terns in the plan Vsg,V,) Where the nonconducting “win- results in a four-state Hamiltonian of a doubly occupied dot

» where the single=0 and tripletS=1 levels are intermixed
dows” are separated by a network of Coulomb resonanc . : .
. . . y second-order tunneling. The coupling to a reservoir
lines (hereVgq is the source-drain voltage

. breaks the spin conservation in the quantum dot, and in the

Accurate low-temperature experiments demonstrated thg,onqeq spin space formed by a singlet and triplet state the
existence of_ Kondo resonances in windows corresponding tBQD acquires the dynamical symmetry @Dof a spin ro-
odd occupations of t'he dd(o dlamond$.These resonances tator, as shown in Ref. 10. As a Kondo scatterer, a spin
are seen as zero-bias anomaliBAs), i.e., as bridges of rotator possesses interesting properties in comparison with
finite conductance connecting two opposite vertices of angcalized spins obeying S¥) symmetry. The magnetic-
O-diamond-shape window &t;4— 0. In addition, it was pre- field-induced Kondo effect mentioned above is a manifesta-
dicted theoretically and observed experimentdllythat  tion of a “hidden symmetry” which is a footprint of the
Kondo resonances can also appear in even occupation wisQ(4) group.
dows (E diamond$ at strong enough magnetic fields. This In Ref. 10 a special case was considered, namely, an
unconventional magnetic-field-induced Kondo effect ariseasymmetric DQD formed by two dots of different radii in a
because the spectrum of the dot possesses a low-lying triplparallel geometry coupled by a tunneling interaction with an
excitation when the electron at the highest occupied level igven occupatiomN= v+ v, (I andr stand for left and right,
excited with a spin-flip. The Zeeman energy compensates faespectively. Moreover, it was assumed that a strong Cou-
the energy spacing between the two adjacent levels, and themb blockade exists in one dot, whereas a tunneling contact
lowest spin excitation possesses an effective spin 1/2, thusith metallic leads exists in the other dot. Here we will ad-
inducing a Kondo-like ZBA in the differential conductance. dress more general situations, and compare several represen-

A similar effect is possible in vertical quantum dots, for tations in terms of effective spin Hamiltonians. It will be
which the singlet and triplet states may be close in energghown that unusual ZBA's can arise in generic DQD struc-
both at even and odd occupations. The influence of an extetures. In particular, a Kondo effect induced by quantum dots
nal magnetic field on the orbital part of the wave functions ofwith SO(4) spin rotational properties also exists in an asym-
electrons in vertical quantum dots is, in general, more prometric DQD when both théandr dots are coupled with the
nounced than the Zeeman effect. Hence singlet-triplet levdeads and the Coulomb blockade is strong enough in both of
crossings are induced by this field, causing the emergence tfiem. The main precondition for the emergence of a Kondo
Kondo scattering at even filling or its enhancement at oddeffect in this case is the sizable difference in ionization en-
filling.®> The theory of Kondo tunneling through vertical ergies of the two dots. This quantity can, in fact, be tuned by
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an application of a suitable gate voltage to one of them. The S
same effect can also be achieved in a symmetric DQD with

even occupation in a parallel geometry, provided the axial .
symmetry of the system is broken by the difference in gate vg’~| s |~ V,
voltages applied to the right and left dON%(' , respectively.

DQD’s oriented parallel to the lead surfaces were fabri- W, LW,

cated several years agb*?> Two main resonance effects D
were noted in such electric circuits. First, one of the dots left right
(say, the rightcan be used as an electromél?eﬁcanning\/g s

at a fixedv'g, Coulomb oscillations can be induced both in Y We
the right and left dots because the interdot capacitive cou- v .
pling changes the positions of the Coulomb resonance in Vgl *‘ ’— V,

E w; : Wy

both of them. As a result, the step wise structure of the con-
ductance acquires a more complicated form. The Coulomb : b
blockade windows between the resonances in the Coulomb ®)

energy of the dot, , (Vg 1V|g) form an “egg-carton” FIG. 1. Double quantum dots in parallel geometry. L@gftand
patterni' where the vertices connect the windows with right (r) dots are coupled by tunneling to each other and by
charge configurationsi{,v), (v,,1,—1), and (@, +1,y tunnelingW, , to the source(S). and drain(D) eIecFrodeng'r are
~1). The IineSEVI , ~5V|+1V are the regions where the the gate voltagega) Symmetric dot(b) Asymmetric dot.

Wy oy

Coulomb resonance induced 1 allows tunneling through  yenormalization-group equations for the DQD. The central
the left dot. Second, the resonartGe , ~&, ;1,1 allows  yesylt of this subsection is a demonstration of a possible
cotunneling through the right and left dots, which is a pre-singlet-triplet level crossing due to tunneling. When the
condition for the Kondo effect due to the appearance of aenormalized energies are below the reduced band edge,
pseudospinlike configuration of the D@®Then, manipu- renormalization stops, and charge fluctuations are sup-
lating with Vi, one can induce a third transition—1,v, pressed. This is the Schrieffer-Wolff regime, and a derivation
+1— v, v, thus closing the loop and organizing the “elec- of an effective-spin Hamiltonian is executed in Sec. IV. In
tron pump” which transfers a single electron from one dot toSec. IV A, the spin Hamiltonian is given in terms of two
another(see Ref. 14, and references theyein vector operators and is shown to have the(@Q@ymmetry

The picture becomes even richer if the tunneling betweef a spin rotator. This is followed by Sec. IV B, in which the
the right and left wells of the DQD is taken into account. renormalization-group flow of coupling constants is ex-
Then the dot can be treated an artificial molecule, where thplained and the Kondo temperature is derived. Then, in Sec.
interdot tunneling results in the formation of a complicated!V C, a two-spin representation is suggested, in which the
manifold of bonding and antibonding statéwhich modifies  occurrence of two spin-1/2 operators just reflects the fact that
its charge degrees of freedom. In addition, it induces an inthe algebrao, is a direct sum of twa; algebras. In Sec.
direct exchange, thus modifying the Kondo resonances whetY D, the possibility of arriving at the Kondo effect in a finite
the dots are placed in serislt will be shown below that magnetic field is discussed, leading to a third representation
the interdot tunneling iparallel geometry results in the ap- of the spin Hamiltonian. The question of whether a DQD
pearance of a Kondo precursor of the Coulomb resonanceith two electrons can be regarded as a real two-site Kondo
along the linesé, ,~&, 11,-1. &, »~&) +1,, and _system(even if the DQD is h_ighly asymmefu)ids Qiscussed_
€, =&, ., +1 Provided there exists a direct tunneling cou- in Sec. V. In particular, a stringent comparison is made with
pling V between the left and right dots. We consider thet[he twol—sgmdrgpresentanon mentlonheq ml %ec. .:V' 'I;he paper
simplest case ofyy=»,=1 in a neutral ground state of 'S ICOTC.U ed in Selc. VI.dSomﬁ tic nlcgl etalls of various
DQD’s. It will be shown that an unconventional Kondo reso- calculations are relegated to the Appendix.
nance occurs under the conditi®i[ & ,— &, 1]<<1. More-
over, this kind of Kondo resonance can also appear in the
middle of the Coulomb window for the right dot, provided

the capacitance of the left dot essentially exceeds that of the Two models considered in this work are sketched in Fig.

right dO_t-l " In both cases, the DQD possesses the symmetry \we will refer to a systenfa) with zero gate voltages as a

of a spin rotator. _ “symmetric” DQD. The same system with finite but unequal
In Sec. Il the various setups of DQD's are introduced, ancyate voltages/'g*r will be called a “biased” DQD, and the

the Hamiltonian describing the DQD is written down within 5ir of dots with different radii shown in Fig.(t) will be

the framework of a generalized Anderson model. The phasgsferred to as an “asymmetric” DQD.

diagram of charging states in the left and right gate voltage | 5| cases the DQD is described by a generalized Ander-

plans is schematically drawn, and the regions of Kondo resosgp tunneling Hamiltonian which takes into account the in-
nance are indicated. In the first part of Sec. Il the spectrume na) structure of the DQD:

of an isolated dot with even occupation is discussed. Section
1B is devoted to the derivation and solution of H=H,+H+Hy+Hg. 1)

Il. MODELS OF DOUBLE QUANTUM DOTS WITH
SINGLET GROUND STATE
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The first termH,, is related to the lead electrons. They are 10 _&+Q
described by Fermi operatocg,,, , Wherek is the quasimo- e e |
mentum,o = *+ 1/2 is the spin projection, angl=s andd for . R e ey | EpQ
source and drain electrodes. The corresponding energy dis— . e 1A e
persion ise,, , so that e e ! A & A N
Ho= 2\ &kaCloaChoa- 2
koa ) . £ o, S
The second terrhi; is the tunneling Hamiltonian, describing | %0 =y — &, | ®u —O_‘m L ‘FI._Q[_AE
the hopping of dot electron@escribed by Fermi operators Q Ep |a,, g L
di, with i=1 andr for left and right well$ into the leads,  __ Cexr T - ‘ljz -
and vice versa. The corresponding tunneling amplitudes ar¢ “ — ~___ " |™ = ~__ ET R
W,,i. In fact, the lead dependendsubscripta) can be () symmetric Es (b) biased 5| (c) asymmetric s
avoided using the transformatiark,=2"Y%(Cy, s+ Co.a),
andW,; =W, ; I(W2,;+W2, )¥2 Thus FIG. 2. Energy-level scheme for symmetta, biased(b) and
’ ’ asymmetrig(c) DQD’s. Upper panel: filled and empty one-electron
+ levels. Dashed arrows indicate charge-transfer excitons. Lower
Ht:i;r % (WiiCyodis T H.C). () panel: two-electron states of isolated and coupled left and right

dots.

The third termH 4 describes an isolated DQD. In the present

context, the quantum dot is a “molecule,” containig  Plest configuration which contains, in a nutshell, all the com-
=10+ 1o electrons in a neutral ground state. The geometrylicated physics of many-body interactions arising in a
of the DQD prompts a two-channel approximation for thecourse of tunneling isN=2, vp=»,,=1. This case, for
tunneling Hamiltonian. Indeed, in a symmetric DQD\4t  Which én;=n;—1, will be given special attention below. Fi-
=V, the problem may be mapped onto a two-site spin scatfally, the termHy represents the gate voltage energy. We
tering pr0b|em%o which, in turn is equiva|ent to a two- consider symmetric and asymmetric DQD’s formed by wells
channel Kondo problenisee Sec. V for further detajls of equal and different radii, respectivelifig. 1). Hence, ge-
However, our main concern is the asymmetric regimes whergerically, the gate potentidl 4 is asymmetric:

V'gqtvrg and/or the dots have essentially different radii. In

these cases, as shown below, one of two chanisalg r) HQZE Vigniv V{ﬁavg_ (6)
becomes irrelevant. The corresponding dot plays the part of a [

gate controlling the conditions for the charge and spin resoy; g
nance tunneling through another deay,|). Therefore, one the

can assume a single (_:han_nel from the very beginning Withou1t'hen by tuning the gate voltage, one can change the energy
a loss of generality. Situations where the two-channel tunnelaifferénce A=g—e, or, in othe,r words. redistribute the
r ’ ]

ing beppmgs CfUCi?‘"y important are discussed in Ref. 8 Th lectron density between the left and right wells of the DQD.
capacitive interactiolbetween the wo wells of QD is It is assumed that in equilibrium and at zero gate voltages,

assumed to be strong enough to suppress the fluctuations géch dot is filled by one electron and the Fermi level of the

electron-tunneling-induced occupation in the windows be]eads is in the middle of the Coulomb blockade window. The
tween the Coulomb resonances of tunneling amplitude. W

consider DQD'’s with eveil, so that, generically, the ground %nergy levels of a symmetric DQD with uncoupled dots

; ) ad : (Q=Q,=Q, V=0) are shown in the upper par@) of Fig.
state of an_lsolated DQD is aspin singlet. The isolated dot i . These levels may be shifted relative to each other and to
then described by the Hamiltonian

the Fermi leveleg, and each level crossing —eg corre-
sponds to a recharging of the dotlIf electron exchange
Ho= 2 2 eNig+VY, didj+Heon, (4)  between the right dot and the leads is blockkthe charge-

i=hr o 1] transfer resonance between stafdsl} and {0,2 occurs

in which V is the interwell constant tunneling amplitude. The Whene;=¢,+Q (also see Ref. 18In the general cadéig.

capacitive interaction within the DQD is described by thel(@], an additional electron appears in the dawhen the
term levelse;+Q andeg cross.

In the absence of interdot tunneling= 0, one can easily
1 obtain the effective spin Hamiltonian for a DQD witk
Heorr=5 EI Qini(n—1)+Qy onydn; . (® =2 in a ground state far deep in the Coulomb blockade
windows. For a symmetric DQD, this is a two-site Kondo

Herenizz,,dit,dig, andén;=n; — vjq is the deviation of the Hamiltonian in window{1,1} and two single-site Kondo

electron distribution from the neutral charge configurationHamiltonians in windowq2,1} and{1,2. In the latter case
v;o for a given DQD. MoreoverQ;=e?/2C; is the charging of a charged DQD occupied by an odd number of electrons,

energy of a dot whose capacitance i§;, andQ,, is the tunneling through the left(right) dot is blocked, but a
capacitive coupling between the left and right dots. The simKondo-type resonance compensates for the Coulomb block-

, in fact, useful to include the gate potentj&g. (6)] in
position of the one-electron energy levelss ei-l—V'g.
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! spin-1 triplet partially screened by the Kondo tunneling at
12,1} low energies and temperaturés< Ty . The Kondo tempera-
ture Ty is a function ofVy".

Q2 A similar effect exists for the asymmetric DQ[Fig.

- 1(c)], where the two coupled dots have different radii

— {1,2} >r, and hence different blockade energ@s<Q,. The en-

Rl ergy levels of an isolated DQD are shown in the upper panel
H ’. of Fig. 2(c), and the corresponding recharging map is pre-

|

sented in Fig. &). Here the hatched area also marks the

. region of the map where the Kondo effect arises in spite of
0 Q2 -V, -
8 the even number of electrons in the dot.

(a,b) The question of whether to perceive the DQD whkh
=2 electrons as a two-center Kondo problem or as a gener-
_v! alized Anderson impurity is given special attention through-
& {2,1} out this paper. A conventional approach for a description of

E+0-€ the Kondo effect in a two-site quantum dot starts with a
perr m’mmm‘_“l two-centerHamiltonian
IR
- Hgo=H,+H,, 7
0 e+0—€p - V"g do I r (7)
(c) and treatdH, in terms of a two channel tunneling operator
FIG. 3. Coulomb windows for different charge stafes, v,} of H,=Hy+H, . ®)

symmetric(a) and(b) and asymmetri¢c) DQD’s. Hatched regions

indicate the domains where the Kondo effect exists. The interdot interactiomd, is considered as a coupling be-

tween two resonant Anderson centers. If the left and right
ade and opens a tunneling channel through the ritgft) dots each contain an odd number of electrdas in our
dot. In the former case of a neutral DQD with even occupasimplified model withy; ,.=1), Kondo tunneling is possible
tion, the possibility of Kondo tunneling is determined by the through each dot separately. The exchange part of the inter-
relative strength of the on-site indirect exchadgéetween dot coupling maps our Hamiltonian onto a two-site Kondo
spinsS; of singly occupied dots and conduction electrons inmodel. This _couphng can be of both ferromagnetlc and anti-
the reservoir, on the one hand, and the sign and magnitude &rromagnetic types. In the latter case the interplay between
the intersite RKKY exchangd,, on the other hand’ Both H, and H), results in a suppression of Kondo tunneling
these parameters are predetermined by the tunnel coupliriﬁrough the left and/or right well of the DQD. The phase

constantsW,; with the band electrons in the reservoir, but agram of the two-site Kondo model was discussed in nu-
merous papers

one can modify them by varying the gate voltages and inter- In the model discussed here, the interdot interaction is

dot distance. - + )

The interdot coupling modifies this picture significantly. It irr?%(eesiﬂzgebgzggr?r Elv 22}#&{ ga’fz“’l} %?dFi\ge ?,re:??én
favors a S'T‘Q'Et spin sta_lte_ n _the middle of the C_OUIombobvious that this coinI,ing’ SL’Jppress,es Kondo tunneling
blockade window{1,1}, eliminating the Kondo tunneling at through a symmetric DQD at zero gate voltagpsint “0”
zero gate voltages. At finit/,— V|, the values of; devi- iy Fig. 3@)], because the effective indirect exchange interac-
ate from the integer values near the boundaries between thgn which arises due to virtual excitations of charged states
different charge sectors. Increasing negative gate volt‘abes {0,2} and{2,0} is of antiferromagnetic sigr,, = 2V?/Q-like
or V;, one can bias the charge distribution in favor of left orin the Heitler-London limit for a hydrogen molecule or in the
right dot, respectively, without changing the total number ofhalf-filled Hubbard model. As a result, the ground state of a
electrons. As a result, with increasifig, — V|, one reaches DQD is a spin singlet, and the gap=E;—Es=J,;, which

a region of states with a small charge transfer dag=Q divides the triplet excitation from the singlet spin ground
+¢,—£,<Q. The energy levels of such “biased” DQD’s are State, prevents the formation of a Kondo resonance. It will be

shown in the upper panel of Fig(i8. These states occupy demonstre_lted below that this i_s not so in the casstraihgly
asymmetricDQD [hatched regions in Figs.(& and 3b)],

the upper right corner of the windoyd,1} hatched in Fig. ) A
3(a). Here the zero energy configuration illustrated by Fig.‘r’]"é‘lﬁrg :'he crossover to a triplet state is induced by the tun-
t-

2(a) corresponds to the coordinate origin. The virtual charge- _ ) L _ _
transfer excitation§dashed arrow in the upper panel of Fig. . 10 describe this crossover, it is more convenient first to
2(b)] significantly influence the tunneling through the DQD. diagonalize the dot Hamiltoniald 4, i.e., to express it in the
It will be shown below that a type of Kondo resonance arised0'™

in this area of the sectdrl,1}. The “biased” DQD in this

sector behaves like a spin singlet at high temperatures and H :E Ena|NAYNA| 9)
excitation energies, and demonstrates the properties of a AU N ’
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recalling thatN is the number of electrons in a given charge 1
state of the DQD, wherea& stands for a set of quantum lexeo)=—=(lex)=|ex)).
numbers which characterize the many-electron configuration V2

d,"d;" in the presence of interdot coupling. In order to obtainTne interdot tunneling leaves intact an odd singlet gexg)

a compact form for some equations, we introduce Hubbarés well as an odd triplet statd ). As a result, one has,
projection and configuration change operators instead of Eq(13),

XNA|N’A’:|NA><N/A’|_ (10 |S)=asds) +asdex), [Tu)=]t,),

The diagonal term&N*NA are conventional projection op- _ _
erators, while the off-diagonal operators change the electron [EXe)=acdexe) Tacds),  |Exo)=[ex,) (14)
configuration of the dot. The tunneling tety [Eq. (3)] can  [see Fig. 24)]. We are mainly interested in the limiting cases

now be rewritten in the form of strongly biased symmetric DQD’s where the interdot tun-
neling results in a sizable charge transfer between the left
H. = WNAN A'YNANA o 6. and I‘Ig.ht dots with a charge-trans_fer energx=sr+Q
t NZA NEA % ( ko ) —e¢g; [Fig. 2(b)], and an asymmetric dot with a charge-

(12)  transfer energyA,=¢,+Q,—¢, [Fig. 2c)]. The virtual

, charge-transfer transitions which contribute to the lowest
The matrix element are nonzero for states in ad- part of the energy spectrum are marked by dashed arrows.
jacent charge sectors of the eigenspaceHgf so thatN Charge fluctuations are negligible when

=N'+1. In this approach, the DQD is treated as a “reso-

nance impurity” in the framework of a conventional Ander- B=VIQ<1l, pB1=VIA<]1l, B,=VI/A,<1, (15

son model, and its specific features are manifest in a charac- . 0 .
teristic energy spectrury, which includes contributions N cases@a), (b), and(c) respectively” The expansion coef-

due to interdot tunneling and the Coulomb blockade. ficientsa;; in this limit are calculated for all three cases in
the Appendix[Egs. (Al), (A2), and (A3), also see the text

and Ref. 21 In a symmetric configuratiofa) the two-
electron levels which correspond to the bare states of a sym-
metric DQD form a low-energy quartetws;=2¢ and
A. Energy levels and wave functions “’exeo:28+Q' The odd states remain unrenormalized as a

Let us now employ the above approach for a doubly ocTesult of interdot tunneling, whereas the even states undergo
cupied DQD withN=2 in a charge sectdi,1} of the Cou- @ level repulsion. In the limit of smafp=V/Q<1,
lomb blockade diagranfFig. 3). The dot HamiltoniariEgs.
(4)—(6)] can be exactly diagonalized by using the basis of
two-electron wave functions

WNAN A’

Ill. DOUBLY OCCUPIED DQD AS AN ANDERSON
IMPURITY

Es=2e—2VB, E;=2s,

E,=2c+Q, E,=2e+Q+2Vp, (16)

2 od d _|0> [see the lower panel of Fig(®]. In the casdb) of a biased
ro DQD, the two-electron bare energy levels are arranged as
shown in the lower panel of Fig.(B):

|S>—T

2 d dr;i()) |tU>=d|ng;rg|0>, (12 wst=& T8, wex;=&TQ, wex=8+Q.

|t0> \/—
The parity is broken in this case, and the singlet sisitds
T —qf gt now hybridized with both excitonic states. In lin{it5) one
lex)=df,d{ [0}, |ex)=d],d] |0). oW hy Mas)

Generically, the spectrum ofrgeutral DQD consists of a
singlet ground statéS), a low-energy spin-1 triplet exciton
|Tw), and two high-energy charge-transfer singlet excitons
|Ex ) and|EX,). The corresponding two-electron wave func-

Es=¢/+e,—2B8,V, E;=¢/t¢,,

Er=2¢,+Q+2B,V, E =2&+Q+28V. (17)

tions are the following combinations: The role of the “left” exciton |E, ) in the low-energy pro-
IS)=a.s)+ay| Ny cesses is negligibly small. In the same spirit, all terms
) =8s9S) +agex) +aslex), ~B1=VI(g,—e,+Q) will be neglected in pertinent calcu-
lations below.
[TO)=[to), |T)=][t.), (13

The general scheme of energy eigenvalues in ¢asef
an asymmetric DQD is similar to that of cads, but here
the first singlet excitation state is a charge-transfer exciton in
In the special case of symmetric DQB,E¢,, Q=0Q;), the the left dot. So the bare two-electron spectra atg=z¢,
axial symmetry allows one to introduce evi@ and odd(o) t&r, Wey =281 Q), wexr=2g,+Q,, and the hybridized
excitonic states states are given approximately by

|EXI>=aII|eXI>+aIs|S>! |EXr>=arr|eX|>+ars|S>'
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Es=¢,+te,—2B,V, Er=¢+teg,, erQ 10

E =2¢+Q+2B,V, Er=2¢+Q,+28,V (18 / \

[see the lower panel of Fig(@]. In this case we neglect the e
contribution of “the right” exciton|Eg) and all terms~ 3,
=Vi(e,—&+Qy).

It is seen from Eqgs(16), (17), and (18) for the energy (a)
spectrum of an isolated DQD that low-energy excitations
with energy ;= E;—Eg are dominantly of spin character,
whereas the charge excitatiokg , in case(a) andE, g in y
casegb) and(c) are separated from the ground state by the /
gaps 5.p> &, in all three cases under consideratidower /
panels of Figs. @—2(c)]. This same kind of “spin-charge ,
separation” persists when the DQD is hybridizeda H,)
with itinerant electrons in the metallic reservoirs, on which
we now focus our attention.

€,+Q

B. Renormalization of energy levels

The spectrum of electrons in the reservoirs is continuous,
and forms a band with a bandwidtib3. In accordance with
the renormalization-groufiRG) procedure widely used in the gl.;.Q[ /
conventional Anderson model, the low-energy physics can be -
exposed by integrating out the high-energy charge excita- _e
tions in the framework of a “poor man’'s” scaling 31
techniquée® This procedure implies a renormalization of the e
energy levels and coupling constants of Hamiltonignby (©) i
mapping the initial energy spectrumDy<e<D;, onto a

reduced energy band Do+ | 5D|<8.< Do | 5D|'. . FIG. 4. The particle states, which are removed from a half-filled
The n_wappmg progedure results_ in the fOIIO_W'ng equationg,qngyction band upon reducing the bandwidth|BR|. The one-

for the singlet and triplet renormalized energies of the DQD:gjectron levels renormalized as a result of this process are shown by

bold lines.(a) Symmetric DQD.(b) Biased DQD.(c) Asymmetric
WA 2 DQD.
EA~EQ+Y D ——, (19
X o Ex—€—Ey wherel' = po|WA |2, p, is the density of electron states in

the reservoir, which is taken to be constant, aNd are

where ES\O) is the energy before renormalization, and effective tunneling matrix elements calculated in the Appen-

=0y, andq, are electron momenta such that belong to  dix.

the layerd 6D| near the top or the bottom of the conduction ~ The crucial difference between the symmetric configura-

band, respectively. They appear as intermediate virtual staté®n (a) and the asymmetric configuratiof®) and (c)] is

in the processes of positive and negative ionizations of théhat the tunneling amplitudes of the processes involved in

DQD. The index A =S,Tw) in these equations is reserved renormalizatior(19) are different for singlet and triplet states

for the neutral two-electron stat¢gq. (13)] of the DQD, of the DQD. In the symmetric case), the left and right dot

whereas positively and negatively charged states with onstates are involved in renormalization of the two-electron

and three electrons are designated by the indekhe wave states on an equal footing. The relevant processegSare

functions and energy levels of these states, as well as the:|eq,,1e), |S)—|oq,,10), T)—l|oq,le), and |T)

matrix elementquA’f,, are calculated in the Appendix. Fig- —|eqy,10). The one-electron tunneling transitions that make

ure 4 illustrates the processes involved in the level renormaldominant contributions to these processes are shown by the

ization in all three cases under consideration. Note that thesgashed arrows in Fig.(d).

RG equations are uncoupled in this order. In accordance with As a result, the tunneling rate in this case is

the poor man’s scaling approathpnly virtual transitions

with an energy~D are relevant, and the estimate of the sum Ds=Tr~mpo(|W|+|W,|?). (21)

on the right-hand side of Eq19) gives

In the biased and asymmetric configuratigb$ and (c)
N the even-odd symmetry is broken, and the Coulomb block-
E.—g0O_ I'*| D (20) ade in one center controls the tunneling through the other
ATEA D ' onelt? processes with energy D involve only electrons
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from the left dot. The energy levet, is deep below According to calculations performed in Ref. 10, this level
the Fermi level, and renormalizatigh9) does not influence crossing can occur either before or after the crossover to the
its position in accordance with the general argumentation oSchrieffer-Wolff regime when the one-electron energies
the scaling theor§? In case(b) the relevant processes are E,(D)—E,, exceed the half-width of the reduced continu-
|S)—|quo,1bo), |TOY—|quo,lbo), |Tx)—|q,=,1,*),  ous spectrunD~|E,(D)—Ey|. In both cases, the charge
and the tunneling transitions which give the dominant con-degrees of freedom are quenched for excitation energies
tribution to these processes are shown by the dashed arrow {{ithin the interval—D<e<D, and a Haldane renormaliza-
Fig. 4b). The same kind of asymmetry takes place in cas@jon procedure should be replaced by the Anderson poor
(c) [dashed arrows in Fig.(d@)]. As a result, the right dot is  man’s scaling®

excluded from the RG procedure, and one has, instead of Eq.
(22), IV. SPIN HAMILTONIAN FOR DQD’S

I~ 7TP0|W||2. Is= agsrT, (22 A. Quantum rotator representation

The Schrieffer-Wolff transformatidfi for the configura-
tion of two electron states of a DQD projects out those states
of the dot having one electron or three electrons, and maps
the HamiltonianH onto an effective spin Hamiltoniaki
acting in a subspace of two-electron configurations

Here the coefficienag<1 is a measure of charge transfer
from the left dot to the right dot due to admixture of singlet
excitonic states to the ground state sindlete Eqs(All)
and (A12) in the Appendi}. Iterating the renormalization
procedure[Eq. (20)], one comes to the pair of differential

scaling equations (Al [A7),
dgy, T H=eSHe S=H+ >, (_1)m{5[5 [SHI]...}
A :_A’ AZT,S, (23) - m! y y .
dinD = 26
which describes the evolution of the two-electron energyyhere
states when the energy scale of the band continuum is re-
duced. These equations describe not only the renormalization (ng)*
of the low-energy two-electron spin states, but also the S=> ———XM¢,,—H.c. (27)

change of the one-electron transition enerdigs-E, , be- AN (Ko By~ €

cause the one-electron states,=e, —O(B) are deep un-  Here (k) stands for the electron or hole states secluded
der the Fermi level, and the reduction of the energy scalg\’ithin a Iayer+5 around the Fermi levelE .. =E (5)
— ANT EA

does not influence them. — _ Lo :
Scaling equations as in E(23) were analyzed in Ref. 10 —Ex(D). An effective Hamiltonian with the charged states

for a specific case of a “Fulde molecule” or double-shell I\)=[1bo),[3bo) frozen out can be obtained within first
quantum dot(DSD), where the electrons in one shell are Order in S. As a result of integrating out the high-energy
subject to a strong correlation effeg€oulomb blockade charge d(_agrees of.fr_eedom, we are left with the effective spin
whereas the loosely bound electrons in the second shell afé@miltonian containing four states,=S,T. The algebra of
responsible for tunneling; also tunneling to the leads is alcorresponding Hubbard operators is thealgebra. Thus the
lowed only for the second shell. Modéd) is a natural ex- DQD acquires an S@) symmetry, which is the dynamical
tension of a DSD because in the lowest approximation in théYmmetry of spin rotator. It has the form

interdot interaction the tunneling through the right dot gives

no contribution to level renormalization. In cagw, both left A=Y EXM+ Y ech co

and right dots contribute to the renormalization procedure, Y o

but the crucial property of scaling equatiods<I'; [see

Eqg. (22)] is shared by both configurations. -> > JAA,”\XAA’CE Chror » (28)
The scaling invariants for Eq$23) is AA'N KK oo Kk 7
E* —E,(D)— A T2 24 where
A=EA(D)——In T, (29) L

I A
Here the scaling constants have to be chosen to satisfy the Kk 7 7 \Ean—€ Epnn— €
boundary conditiorE , (Do) =E‘?). Due to relation(22) the
energyE;(D) decreases witlD faster than withEg(D), so
that the two scaling trajectorids, cross at a certain band-

width D=D_, estimated as

In the charge sectdd=2 the constraink ,X** =1 is valid.

As shown in Refs. 7 and 10, the effective Schrieffer-Wolff

Hamiltonian of DQD describes not only the conventional

indirect exchange between localized and itinerant spins. It

—T- D also contains terms that intermix the singlet and triplet states

T S|n—0:E-(|—O)_ EQ=5,. (25)  of the quantum dot. This mixing is due to the tunneling ex-
™ D¢ change with electrons in the metallic reservoir.
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Before writing down the pertinent spin Hamiltonian, a AST=35T(p.9).
few words about a quantum spin rotator are in order. It is
known (see, e.g., Ref. 25hat the symmetry of a standard The local electron operators are defined as usual,
guantum rotator is described by an operator of rotational

angular momentunh and an additional vector operatht. ot t =12 T2

g n,=c,C,= CyoCksr S=2 CrsTCx &' »
These two operators generate the semisimple algebra T e % ko ke % UZU ko Tk o
they are orthogonall.-M =0, and the corresponding Ca- (35

simir operator id_?+M?2. The matrix elements of the opera- . _ _ ,
tor M connect states with different values of the orbital mo-and 7 are the Pauli matrices. Moreover, the coupling con-
mentum | —1=1. The existence of this second operatorStants are
reflects the “hidden angular symmetry” of the rotator.

2 2

Similarly, the spin symmetry of the DQD is characterized JT:< Wi | W | ) (36)
not only by the spin-1 vectd®. one can introduce a second er—€ E+Q—egf
vector operatoP orthogonal toS which determines the ma- in case(b), and
trix elements of transitions between the different states of the ’
rotation group S@). In the present case, the vectbr 1 1
={P,,P*} determines the transitions between the singlet JT=|W||2( —tEToo ) (37)
state and the different components of the spin triplet. It is er—€ BtQ—er
convenient to express the spherical components of the vectat case(c). In both cases
operatorP in terms of Hubbard operatobSAA/ (for brevity, 5
AA’ will be either S for a singlet quantum number Q¢ IP=azJ", JIT=a.J". (38)
=1, 0, and Ifor triplet magnetic quantum numbers This completes the derivation of the spin rotator Hamiltonian

P+ \E(Xls— XST), b \/E(XSLXTS), for a DQD hybridized with itinerant electrons.
P,=— (XOS+ XSO). (29) B. RG flow of coupling constants: Kondo temperature

Within the same procedure, the spherical components of the DU€ t0 the intermixing ternii sy in the spin Hamiltonian
spin-1 operatofs are given by the following expressions: [Eq. (3_4)], both triplet and singlet states are involved in 'Fhe
formation of the low-energy spectrum of the DQD. Scaling

S* = J2(X10+ 01, equations for the coupling constarts and JST can be de-
rived by the poor man’s scaling method of Ref. 23. Neglect-
—_ 01, y10 w1l 11 ing the irrelevant potential scattering phase shift and using
S =V2(X? X1, Sp=XTm X (30 the above-mentioned procedure of integrating out the high-
The vector operator® andS obey the commutation relations energy states, a pair of scaling equations is obtained:
of the usualo, Lie algebra:

djl N N dJZ -
[S]-,Sk]=iejk|$|, [Pj,Pk]=iejk|S|, [PJ,Sk]ZIe]kl(g:lL) m:_[“l) +(J2) ]! m:_ZJIJZ (39)
(herej ,k,| are Cartesian indicgsin addition, the following (herelepoJT, j2=pod®", and d=poD). If 6=E(D)
relations hold: —Eg(D) is the smallest energy scale, the energy spectrum of

, s ) o5 the DQD is quasidegenerate, and syst&8) is reduced to a
SP=0, $=2(1-X59, P?=1+2X°% (32 single equation for the effective integrial =j;+j,;

To wit, S (a spin 2 andP are two orthogonal vector opera-

tors in spin space which generate the algelyan a repre- dl_+: —(j+)2 (40)
sentation specified by the Casimir opera®r P>=3. This dind
justifies the qualification of a DQD asspin rotator Then the RG flow diagram has an infinite fixed point, and the

Returning back to the effective spin Hamiltonian, E2p) solution of Eq.(40) gives the Kondo temperature
it now acquires a more symmetric form

RS+ RTLRST 33 Tko=D exp(—1/j ). (41
where In the general case, the scaling behavior is more compli-
cated. The flow diagram still has a fixed point at infinity, but
HS=ESXSS+JSE XS5, , the KondoEmpe@ture turns out to be a sharp functiod. of
T In the cases<0, | §|> T, considered in Refs. 7, 8, and 10

3 the scaling ofJST terminates aD = 8. Then one is left with
AT=E- Xkt J7S. o — N 34 the familiar physics of an underscreen&F1 Kondo
T% % 7 34 model?’ The fixed point is still at infinite exchange coupling
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Jr, but the Kondo temperature becomes a functiomoft ~ (also see Ref.)8 In the Hubbard representation the compo-

was shown in Ref. 8 that a kind of universal law ﬂ')((g) nents of these spin vectors have forms

also exists in this limit, 1

S == (X204 X0 X185 xSL)

T/ Teo=(Trol )", (2 V2

where vy is a numerical constant. Now we can explain the ~ b o1y T04 ySio ¢ 1S
: Y : . i S == (XTHXTEXTFEXD), (44)

diagram illustrating the appearance of the Kondo tunneling <2
regime in a Coulomb window with even occupati¢h,1}
(Fig. 3. In the case of symmetric Hike DQD (the upper 1 - =
panel of Fig. 1 the tunneling is predetermined by the param- Szl,zzz(xllJr XHE X055 X)),

eterse=¢ | =¢,, WEW'g=Wg, Q, andV, and the difference ) ] o
|V'g—Vrg|. If the parameters, W, Q, andV, characterizing It is easy to check by direct substitution that
the device, are fixed, then the tunneling regime is controlled 1 3
by_the external gate vol_ta_g.ezl_v'g—vg[ [see Fig. 20)]. S?=3/4, XSS:Z_(Sl'SZ)! > X’“‘=z+(51'52)-
This voltage enters the initial singlet-triplet energy gép w
=2V?/(Q—A) as well as the coefficien?lgS characterizing (45)
the asymmetry of tunneling ratd3; s [see Eqs(15), (22),  The Casimir operator can be introduced &44S3.
(Al), and(A2)]. Then substituting Eqs(43) and (44) into Hamiltonian

At A=0 (zero voltagg the tunneling rates are equal, (33), we rewrite it in the form
I't=Tg, so the DQD remains in a singlet state in spite of
tunneling renormalization, and the Kondo tunneling is absent -~
along the diagonal of thgl,1} window in the upper panel of H=J(S1:$) +31(S1-9) +32(S, 9) + J5(Sy- SZ); No
Fig. 3. At smallA the asymmetry is weak enough to satisfy
criterion (25) for crossing of the scaling trajectorigs 5(D), +const. (46)
so the stripe of zero conductance around the diagonal hasl—?ere
finite width. With increasing voltage\ both &, and I'y
—1I"g grow together with growings,; =V/(Q—A). However, .
the former difference is- 8, while the latter one is~ 37 J=E;—Eg=6, J;,=3T+J°T, Jg=5Jr=Js.
and grows more quickly. As a result, beginning from a cer- (47)
tain A, criterion(25) is satisfied, and we enter the domain of
Kondo tunnelingthe hatched areas in the upper panel of Fig.Thus, as mentioned in Ref. 8, transformati6t8) maps
3). On the other hand, wheh is too large, and the parameter Hamiltonian (33) on an effective two-spin Kondo Hamil-
B1>1, one enters a region of strong Charge fluctuations iﬁonian p|US an additional potential Scattering term. However,
the vicinity of the Coulomb resonance, and the Kondo effecthe physical meaning of these two spin operators differs from
should disappear as a result. The theoretical picture of intethat in the conventional two-site Kondo mod@iThey only
play between spin and charge tunneling channels region ifipan the twoos subalgebras of the semisimple Lie algebra
this region is still not clear. Since the behavior of the system® (see Sec. V for further discussion _
depends only on the modult|1\i!' —V’gl, the diagram is sym- This kind of effective Hamiltonian also appears in other
metric around the diagonal of the Coulomb window. situations where singlet and triplet states of a nanoobject

Unlike the case of a plike DQD, one may expect that Close in energy, e.g., in vertical quantum ddtsr in con-
the Kondo tunneling regime is realized at zero voltage in aryéntional dots at even occupation, provided low-lying triplet
asymmetric DQD(Fig. 1, lower panél In terms of the above excitons are tak_en into accoutftlt was noted in Refs. 7 8,
theory this means that criteriof25) is already satisfied at and 10 that the interplay between two energy scales, i.e., the
V'g=Vé=O. This situation was considered in Ref. 10. Theninterdot singlet-triplet gapé and the tunneling-induced
the role of the gate voltage is to drive the system toward thé<0ndo binding energy for a triplet configuration
lines of Coulomb resonance, so we come to the picture sche= D exp(—1/poJy) results in an essentially nonuniversal be-
matically drawn in the lower panel of Fig. 3. havior of the Kondo temperaturg (see Sec. IV B

C. Two-spin representation D. Magnetic-field-induced Kondo effect

Yet another peculiar manifestation of the “hidden symme-
itry” of the spin rotator is the possible occurrence of a
magnetic-field-induced Kondo effect. Such a possibility was
discussed theoretically in Ref. 3 for the case of quantum dots
formed in GaAs heterostructures, and in Refs. 8, 6, and 7 for
s, StP S, E (43) the case of vertical quantum dots where the external mag-
netic field influences the orbital part of spatially quantized

It is knowr?® that the algebr@, can be represented as a
direct sum of twoos algebras. In our case this means tha
one can construct another pair of orthogonal operators

2
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DQD, similar effect arises i6>0, where the ground state of T_KO &P~ l+agy)’ (52)
the DQD remains a singlet in spite of the tunneling-induced

renormalization. Here we rederive the field-induced Kondo Of course, the same kind of separation is possible for a

effect in terms of a spin rotator representation. degenerate pair of statés andE;7, and the corresponding
In an external magnetic field, the energy leveldlihare  vectorsR’ and T’ may be obtained from Eq$49) and (50)

split due to the Zeeman effecET—>ET#=ET—M52. As by interchanging indices 1 and (see Ref. 8 for a physical
noted in Ref. 3, the Zeeman splittingy=gugB of the ex-  realization of this situation

cited triplet state compensates for the energy §ap a cer- To summarize the description of basic manifestations of
tain value of magnetic fiel=B,. In the vicinity of this ~ Spin rotator symmetry in DQD's, we considered three limit-
point whens— 8,< 8, only the level€, andEq survive in N9 cases of spin rotator representations depending on the

the diagonal partESXSS+ETEMX‘“‘ of the spin rotator physical situations:_ guasidegenerate s@p@TK_, when the
Hamiltonian[Eg. (34)]. Then the only renormalizable cou- resonance properties of a DQD are determmeg by the full
pling parameter in the exchange Hamiltonfdy. (34)] is ~ SO4) symmetry[Eq. (41)]; triplet ground statg 6> Ty,

JST. It is easily seen that the operatd®s, P~, and (S, Where the virtual excitations to singlet state render the
—X59 form an algebra; in the reduced spin spa¢&,T1}. Kondo temperature dependent on the initial singlet/triplet
In this subspace the operataPs” and P~ are reduced to SPlitting [Eq. (42)]; and a magnetic-field-induced doublet
J2X1S and 2XS1, respectively. The operato& — \/EXOI ground stat¢Eq. (51)], where the Kondo resonance arises in

_ . o spite of the loss of local rotational invariance. The hierarchy
10 0__ y11
and S”—2X*°, together with a combinationX(®—X*?), of Kondo temperatures is nonuniversal. The maximal value

act in the subspace of excited sta{@®,T1} divided by the  of T, is given byTy, [Eq. (41)], from which it falls with the
Zeeman energy from the low-energy doublet. These opergemoval of singlet/triplet degenerat$.It then reaches the
tors form a complementary algebog, and the direct sum of ity value of D exp(~1/j,) at larges, where the contri-
these algebras represent a realization of 'th(a{LBQ/mmetry bution of the high-lying singlet state becomes negligibly
for a “spin rotator in an external magnetic field” when the weak, and one returns back to the typical(@symmetry of
rotational symmetry in spin space is prok_en. spin S’: 1 described by the; algebra.
As a result, the effective spin Hamiltonigiq. (34)] in a All the above results could also be obtained in represen-
subspacgS,T1} reduces to tation (44). In this case the scaling equations should be de-
~ ST rived for three coupling constands, J,, andJ; of the spin
Hz=EzRo+J>(R-5)+Hj. (48)  Hamiltonian[Eq. (46)]. This procedure was described in Ref.
8. As expected, the results are equivalent since the scaling of
yJ3 adds nothing to the singular behavior of the relevant pa-
rametersJ; and Jgt. The problem becomes more compli-
cated in case there are two sources and two dfdifiiken an

wave functions and results in singlet-triplet level crossing. In Tk p( 1

Here E,=Eg=Eq, is the degenerate ground-state energ
level of a DQD in a magnetic fiel=B,, H, describes
irrelevant potential scattering, and the operat@gs and R

are additional indexa should be introduced for the lead elec-
Ro=X1+X58 R,=X1-x58 trons c,,—C.ky - States with differentr’s are intermixed
due to interdot tunneling, and one more opergdotP or

R*=2X1S, R =2XS. (49) S, XS, should be introduced in the theory of a spin rotator

coupled to metallic leads.

The complementary vectdr, defined as
V. TWO-CENTER KONDO MODEL FOR DQD’S

— yw00 11 + 01 - _ 10

T=XPoXE, Tr=2X T = 42X (50 It is natural to expect that in the limit of vanishing inter-
forms a second subgroup. This vector is quenched by thdot couplingV the tunneling through a doubly occupied
magnetic field. The spectrum of conduction electrons is als®QD is defined by the individual spirs= 1/2 of the left and
split due to Zeeman effect, but this splitting does not affectight dots, and the existence or nonexistence of a resonance
the Kondo singularity in the tunnel current: one may simplytunneling channel will be predetermined by the competition
redefine the conduction-electron energies and measure themetween the Kondo effect for the left and right dots and the
from the corresponding Fermi levels for spin-up and -downindirect exchange induced by the same tunneling. In this

electrong limit the problem is reduced to a specific version of the two-
Applying the poor man’s scaling procedétdéo Hamil-  site Kondo model. The corresponding theory f@yanmetric
tonian (48), one comes to a scaling equation two-site Kondo impurity in a metal was discussed, e.g., in

Ref. 19. The question is how this approach should be modi-
dj, . fied in the asymmetric caséb) and(c). On the other hand,
dinD —(12)% (52) with increasingV, these two approaches should be matched,
and it is instructive to compare the description of a DQD by
with a fixed point afj,=< and the Kondo temperatuz  two fictitious spingEqs.(43)] and by two real spin§ and
=D exp(—1/j,), so that S.
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To study this problem we use the approach mentioned ifThen, taking into account that=J,, by its origin, this equa-
Sec. Il, and consider the DQD as a two-site center with spintion can be rewritten in the form
1/2 in each site within the framework specified by Hamilto- o .
nians(7) and(8). In terms of Hubbard operato(%0) for spin o= 60—,8§F|In(D0/D). (59

1/2, this Hamiltonian is written & =Hgo+ H,+Hy., where This is the same result for the renormalized singlet-triplet

excitation energy that we found in Sec. IV. In casg, a
Hd0=2 EiAXiAA (A=0,0,2), similar procedure starts by eliminating the polar states gen-
LA erated by the interdot tunneling tefreee Fig. &)]:

Hi= 2 [Wieo (X7 + XE)Cip+ He ] (53 Hiy =V [X27X%+ H.c]. (60)

In case (b), the stateskq, E,=s|, E;,=¢,, and E;,  In this case the Harris-Lange procedure results in an indirect
=2¢,+Q are involved in the RG procedure, and the corre-exchange HamiltoniafEqg. (55)], with a coupling constant
sponding interdot tunneling Hamiltonian is represented in the),, =V?/A,. Again, only the energy leved, is involved in
form Haldane’s RG procedure. Scaling equat{é8) contains, on
the right-hand side, the factg, instead ofB,, and its solu-
H|r=VE (Xf’oxr;2+H.c.). (54) tion for the triplet/singlet level splitting gives

— 5 _
This tunneling is possible only in the singlet configuration of 9= 0= B2liIn(Do/D). 61
the DQD. We start by eliminating the polar statg®r2}  This is exactly the result obtained in Ref. 10.

that arise due to interdot tunnelif&q. (54)]. This proce- Next the Schrieffer-Wolff transformation eliminates the
dure, known as a Harris-Lange canonical transformafion, tunnel coupling. The operatd? in Eq. (26) has the form
eliminates the interdot terid,, , and instead, in second order

in V, an interdot spin-Hamiltonian emerges, Szz W (X"OCT —H.c)
ko €k €| ! ko o
His=31r 2 X77 X7, (55 W, -
oo’ + 2, ———(X{¢cy,—H.c), 62
e 8|+Q—8k( Ik ‘ (62

whereJ;, =V?/A;.

As in Sec. IV, we should integrate out the high-energyin case(b), and
charged states by using the Haldane RG procéde the
left dot alone, since the renormalization of the deep leyel . W o0t
is negligible. However this procedure should now include the 5= kz,, ex—¢ (Xek,—H-c) (63
renormalization of],, due to a reduction of the conduction

band. The scaling equation fer is the same as Eq24) for in case(c). As. u;ual, in second order, the tunneling term
a triplet state. We rewrite it in terms of the two-spin Hamil- 9€nerates an indirect exchange between the leads and dots.
tonian as As a result, the total spin Hamiltonian acquires the form

e _ T (56) Hs=3i(S-S)+ 3 Ji(S-9+H". (64
dinD = i=Lr

(I')=T'7). The same mapping procedure as in B gives HereJ, =4 is the renormalized singlet/triplet excitation en-
a correction to the indirect exchange coupling constant,  ergy[Eq. (59 or (61)] in casegb) and(c), respectively. The
components of the local spir% are now defined as
5 _, Pl -
troob S=X sT=xT, Smp X, (69
and its iteration results in the second scaling equation;
The Heisenberg-like interdot exchanfigq. (64)] arose in
dJ, N second order iV similarly to the effective antiferromagnetic
dnp - P, (58)  exchange in a half-filled Hubbard modéIThe indirect ex-
change coupling constants govern the interaction of the con-
This procedure stops & =D, where the Schrieffer-Wolff duction electrons and the local spins in the dots. They are
limit for ¢ is achieved. Integrating E458) from D to D,, ~ 9iven by
one comes to the following equation for the renormalized
indirect exchange coupling: J,

W WP
8|:_8|, r 8|+Q_8|:

(66)
Jir(D)=3,,(Dg) — B2TIn(Dy /D). in case(b), and
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1 stable fixed point in the flow diagram dividing the Kondo
J;=0 (67)  singlet from an antiferromagnetic singlet ground states of the
system. The conventional two-site Kondo impurity can also
in case(c). The last termH’ in Eq. (64) includes irrelevant be classified as a “spin rotator,” and the singlet-tripleten-
potential scattering terms arising in a second-ordeindd mixing is an essential part of the Kondo physics in this
Schrieffer-Wolff transformation, and other invariants that ap-case.
pear in the Hausdorff expansi¢kqg. (26)] i.e., mixed prod- Nano-objects whose symmetry is more complicated than
ucts like §-[S;xs]. These terms arise due to an interplay|ocalized spins, i.e.quantum rotorswere discussed previ-
between the interdot exchang®, and the tunnelingd;.  ously in a context of the theory of quantum phase transitions
Here we do not consider these small corrections to the maim two-dimensional Heisenberg antiferromagnets, spin lad-
Kondo effect. _ ders, and spin glassésee, e.g., Ref. 29A quantum rotor
Comparing Eq(64) with Eq. (46), we see that the second- 55 defined as a spin whose rotation is constrained to move
order terms of the expansion reproduce the general structugs, 5 surface of anM=2), dimensional sphere. An example

of a two-spin Hamiltonian. The interdot exchange has the, o, array of quantum rotors is a double-layer system of
same form for both representations, but there are Slgnlflc"J‘ré{ntiferromagneticalIy ordered quantum spins. If the inter-
differences in the values of the coupling constants betweeré‘yer couplingK 1»(Sy- Syyr) in a sitemis stronger than the

the leads and local spins. In particular, the tunnel couplinq ; - ; - :
. L . . Intersite couplin . in a given layer, the pair of
between the right dot and the leads is absent in this order Boins S, anl?j SngmFéﬁlnm aSlSl)Janturg rotorSy with a% 04
m m m

case(c), yvhereas in the two-spin rg:presentat[c&cz. (43)] algebra and a Casimir operat&¥. The spin rotator is a
the coupling constants ady =(2+ f3)J; andJ,=pB3J;. It 0,151 generalization of this description: in caseMbE2,
should be noted, however, that a nonzero coupling betweeg,e oycited triplet state in each site can be added to a

the leads and th_e right d(_)t arises due to the intgrferenc_e b?ﬁanifold, and the ladder of spin rotors transforms into an
tweenH,, andS in a Schrieffer-Wolff representation, but its array of spin rotators.

value differs fromJ,. Thus, from the point of view of the  \ye |eave a more detailed discussion of electron transport
general S@) symmetry of the DQD, the two-site represen- y4,gh DQD's for future communications, and briefly dis-

tati(_)n is simply one more representation of thealgebra as 55 5 limiting case of a biased DQD with=0, which was
a direct sum of twoog algebras. The only case when the rggjized experimentalft!2 In case (b), this limit corre-
representationS,,S; and$; , S coincide is in the symmetric - g4nds to an electrometer geometry. In this configuration the
DQD, where the admixture of excitons is ignored and the;gnt dot is isolated from the leads, but, nevertheless, it can
parity is conserved for an isolated DQD. This symmetricpe ysed for driving the current through the left dot. In Ref.
DQD, of course, also obeys an 81 symmetry, but itS 15 the driving was realized via an electrostatic coupling be-
ground state is a singlet. The only way to activate the *hid-yyeen the dots, and charge transfer was allowed this moni-
den symmetry” in this case is to switch on a strong magnetiGqing the Coulomb resonance conditions. In the present
field t_hat compensates for_the_ exchange splitting. Then t Base, the resonance inspin channel is allowed by modify-
effective spin Hamiltonian is given in E¢48), and @ mag-  jng the energy of theharge-transferexciton. To measure
netic field-induced Kondo effect arises. this effect one should choose Brwindow in a plan ¥/}, V)
for symmetric DQD’s. At zero diﬁerenc\z;—vg, no Kondo
VI. CONCLUDING REMARKS effect should be observed. Then increasing this difference at

It is worth making several remarks about the advantage iven temperaturd, one effectively changes the energy dif-

of using alternative approaches to analyze the physics of t rencedy [Eq: (29] and_ raises the Kondo_temperatl]’r@:
guantum-spin rotator. We have presented three different wa hen the rejglme“.l'jTK Is achieved, one f]nds oneself na
of substituting spin-1/2 operators for the generic operafors hatched region similar tq that shown in FigaBfor a win-
andP of the SG4) group. This substitution exposes numer- dow 11,1}, and a zero-bias anomaly should appear in con-
ous connections between the approach to the Kondo effec ,uctance. . .

In terms of the two-spin representatipig. (43)], the

treating the double dot as a spin rotator and the conventional f the RG sch ins th 4 th |
description as a two-site Kondo problem. The traditionalStructure of the RG scheme remains the same, and the only

theory of the two-site Kondo effettdeals with asymmetric change is a disappearance of _the second term irt35p for
DQD, so it is formulated in terms of even-odd spin and9T- 'Ne changes in the real-spin representdftien (65)] are

charge states. The effects discussed in the present paper Q%Qre ilssﬁntliaflif;o’ Hand the Kohndo tnneling ?Cﬁurs onlfy
sentially arise only irmsymmetricsituations wherd;>J, or t_roug _t e left dot. ovv_ever,t N conventlo_na .t eory ot a
J;>J,. In addition, we treated conduction electrons in asmgle-sne Kondo screening cannot be applied in this situa-

single-channel approximation, whereas the even-odd stai#on because the interdot tunneling terad;, is still present
classification of conduction electrons in a two-site Kondoin Hamiltonian (64). If the renormalized coupling constant
modef® classified it as a two-channel single-impurity model. J,, remains positive, the left spin is dynamically screened
Some generic properties of the two-spin Kondo effect areand the right spin remains free. This model is a limiting case
nevertheless, similar in both limits. In particular, the compe-of an underscreened spin-1 solution.

tition between the on-site interactiodgS;- s) and the inter- The description of the Kondo effect in terms of two ficti-
dot exchangdl;; (S - S;) results in the appearance of an un- tious spinsR andT [Egs.(49), and(50)] is another example

_ 2
‘J| |W|| EF— &, 8|+Q|_8F !
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of separation of spin degrees of freedom into a dynamicallyfalso see Ref. 21 In addition, the tunnel matrix elements

confined momenR and an unscreened momeht(also see  which connect the states from different charge sectors of the

Ref. 6, and this case was realized in the experinfehtsen-  DQD’s are presented. The eigenvalues and eigenfunctions of

tioned above. an isolated neutral DQD withl=2 can be found by direct
We have seen that the scaling trajectory for the couplingfiagonalization of Hamiltoniang}) and(5). In a neutral con-

constanté=J,, is predetermined by the bare value of the figuration {1,1} the interdot capacitive coupling is absent.

singlet/triplet splitting 5§o0=28;V, which, in turn, can be Far from Coulomb resonances when the inequalitlés are

driven by the gate voltagksee Eq.(15)]. Thus we see that valid, expansiong14) in symmetric casé¢a) and Eq.(13) in

the Kondo tunneling channel in the left dot can be opened byhe asymmetric case®) and (c) give the following equa-

softening the charge-transfer potential that is governed by thgons for the coefficientsa;; in first order of perturbation

right gate voltage/y;, and a DQD with an isolated right dot expansion in the tunnel coupling The processes taken into

works as a “charge-spin transformer.” account in the mixing terms are shown by the dashed arrows
The limit of zeroJ, in case(c) was considered within the in the upper panels of Fig. 1.

spin-rotator approach in Ref. 10. In terms of a full @D (8) Symmetric DQD:

description, the flow diagram is similar to that of a biased

DQD [case(b)]. If one were to try to describe this asymmet- Qo= A~ 1— B2, Age= —8es= \28. (A1)

ric DQD in terms of screening of the individual sp, a )

problem would arise when taking into account charge fluc- (P) Biased DQD:

tuations to the statéEx) [Eq. (13)] at the first “Haldane”

2 12 ’
stage of the RG procedure, because this excitation is soft by 2= 1-F1-B1%,  ay=—as=1\241,
assumptionwey <<D. In this case the source of strong cor-
relation is, in fact, the right dot, and the interdot tunneling is Agr= " A= ‘/5181’ (A2)
responsible for true spin-charge separation in the DQD. The ' )
description of Kondo tunneling in terms of the operat8rs a=1-p," a,=1-p1.
andP is obviously preferable in this case. Here B,=V/(Q+A). We assume thag, <, and neglect

In conclusion, here we considered the spin excitation[he
spectrum and the Kondo effect in DQD’s from the point of (c) Asymmetric DQD:
view of its generic symmetry, that is, an 8 symmetry of y '

a quantum-spin rotator. The properties of spin rotators differ _q1_p2_ 2 A
in many cases from those of localized spins with the same as=1- 3= B7,  au=—as=\2hs,

&2, In the case of a triplet ground stat&*2), where co- _ _ '

, X ' ag;=—as= V285, A3
tunneling results in an underscreened Kondo effect, the pres- sf =263 (A3)
ence of low-lying singlet excitation makes the Kondo tem-
perature a nonuniversal quantity. If the ground state is a

singlet (5?°=0), the Kondo effect is nevertheless possible ifHere 85=V/(Q,—A)<p,, and we neglect the correspond-
one projection of the low-lying triplet excitation is involved ing contributions as well.

in electron tunneling. An alternative language for discussing To complete the enumeration of states involved in the
the properties of DQD’s is provided by a two-site Kondo tunneling Hamiltonian[Eg. (1)], one should define the
model approach. However, in spite of the overal(®®ym-  charge states of DQD’s which arise in a process of electron
metry of the problem, an equivalence of these two apiunneling between DQD’s and metallic leads. We are inter-
proaches exists only in the case of conserved pdsyyn-  ested in one-electron tunneling, so the states with one and
metric DQD’9. When the asymmetric charge-transferthree electrons in DQD'dN=1 and 3, should be taken into
exciton is admixed with a low-energy spin singlet, the two-account.

site representation and the two-spin representation of the (a) Symmetric DQD’s.One-electron states are even and

terms~ B; in our calculations.

ay=1-p5, a,=1-p5.

SQ(4) group for a biased DQD are not equivalent. odd combinations of electronic wave functions belonging to
the left and right wells. The same is valid for the three-
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This work was partially supported by grants from the |- Electron states:

raeli Science Foundatiori€enter of Excellence and Physics

of complex quantum dotsa U.S.-Israel BSF grariturrent 11e,0)= i
instabilities in quantum dotsand the DIP program for quan- J2
tum electronics in low-dimensional systems. We benefited

(df,+df )]0y,

from discussions with I. Krive, L.W. Molenkamp, and F. M. 1 ) )
Peeters. lo,0)=—=(d;,—d;;)|0), A4
APPENDIX
The wave functions of symmetric and asymmetric DQD’s |3e,0)= i(drud:LdITT+d:u-leLleT)|0>'
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transparencies of the left and right dots are different even if
W, =W, [case(b)]. In case(c), the tunneling barrier between
the Ieads and the right dot is wider, and one can assume that
W,<W,, so that the asymmetry is even stronger. Consider-

|30’O->: (lezrleld:T_d:-o'dridl‘rT)|O>'

1
2

(b) and (c) Asymmetric DQDdn this case the DQD is

“polarized” both in negatively and positively charged states.

The one-electron wave functions are the same in céses
and(c):

|1a,0)=(J1—a?d] —ad',)|0),

ing the asymmetric configurations in cad®, we note that

the expansion coefficients in E¢L3) for the two-electron

states|A) are such thabss>ag,as, [see Eq.(A2)]. The

tunnel matrix elements which define the dominant contribu-
tions to the RG equation@0) are

_ S 1
|1b,0)=(ad] + V1—a?d/,)|0) (A5) ng?al _EW"
(a«=VI/A). The corresponding energy levels are
Eia=gtaV, Ejpp=g—aV. (AB) WEJ+1+—W| ’ Wg(?f;:lwr ,
The three-electron wave functions are represented by expres- 2
sions T+ 3+
Wqgi™ = ow,, (Al1)
3b,0)=(V1—a?d/,d! df, + ad! dl d],)]0),
— 1
Slo__
13a,0)=(—ad/,d! df, +1-?d! d[ d)|0) (A7) un—anssM :
in case(b), and
13b,0)=(\V1—a'2d],d], df +a’d], d} d],)|0), W§£?=Easswr,
[3a,0)=(—«a d +1— a’zd d:1)|0> (herew,=\1— a?W,). Similar equations can be derived in
(A8) case(c), where the wave functions of the virtual charged

in case(c). Herea' =VI/(Q,—
given by the equations

—A). The eigenlevels are

Esp=26,+Q— Esa=2e,+Q+aV  (A9)
in case(b) and
Esp=2e,+Q,— Esa=2¢,+Q,+a'V (A10)
in case(c).

The tunneling matrix elements in Hamiltonidth, [Eq.
(11)] include states from different charge sectdfs , v,) of
the dot HamiltoniarH4 [Eq. (9)]. In the presence of an in-
terdot couplingV, and at nonzero bias potentML—V5>O,

states|1bo) and|3bo) are given by Egs(A5) and (A8).
Now, instead of Eq(A1l), one has

1
TO,lo _ TH,1+
uno _EWI ) un: Wi,
WTO’BO-:iW, WTi 3+ W (Alz)
qdo \/E (I qd= —OWy,
- 1 — 1
qshlgzﬁo'asswl , quggzﬁasswl ,

the numbersy; and v, are nonintegers, and the tunneling wherew, =+1— a'?w;.
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