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Double quantum dot as a spin rotator
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It is shown that the low-energy spin states of double quantum dots~DQD’s! with an even electron occupa-
tion numberN possess a symmetry SO~4! similar to that of a rigid rotator familiar in quantum mechanics
~rotational spectra of H2 molecule, electron in Coulomb field, etc!. The ‘‘hidden symmetry’’ of the rotator
manifests itself in the tunneling properties of the DQD’s. In particular, Kondo resonance may arise under an
asymmetric gate voltage in spite of the even-electron occupation of the DQD. Various symmetry properties of
a spin rotator in the context of the Kondo effect are discussed, and an experimental realization of this unusual
scenario is proposed.
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I. INTRODUCTION

In recent years, the physics of single-electron tunnel
through a quantum dot~QD! under conditions of strong Cou
lomb blockades has been at the focus of inte
investigation.1 The number of electronsN in a dot can be
regulated by a suitable gate voltageVg applied to an elec-
trode coupled capacitively to a dot. The Coulomb blocka
suppresses the tunneling through the dot unless the r
nance between its energies filled byN and N11 electrons
occurs at certain values ofVg , when it compensates for th
charging energy, i.e.,E(N11,Vg)'E(N,Vg). The differen-
tial conductancedI/dVsd of a QD forms diamondlike pat
terns in the plan (Vsd ,Vg) where the nonconducting ‘‘win-
dows’’ are separated by a network of Coulomb resona
lines ~hereVsd is the source-drain voltage!.

Accurate low-temperature experiments demonstrated
existence of Kondo resonances in windows correspondin
oddoccupations of the dot2 (O diamonds!. These resonance
are seen as zero-bias anomalies~ZBA’s!, i.e., as bridges of
finite conductance connecting two opposite vertices of
O-diamond-shape window atVsd→0. In addition, it was pre-
dicted theoretically3 and observed experimentally4 that
Kondo resonances can also appear in even occupation
dows (E diamonds! at strong enough magnetic fields. Th
unconventional magnetic-field-induced Kondo effect ari
because the spectrum of the dot possesses a low-lying tr
excitation when the electron at the highest occupied leve
excited with a spin-flip. The Zeeman energy compensates
the energy spacing between the two adjacent levels, and
lowest spin excitation possesses an effective spin 1/2,
inducing a Kondo-like ZBA in the differential conductanc

A similar effect is possible in vertical quantum dots, f
which the singlet and triplet states may be close in ene
both at even and odd occupations. The influence of an ex
nal magnetic field on the orbital part of the wave functions
electrons in vertical quantum dots is, in general, more p
nounced than the Zeeman effect. Hence singlet-triplet le
crossings are induced by this field, causing the emergenc
Kondo scattering at even filling or its enhancement at o
filling.5 The theory of Kondo tunneling through vertic
0163-1829/2002/65~11!/115329~15!/$20.00 65 1153
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quantum dots in an external magnetic field was develope
Refs. 6–8.

In the present paper we explore yet another device wh
manifests the Kondo effect in QD’s with an even electr
numberN, namely, a QD with two wells, which is referred t
as a double quantum dot~DQD!. A systematic treatment o
the physics of DQD’s with evenN coupled to metallic leads
is presented below. Special attention is given to the sym
try properties of a DQD, and its representation as a quan
spin rotator. It is well known9 that the tunneling Hamiltonian
for a QD can be mapped on the Kondo Hamiltonian in t
O-diamond window of the QD. In theE-diamond window,
the same procedure of eliminating the charged virtual sta
results in a four-state Hamiltonian of a doubly occupied d
where the singletS50 and tripletS51 levels are intermixed
by second-order tunneling. The coupling to a reserv
breaks the spin conservation in the quantum dot, and in
extended spin space formed by a singlet and triplet state
DQD acquires the dynamical symmetry SO~4! of a spin ro-
tator, as shown in Ref. 10. As a Kondo scatterer, a s
rotator possesses interesting properties in comparison
localized spins obeying SU~2! symmetry. The magnetic
field-induced Kondo effect mentioned above is a manifes
tion of a ‘‘hidden symmetry’’ which is a footprint of the
SO~4! group.

In Ref. 10 a special case was considered, namely,
asymmetric DQD formed by two dots of different radii in
parallel geometry coupled by a tunneling interaction with
even occupationN5n l1n r ( l andr stand for left and right,
respectively!. Moreover, it was assumed that a strong Co
lomb blockade exists in one dot, whereas a tunneling con
with metallic leads exists in the other dot. Here we will a
dress more general situations, and compare several repre
tations in terms of effective spin Hamiltonians. It will b
shown that unusual ZBA’s can arise in generic DQD stru
tures. In particular, a Kondo effect induced by quantum d
with SO~4! spin rotational properties also exists in an asy
metric DQD when both thel andr dots are coupled with the
leads and the Coulomb blockade is strong enough in bot
them. The main precondition for the emergence of a Kon
effect in this case is the sizable difference in ionization e
ergies of the two dots. This quantity can, in fact, be tuned
©2002 The American Physical Society29-1
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an application of a suitable gate voltage to one of them. T
same effect can also be achieved in a symmetric DQD w
even occupation in a parallel geometry, provided the a
symmetry of the system is broken by the difference in g
voltages applied to the right and left dots (Vg

r ,l , respectively!.
DQD’s oriented parallel to the lead surfaces were fab

cated several years ago.11,12 Two main resonance effect
were noted in such electric circuits. First, one of the d
~say, the right! can be used as an electrometer.12 ScanningVg

r

at a fixedVg
l , Coulomb oscillations can be induced both

the right and left dots because the interdot capacitive c
pling changes the positions of the Coulomb resonance
both of them. As a result, the step wise structure of the c
ductance acquires a more complicated form. The Coulo
blockade windows between the resonances in the Coul
energy of the dotEnr ,n l

(Vg
r ,Vg

l ) form an ‘‘egg-carton’’

pattern,11 where the vertices connect the windows w
charge configurations (n r ,n l), (n r ,n l21), and (n r11,n l
21). The linesEn l ,nr

'En l11,nr , are the regions where th

Coulomb resonance induced byVg
r allows tunneling through

the left dot. Second, the resonanceEnr ,n l
'Enr11,n l21 allows

cotunneling through the right and left dots, which is a p
condition for the Kondo effect due to the appearance o
pseudospinlike configuration of the DQD.13 Then, manipu-
lating with Vg

r , one can induce a third transitionn l21,n r

11→n l ,n r thus closing the loop and organizing the ‘‘ele
tron pump’’ which transfers a single electron from one dot
another~see Ref. 14, and references therein!.

The picture becomes even richer if the tunneling betw
the right and left wells of the DQD is taken into accoun
Then the dot can be treated an artificial molecule, where
interdot tunneling results in the formation of a complicat
manifold of bonding and antibonding states15 which modifies
its charge degrees of freedom. In addition, it induces an
direct exchange, thus modifying the Kondo resonances w
the dots are placed in series.16 It will be shown below that
the interdot tunneling inparallel geometry results in the ap
pearance of a Kondo precursor of the Coulomb resona
along the lines Enr ,n l

'Enr11,n l21 , Enr ,n l
'Enr11,n l

, and

Enr ,n l
'Enr ,n l11 provided there exists a direct tunneling co

pling V between the left and right dots. We consider t
simplest case ofn l5n r51 in a neutral ground state o
DQD’s. It will be shown that an unconventional Kondo res
nance occurs under the conditionV/@E0,22E1,1#!1. More-
over, this kind of Kondo resonance can also appear in
middle of the Coulomb window for the right dot, provide
the capacitance of the left dot essentially exceeds that of
right dot.17 In both cases, the DQD possesses the symm
of a spin rotator.

In Sec. II the various setups of DQD’s are introduced, a
the Hamiltonian describing the DQD is written down with
the framework of a generalized Anderson model. The ph
diagram of charging states in the left and right gate volta
plans is schematically drawn, and the regions of Kondo re
nance are indicated. In the first part of Sec. III the spectr
of an isolated dot with even occupation is discussed. Sec
III B is devoted to the derivation and solution o
11532
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renormalization-group equations for the DQD. The cent
result of this subsection is a demonstration of a poss
singlet-triplet level crossing due to tunneling. When t
renormalized energies are below the reduced band e
renormalization stops, and charge fluctuations are s
pressed. This is the Schrieffer-Wolff regime, and a derivat
of an effective-spin Hamiltonian is executed in Sec. IV.
Sec. IV A, the spin Hamiltonian is given in terms of tw
vector operators and is shown to have the SO~4! symmetry
of a spin rotator. This is followed by Sec. IV B, in which th
renormalization-group flow of coupling constants is e
plained and the Kondo temperature is derived. Then, in S
IV C, a two-spin representation is suggested, in which
occurrence of two spin-1/2 operators just reflects the fact
the algebrao4 is a direct sum of twoo3 algebras. In Sec
IV D, the possibility of arriving at the Kondo effect in a finit
magnetic field is discussed, leading to a third representa
of the spin Hamiltonian. The question of whether a DQ
with two electrons can be regarded as a real two-site Ko
system~even if the DQD is highly asymmetric! is discussed
in Sec. V. In particular, a stringent comparison is made w
the two-spin representation mentioned in Sec. IV. The pa
is concluded in Sec. VI. Some technical details of vario
calculations are relegated to the Appendix.

II. MODELS OF DOUBLE QUANTUM DOTS WITH
SINGLET GROUND STATE

Two models considered in this work are sketched in F
1. We will refer to a system~a! with zero gate voltages as
‘‘symmetric’’ DQD. The same system with finite but unequ
gate voltagesVg

l ,r will be called a ‘‘biased’’ DQD, and the
pair of dots with different radii shown in Fig. 1~b! will be
referred to as an ‘‘asymmetric’’ DQD.

In all cases the DQD is described by a generalized And
son tunneling Hamiltonian which takes into account the
ternal structure of the DQD:

H5Hb1Ht1Hd1Hg . ~1!

FIG. 1. Double quantum dots in parallel geometry. Left~l! and
right ~r! dots are coupled by tunnelingV to each other and by
tunnelingWl ,r to the source~S! and drain~D! electrodes.Vg

l ,r are
the gate voltages.~a! Symmetric dot.~b! Asymmetric dot.
9-2
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DOUBLE QUANTUM DOT AS A SPIN ROTATOR PHYSICAL REVIEW B65 115329
The first termHb is related to the lead electrons. They a
described by Fermi operatorscksa , wherek is the quasimo-
mentum,s561/2 is the spin projection, anda5s andd for
source and drain electrodes. The corresponding energy
persion is«ka , so that

Hb5(
ksa

«kacksa
† cksa . ~2!

The second termHt is the tunneling Hamiltonian, describin
the hopping of dot electrons~described by Fermi operator
dis with i 5 l and r for left and right wells! into the leads,
and vice versa. The corresponding tunneling amplitudes
Wka i . In fact, the lead dependence~subscripta! can be
avoided using the transformationcks5221/2(cks,s1cks,d),
andWki5Wka,i /(Wks,i

2 1Wkd,i
2 )1/2. Thus

Ht5 (
i 5 l ,r

(
ks

~Wkicks
† dis1H.c.!. ~3!

The third termHd describes an isolated DQD. In the prese
context, the quantum dot is a ‘‘molecule,’’ containingN
5n l01n r0 electrons in a neutral ground state. The geome
of the DQD prompts a two-channel approximation for t
tunneling Hamiltonian. Indeed, in a symmetric DQD atVl
5Vr the problem may be mapped onto a two-site spin s
tering problem,20 which, in turn is equivalent to a two
channel Kondo problem~see Sec. V for further details!.
However, our main concern is the asymmetric regimes wh
Vg

l ÞVg
r and/or the dots have essentially different radii.

these cases, as shown below, one of two channels~say, r )
becomes irrelevant. The corresponding dot plays the part
gate controlling the conditions for the charge and spin re
nance tunneling through another dot~say, l ). Therefore, one
can assume a single channel from the very beginning with
a loss of generality. Situations where the two-channel tun
ing becomes crucially important are discussed in Ref. 8.
capacitive interactionbetween the two wells of theDQD is
assumed to be strong enough to suppress the fluctuatio
electron-tunneling-induced occupation in the windows
tween the Coulomb resonances of tunneling amplitude.
consider DQD’s with evenN, so that, generically, the groun
state of an isolated DQD is a spin singlet. The isolated do
then described by the Hamiltonian

Hd5 (
i 5 l ,r

(
s

e inis1V(
iÞ j

dis
† dj s1Hcorr , ~4!

in which V is the interwell constant tunneling amplitude. Th
capacitive interaction within the DQD is described by t
term

Hcorr5
1

2 (
i

Qini~ni21!1Qlr dnldnr . ~5!

Hereni5(sdis
† dis , anddni5ni2n i0 is the deviation of the

electron distribution from the neutral charge configurat
n i0 for a given DQD. Moreover,Qi5e2/2Ci is the charging
energy of a doti whose capacitance isCi , and Qlr is the
capacitive coupling between the left and right dots. The s
11532
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plest configuration which contains, in a nutshell, all the co
plicated physics of many-body interactions arising in
course of tunneling isN52, n l05n r051. This case, for
which dni5ni21, will be given special attention below. F
nally, the termHg represents the gate voltage energy. W
consider symmetric and asymmetric DQD’s formed by we
of equal and different radii, respectively~Fig. 1!. Hence, ge-
nerically, the gate potentialHg is asymmetric:

Hg5(
i

Vg
i ni , Vg

l ÞVg
r . ~6!

It is, in fact, useful to include the gate potential@Eq. ~6!# in
the position of the one-electron energy levels,« i5e i1Vg

i .
Then, by tuning the gate voltage, one can change the en
difference D5« l2« r or, in other words, redistribute th
electron density between the left and right wells of the DQ

It is assumed that in equilibrium and at zero gate voltag
each dot is filled by one electron and the Fermi level of
leads is in the middle of the Coulomb blockade window. T
energy levels of a symmetric DQD with uncoupled do
(Ql5Qr5Q, V50) are shown in the upper panel~a! of Fig.
2. These levels may be shifted relative to each other an
the Fermi level«F , and each level crossing« i2«F corre-
sponds to a recharging of the doti. If electron exchange
between the right dot and the leads is blocked,11 the charge-
transfer resonance between states$1,1% and $0,2% occurs
when« l5« r1Q ~also see Ref. 18!. In the general case@Fig.
1~a!#, an additional electron appears in the doti when the
levels« i1Q and«F cross.

In the absence of interdot tunneling,V50, one can easily
obtain the effective spin Hamiltonian for a DQD withN
52 in a ground state far deep in the Coulomb blocka
windows. For a symmetric DQD, this is a two-site Kond
Hamiltonian in window $1,1% and two single-site Kondo
Hamiltonians in windows$2,1% and $1,2%. In the latter case
of a charged DQD occupied by an odd number of electro
tunneling through the left~right! dot is blocked, but a
Kondo-type resonance compensates for the Coulomb blo

FIG. 2. Energy-level scheme for symmetric~a!, biased~b! and
asymmetric~c! DQD’s. Upper panel: filled and empty one-electro
levels. Dashed arrows indicate charge-transfer excitons. Lo
panel: two-electron states of isolated and coupled left and r
dots.
9-3
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KONSTANTIN KIKOIN AND YSHAI AVISHAI PHYSICAL REVIEW B 65 115329
ade and opens a tunneling channel through the right~left!
dot. In the former case of a neutral DQD with even occu
tion, the possibility of Kondo tunneling is determined by t
relative strength of the on-site indirect exchangeJi between
spinsSi of singly occupied dots and conduction electrons
the reservoir, on the one hand, and the sign and magnitud
the intersite RKKY exchangeJlr on the other hand.19 Both
these parameters are predetermined by the tunnel cou
constantsWki with the band electrons in the reservoir, b
one can modify them by varying the gate voltages and in
dot distance.

The interdot coupling modifies this picture significantly.
favors a singlet spin state in the middle of the Coulom
blockade window$1,1%, eliminating the Kondo tunneling a
zero gate voltages. At finiteuVg

l 2Vg
r u, the values ofn i devi-

ate from the integer values near the boundaries between
different charge sectors. Increasing negative gate voltageVg

l

or Vg
r , one can bias the charge distribution in favor of left

right dot, respectively, without changing the total number
electrons. As a result, with increasinguVg

l 2Vg
r u, one reaches

a region of states with a small charge transfer gapD1[Q
1« r2« l!Q. The energy levels of such ‘‘biased’’ DQD’s ar
shown in the upper panel of Fig. 2~b!. These states occup
the upper right corner of the window$1,1% hatched in Fig.
3~a!. Here the zero energy configuration illustrated by F
2~a! corresponds to the coordinate origin. The virtual char
transfer excitations@dashed arrow in the upper panel of Fi
2~b!# significantly influence the tunneling through the DQ
It will be shown below that a type of Kondo resonance ari
in this area of the sector$1,1%. The ‘‘biased’’ DQD in this
sector behaves like a spin singlet at high temperatures
excitation energies, and demonstrates the properties

FIG. 3. Coulomb windows for different charge states$n l ,n r% of
symmetric~a! and~b! and asymmetric~c! DQD’s. Hatched regions
indicate the domains where the Kondo effect exists.
11532
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spin-1 triplet partially screened by the Kondo tunneling
low energies and temperaturesT,TK . The Kondo tempera-
ture TK is a function ofVg

l ,r .
A similar effect exists for the asymmetric DQD@Fig.

1~c!#, where the two coupled dots have different radiir l
@r r and hence different blockade energiesQl!Qr . The en-
ergy levels of an isolated DQD are shown in the upper pa
of Fig. 2~c!, and the corresponding recharging map is p
sented in Fig. 3~b!. Here the hatched area also marks t
region of the map where the Kondo effect arises in spite
the even number of electrons in the dot.

The question of whether to perceive the DQD withN
52 electrons as a two-center Kondo problem or as a ge
alized Anderson impurity is given special attention throug
out this paper. A conventional approach for a description
the Kondo effect in a two-site quantum dot starts with
two-centerHamiltonian

Hd05Hl1Hr , ~7!

and treatsHt in terms of a two channel tunneling operato

Ht5Htl1Htr . ~8!

The interdot interactionHlr is considered as a coupling be
tween two resonant Anderson centers. If the left and ri
dots each contain an odd number of electrons~as in our
simplified model withn l ,r51), Kondo tunneling is possible
through each dot separately. The exchange part of the in
dot coupling maps our Hamiltonian onto a two-site Kon
model. This coupling can be of both ferromagnetic and a
ferromagnetic types. In the latter case the interplay betw
Ht and Hlr results in a suppression of Kondo tunnelin
through the left and/or right well of the DQD. The pha
diagram of the two-site Kondo model was discussed in
merous papers.19

In the model discussed here, the interdot interaction
represented by the termHlr 5V( iÞ jdis

† dj s , and we remain
in the charge sectors$1,1%, $1,2%, and $2,1% of Fig. 3. It is
obvious that this coupling suppresses Kondo tunnel
through a symmetric DQD at zero gate voltages@point ‘‘0’’
in Fig. 3~a!#, because the effective indirect exchange inter
tion which arises due to virtual excitations of charged sta
$0,2% and$2,0% is of antiferromagnetic sign,Jlr 52V2/Q-like
in the Heitler-London limit for a hydrogen molecule or in th
half-filled Hubbard model. As a result, the ground state o
DQD is a spin singlet, and the gapd5ET2ES5Jlr , which
divides the triplet excitation from the singlet spin groun
state, prevents the formation of a Kondo resonance. It will
demonstrated below that this is not so in the case ofstrongly
asymmetricDQD @hatched regions in Figs. 3~a! and 3~b!#,
where the crossover to a triplet state is induced by the t
neling Ht .

To describe this crossover, it is more convenient first
diagonalize the dot HamiltonianHd , i.e., to express it in the
form

Hd5(
N,L

ENLuNL&^NLu, ~9!
9-4
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DOUBLE QUANTUM DOT AS A SPIN ROTATOR PHYSICAL REVIEW B65 115329
recalling thatN is the number of electrons in a given char
state of the DQD, whereasL stands for a set of quantum
numbers which characterize the many-electron configura
dl

n ldr
nr in the presence of interdot coupling. In order to obta

a compact form for some equations, we introduce Hubb
projection and configuration change operators

XNL,N8L85uNL&^N8L8u. ~10!

The diagonal termsXNL,NL are conventional projection op
erators, while the off-diagonal operators change the elec
configuration of the dot. The tunneling termHt @Eq. ~3!# can
now be rewritten in the form

Ht5(
N,L

(
N8,L8

(
ks

~Wks
NL,N8L8XNL,N8L8cks1H.c.!.

~11!

The matrix elementsWks
NL,N8L8 are nonzero for states in ad

jacent charge sectors of the eigenspace ofHd , so thatN
5N811. In this approach, the DQD is treated as a ‘‘res
nance impurity’’ in the framework of a conventional Ande
son model, and its specific features are manifest in a cha
teristic energy spectrumENL which includes contributions
due to interdot tunneling and the Coulomb blockade.

III. DOUBLY OCCUPIED DQD AS AN ANDERSON
IMPURITY

A. Energy levels and wave functions

Let us now employ the above approach for a doubly
cupied DQD withN52 in a charge sector$1,1% of the Cou-
lomb blockade diagram~Fig. 3!. The dot Hamiltonian@Eqs.
~4!–~6!# can be exactly diagonalized by using the basis
two-electron wave functions

us&5
1

A2
(
s

sdls
† dr s̄

† u0&,

ut0&5
1

A2
(
s

dls
† dr s̄

† u0&, uts&5dls
† drs

† u0&, ~12!

uexl&5dl↑
† dl ↓

† u0&, uexr&5dr↑
† dr ↓

† u0&.

Generically, the spectrum of aneutral DQD consists of a
singlet ground stateuS&, a low-energy spin-1 triplet exciton
uTm&, and two high-energy charge-transfer singlet excito
uExl& anduExr&. The corresponding two-electron wave fun
tions are the following combinations:

uS&5assus&1asluexl&1asruexr&,

uT0&5ut0&, uT6&5ut6&, ~13!

uExl&5all uexl&1alsus&, uExr&5arr uexl&1arsus&.

In the special case of symmetric DQD (« l5« r , Ql5Qr!, the
axial symmetry allows one to introduce even~e! and odd~o!
excitonic states
11532
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uexe,o&5
1

A2
~ uexl&6uexr&).

The interdot tunneling leaves intact an odd singlet stateuexo&
as well as an odd triplet stateuTm&. As a result, one has
instead of Eq.~13!,

uS&5assus&1aseuexe&, uTm&5utm&,

uExe&5aeeuexe&1aesus&, uExo&5uexo& ~14!

@see Fig. 2~a!#. We are mainly interested in the limiting case
of strongly biased symmetric DQD’s where the interdot tu
neling results in a sizable charge transfer between the
and right dots with a charge-transfer energyD15« r1Q
2« l @Fig. 2~b!#, and an asymmetric dot with a charg
transfer energyD25« l1Ql2« r @Fig. 2~c!#. The virtual
charge-transfer transitions which contribute to the low
part of the energy spectrum are marked by dashed arro
Charge fluctuations are negligible when

b5V/Q!1, b15V/D1!1, b25V/D2!1, ~15!

in cases~a!, ~b!, and~c! respectively.20 The expansion coef-
ficients ai j in this limit are calculated for all three cases
the Appendix@Eqs. ~A1!, ~A2!, and ~A3!, also see the tex
and Ref. 21#. In a symmetric configuration~a! the two-
electron levels which correspond to the bare states of a s
metric DQD form a low-energy quartet:vs,t52« and
vexe,o

52«1Q. The odd states remain unrenormalized a
result of interdot tunneling, whereas the even states und
a level repulsion. In the limit of smallb5V/Q!1,

ES52«22Vb, ET52«,

Eo52«1Q, Ee52«1Q12Vb, ~16!

@see the lower panel of Fig. 2~a!#. In the case~b! of a biased
DQD, the two-electron bare energy levels are arranged
shown in the lower panel of Fig. 2~b!:

vs,t5« l1« r , vex,r5« r1Q, vex,l5« l1Q.

The parity is broken in this case, and the singlet stateus& is
now hybridized with both excitonic states. In limit~15! one
has

ES5« l1« r22b1V, ET5« l1« r ,

ER52« r1Q12b1V, EL52« l1Q12b18V. ~17!

The role of the ‘‘left’’ exciton uEL& in the low-energy pro-
cesses is negligibly small. In the same spirit, all ter
;b185V/(« l2« r1Q) will be neglected in pertinent calcu
lations below.

The general scheme of energy eigenvalues in case~c! of
an asymmetric DQD is similar to that of case~b!, but here
the first singlet excitation state is a charge-transfer excito
the left dot. So the bare two-electron spectra arevs,t5« l
1« r , vex,l52« l1Ql , vex,r52« r1Qr , and the hybridized
states are given approximately by
9-5
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ES5« l1« r22b2V, ET5« l1« r ,

EL52« l1Ql12b2V, ER52« r1Qr12b28V ~18!

@see the lower panel of Fig. 2~c!#. In this case we neglect th
contribution of ‘‘the right’’ excitonuER& and all terms;b28
5V/(« r2« l1Qr).

It is seen from Eqs.~16!, ~17!, and ~18! for the energy
spectrum of an isolated DQD that low-energy excitatio
with energyds5ET2ES are dominantly of spin characte
whereas the charge excitationsEe,o in case~a! and EL,R in
cases~b! and ~c! are separated from the ground state by
gapsdch@ds in all three cases under consideration@lower
panels of Figs. 2~a!–2~c!#. This same kind of ‘‘spin-charge
separation’’ persists when the DQD is hybridized~via Ht)
with itinerant electrons in the metallic reservoirs, on whi
we now focus our attention.

B. Renormalization of energy levels

The spectrum of electrons in the reservoirs is continuo
and forms a band with a bandwidth 2D0. In accordance with
the renormalization-group~RG! procedure widely used in th
conventional Anderson model, the low-energy physics can
exposed by integrating out the high-energy charge exc
tions in the framework of a ‘‘poor man’s’’ scaling
technique.22 This procedure implies a renormalization of th
energy levels and coupling constants of Hamiltonian~1! by
mapping the initial energy spectrum2D0,«,D0 onto a
reduced energy band2D01udDu,«,D02udDu.

The mapping procedure results in the following equatio
for the singlet and triplet renormalized energies of the DQ

EL'EL
(0)1(

l
(
qs

uWqs
Llu2

EL2eq2El
, ~19!

where EL
(0) is the energy before renormalization, andq

5qu , andqb are electron momenta such thateq belong to
the layersudDu near the top or the bottom of the conductio
band, respectively. They appear as intermediate virtual st
in the processes of positive and negative ionizations of
DQD. The index (L5S,Tm) in these equations is reserve
for the neutral two-electron states@Eq. ~13!# of the DQD,
whereas positively and negatively charged states with
and three electrons are designated by the indexl. The wave
functions and energy levels of these states, as well as
matrix elementsWq,s

Ll , are calculated in the Appendix. Fig
ure 4 illustrates the processes involved in the level renorm
ization in all three cases under consideration. Note that th
RG equations are uncoupled in this order. In accordance
the poor man’s scaling approach,22 only virtual transitions
with an energy;D are relevant, and the estimate of the su
on the right-hand side of Eq.~19! gives

EL5EL
(0)2

GLudDu
D

, ~20!
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whereGL5pr0uWLu2, r0 is the density of electron states i
the reservoir, which is taken to be constant, andWL are
effective tunneling matrix elements calculated in the Appe
dix.

The crucial difference between the symmetric configu
tion ~a! and the asymmetric configurations@~b! and ~c!# is
that the tunneling amplitudes of the processes involved
renormalization~19! are different for singlet and triplet state
of the DQD. In the symmetric case~a!, the left and right dot
states are involved in renormalization of the two-electr
states on an equal footing. The relevant processes areuS&
→uequ,1e&, uS&→uoqu,1o&, T&→uoqu,1e&, and uT&
→uequ,1o&. The one-electron tunneling transitions that ma
dominant contributions to these processes are shown by
dashed arrows in Fig. 4~a!.

As a result, the tunneling rate in this case is

GS5GT'pr0~ uWl u21uWr u2!. ~21!

In the biased and asymmetric configurations~b! and ~c!
the even-odd symmetry is broken, and the Coulomb blo
ade in one center controls the tunneling through the ot
one.11,12 Processes with energy;D involve only electrons

FIG. 4. The particle states, which are removed from a half-fil
conduction band upon reducing the bandwidth byudDu. The one-
electron levels renormalized as a result of this process are show
bold lines.~a! Symmetric DQD.~b! Biased DQD.~c! Asymmetric
DQD.
9-6
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DOUBLE QUANTUM DOT AS A SPIN ROTATOR PHYSICAL REVIEW B65 115329
from the left dot. The energy level« r is deep below
the Fermi level, and renormalization~19! does not influence
its position in accordance with the general argumentation
the scaling theory.22 In case~b! the relevant processes a
uS&→uqus,1bs̄&, uTO&→uqus,1bs̄&, uT6&→uqu6,1b6&,
and the tunneling transitions which give the dominant c
tribution to these processes are shown by the dashed arro
Fig. 4~b!. The same kind of asymmetry takes place in ca
~c! @dashed arrows in Fig. 4~c!#. As a result, the right dot is
excluded from the RG procedure, and one has, instead o
~21!,

GT'pr0uWl u2, GS5ass
2 GT . ~22!

Here the coefficientass,1 is a measure of charge transf
from the left dot to the right dot due to admixture of sing
excitonic states to the ground state singlet@see Eqs.~A11!
and ~A12! in the Appendix#. Iterating the renormalization
procedure@Eq. ~20!#, one comes to the pair of differentia
scaling equations

dEL

d ln D
5

GL

p
, L5T,S, ~23!

which describes the evolution of the two-electron ene
states when the energy scale of the band continuum is
duced. These equations describe not only the renormaliza
of the low-energy two-electron spin states, but also
change of the one-electron transition energiesEL2El , be-
cause the one-electron states El51b5« r2O(b) are deep un-
der the Fermi level, and the reduction of the energy sc
does not influence them.

Scaling equations as in Eq.~23! were analyzed in Ref. 10
for a specific case of a ‘‘Fulde molecule’’ or double-sh
quantum dot~DSD!, where the electrons in one shell a
subject to a strong correlation effect~Coulomb blockade!
whereas the loosely bound electrons in the second shel
responsible for tunneling; also tunneling to the leads is
lowed only for the second shell. Model~c! is a natural ex-
tension of a DSD because in the lowest approximation in
interdot interaction the tunneling through the right dot giv
no contribution to level renormalization. In case~b!, both left
and right dots contribute to the renormalization procedu
but the crucial property of scaling equations,GS,GT @see
Eq. ~22!# is shared by both configurations.

The scaling invariants for Eqs.~23! is

EL* 5EL~D !2
GL

p
lnS pD

GL
D . ~24!

Here the scaling constants have to be chosen to satisfy
boundary conditionEL(D0)5EL

(0) . Due to relation~22! the
energyET(D) decreases withD faster than withES(D), so
that the two scaling trajectoriesEL cross at a certain band
width D5Dc , estimated as

GT2GS

p
ln

D0

Dc
5ET

(0)2ES
(0)[d0 . ~25!
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According to calculations performed in Ref. 10, this lev
crossing can occur either before or after the crossover to
Schrieffer-Wolff regime when the one-electron energ
EL(D)2E1b exceed the half-width of the reduced contin
ous spectrumD̄;uEL(D̄)2E1bu. In both cases, the charg
degrees of freedom are quenched for excitation ener
within the interval2D̄,«,D̄, and a Haldane renormaliza
tion procedure should be replaced by the Anderson p
man’s scaling.23

IV. SPIN HAMILTONIAN FOR DQD’S

A. Quantum rotator representation

The Schrieffer-Wolff transformation24 for the configura-
tion of two electron states of a DQD projects out those sta
of the dot having one electron or three electrons, and m
the HamiltonianH onto an effective spin HamiltonianH̃
acting in a subspace of two-electron configuratio
^Lu . . . uL8&,

H̃5eSHe2S5H1(
m

~21!m

m!
$S,@S . . . @S,H## . . . %,

~26!

where

S5(
Ll

(
^k&s

~Ws
Ll!*

ĒLl2ek

XLlcks2H.c. ~27!

Here ^k& stands for the electron or hole states seclud
within a layer 6D̄ around the Fermi level.ĒLl5EL(D̄)
2El(D̄). An effective Hamiltonian with the charged state
ul&5u1bs&,u3bs& frozen out can be obtained within firs
order in S. As a result of integrating out the high-energ
charge degrees of freedom, we are left with the effective s
Hamiltonian containing four states,L5S,T. The algebra of
corresponding Hubbard operators is theo4 algebra. Thus the
DQD acquires an SO~4! symmetry, which is the dynamica
symmetry of spin rotator. It has the form

H̃5(
L

ĒLXLL1 (
^k&s

ekcks
† cks

2 (
LL8l

(
kk8ss8

Jkk8
LL8lXLL8cks

† ck8s8 , ~28!

where

Jkk8
LL8l

5~Ws
Ll!* Ws8

L8lS 1

ĒLl2ek

1
1

ĒL8l2ek8
D .

In the charge sectorN52 the constraint(LXLL51 is valid.
As shown in Refs. 7 and 10, the effective Schrieffer-Wo
Hamiltonian of DQD describes not only the convention
indirect exchange between localized and itinerant spins
also contains terms that intermix the singlet and triplet sta
of the quantum dot. This mixing is due to the tunneling e
change with electrons in the metallic reservoir.
9-7
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KONSTANTIN KIKOIN AND YSHAI AVISHAI PHYSICAL REVIEW B 65 115329
Before writing down the pertinent spin Hamiltonian,
few words about a quantum spin rotator are in order. I
known ~see, e.g., Ref. 25! that the symmetry of a standar
quantum rotator is described by an operator of rotatio
angular momentumL and an additional vector operatorM .
These two operators generate the semisimple algebrao4;
they are orthogonal,L•M50, and the corresponding Ca
simir operator isL21M2. The matrix elements of the opera
tor M connect states with different values of the orbital m
mentum l→ l 61. The existence of this second opera
reflects the ‘‘hidden angular symmetry’’ of the rotator.

Similarly, the spin symmetry of the DQD is characteriz
not only by the spin-1 vectorS: one can introduce a secon
vector operatorP orthogonal toS which determines the ma
trix elements of transitions between the different states of
rotation group SO~4!. In the present case, the vectorP
5$Pz ,P6% determines the transitions between the sing
state and the different components of the spin triplet. I
convenient to express the spherical components of the ve
operatorP in terms of Hubbard operatorsXLL8 ~for brevity,
LL8 will be either S for a singlet quantum number orm
51, 0, and 1̄for triplet magnetic quantum numbers!:

P15A2~X1S2XS1̄!, P25A2~XS12X1̄S!,

Pz52~X0S1XS0!. ~29!

Within the same procedure, the spherical components of
spin-1 operatorS are given by the following expressions:

S15A2~X101X01̄!,

S25A2~X011X1̄0!, Sz5X112X1̄1̄. ~30!

The vector operatorsP andS obey the commutation relation
of the usualo4 Lie algebra:

@Sj ,Sk#5 iejklSl , @Pj ,Pk#5 iejklSl , @Pj ,Sk#5 iejkl Pl
~31!

~here j ,k,l are Cartesian indices!. In addition, the following
relations hold:

S"P50, S252~12XSS!, P25112XSS. ~32!

To wit, S ~a spin 1! andP are two orthogonal vector opera
tors in spin space which generate the algebrao4 in a repre-
sentation specified by the Casimir operatorS21P253. This
justifies the qualification of a DQD as aspin rotator.

Returning back to the effective spin Hamiltonian, Eq.~28!
it now acquires a more symmetric form

H̃5H̃S1H̃T1H̃ST, ~33!

where

H̃S5ĒSXSS1JS(
s

XSSns ,

H̃T5ĒT(
m

Xmm1JTS•s1
JT

2 (
ms

Xmmns , ~34!
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H̃ST5JST~P•s!.

The local electron operators are defined as usual,

ns5cs
†cs5(

kk8
cks

† cks , s5221/2(
kk8

(
ss8

cks
† t̂ck8s8 ,

~35!

and t̂ are the Pauli matrices. Moreover, the coupling co
stants are

JT5S uWl u2

«F2e l
1

uWr u2

Er1Q2«F
D ~36!

in case~b!, and

JT5uWl u2S 1

«F2e l
1

1

El1Ql2«F
D ~37!

in case~c!. In both cases

JS5ass
2 JT, JST5assJ

T. ~38!

This completes the derivation of the spin rotator Hamilton
for a DQD hybridized with itinerant electrons.

B. RG flow of coupling constants: Kondo temperature

Due to the intermixing termH̃ST in the spin Hamiltonian
@Eq. ~34!#, both triplet and singlet states are involved in t
formation of the low-energy spectrum of the DQD. Scali
equations for the coupling constantsJT and JST can be de-
rived by the poor man’s scaling method of Ref. 23. Negle
ing the irrelevant potential scattering phase shift and us
the above-mentioned procedure of integrating out the hi
energy states, a pair of scaling equations is obtained:

d j1
d ln d

52@~ j 1!21~ j 2!2#,
d j2

d ln d
522 j 1 j 2 ~39!

~here j 15r0JT, j 25r0JST, and d5r0D). If d̄5ET(D̄)
2ES(D̄) is the smallest energy scale, the energy spectrum
the DQD is quasidegenerate, and system~39! is reduced to a
single equation for the effective integralj 15 j 11 j 2;

d j1

d ln d
52~ j 1!2. ~40!

Then the RG flow diagram has an infinite fixed point, and
solution of Eq.~40! gives the Kondo temperature

TK05D̄ exp~21/j 1!. ~41!

In the general case, the scaling behavior is more com
cated. The flow diagram still has a fixed point at infinity, b
the Kondo temperature turns out to be a sharp function od̄.
In the cased̄,0, ud̄u@TK0 considered in Refs. 7, 8, and 1
the scaling ofJST terminates atD. d̄. Then one is left with
the familiar physics of an underscreenedS51 Kondo
model.27 The fixed point is still at infinite exchange couplin
9-8
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DOUBLE QUANTUM DOT AS A SPIN ROTATOR PHYSICAL REVIEW B65 115329
JT , but the Kondo temperature becomes a function ofd̄. It
was shown in Ref. 8 that a kind of universal law forTK( d̄)
also exists in this limit,

TK /TK05~TK0 / d̄ !g, ~42!

whereg is a numerical constant. Now we can explain t
diagram illustrating the appearance of the Kondo tunne
regime in a Coulomb window with even occupation$1,1%
~Fig. 3!. In the case of symmetric H2-like DQD ~the upper
panel of Fig. 1! the tunneling is predetermined by the para
eters«[« l5« r , W[Wg

l 5Wg
r , Q, andV, and the difference

uVg
l 2Vg

r u. If the parameters«, W, Q, andV, characterizing
the device, are fixed, then the tunneling regime is contro
by the external gate voltageD5uVg

l 2Vg
r u @see Fig. 2~b!#.

This voltage enters the initial singlet-triplet energy gapd0

52V2/(Q2D) as well as the coefficientass
2 characterizing

the asymmetry of tunneling ratesGT,S @see Eqs.~15!, ~22!,
~A1!, and~A2!#.

At D50 ~zero voltage!, the tunneling rates are equa
GT5GS , so the DQD remains in a singlet state in spite
tunneling renormalization, and the Kondo tunneling is abs
along the diagonal of the$1,1% window in the upper panel o
Fig. 3. At smallD the asymmetry is weak enough to satis
criterion~25! for crossing of the scaling trajectoriesET,S(D),
so the stripe of zero conductance around the diagonal h
finite width. With increasing voltageD both d0 and GT
2GS grow together with growingb15V/(Q2D). However,
the former difference is;b1, while the latter one is;b1

2

and grows more quickly. As a result, beginning from a c
tain D, criterion~25! is satisfied, and we enter the domain
Kondo tunneling~the hatched areas in the upper panel of F
3!. On the other hand, whenD is too large, and the paramete
b1.1, one enters a region of strong charge fluctuations
the vicinity of the Coulomb resonance, and the Kondo eff
should disappear as a result. The theoretical picture of in
play between spin and charge tunneling channels regio
this region is still not clear. Since the behavior of the syste
depends only on the modulusuVg

l 2Vg
r u, the diagram is sym-

metric around the diagonal of the Coulomb window.
Unlike the case of a H2-like DQD, one may expect tha

the Kondo tunneling regime is realized at zero voltage in
asymmetric DQD~Fig. 1, lower panel!. In terms of the above
theory this means that criterion~25! is already satisfied a
Vg

l 5Vg
r 50. This situation was considered in Ref. 10. Th

the role of the gate voltage is to drive the system toward
lines of Coulomb resonance, so we come to the picture s
matically drawn in the lower panel of Fig. 3.

C. Two-spin representation

It is known25 that the algebrao4 can be represented as
direct sum of twoo3 algebras. In our case this means th
one can construct another pair of orthogonal operators

S15
S1P

2
, S25

S2P

2
~43!
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~also see Ref. 8!. In the Hubbard representation the comp
nents of these spin vectors have forms

S1,2
1 5

1

A2
~X101X01̄6X1S7XS1̄!,

S1,2
2 5

1

A2
~X011X1̄06XS17X1̄S!, ~44!

Sz1,25
1

2
~X11̄1X1̄1̄7X0S7XS0!.

It is easy to check by direct substitution that

Si
253/4, XSS5

1

4
2~S1•S2!, (

m
Xmm5

3

4
1~S1•S2!.

~45!

The Casimir operator can be introduced as 4S1
254S2

2.
Then substituting Eqs.~43! and ~44! into Hamiltonian

~33!, we rewrite it in the form

H̃5J~S1•S2!1J1~S1•s!1J2~S2•s!1J3~S1•S2!(
s

ns

1const. ~46!

Here

J5ĒT2ĒS[d̄, J1,25JT6JST, J35
1

2
JT2JS .

~47!

Thus, as mentioned in Ref. 8, transformation~43! maps
Hamiltonian ~33! on an effective two-spin Kondo Hamil
tonian plus an additional potential scattering term. Howev
the physical meaning of these two spin operators differs fr
that in the conventional two-site Kondo model.19 They only
span the twoo3 subalgebras of the semisimple Lie algeb
o4 ~see Sec. V for further discussion!.

This kind of effective Hamiltonian also appears in oth
situations where singlet and triplet states of a nanoob
close in energy, e.g., in vertical quantum dots6,7 or in con-
ventional dots at even occupation, provided low-lying trip
excitons are taken into account.3,8 It was noted in Refs. 7, 8
and 10 that the interplay between two energy scales, i.e.,
interdot singlet-triplet gapd and the tunneling-induced
Kondo binding energy for a triplet configurationDT

;D̄ exp(21/r0JT) results in an essentially nonuniversal b
havior of the Kondo temperatureTK ~see Sec. IV B!.

D. Magnetic-field-induced Kondo effect

Yet another peculiar manifestation of the ‘‘hidden symm
try’’ of the spin rotator is the possible occurrence of
magnetic-field-induced Kondo effect. Such a possibility w
discussed theoretically in Ref. 3 for the case of quantum d
formed in GaAs heterostructures, and in Refs. 8, 6, and 7
the case of vertical quantum dots where the external m
netic field influences the orbital part of spatially quantiz
9-9
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KONSTANTIN KIKOIN AND YSHAI AVISHAI PHYSICAL REVIEW B 65 115329
wave functions and results in singlet-triplet level crossing.
DQD, similar effect arises ifd̄.0, where the ground state o
the DQD remains a singlet in spite of the tunneling-induc
renormalization. Here we rederive the field-induced Kon
effect in terms of a spin rotator representation.

In an external magnetic field, the energy levels inH̃T are
split due to the Zeeman effect,ẼT→ẼTm5ẼT2mdZ . As
noted in Ref. 3, the Zeeman splittingdZ5gmBB of the ex-
cited triplet state compensates for the energy gapd̄ at a cer-
tain value of magnetic fieldB5B0. In the vicinity of this
point whend2dZ!d, only the levelsẼT1 andẼS survive in
the diagonal partĒSXSS1ĒT(mXmm of the spin rotator
Hamiltonian @Eq. ~34!#. Then the only renormalizable cou
pling parameter in the exchange Hamiltonian@Eq. ~34!# is
JST. It is easily seen that the operatorsP1, P2, and (Sz
2XSS) form an algebrao3 in the reduced spin space$S,T1%.
In this subspace the operatorsP1 and P2 are reduced to
A2X1S andA2XS1, respectively. The operatorsS1→A2X01̄

and S2→A2X1̄0, together with a combination (X002X1̄1̄),
act in the subspace of excited states$T0,T1̄% divided by the
Zeeman energy from the low-energy doublet. These op
tors form a complementary algebrao3, and the direct sum o
these algebras represent a realization of the SO~4! symmetry
for a ‘‘spin rotator in an external magnetic field’’ when th
rotational symmetry in spin space is broken.

As a result, the effective spin Hamiltonian@Eq. ~34!# in a
subspace$S,T1% reduces to

H̃Z5EZR01JST~R•s!1Hp . ~48!

Here EZ5ĒS5ĒT1 is the degenerate ground-state ene
level of a DQD in a magnetic fieldB5B0 , Hp describes
irrelevant potential scattering, and the operatorsR0, and R
are

R05X111XSS, Rz5X112XSS,

R15A2X1S, R25A2XS1. ~49!

The complementary vectorT, defined as

Tz5X002X1̄1̄, T15A2X01̄, T25A2X1̄0, ~50!

forms a second subgroup. This vector is quenched by
magnetic field. The spectrum of conduction electrons is a
split due to Zeeman effect, but this splitting does not aff
the Kondo singularity in the tunnel current: one may simp
redefine the conduction-electron energies and measure
from the corresponding Fermi levels for spin-up and -do
electrons.8

Applying the poor man’s scaling procedure23 to Hamil-
tonian ~48!, one comes to a scaling equation

d j2
d ln D

52~ j 2!2, ~51!

with a fixed point atj 25` and the Kondo temperatureTKZ

5D̄ exp(21/j 2), so that
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TK

TK0
5expS 2

1

11ass
D . ~52!

Of course, the same kind of separation is possible fo
degenerate pair of statesẼS andẼT1̄ , and the corresponding
vectorsR8 andT8 may be obtained from Eqs.~49! and~50!

by interchanging indices 1 and 1¯ ~see Ref. 8 for a physica
realization of this situation!.

To summarize the description of basic manifestations
spin rotator symmetry in DQD’s, we considered three lim
ing cases of spin rotator representations depending on
physical situations: quasidegenerate stateud̄u!TK , when the
resonance properties of a DQD are determined by the
SO~4! symmetry @Eq. ~41!#; triplet ground stateud̄u.TK ,
where the virtual excitations to singlet state render
Kondo temperature dependent on the initial singlet/trip
splitting @Eq. ~42!#; and a magnetic-field-induced doubl
ground state@Eq. ~51!#, where the Kondo resonance arises
spite of the loss of local rotational invariance. The hierarc
of Kondo temperatures is nonuniversal. The maximal va
of TK is given byTK0 @Eq. ~41!#, from which it falls with the
removal of singlet/triplet degeneracy.7,8 It then reaches the
limiting value of D̄ exp(21/j 1) at larged̄, where the contri-
bution of the high-lying singlet state becomes negligib
weak, and one returns back to the typical SU~2! symmetry of
spin S51 described by theo3 algebra.

All the above results could also be obtained in repres
tation ~44!. In this case the scaling equations should be
rived for three coupling constantsJ1 , J2, andJ3 of the spin
Hamiltonian@Eq. ~46!#. This procedure was described in Re
8. As expected, the results are equivalent since the scalin
J3 adds nothing to the singular behavior of the relevant
rametersJT and JST. The problem becomes more comp
cated in case there are two sources and two drains.13 Then an
additional indexa should be introduced for the lead ele
trons cks→caks . States with differenta ’s are intermixed
due to interdot tunneling, and one more operatorS3P or
S13S2 should be introduced in the theory of a spin rota
coupled to metallic leads.8

V. TWO-CENTER KONDO MODEL FOR DQD’S

It is natural to expect that in the limit of vanishing inte
dot coupling V the tunneling through a doubly occupie
DQD is defined by the individual spinsS51/2 of the left and
right dots, and the existence or nonexistence of a resona
tunneling channel will be predetermined by the competit
between the Kondo effect for the left and right dots and
indirect exchange induced by the same tunneling. In t
limit the problem is reduced to a specific version of the tw
site Kondo model. The corresponding theory for asymmetric
two-site Kondo impurity in a metal was discussed, e.g.,
Ref. 19. The question is how this approach should be mo
fied in the asymmetric cases~b! and ~c!. On the other hand
with increasingV, these two approaches should be match
and it is instructive to compare the description of a DQD
two fictitious spins@Eqs.~43!# and by two real spinsSl and
Sr .
9-10
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To study this problem we use the approach mentione
Sec. II, and consider the DQD as a two-site center with sp
1/2 in each site within the framework specified by Hamilt
nians~7! and~8!. In terms of Hubbard operators~10! for spin
1/2, this Hamiltonian is written asH5Hdo1Ht1Hlr , where

Hdo5(
i ,L

EiLXi
LL ~L50,s,2!,

Ht5(
i ,ks

@Wiks~Xi
s01Xi

2s̄!cks1H.c.#. ~53!

In case ~b!, the statesEl0 , Els5« l , Ers5« r , and Er2
52« r1Q are involved in the RG procedure, and the cor
sponding interdot tunneling Hamiltonian is represented in
form

Hlr 5V(
s

~Xl
s0Xr

s̄21H.c.!. ~54!

This tunneling is possible only in the singlet configuration
the DQD. We start by eliminating the polar states$ l0,r2%
that arise due to interdot tunneling@Eq. ~54!#. This proce-
dure, known as a Harris-Lange canonical transformatio26

eliminates the interdot termHlr , and instead, in second orde
in V, an interdot spin-Hamiltonian emerges,

Hlrs5Jlr (
ss8

Xl
ss8Xr

s8s , ~55!

whereJlr 5V2/D1.
As in Sec. IV, we should integrate out the high-ener

charged states by using the Haldane RG procedure22 for the
left dot alone, since the renormalization of the deep levee r
is negligible. However this procedure should now include
renormalization ofJlr due to a reduction of the conductio
band. The scaling equation for« l is the same as Eq.~24! for
a triplet state. We rewrite it in terms of the two-spin Ham
tonian as

d« l

d ln D
5

G l

p
~56!

(G l[GT). The same mapping procedure as in Eq.~19! gives
a correction to the indirect exchange coupling constant,

J̃lr 5Jlr 2
b1

2G l udD

D
, ~57!

and its iteration results in the second scaling equation;

dJlr

d ln D
52b1

2 G l

p
. ~58!

This procedure stops atD5D̄, where the Schrieffer-Wolff
limit for e l is achieved. Integrating Eq.~58! from D̄ to D0,
one comes to the following equation for the renormaliz
indirect exchange coupling:

Jlr ~D̄ !5Jlr ~D0!2b1
2G l ln~D0 /D̄ !.
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Then, taking into account thatd5Jlr by its origin, this equa-
tion can be rewritten in the form

d̄5d02b1
2G l ln~D0 /D̄ !. ~59!

This is the same result for the renormalized singlet-trip
excitation energy that we found in Sec. IV. In case~c!, a
similar procedure starts by eliminating the polar states g
erated by the interdot tunneling term@see Fig. 3~c!#:

Hlr 5V(
s

@Xl
2s̄Xr

0s1H.c.#. ~60!

In this case the Harris-Lange procedure results in an indi
exchange Hamiltonian@Eq. ~55!#, with a coupling constant
Jlr 5V2/D2. Again, only the energy level« l is involved in
Haldane’s RG procedure. Scaling equation~58! contains, on
the right-hand side, the factorb2 instead ofb1, and its solu-
tion for the triplet/singlet level splitting gives

d̄5d02b2
2G l ln~D0 /D̄ !. ~61!

This is exactly the result obtained in Ref. 10.
Next the Schrieffer-Wolff transformation eliminates th

tunnel coupling. The operatorS in Eq. ~26! has the form

S5(
ks

Wl

«k2« l
~Xl

s0cks
† 2H.c.!

1(
ks

Wl

« l1Q2«k
~Xl

2s̄cks2H.c.!, ~62!

in case~b!, and

S5(
ks

Wl

«k2« l
~Xl

s0cks
† 2H.c.! ~63!

in case~c!. As usual, in second order, the tunneling ter
generates an indirect exchange between the leads and
As a result, the total spin Hamiltonian acquires the form

Hs5 J̄lr ~Sl•Sr !1 (
i 5 l ,r

Ji~Si•s!1H8. ~64!

Here J̄lr 5 d̄ is the renormalized singlet/triplet excitation e
ergy @Eq. ~59! or ~61!# in cases~b! and~c!, respectively. The
components of the local spinsSi are now defined as

Si
15Xi

↑↓ , Si
25Xi

↓↑ , Siz5
1

2
~Xi

↑↑2Xi
↓↓!. ~65!

The Heisenberg-like interdot exchange@Eq. ~64!# arose in
second order inV similarly to the effective antiferromagneti
exchange in a half-filled Hubbard model.26 The indirect ex-
change coupling constants govern the interaction of the c
duction electrons and the local spins in the dots. They
given by

Jl5
uWl u2

«F2« l
, Jr5

uWr u2

« l1Q2«F
~66!

in case~b!, and
9-11
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Jl5uWl u2S 1

«F2« l
1

1

« l1Ql2«F
D , Jr50 ~67!

in case~c!. The last termH8 in Eq. ~64! includes irrelevant
potential scattering terms arising in a second-or
Schrieffer-Wolff transformation, and other invariants that a
pear in the Hausdorff expansion@Eq. ~26!# i.e., mixed prod-
ucts like Si•@Sj3s#. These terms arise due to an interpl
between the interdot exchangeHlr and the tunnelingHt .
Here we do not consider these small corrections to the m
Kondo effect.

Comparing Eq.~64! with Eq. ~46!, we see that the second
order terms of the expansion reproduce the general struc
of a two-spin Hamiltonian. The interdot exchange has
same form for both representations, but there are signific
differences in the values of the coupling constants betw
the leads and local spins. In particular, the tunnel coup
between the right dot and the leads is absent in this orde
case~c!, whereas in the two-spin representation@Eq. ~43!#
the coupling constants areJ15(21b2

2)Jl and J25b2
2Jl . It

should be noted, however, that a nonzero coupling betw
the leads and the right dot arises due to the interference
tweenHlr andS in a Schrieffer-Wolff representation, but it
value differs fromJ2. Thus, from the point of view of the
general SO~4! symmetry of the DQD, the two-site represe
tation is simply one more representation of theo4 algebra as
a direct sum of twoo3 algebras. The only case when th
representationsS1 ,S2 andSl ,Sr coincide is in the symmetric
DQD, where the admixture of excitons is ignored and
parity is conserved for an isolated DQD. This symmet
DQD, of course, also obeys an SO~4! symmetry, but its
ground state is a singlet. The only way to activate the ‘‘h
den symmetry’’ in this case is to switch on a strong magne
field that compensates for the exchange splitting. Then
effective spin Hamiltonian is given in Eq.~48!, and a mag-
netic field-induced Kondo effect arises.

VI. CONCLUDING REMARKS

It is worth making several remarks about the advanta
of using alternative approaches to analyze the physics of
quantum-spin rotator. We have presented three different w
of substituting spin-1/2 operators for the generic operatorS
andP of the SO~4! group. This substitution exposes nume
ous connections between the approach to the Kondo ef
treating the double dot as a spin rotator and the conventi
description as a two-site Kondo problem. The tradition
theory of the two-site Kondo effect19 deals with asymmetric
DQD, so it is formulated in terms of even-odd spin a
charge states. The effects discussed in the present pape
sentially arise only inasymmetricsituations whenJ1@J2 or
Jl@Jr . In addition, we treated conduction electrons in
single-channel approximation, whereas the even-odd s
classification of conduction electrons in a two-site Kon
model28 classified it as a two-channel single-impurity mod
Some generic properties of the two-spin Kondo effect a
nevertheless, similar in both limits. In particular, the comp
tition between the on-site interactionsJi(Si•s) and the inter-
dot exchangeJi j (Si•Sj ) results in the appearance of an u
11532
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stable fixed point in the flow diagram dividing the Kond
singlet from an antiferromagnetic singlet ground states of
system. The conventional two-site Kondo impurity can a
be classified as a ‘‘spin rotator,’’ and the singlet-triplet~even-
odd! mixing is an essential part of the Kondo physics in th
case.

Nano-objects whose symmetry is more complicated th
localized spins, i.e.,quantum rotorswere discussed previ
ously in a context of the theory of quantum phase transiti
in two-dimensional Heisenberg antiferromagnets, spin l
ders, and spin glasses~see, e.g., Ref. 29!. A quantum rotor
was defined as a spin whose rotation is constrained to m
on a surface of an (M>2), dimensional sphere. An examp
of an array of quantum rotors is a double-layer system
antiferromagnetically ordered quantum spins. If the int
layer couplingK12(S1m•S2m) in a sitem is stronger than the
intersite couplingJmn(S1m•S1n) in a given layer, the pair of
spins S1m and S2m form a quantum rotorSm with an o3
algebra and a Casimir operatorS 2. The spin rotator is a
natural generalization of this description: in case ofM52,
the excited triplet state in each sitem can be added to a
manifold, and the ladder of spin rotors transforms into
array of spin rotators.

We leave a more detailed discussion of electron trans
through DQD’s for future communications, and briefly di
cuss a limiting case of a biased DQD withJr50, which was
realized experimentally.11,12 In case ~b!, this limit corre-
sponds to an electrometer geometry. In this configuration
right dot is isolated from the leads, but, nevertheless, it
be used for driving the current through the left dot. In R
12 the driving was realized via an electrostatic coupling
tween the dots, and charge transfer was allowed this m
toring the Coulomb resonance conditions. In the pres
case, the resonance in aspin channel is allowed by modify-
ing the energy of thecharge-transferexciton. To measure
this effect one should choose anE window in a plan (Vg

r ,Vg
l )

for symmetric DQD’s. At zero differenceVg
r 2Vg

l , no Kondo
effect should be observed. Then increasing this differenc
given temperatureT, one effectively changes the energy d
ferenced0 @Eq. ~25!# and raises the Kondo temperatureTK .
When the regimeT;TK is achieved, one finds oneself in
hatched region similar to that shown in Fig. 3~a! for a win-
dow $1,1%, and a zero-bias anomaly should appear in c
ductance.

In terms of the two-spin representation@Eq. ~43!#, the
structure of the RG scheme remains the same, and the
change is a disappearance of the second term in Eq.~36! for
JT . The changes in the real-spin representation@Eq. ~65!# are
more essential,Jr50, and the Kondo tunneling occurs on
through the left dot. However, the conventional theory o
single-site Kondo screening cannot be applied in this sit
tion because the interdot tunneling term; J̄lr is still present
in Hamiltonian ~64!. If the renormalized coupling constan
J̄lr remains positive, the left spin is dynamically screen
and the right spin remains free. This model is a limiting ca
of an underscreened spin-1 solution.

The description of the Kondo effect in terms of two fict
tious spinsR andT @Eqs.~49!, and~50!# is another example
9-12
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DOUBLE QUANTUM DOT AS A SPIN ROTATOR PHYSICAL REVIEW B65 115329
of separation of spin degrees of freedom into a dynamic
confined momentR and an unscreened momentT ~also see
Ref. 6!, and this case was realized in the experiments4,5 men-
tioned above.

We have seen that the scaling trajectory for the coup
constantd̄5 J̄lr is predetermined by the bare value of t
singlet/triplet splitting d052b1V, which, in turn, can be
driven by the gate voltage@see Eq.~15!#. Thus we see tha
the Kondo tunneling channel in the left dot can be opened
softening the charge-transfer potential that is governed by
right gate voltageVg

r , and a DQD with an isolated right do
works as a ‘‘charge-spin transformer.’’

The limit of zeroJr in case~c! was considered within the
spin-rotator approach in Ref. 10. In terms of a full SO~4!
description, the flow diagram is similar to that of a bias
DQD @case~b!#. If one were to try to describe this asymme
ric DQD in terms of screening of the individual spinSl , a
problem would arise when taking into account charge fl
tuations to the stateuExl& @Eq. ~13!# at the first ‘‘Haldane’’
stage of the RG procedure, because this excitation is so
assumption:vex,l!D. In this case the source of strong co
relation is, in fact, the right dot, and the interdot tunneling
responsible for true spin-charge separation in the DQD.
description of Kondo tunneling in terms of the operatorsS
andP is obviously preferable in this case.

In conclusion, here we considered the spin excitat
spectrum and the Kondo effect in DQD’s from the point
view of its generic symmetry, that is, an SO~4! symmetry of
a quantum-spin rotator. The properties of spin rotators di
in many cases from those of localized spins with the sa
Ŝ2. In the case of a triplet ground state (Ŝ252), where co-
tunneling results in an underscreened Kondo effect, the p
ence of low-lying singlet excitation makes the Kondo te
perature a nonuniversal quantity. If the ground state i
singlet (Ŝ250), the Kondo effect is nevertheless possible
one projection of the low-lying triplet excitation is involve
in electron tunneling. An alternative language for discuss
the properties of DQD’s is provided by a two-site Kond
model approach. However, in spite of the overall SO~4! sym-
metry of the problem, an equivalence of these two
proaches exists only in the case of conserved parity~sym-
metric DQD’s!. When the asymmetric charge-transf
exciton is admixed with a low-energy spin singlet, the tw
site representation and the two-spin representation of
SO~4! group for a biased DQD are not equivalent.
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APPENDIX

The wave functions of symmetric and asymmetric DQD
occupied by one, two, or three electrons are listed be
11532
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~also see Ref. 21!. In addition, the tunnel matrix element
which connect the states from different charge sectors of
DQD’s are presented. The eigenvalues and eigenfunction
an isolated neutral DQD withN52 can be found by direc
diagonalization of Hamiltonians~4! and~5!. In a neutral con-
figuration $1,1% the interdot capacitive coupling is absen
Far from Coulomb resonances when the inequalities~15! are
valid, expansions~14! in symmetric case~a! and Eq.~13! in
the asymmetric cases~b! and ~c! give the following equa-
tions for the coefficientsai j in first order of perturbation
expansion in the tunnel couplingV. The processes taken int
account in the mixing terms are shown by the dashed arr
in the upper panels of Fig. 1.

~a! Symmetric DQD:

aee5ass'12b2, ase52aes5A2b. ~A1!

~b! Biased DQD:

ass512b1
22b18

2 , asl52als5A2b18 ,

asr52ars5A2b1 , ~A2!

all 512b18
2 , arr 512b1

2 .

Here b185V/(Q1D). We assume thatb18!b1 and neglect
the terms;b18 in our calculations.

~c! Asymmetric DQD:

ass512b2
22b28

2 , asl52als5A2b2 ,

asr52ars5A2b28 , ~A3!

all 512b2
2 , arr 512b28

2 .

Here b285V/(Qr2D)!b2, and we neglect the correspond
ing contributions as well.

To complete the enumeration of states involved in
tunneling Hamiltonian@Eq. ~1!#, one should define the
charge states of DQD’s which arise in a process of elect
tunneling between DQD’s and metallic leads. We are int
ested in one-electron tunneling, so the states with one
three electrons in DQD’s,N51 and 3, should be taken int
account.

~a! Symmetric DQD’s.One-electron states are even a
odd combinations of electronic wave functions belonging
the left and right wells. The same is valid for the thre
electron states, which in fact are the hole analogs of o
electron states:

u1e,s&5
1

A2
~dls

† 1drs
† !u0&,

u1o,s&5
1

A2
~dls

† 2drs
† !u0&, ~A4!

u3e,s&5
1

A2
~dls

† dr↓
† dr↑

† 1drs
† dl↓

† dl↑
† !u0&,
9-13
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u3o,s&5
1

A2
~dls

† dr↓
† dr↑

† 2drs
† dl↓

† dl↑
† !u0&.

(b) and (c) Asymmetric DQD’s. In this case the DQD is
‘‘polarized’’ both in negatively and positively charged state
The one-electron wave functions are the same in cases~b!
and ~c!:

u1a,s&5~A12a2dls
† 2adrs

† !u0&,

u1b,s&5~adls
† 1A12a2drs

† !u0& ~A5!

(a5V/D). The corresponding energy levels are

E1a5« l1aV, E1b5« r2aV. ~A6!

The three-electron wave functions are represented by exp
sions

u3b,s&5~A12a2dls
† dr↓

† dr↑
† 1adrs

† dl↓
† dl↑

† !u0&,

u3a,s&5~2adls
† dr↓

† dr↑
† 1A12a2drs

† dl↓
† dl↑

† !u0& ~A7!

in case~b!, and

u3b,s&5~A12a82drs
† dl↓

† dl↑
† 1a8dls

† dr↓
† dr↑

† !u0&,

u3a,s&5~2a8drs
† dl↓

† dl↑
† 1A12a82dls

† dr↓
† dr↑

† !u0&
~A8!

in case~c!. Herea85V/(Qr2Ql2D). The eigenlevels are
given by the equations

E3b52« r1Q2aV, E3a52« l1Q1aV ~A9!

in case~b! and

E3b52« l1Ql2a8V, E3a52« r1Qr1a8V ~A10!

in case~c!.
The tunneling matrix elements in HamiltonianHt @Eq.

~11!# include states from different charge sectorsN(n l ,n r) of
the dot HamiltonianHd @Eq. ~9!#. In the presence of an in
terdot couplingV, and at nonzero bias potentialVg

l 2Vg
r .0,

the numbersn l and n r are nonintegers, and the tunnelin
11532
.

s-

transparencies of the left and right dots are different eve
Wl5Wr @case~b!#. In case~c!, the tunneling barrier betwee
the leads and the right dot is wider, and one can assume
Wr,Wl , so that the asymmetry is even stronger. Consid
ing the asymmetric configurations in case~b!, we note that
the expansion coefficients in Eq.~13! for the two-electron
statesuL& are such thatass@asl ,asr @see Eq.~A2!#. The
tunnel matrix elements which define the dominant contrib
tions to the RG equations~20! are

Wqus
TO,1s̄5

1

A2
wl ,

Wqu6
T6,165wl , Wqds

TO,3s̄5
s

A2
wr ,

Wqd6
T6,365swr , ~A11!

Wqus
S,1s̄5

1

A2
sasswl ,

Wqds
S,3s̄5

1

A2
asswr ,

~herewl5A12a2Wl). Similar equations can be derived i
case~c!, where the wave functions of the virtual charge
statesu1bs& and u3bs& are given by Eqs.~A5! and ~A8!.
Now, instead of Eq.~A11!, one has

Wqus
TO,1s̄5

1

A2
wl , Wqu6

T6,165wl ,

Wqds
TO,3s̄5

s

A2
wl8 , Wqd6

T6,365swr , ~A12!

Wqus
S,1s̄5

1

A2
sasswl , Wqds

S,3s̄5
1

A2
asswl8 ,

wherewl85A12a82wl .
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