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Coulomb blockade of strongly coupled quantum dots studied via bosonization
of a channel with a finite barrier
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A pair of quantum dots, coupled to each other through a point contact, can exhibit Coulomb blockade effects
that reflect the presence of an oscillatory term in the dots’ total energy whose value depends on whether the
total number of electrons on the dots is even or odd. The effective energy associated with this even-odd
alternation is reduced, relative to the bare Coulomb blockade energyUr for uncoupled dots, by a factor (1
2 f ) that decreases as the interdot coupling is increased. When the transmission coefficient for interdot elec-
tronic motion is independent of energy and is the same for all channels within the point contact~which are
assumed uncoupled!, the factor (12 f ) takes on a universal value determined solely by the number of channels
Nch and the dimensionless conductanceg of each individual channel. When an individual channel is fully
opened~the limit g→1), the factor (12 f ) goes to zero. When the interdot transmission coefficient varies over
energy scales of the size of the bare Coulomb blockade energyUr , there are corrections to this universal
behavior. Here we consider a model in which the point contact is described by a single orbital channel
containing a parabolic barrier potential, withvP being the harmonic oscillator frequency associated with the
inverted parabolic well. We calculate the leading correction to the factor (12 f ) for Nch51 ~spin-split! and
Nch52 ~spin-degenerate! point contacts, in the limit whereg is very close to 1 and the ratio 2pUr /\vP is not
much greater than 1. Calculating via a generalization of the bosonization technique previously applied in the
case of a zero-thickness barrier, we find that for a given value ofg, the value of (12 f ) is increased relative to
its value for a zero-thickness barrier, but the absolute value of the increase is small in the region where our
calculations apply.

DOI: 10.1103/PhysRevB.65.115326 PACS number~s!: 73.23.Hk, 73.63.Kv, 71.10.Pm, 72.10.2d
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I. INTRODUCTION

In recent years, there have been a number of theore
and experimental studies of the manner in which Coulo
blockade effects in a metallic particle or semiconduc
quantum dot disappear when the conducting island beco
more electrically connected to its environment.1–15 Here we
focus on a system in which two symmetric quantum dots
defined by applying negative voltages to gate electrodes
lie on the surface of a semiconductor heterostructure abo
two-dimensional electron gas~2DEG!. We assume that the
dots are joined by a quantum point contact containing
single orbital channel that is almost perfectly transmitting
the Fermi energy, but that the dots are isolated from th
respective leads by comparatively large tunnel barriers
this geometry, information about the Coulomb blockade
ergyUr involved in the transfer of electrons from one dot
the other can be obtained by observing the positions of C
lomb blockade peaks in the conductance across the e
system~from one lead to another! when that conductance i
plotted as a function of voltages on gates coupled to eac
the dots.1–4

Previous analyses of the disappearance of the Coul
blockade for two-dot systems16 containing such a partially
open point contact have characterized the contact by a n
berNch of degenerate one-dimensional~1D! channels and by
the dimensionless conductanceg of each channel~where 0
<g<1).10–13 This characterization is complete in the lim
where the electronic transmission amplitude through the c
tact is independent of energy for electron energies that d
0163-1829/2002/65~11!/115326~13!/$20.00 65 1153
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from the Fermi energy by no more than an amount com
rable toUr . The energy independence of the transmiss
amplitude means that this characterization corresponds
potential barrier which is sufficiently thin that it can be mo
eled as ad function. Because the Coulomb blockade ene
Ur is much smaller than the Fermi energyEF , working in
this ‘‘d-function barrier limit’’ can yield good results eve
though the product of the barrier width and the Fermi wa
vectorkF is generally much greater than 1~with kF being the
value of the Fermi wave vector in the 2DEG far from th
barrier!.

Nevertheless, it seems important to investigate further
consequences of relaxing the assumption of ad-function bar-
rier limit. For one thing, it is possible to generate wid
barriers using an appropriate gate geometry, and one w
like to understand at what point thed-function-limit calcula-
tions break down. Secondly, estimating the corrections du
a barrier’s finite thickness provides a valuable check on
d-function-limit results.

Another reason for interest is that recent experiments
transmission through quantum point contacts have shown
expected structure@e.g., an apparent conductance plate
near 0.7(2e2/h) at intermediate temperatures17# whose ori-
gin is only poorly understood. Such results suggest t
transmission through a point contact may have a nontri
energy dependence, and such a dependence could well
an effect on the breakdown of the Coulomb blockade in
coupled-dot geometry. With the aim of explaining such
fects in mind, it is a helpful first step to study theoretica
the effects of energy dependences in a simpler situa
©2002 The American Physical Society26-1



ct
e
o
io
n

ch
n

a
-
ie

n
ts
l-
a

le-

t i
tu
e

b
th
e

th
tro

a
ct
d

e
n-

th

s

re
om

r-
n
o
ed
-
d

-

e

aAs/

g
re
:

gy
’’

es-

ard

r
n a

that
cor-

ons
y a
ons
est
nel

al
,

y
t,
ture
re-
ich

that
on
und

e-

ed,

ns

as-
n-

ss
nd
in-
tive

JOHN M. GOLDEN AND BERTRAND I. HALPERIN PHYSICAL REVIEW B65 115326
where the barrier potential is known and many-body effe
are reduced to a bare minimum. In this vein we consider h
a model in which the two dots are separated by a parab
barrier of nonzero width and the electron-electron interact
is taken to be constant for any two electrons located a
where on the same quantum dot.

This model presents challenges for ‘‘bosonization te
niques’’ that characterize point-contact constrictions as o
dimensional fermionic seas whose low-energy degrees
freedom can be expressed in terms of bosonic density
phase variables.18–22 In such ‘‘bosonized’’ models, the be
havior of incompletely opened channels is commonly stud
by introducing a zero-widthd-function barrier at a specific
point in the one-dimensional sea.8,9,24,25By way of contrast,
this paper seeks to show how a bosonized model of a o
dimensional system can describe the single-particle effec
replacing ad-function barrier with a barrier that more rea
istically corresponds to a finite-length constriction—i.e.,
barrier of nonzero width and therefore nontrivial sing
particle transmission properties.

Before proceeding, we should describe more fully wha
already understood about systems of two symmetric quan
dots connected by a single orbital channel containing deg
erate spin modes. In such systems, an energy scaleUr char-
acterizes the energy cost of moving electronic charges
tween different segments of the system. Moreover,
system’s Coulomb blockade behavior reflects the presenc
an energy term proportional toUr that oscillates between
one value held when the total number of electrons on
dots is even and another value held when the total elec
number is odd.1,12

Previous work, both experimental and theoretical, h
shown that as the conductance of the interdot point conta
increased, the energy scale associated with this even-od
ternation is reduced by a factor of (12 f ), wheref goes to 1
when the channel is fully open. When the transmission co
ficient for electronic motion within this channel is indepe
dent of energy~i.e., thed-function barrier limit!, the factor
(12 f ) takes on a universal value determined solely by
number of point contact channelsNch ~the channels being
assumed degenerate and uncoupled! and the dimensionles
conductanceg of each individual channel.@If G is the total
conductance of the point contact,g5G/Nch(e

2/h).# We refer
to the valuef in the factor (12 f ) as thefractional peak
splitting because it has been measured by observing the
tive separation of conductance peaks in a series of Coul
blockade experiments.1–3,12

This paper studies the corrections tof, and therefore to
(12 f ), that result when the assumption of ad-function bar-
rier limit is relaxed—in other words, when the interdot ba
rier is more realistically treated as having a finite height a
nonzero width. A prior study of the effects of a nonzer
width barrier concentrated on the limit of weakly coupl
dots~the limit g→0).14 This study revealed that, if the one
dimensional channels between two dots, or between a
and a lead, contain a tunneling barrier of finite heightV0 ~in
energy units! and of nonzero widthj, the behavior of such
systems is responsive to another energy scaleW, which char-
acterizes the energy range~for electrons incident on the bar
11532
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rier! over which the probability of transmission through th
barrier varies substantially.14 For relatively large and shallow
dots, such as those that have been constructed in G
AlGaAs heterostructures at low temperatures,1–3 the energies
Ur andW tend to be much smaller than the Fermi energyEF
but much larger than both the single-particle level spacind
and the thermal energykBT. As a result, such systems a
characterized by the following hierarchy of energy scales14

kBT,d!Ur&W!EF . ~1!

BecauseW is comparable in size to the intermediate ener
scaleUr ~which acts as a kind of ‘‘excitation energy scale
with respect to independent-particle energies!, effects from
the barrier’s finite size can be significant and deserve inv
tigation before they are confidently discarded.

Our prior study of the weak-coupling limit whereg!1
found that the finiteness of the barrier leads to an upw
correction to the universalf-versus-g curve for ad-function
barrier. In other words, for a givensmall value of g, the
fractional peak splittingf is enhanced relative to its value fo
a d-function barrier.14 This enhancement occurs because, i
channel containing a barrier with a finite energy height~as
opposed to ad-function barrier!, electrons can tunnel from
one dot to another through largely unreflected states
have single-particle energies greater than the energy that
responds to the finite barrier’s peak.14

In order to study the correction to the universalf-versus-g
curve, in our prior work we made several basic assumpti
about the system of two symmetric dots connected b
single orbital channel. First, we assumed that the electr
that enter the point contact between the dots are in the low
energy eigenstate for motion perpendicular to the chan
and can therefore be described by a one-dimensional~1D!
Schrödinger equation with an effective barrier potenti
V(x). We assumed thatV(x) could be treated as parabolic
with a harmonic oscillator frequencyvP associated with the
inverted parabolic well.~In this case, the transmission energ
scaleW is given by\vP/2p.! In addition, we assumed tha
despite the nonzero width of the barrier, the essential na
of electron-electron interactions was still accurately rep
sented by the standard Coulomb blockade model, in wh
the interaction energy of a quantum dot is analogous to
of a classical capacitor—i.e., proportional to the charge
the dot squared. Having made these assumptions, we fo
that, in the limitg→0, the leading behavior of the enhanc
ment tof is roughly proportional toNch(2pUr /\vP)/u ln gu.
For the experimental systems with which we are concern
whereNch is 1 or 2 and where 2pUr /\vP.1, the size of
the enhancement is relatively small.14

This paper extends study of such finite-barrier correctio
to the strong-coupling limit where (12g)!1. In doing so,
we repeat the two assumptions described above. The
sumption of a parabolic form for the imposed barrier pote
tial is likely as good as before.25,26 However, our simplistic
treatment of the electron-electron interactions is likely le
firm, given that the point contact is now largely open a
therefore much more likely to be occupied by electrons
teracting in a way not reflected by the standard capaci
6-2
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COULOMB BLOCKADE OF STRONGLY COUPLED . . . PHYSICAL REVIEW B65 115326
Coulomb blockade model. Nonetheless, because the ba
region is still small in relation to the larger conducting bas
of the two dots, and because the effects from a combina
of the Coulomb blockade model and the interdot barrie
finite size are themselves sufficiently interesting and co
plex, in this initial stab at the problem of finite barriers w
ignore the effects of interactions specific to the point conta
with the understanding that separate efforts to unders
those effects should follow.

Thus, the basic parameters for our strong-coupling st
are the same as those for the weak-coupling limit. TheNch
degenerate spin channels are assumed to contain effect
identical barriers, and the interdot barrier can be modele
fully parabolic so long as we are concerned only with en
gies within a restricted range about the barrier peak.
therefore describe the single interdot orbital channel as c
taining the potential:

V~x!5V0~12x2/2j2! for uxu,A2 j,

V~x!50 for uxu>A2 j, ~2!

see Fig. 1. As we will later see, our ultimate results a
independent of the potential’s details away from the bar
peak. Key aspects of the barrier potential are the ‘‘dep
(EF2V0) of its peak relative to the Fermi surface and t
harmonic oscillator frequencyvP5AV0 /mj2 associated
with the inverted parabolic well.14 @Note that \vP /EF

'A2(kFj)21, which is assumed to be much less than 1.#
We use the single-particle eigenfunctions that corresp

to the above potential to calculate corrections tof. To do so,
we incorporate these eigenfunctions in a generalization
bosonization approach18–23 that was used earlier in th
d-function barrier limit.8–13 We first find the change in the
two-dot system’s ground state energy as the value of
2g) is increased from zero. This energy shiftD~r! is a func-
tion of (12g) and another dimensionless quantityr, which
represents a linear combination of the gate voltages app
to the two dots.12,13 When the total number of electrons o
the two dots is even, the fractional peak splittingf is given by
the following formula:

f 512
D~1!2D~0!

Ur/4
. ~3!

FIG. 1. A schematic representation of the 1D model for a pa
bolic barrier between two quantum dots. The half width of the b
rier at half maximum isj, and the potential energy at the barrier
peak isV0, which is less than, but comparable in size to, the Fe
energyEF .
11532
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By applying this formula, we find that, consistent with o
earlier conjecture,14 for both Nch51 andNch52 the leading
finite-barrier correctionsdecreasethe value off observed for
a given value ofg when g is close to 1. For 2pUr /\vP
&2 and (12g)!1, the magnitude of the decrease is prop
tional to (2pUr /\vP)/u ln(12g)u for Nch51 and to

(2pUr /\vP)A12g $12u ln(12g)u21% for Nch52.
In Sec. II, we show how to use the bosonization appro

to derive an effective action that captures the Coulo
blockade behavior of such a system for an arbitrary num
Nch of interdot tunneling channels. In Sec. III, we use t
effective action of Sec. II to solve for the leadingf-versus-g
behavior forNch51 andg.1. In Sec. IV, we do the same
for Nch52. In Sec. V, we remark on the significance a
limitations of our results.

II. BOSONIZATION WITH A BARRIER
OF FINITE WIDTH

To calculate the corrections due to the interdot barrie
nonzero width, we start with a fermionic formulation of ou
system of two symmetric quantum dots connected by
single orbital channel containing an arbitrary numberNch of
degenerate spin modes. Since this fermionic problem is
fectively one-dimensional,14 we can apply to it a variation
of the standard technique of bosonization.8,9 Having
‘‘bosonized’’ the problem, we integrate out various boson
degrees of freedom to obtain a low-energy effective act
involving only a single set of scalar fields.

The fermionic formulation of the problem of couple
quantum dots is quite straightforward.8,9,11–13 In a basis of
noninteracting single-particle eigenstates, the fermio
Hamiltonian consists of a kinetic-energy partHK and a
charging-energy partHC :

HK5(
s

(
z
E dk jkaksz

† aksz ,

HC5Ur~ n̂2r/2!2, ~4!

wherejk is the energy of the single-particle eigenstate;s is
the channel index;z is the index for states incident on th
barrier from the left~z51! and the right~z521!, respec-
tively; andkF1k is the magnitude of the wave vector ass
ciated with motion along the one-dimensional channel (kF is
the Fermi wave vector anduku is assumed to be smaller tha
kF). The operatorn̂ measures the difference between t
number of electrons to the right of the barrier and the num
of electrons to the left of the barrier. If one letsn̂1 be the
occupation number for the left dot andn̂2 be the occupation
number for the right dot,n̂5(n̂22n̂1)/2. In order to deter-
mine the value off via Eq. ~3!, we consider the case wher
the total number of electrons on the two dots is even, so
n̂ is an operator with integer eigenvalues.~When the total
number of electrons is odd,n̂ has half-integer eigenvalues.!

The operatorn̂ can be written in terms of fermionic pos
tion operatorscs

†(x) andcs(x) as follows:

-
-

i

6-3
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n̂5
1

2 (
s

E dx@Q~x!2Q~2x!#cs
†~x!cs~x!, ~5!

wherecs(x) consists of left-incident and right-incident par

cs~x!5cs1~x!1cs,21~x!, ~6!

and whereQ(x) is a Heaviside step function centered on t
dividing line between the ‘‘right’’ and ‘‘left’’ sides of the
barrier atx50.

If one were bosonizing fermionic operators associa
with a basis of plane-wave states, one could bosonize
above Hamiltonian by using the standard formula

csz~x!5
1

A2pa
ei zkFxeiAp[ zus(x)1fs(x)] , ~7!

whereus(x) and fs(x) are scalar boson fields anda is a
quantity analogous to a lattice spacing that is used to imp
an ultraviolet cutoff at energies approximating\vF /a on the
bosonic degrees of freedom18–23(a is ultimately meant to be
taken to zero—a limit that can be reasonably taken w
EF@Ur and the approach to modeling the double-dot sys
can be supposed to work down to length scalesa, where
\vF /a is much greater than the relevant excitation sc
Ur). The annihilation operators associated with the pla
wave states would then be given by the equation

aksz5
1

2pAa
E dx e2 i zkxeiAp[ zus(x)1fs(x)] . ~8!

In terms of this plane-wave bosonization scheme, the op
tor n̂ could be simply expressed in terms of the boson fiel8

n̂5
1

Ap
(
s

us~0!. ~9!

Unfortunately, our problem is not so simple. The basis
single-particle states that appears in Eq.~4! is not a plane-
wave basis. The eigenstates are those of a one-dimens
system containing a barrier of finite height and nonz
width, and they therefore include incident, reflected, a
transmitted parts.

Happily, the kinetic-energy part of the HamiltonianHK
does not concern itself with such complications. So long
the single-particle level spacing can be treated as effecti
zero, we can proceed with regard toHK just as if the single-
particle states were plane waves. Accordingly, if we focus
bosonizingHK , we can bosonize the annihilation operato
in Eq. ~4! in the same way as in Eq.~8!. Under this bosoniza-
tion scheme, the kinetic energyHK has the following stan-
dard form:

HK5
vF

2 (
s

E dx$@]xfs~x!#21@]xus~x!#2%. ~10!

Our next task is to find a proper bosonized form for t
position operatorscsz(x) that appear in Eq.~5!. Recalling
that we already have bosonized forms for the operatorsaksz ,
11532
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we express thecsz(x) in bosonized form by using the fac
that the position operators consist of linear combinations
the operatorsaksz . In particular, in the continuum limit,

csz~x!5E dk Ykz~x!aksz , ~11!

where the functionsYkz(x) are the single-particle eigenfunc
tions of the noninteracting one-dimensional system.27 For the
potential described by Eq.~2!, we have derived theseYkz(x)
in prior work, using the fact that there are exact solutio
~parabolic cylinder functions! to the Schro¨dinger equation
for a single particle in a parabolic potential.14 Using the
Ykz(x), we find that, to leading order in the perturbation d
to the barrier,n̂ equalsn̂01dn̂, where

n̂05
21

4p i (
s

(
z

zE dk1E dk2

3S 1

k22k11 ih
1

1

k22k12 ih Dak2sz
† ak1sz ,

dn̂5
1

2p (
s

E dk1E dk2R~e1 ,e2!

3H ei [D(e2)2D(e1)]

k22k11 ih
ak1s1

† ak2s,21

1
e2 i [D(e2)2D(e1)]

k22k12 ih
ak2s,21

† ak1s1J , ~12!

and the following identities hold:

e i5eF1vFki /vP ,

R~e1 ,e2!5
e2pe11e2pe2

2A11e22pe1A11e22pe2
,

D~e!5~1/2!@argG~1/22 i e!2e1e lnueu#1C, ~13!

with C being a constant independent ofe and eF5@EF
2V(0)#/\vP being the value ofe at the Fermi energy.28

In the above equations, the dimensionless variablese i
5@Ei2V(0)#/\vP measure the energy distance from t
finite barrier’s peak.14 The scale for these dimensionless e
ergy measures is the harmonic oscillator energy\vP , and in
terms of these dimensionless measures

12g5
1

11e2peF
. ~14!

The functionsR(e1 ,e2) and D(e i) are associated with the
single-particle transmission properties of the barrier. Ea
additive term inR(e1 ,e2) is a product of transmission an
reflection amplitudes, reflecting the fact that the leading c
tributions todn̂ come from ‘‘overlaps’’ between the transmi
ted part of an original right mover and the reflected part of
original left mover and vice versa!. Meanwhile,D(e i) rep-
resents a phase associated with the scattering of a sin
particle wave function. Because of the exponential grow
6-4
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~or damping! of R(e1 ,e2), we should not be surprised to fin
that R(e1 ,e2) plays a starring role in the nature of ou
leading-order result—whereas, to first approximation, con
butions fromD(e i) will prove to be negligible.

Before we proceed further, we should make three rema
about Eq.~12!. First, we should note that derivation of th
above equation fordn̂ ignores contributions ton̂0 from inte-
grating over some interior portion of the barrier region
which approximating the single-particle wave functions
plane waves, or at least by WKB approximations to pla
waves, is no longer valid. Hence—because the exact ei
functions in the barrier region~parabolic cylinder functions!
do not ‘‘explode’’ in amplitude as one goes further towa
the center of the barrier29—as in our derivation of analogou
identities in the limit of weakly coupled dots,14 we expect
additive corrections of rough orderj to the Eq.~12! cofactors
1/(k22k16 ih). Consequently, to avoid substantial corre
tions to Eq.~12!, we must be able to restrict our attention
wave-vectorski ~measured from the appropriate Fermi wa
vector in one dimension! such that

uki uj&1. ~15!

Because the exponentially variant functionR(e1 ,e2)
strongly favors values ofki that correspond toe i near 0, the
ki of most interest for calculating corrections to the univer
behavior are those for whichki.2vPeF /vF . The above
restriction onki can thus be seen to mean that we needeF

&A2EF /V0. For systems~such as those this paper seeks
model! in which EF /V0.1, the restriction then reduce
~conservatively speaking! to eF&1 or, equivalently, (12g)
*1023. Given that the relevant experiments with quantu
dot systems1–3 have generally not resolvedg to increments
of 1023, this constraint is not a serious one.

As a second point regarding Eq.~12!, it should be noted
that, for eF&1, this intermediate result~and therefore those
that follow from it! is insensitive to details of the barrie
away from the barrier peak~e.g., the slope discontinuitie
that occur in our barrier potential atx56A2 j) so long asj
is large compared to the inverse Fermi wave vectorkF

21

~with the Fermi wavelength itself being of the order
2p\/A2mV0, the wavelength associated with the peak b
rier energyV0). The conditionj@kF

21 is typically true of the
kinds of quantum dots that have motivated the
investigations.1–3,14

A third remark about Eq.~12! is that in derivingdn̂, we
have ignored a correction involving terms of the for
$cos@D(e2)2D(e1)#21%/(k22k16ih). We ignored similar
‘‘phase-based’’ terms in Ref. 10. The basic reason that
ignore these terms here derives from the fact that, beca
the characteristic excitation energyUr is less than\vP , the
variation of the numerator of these terms over any region
particular interest should be very small. As a result, in
regions that we generally find to be most important~those
regions near the simple poles wherek25k16 ih and the
magnitudes of other contributing terms tend toward infinit!,
these phase-based terms go to zero. Thus, we have
reason to expect that the contribution from these phase-b
terms is small compared to the contribution from the ter
11532
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we keep. Indeed, if we follow the calculation of the lowes
order contribution from these terms further, we would fi
that, by reasoning parallel to that used in Sec. III to perfo
various wave vector integrals, these terms produce a con
integral with no contribution from residues of the simp
poles atk25k16 ih and only negligible, higher-order contri
butions from integration around other singularities a
branch cuts.

Returning to Eq.~12! and the process of determining th
fractional peak splitting, we observe that if the operato
aksz were annihilation operators for particles in plane-wa
states~e.g., if there were no interdot barrier!, n̂ would simply
equal n̂0. In other words,n̂0 bears the same relation to th
bosonic fields associated with the barrier-state operatorsaksz

that n̂ bears to the bosonic fields associated with the si
larly indexed plane-wave operators of Eq.~8!. From Eq.~9!,
it therefore follows that

n̂05
1

Ap
(
s

us~0!. ~16!

We do not have a similarly simple formula fordn̂. Sub-
stituting for the operatorsaksz , we find that

dn̂5
1

~2p!3a
(
s

E dx1E dx2E dk1E dk2R~e1 ,e2!

3H ei [D(e2)2D(e1)]ei (k1x11k2x2)

k22k11 ih J
3e2 iAp[us(x1)1fs(x1)]e2 iAp[us(x2)2fs(x2)]1H.c.

~17!

Having now obtained bosonized expressions for the se
rate termsn̂0 anddn̂, we express the Hamiltonian as a who
in bosonized form

H5HK1HC
(0)1HC

(1)1HC
(2) . ~18!

HK is given by Eq.~10!, and the remaining terms are a
follows:

HC
(0)5UrF 1

Ap
(
s

us~0!2r/2G 2

,

HC
(1)5Urdn̂F 1

Ap
(
s

us~0!2r/2G
1UrF 1

Ap
(
s

us~0!2r/2Gdn̂,

HC
(2)5Ur~dn̂!2. ~19!

TheHC
(2) term can be dropped from the leading-order c

culation because, to second-order indn̂ @which due to
R(e1 ,e2) is itself roughly proportional toA12g at the
Fermi surface#, HC

(2) contributes nothing to ther dependence
of the ground-state energy. Recall from Eq.~3! that it is ther
6-5
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dependence of the ground-state energy that provides the
sis for calculation of the fractional peak splittingf.12,13

To simplify calculation of thisr dependence, we shift th
us fields by a term linear inr: us(x)→us(x)1Apr/2Nch.
This transformation leaves us with a Hamiltonian in whi
the r dependence appears only in the perturbative factor
dn̂. The transformed~and truncated! Hamiltonian has the
following form:

HK5
vF

2 (
s

E dx$@]xfs~x!#21@]xus~x!#2%,

HC
(0)5

Ur

p F(
s

us~0!G2

,

HC
(1)5

Ur

Ap
(
s

@dn̂us~0!1us~0!dn̂#, ~20!

wheredn̂ is now given by the identity

dn̂5
1

~2p!3a
(
s

E dx1E dx2E dk1E dk2R~e1 ,e2!

3H ei [D(e2)2D(e1)]ei (k1x11k2x2)

k22k11 ih J e2 ipr/Nch

3e2 iAp[us(x1)1fs(x1)]e2 iAp[us(x2)2fs(x2)]1H.c.

~21!

With Eq. ~21!, we have reached the end of the road w
regard to the Hamiltonian approach. To progress further,
shift to an action-based, path-integral formulation. For e
of notation, we will henceforth assume that we have cho
units in which

\51 ~22!

and drop\ from subsequent intermediate calculations~al-
though we resuscitate it in stating our final results!. Having
made this choice of units, we proceed by integrating
various degrees of freedom: first, thef-field degrees of free-
dom, and second, theu-field degrees of freedom away from
x50. The result is an effective action in terms of fiel
us

(0)(t) that are equivalent to theu-field degrees of freedom
at x50. This effective action, dependent only on thex50
degrees of freedom for the originalu fields, is analogous
though—significantly—not equivalent, to that previously o
tained for a system containing ad-function barrier~see Refs.
1 and 2!.

We do no more than outline the process of integrating
the f fields andu fields because the methodology for doin
so is fairly straightforward. With regard to integrating out t
f fields, a key point is that, in the path-integral approach
Lagrangian term linear in]xf(x,t)]tu(x,t) appears in the
action ~just as apẋ term appears in going from the Hami
tonian for a single particle to the corresponding Lagrangia!.
Having accounted for this term, we eliminate thef fields by
performing a standard Gaussian integration. The result is
effective action entirely in terms ofu fields.
11532
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Having obtained this effective action, we introduce t
field us

(0)(t) and the auxiliary fieldsls(t). We use thel
fields to enforce the identityus(0,t)5us

(0)(t) by adding to
the action the following term:

Sl5(
s

E dt ils~t!@us
(0)~t!2us~0,t!#. ~23!

Having addedSl to the action, we can substituteus
(0)(t) for

us(0,t) in HC
(0) @recall Eq.~20!#.

Our next steps are to integrate out theus(x,t) fields and
then thels(t) fields. Once again, only straightforward—
albeit tedious—Gaussian integrations are required. To le
ing order in the perturbative factordn̂, the result is an effec-
tive action dependent only on the scalar fieldsus

(0)(t) and

their Fourier transformsũs
(0)(v):

Su
K5(

s
E dv

2p
uvuũs

(0)~v!ũs
(0)~2v!,

Su
C5(

s1
(
s2

E dv

2p S Ur

p D ũs1

(0)~v!ũs2

(0)~2v!,

Su
(1)5(

s1
(
s2

E dtE dx1E dx2E dk1E dk2

3
2Ur

Ap~2p!3
R~e1 ,e2!A~x1 ,x2!

3H eipr/Nch
e2 i [D(e2)2D(e1)]e2 i (k1x11k2x2)

k22k12 ih

3us2

(0)~t!e2 i *dv h2(x1 ,x2 ,v)e2 ivtũs1

(0)(v)1m.t.J ,

~24!

where the ‘‘mirror term’’~m.t.! can be obtained by comple
conjugating both the factors that precedeus2

(0)(t) and the

exponential prefactori that precedes the integral overv, and
where the functionsA(x1 ,x2), h2(x1 ,x2 ,v), h1(x1 ,x2 ,v),
andh0(x1 ,x2 ,v) are given by the following formulas:

A~x1 ,x2!5
1

~ ux1u1ux2u1a!1/2~2ux1u1a!1/4~2ux2u1a!1/4

3Fa~2ux1u1a!1/2~2ux2u1a!1/2

~ ux1u1a!~ ux2u1a! G1/2

3F ~ ux1u1a!~ ux2u1a!

a~ ux1u1ux2u1a! Gsgn(x1)sgn(x2)/2

,

h2~x1 ,x2 ,v!5h1~x1 ,x2 ,v!2h0~x1 ,x2 ,v!,
6-6
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h1~x1 ,x2 ,v!

5sgn~v!

3
sgn~x2!@12e2uvx2u/vF#2sgn~x1!@12e2uvx1u/vF#

2Ap
,

h0~x1 ,x2 ,v!5
e2uvx1u/vF1e2uvx2u/vF

2Ap
. ~25!

The effective action of Eq.~24! is the end result for this
section. As promised, this action depends only on a single
of scalar fields, which are equivalent to the originalu fields
at x50. Sections III and IV use this action to solve for th
fractional peak splittingf in systems with one and two inter
dot channels, respectively. In both sections, the general
proach is to treatSu

(0)5Su
K1Su

C as the unperturbed action an
to solve perturbatively inSu

(1) .

III. FINITE-BARRIER RESULT FOR THE
ONE-CHANNEL PROBLEM

Here we consider the single-channel case (Nch51), in
which electrons of only one spin have enough energy to p
etrate into the point contact. Starting with the unperturb
actionSu

(0)5Su
K1Su

C , it is not hard to find that

^ũ (0)~v1!ũ (0)~v2!&5
p

uv1u1Ur /p
d~v11v2!. ~26!

We use this identity to calculate the first-order correction
the ground state energyD(r)5^Su

(1)&/b. In particular, we
find the following:

D~r!5
Ur

~2p!3Ap
E dx1E dx2E dk1E dk2R~e1 ,e2!

3
eC2(x1 ,x2 ,2Ur)/4

~ ux1u1ux2u1a!1/2~2ux1u1a!1/4~2ux2u1a!1/4

3e2(p/2)*dv[h0(x1 ,x2 ,v)] 2[e2auvu/vF/(uvu1Ur /p)]

3E dv h0~x1 ,x2 ,v!
e2auvu/vF

uvu1Ur /p

3F i eipr
e2 i [D(e2)2D(e1)]e2 i (k1x11k2x2)

k22k12 ih
1c.c.G ,

~27!

where the functionC2(x1 ,x2,2Ur) is defined below in Eq.
~32!.

Before we apply standard techniques of complex anal
to reduce the integral overk2 to the contributions from the
simple poles atk25k16 ih, we need to show that we ca
neglect the effects of the singularities in the expression
Su

(1) that result from the factorsR(e1 ,e2) andD(e). It is not
11532
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too hard to discount the singular behavior ate250 that re-
sults from the functional form ofD(e) ~see Eq.~13!!. We
can rewritee lnueu as follows:

e lnueu5e ln e2 ipe Q̃~2e!, ~28!

whereQ̃(2e) is a sort of variant of the Heaviside step fun
tion that, in the appropriate limits, is 1 fore real and negative
and is 0 fore real and positive. To allow for complex value
of e, we can defineQ̃(2e) by the formula Q̃(2e)
5 lim

y→0
*G(e)dz@v/p(z21v2)#, where the pathG~e! in the

complex plane starts atz5R ~with R being a large and posi
tive real number, ultimately taken tò! and then proceeds to
the valuee by the shortest path that avoids the singularities
z56 iv and their accompanying branch cuts. In the limitR
→`, this definition yields the desired behavior for real va
ues ofe. On the other hand, it does leaveQ̃(2e) with two
branch points~at e56 i y), and to these we must add th
branch point ofe ln e at e50.

Fortunately, it is not too hard to see that integrati
around these singularities and associated branch cuts lea
contributions to the final result that are higher order in t
expansion parameter 2pUr /\vP than the contributions
from the simple poles atk25k16 ih. Rough evaluation of
the higher-order contributions indicates that they are ind
negligible in the regime where 2pUr /\vP&2, but are
probably not negligible for values of 2pUr /\vP approach-
ing 10.

Having discounted higher-order contributions from sing
larities other than the simple poles atk25k16 ih, we can
perform thek2 integral with ease. The integral overk1 can
then be done after the resulting factorR(e1 ,e1) is expanded
in powers of e6pe1 ~and after it is noted tha
e2 i [D(e1)2D(e1)]51), and the result is the following:

D~r!52
2Ur

~2p!2
cos~pr!J1~eF ,Ur ,vP!, ~29!

where, once again,eF is the ‘‘dimensionless Fermi energy
relative to the barrier peak,vP is the harmonic oscillator
energy of the parabolic barrier~recall the discussion of Sec
I!, and

J1~eF ,Ur ,vP!5E
2`

`

dx1E
2`

`

dx2@Q~x1!1Q~2x2!#

3ei eFvP(x11x2)/vFF1~x1 ,x2 ,Ur ,vP!.

~30!

As before,Q(x) is the Heaviside step function andvF is the
Fermi velocity. Furthermore, the functionF1(x1 ,x2 ,Ur ,vP)
has the formula
6-7
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F1~x1 ,x2 ,Ur ,vP!5S vP

2ApvF
D (

n50

`

~21!n
2~2n11!peC2(x1 ,x2 ,Ur)/4

@~2n11!2p21~x11x2!2vP
2 /vF

2 #~ ux1u1ux2u1a!1/2~2ux1u1a!1/4~2ux2u1a!1/4

3e2(p/2)*dv[h0(x1 ,x2 ,v)] 2[e2auvu/vF/(uvu1Ur /p)]E dv h0~x1 ,x2 ,v!@e2auvu/vF/~ uvu1Ur /p!#, ~31!

where

C2~x1 ,x2 ,Ur!5C1~x1 ,x2 ,Ur!1C1~x2 ,x1 ,Ur!,

C1~x1 ,x2 ,Ur!52E
0

1

dz
e2(aUr /pvF)z

z
@~12e2(Urux1u/pvF)z!22sgn~x1!sgn~x2!~12e2(Urux2u/pvF)z!~12e2(Urux1u/pvF)z!#

22~eUrux1u/pvF21!@12sgn~x1!sgn~x2!#E
1

`

dz
e2(a1ux1u)(Ur /pvF)z

z
1~e2Urux1u/pvF21!

3E
1

`

dz
e2(a12ux1u)(Ur /pvF)z

z
2sgn~x1!sgn~x2!~eUr(ux1u1ux2u)/pvF21!E

1

`

dz
e2(a1ux1u1ux2u)(Ur /pvF)z

z
. ~32!
-

o
r

r

n
a
r

o
in
d
-

ab

g
k
s
t

a
e

ha

g-
-
rrier
1,

i
ck-

t
two

ue

ely
es
h
x-
Although the equation forD~r! may not be entirely trans
parent, it is not hard to confirm, by taking the limitvP

→`, that the result forf that follows from Eqs.~3! and~29!
agrees with that previously derived for ad-function
barrier.11–13 The key is to recognize that the relationA12g
5e2peF/A11e22peF means that J1(eF ,Ur ,vP)
→2egA12g as 2pUr /vP→0, where g is the Euler-
Mascheroni constant~g.0.577!.

The behavior for 2pUr /\vPÞ0 can be found through
numerical integration. The results for various values
2pUr /\vP are displayed in Fig. 2. As predicted in ou
study of the weak-coupling limit (g→0),14 for a given value
of g in the vicinity of 1, the fractional peak splittingf is
reduced relative to that for ad-function barrier. This strong-
coupling depression of thef-versus-g curve becomes greate
for larger values of 2pUr /\vP .

For 2pUr /\vP.1, however, the downward correctio
is quite small. Since earlier approximations of the barrier
a d function were designed to predict the behavior of expe
mental systems in which 2pUr /\vP.1,1–3,14 our calcula-
tion confirms that those prior results were substantially c
rect. Figure 2 gives a sense of what the lead
2pUr /\vP-dependent corrections look like for small an
large values of 2pUr /\vP , but, because of the approxima
tions we have made, the results are expected to be reli
accurate only for 2pUr /\vP&2.

One might wonder what analytic form the leadin
2pUr /\vP-dependent corrections take. In the wea
coupling limit (g→0), the finiteness of the barrier wa
shown to result in leading-order corrections proportional
(2pUr /\vP)/u ln gu for 2pUr /\vP&2.14 Corrections of
this form arose from the fact that transitions into virtu
states with energies near or above that of the barrier p
allow for relatively free interdot movement~with transmis-
sion probabilities on the order of 1!.

By reasoning analogous~but in a sense opposite! to that
used in studying the weakly coupled system, we expect t
11532
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to leading order, the finite-barrier corrections in the stron
coupling limit, where (12g)!1, are dominated by the en
hanced backscattering of states near or below the ba
peak, where reflection probabilities are on the order of
rather than on the order ofA12g as is true near the Ferm
surface. To estimate these corrections from strongly ba
scattered states, it is best to return to the form ofD(r) that
appeared in Eq.~27!.

FIG. 2. Plots of the leading (12g)→0 behavior off, the frac-
tional peak splitting, as a function ofg, the dimensionless interdo
channel conductance, for a one-channel connection between
quantum dots (Nch51). Each curve corresponds to a different val
of the quantity 2pUr /\vP ~see legend to the left of the curves!.
The solid line is the result for an interdot barrier that has effectiv
zero width (2pUr /\vP50). The dashed and dot-dashed curv
show the leadingf-versus-g dependence for finite barriers wit
2pUr /\vP taking on values from 0.5 to 32. The curves are e
pected to be substantially accurate at least for (12g) greater than
or equal to approximately 1023 and for values of 2pUr /\vP not
much larger than 2.
6-8
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Examination of thex-dependent factors in the integrand
Eq. ~27! reveals that the primary contributions for the int
gral come when the variablesxi have values of rough mag
nitude p\vF/2Ur . In this range of xi values, the
ki-independent factors of the integrand@i.e., all the factors
but R(e1 ,e2) and those enclosed in the final set of lar
brackets# vary relatively slowly, only changing substantial
when one or both of thexi values changes by an addend
orderp\vF/2Ur . Consequently, if the wave vectorski have
magnitudes greater than 2Ur /p\vF , the ki-independent
factors can, to leading order, be treated as constants foxi
;p\vF /2Ur , and thexi dependence of the integrands
Eq. ~27! can be assumed to be dominated by the fac
e6 i (k1x11k2x2).

The question then is whether theki values that contribute
most substantially to the 2pUr /\vP dependence are larg
enough~in magnitude! for this assumption to be justified. A
we have reasoned above, the leading contributions
2pUr /\vP dependence are expected to come fromki such
that energy of the corresponding eigenstate is near or be
the barrier peak. In other words, the most significant wa
vectors are expected to be ones such thatEF1\vFki&V0.
Consequently, we expect theseki to be negative and to hav
magnitudes approximatingk05(vP /vF)eF , where @given
Eq. ~14!#

k0.
vP

2pvF
u ln~12g!u. ~33!

As noted in Sec. II, the anticipated importance of negat
wave vectors of approximate magnitudek0 ~which yield val-
ues fore i equal or near to 0! means that we must have (
2g)*1023 for our general approach to be valid. Our des
to gain a more compact analytic approximation to the lead
2pUr /\vP-dependent behavior now leads us to impose
other requirementk0*2Ur /p\vF . From Eq.~33!, this re-
quirement means that we need (12g)!e2(2/p)(2pUr /\vP).
Combining this upper bound on (12g) with our previous
lower bound, we find that our general approach and the n
assumption that we propose to make~that thee6 i (k1x11k2x2)

factors dominate thexi dependence of the integrands! are
both valid only if 1023&(12g)!e2(2/p)(2pUr /\vP). The
new assumption therefore allows a useful analytic appro
mation ~i.e., an approximation with a significant range ofg
values in which it is valid! when 2pUr /\vP is not much
greater than 2. For 2pUr /\vP values slightly over 10, on
the other hand, the assumption’s utility ‘‘breaks down’’ e
tirely, as the room between the upper and lower limits
(12g) vanishes. Nonetheless, because we have alread
stricted our attention to 2pUr /\vP&2, this ‘‘breakdown’’
is of no concern; for the values of 2pUr /\vP of real inter-
est, our new assumption for the purpose of a compact a
lytic approximation imposes no more restraint than our i
tial assumption that (12g)!1.

Having determined that we can assumee6 i (k1x11k2x2)

dominance, we can now proceed with estimating the cor
tions due to wave vectors in the vicinity ofk0. Approxima-
tion of the integrations based on the above assumptions l
to the conclusion that, to first approximation, the correct
11532
r

to

w
e

e

g
-

w

i-

n
re-

a-
-

c-

ds
n

to D~r! is proportional to (2pUr /\vP)/u ln(12g)u. Thus, the
leading finite-barrier correction to the fractional peak sp
ting f may be roughly written as2c1(2pUr /\vP)/u ln(1
2g)u, wherec1 is a small positive number. The form of thi
correction is parallel to that found in the weak-couplin
limit; in both cases, the leading 2pUr /\vP-dependent terms
are proportional to (2pUr /\vP)/u ln@(12g)/g#u. The results
displayed in Fig. 2 bear out our approximation to the analy
behavior of the leading strong-coupling corrections. T
graphed corrections for 0<(2pUr /\vP)<2 agree with the
predicted analytic behavior, producing errors of less th
about 10% for the behavior as a function of (12g) and of
less than about 20% for the behavior as a function
2pUr /\vP . The graphed values suggest that the value
c1 is slightly less than 0.05.

IV. FINITE-BARRIER RESULT
FOR THE TWO-CHANNEL PROBLEM

The downward shift of thef-versus-g curve for one-
channel systems (Nch51) is paralleled by a similar down
ward shift of thef-versus-g curve for two-channel system
(Nch52). However, the route to the two-channel result
less straightforward than the already somewhat tortu
route taken for the single-channel problem, largely due to
fact that we now have to deal with twous

(0) fields in Eq.~24!,
rather than just one. The first step in dealing with this se
fields is to transform them to a more manageable pair—
‘‘charge’’ and ‘‘spin’’ fields uC anduS , respectively—which
are linear combinations of theu1 and u2 fields uC5u1

(0)

1u2
(0) and uS5u1

(0)2u2
(0) . The bosonic actionS then con-

sists of the sum of separate charge and spin contribution
the unperturbed actionS0, and a perturbative termS1, which
depends on both the charge and the spin fields. In partic
S05S0

(C)1S0
(S) andS5S01S1, where

S0
(C)5E dv

2p S uvu
2

1
Ur

p D ũC~v!ũC~2v!,

S0
(S)5E dv

2p

uvu
2

ũS~v!ũS~2v!,

S15
2Ur

Ap~2p!3E dtE dx1E dx2E dk1E dk2

3R~e1 ,e2!A~x1 ,x2!

3H eipr/2
e2 i [D(e2)2D(e1)]e2 i (k1x11k2x2)

k22k12 ih
uC~t!

3e2( i /2)*dv h2(x1 ,x2 ,v)e2 ivtũC(v)1m.t.J
3$e2( i /2)*dv h2(x1 ,x2 ,v)e2 ivtũS(v)1m.t.%, ~34!

where the ‘‘mirror terms’’~m.t.! can be obtained in the sam
way as for Eq.~24!.

After integrating out the high-energy charge fields, one
left with an effective spin actionS(S)5S0

(S)1S1
(S) , where

S0
(S) is unchanged from Eq.~34! and where
6-9
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S1
(S)5

Ur

~2p!3Ap
E

0

b

dtE dx1E dx2E dk1E dk2R~e1 ,e2!A~x1 ,x2!eC2(x1 ,x2 ,2Ur)/8

3Fa~2ux1u1a!1/2~2ux2u1a!1/2

~ ux1u1a!~ ux2u1a! G21/4F ~ ux2u1a!~ ux1u1a!

a~ ux1u1ux2u1a! G2sgn(x1)sgn(x2)/4

3e2(p/4)*dv[h0(x1 ,x2 ,v)] 2[e2auvu/vF/(uvu12Ur /p)]E dv h0~x1 ,x2 ,v!
e2auvu/vF

uvu12Ur /p

3F ieipr/2
e2 i [D(e2)2D(e1)]e2 i (k1x11k2x2)

k22k12 ih
1c.c.G@e2( i /2)*dvh2(x1 ,x2 ,v)e2 ivtũS(v)1m.t.#, ~35!
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where, as was done in the case of theNch51 problem, only
the lowest-order perturbative term has been retained in
effective action.

To exploit the even-odd combinations that occur in t
integrals overv, we rewrite the action in terms of the fo
lowing ‘‘even’’ and ‘‘odd’’ fields

ũS
(E)5e2 ivtũS~v!1eivtũS~2v!,

ũS
(O)5 i @e2 ivtũS~v!2eivtũS~2v!#. ~36!

The nonperturbative termS0
(S) then takes the form

S0
(S)5E

0

`dv

2p

v

4
@ ũS

(E)~v,t!ũS
(E)~v,t!

1 ũS
(O)~v,t!ũS

(O)~v,t!#. ~37!

After integrating out theũS
(O) fields, we have a new effectiv

action in terms of theũS
(E) fields.

The ‘‘even’’ fields are not to be left alone, however.
anticipation of ‘‘refermionization,’’ we insert into the effec
tive action a set of dummy ‘‘odd’’ fields—free fields that a
entirely decoupled from the ‘‘even’’ fields. The nonperturb
tive, kinetic energy terms of these newũS

(O) fields andũS
(E)

fields add to give a total kinetic energy of the same form
that in Eq. ~37!. This total is in turn rewritten in a form
equivalent to that ofS0

(S) in Eq. ~34!. Our newest, and final
effective action then consists of the sum of thisS0

(S) term and
the leading perturbative termS1

f , which was derived from
integrating out the original ‘‘odd’’ fields

S1
f 5

Ur

~2p!3Ap
E

0

b

dtE dx1E dx2E dk1E dk2R~e1 ,e2!

3
eC2(x1 ,x2 ,2Ur)/8

~ ux1u1ux2u1a!1/2~2ux1u1a!1/4~2ux2u1a!1/4

3e2(p/4)*dv[h0(x1 ,x2 ,v)] 2 e2auvu/vF

uvu12Ur /p

3E dvh0~x1 ,x2 ,v!@e2auvu/vF/~ uvu12Ur /p!#

3F ieipr/2
e2 i [D(e2)2D(e1)]e2 i (k1x11k2x2)

k22k12 ih
1c.c.G

3@e( i /2)*dvh0(x1 ,x2 ,v)e2 ivtũS(v)1m.t.#. ~38!
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As in prior work,9,13 we ‘‘refermionize’’ the bosonic ac-
tion S5S0

(S)1S1
f by identifyingc f(0,t) as a fermionic anni-

hilation operator at the origin of a semi-infinite system
where

c f~0,t!

5
e2( i /2)*dvh0(x1 ,x2 ,v)e2 ivtũS(v)

A2p~2ux1u1a!1/4~2ux2u1a!1/4~ ux1u1ux2u1a!1/2
.

~39!

This refermionization formula may look peculiar because
its use of a normalization factor and an ultraviolet cuto
@embedded inh0(x1 ,x2 ,v)# that depend on position vari
ables, rather than mere constants@contrast the standard
bosonic representation of fermionic position operators in
~7!#. These position-dependent factors work, in tandem w
the scalar prefactor (i /2) for the exponentiated integral, t
ensure the correct anticommutation relations forc f(0,t),
and their use is expected to be unobjectionable so long a
all xi of real interest the resulting ultraviolet cutoff is hig
enough to capture the behavior with which we are co
cerned.

As in the single-channel problem, thexi of real interest
satisfy uxi u;p\vF/2Ur @as can be seen by doing the int
grals overki and obtaining a result with factors analogous
those ofF1(x1 ,x2 ,Ur ,vP) of Eq. ~31!#. The ultraviolet cut-
offs in Eq.~39! therefore characteristically correspond to e
ergies approximating 2Ur /p—which is much greater than
kBT, the characteristic energy for the unperturbed spin
grees of freedom, and~as we can confirm once we rediscov
the leading order behavior produced byS1

f ), much greater
than the energy of states characteristically brought into p
by the perturbationS1

f . Indeed, we have already incorporate
an assumption that ultraviolet cutoffs approximating 2Ur /p
are valid because, in obtaining our effective action, we h
only kept the leading order terms from integrating out t
charge degrees of freedom—an approximation only expe
to be good if the spin-field states of concern have excitat
energies significantly less thanUr .9

Returning to Eq. ~38!, we use the identity
A2p*0

bdt@c f(0,t)1c f
†(0,t)#5*dk( f k

†1 f k) to find that our
refermionization scheme produces a fermionic Hamilton
H5H01H1 that consists of the following parts:
6-10
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H05E dkjkf k
†f k ,

H15Z~eF ,Ur ,vP,r!E dk~ f k
†1 f k!, ~40!

where

Z~eF ,Ur ,vP ,r!

5
Ur

~2p!3Ap
E dx1E dx2E dk1E dk2R~e1 ,e2!

3
eC2(x1 ,x2 ,2Ur)/8

~ ux1u1ux2u1a!1/4~2ux1u1a!1/8~2ux2u1a!1/8

3e2(p/4)*dv[h0(x1 ,x2 ,v)] 2[e2auvu/vF/(uvu12Ur /p)]

3E dvh0~x1 ,x2 ,v!
e2auvu/vF

uvu12Ur /p

3F ieipr/2
e2 i [D(e2)2D(e1)]e2 i (k1x11k2x2)

k22k12 ih
1c.c.G . ~41!

From prior work on the effects of ad-function barrier, we
know how to solve for the fractional peak splitting that su
a Hamiltonian produces.11–13 The only difference from the
d-function barrier Hamiltonian that we encountered before
that a complicated prefactorZ(eF ,Ur ,vP ,r) replaces the
simpler d-function barrier prefactor Z`(eF ,Ur ,r)

5cos(pr/2)A12gA2eg\vFUr /p3, where g is the Euler-
Mascheroni constant (g.0.577).11–13Thus, to find the lead-
ing behavior of the fractional peak splitting as a function
(12g) and 2pUr /\vP , we can simply substitute
Z(eF ,Ur ,vP ,r) for Z`(eF ,Ur ,r) in the results previously
obtained for ad-function barrier.

As for one-channel systems, we ultimately resort to n
merical integration to solve for the fractional peak splitti
when the barrier has a nonzero width. Needless to say,
gratifying that such numerical calculation confirms that,
least through five significant digits, the prefact
Z(eF ,Ur ,vP ,r) converges to thed-function quantity
Z`(eF ,Ur ,r) in the limit 2pUr /\vP→0. Consequently, in
the limit of a narrow barrier, we recover the same result
for a d-function barrier11–13—a good confirmation both o
the robustness of our earlier results and of our succes
wending through the complications created by the initial
sumption of a nonzero-width barrier.

The approach to performing the quadruple integral of E
~41! is very similar to that used to perform the analogo
quadruple integral forNch51 and therefore will not be de
scribed in depth. We first integrate overk1 and k2 by tech-
niques of complex analysis similar to those used forNch
51, once again focusing on the simple poles atk25k1
6 ih, with the understanding that this imposes a constra
that 2pUr /\vP&2. For various values of 2pUr /\vP , we
then do the remaining integrals overx1 andx2 numerically.
The results are shown in Fig. 3. As for one-channel syste
we see that as 2pUr /\vP increases, the strong-couplin
11532
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end of thef-versus-g curve shifts downward from the zero
width result. Once again, the corrections for the experim
tally realized values of 2pUr /\vP.1 are small, a fact
which confirms that the previous assumption of ad-function
barrier11–14 was substantially justified, at least so long
interaction effects peculiar to the barrier region can be
nored.

As for the single-channel system, one might inquire ab
the nature of the leading analytic behavior of these corr
tions. The answer is essentially parallel, both in reason
and substance, to that found at the end of Sec. III. The c
straints on (12g) are the same@i.e., 1023&(12g)
!e2(2/p)(2pUr /vP)#, and the leading finite-barrier correction
to Z(eF ,Ur ,vP ,r) are expected to be roughly proportion
to (2pUr /\vP)/u ln(12g)u when 2pUr /\vP&2. In other
words,Z(eF ,Ur ,vP ,r) can be expanded as follows:

Z~eF ,Ur ,vP ,r!

cos~pr/2!A2eg\vFUr /p3

5A12g1c2~2pUr /\vP!/u ln~12g!u1•••, ~42!

where c2 is a small positive number. Because, from pri
work,11–13the leading corrections to the fractional peak sp
ting are proportional toZ(eF ,Ur ,vP ,r)2ln Z(eF ,Ur ,vP ,r)
at r50, the leading finite-barrier correction to the fraction
peak splitting is roughly proportional to (2pUr /\vP)
3A12g$12u ln(12g)u21%. The corrections shown in Fig. 3
follow this predicted behavior quite well: for 2pUr /\vP
<2, the analytic prediction captures the calculated corr

FIG. 3. Plots of the leading (12g)→0 behavior off, the frac-
tional peak splitting, as a function ofg, the dimensionless interdo
channel conductance, for a two-channel connection between
quantum dots (Nch52). Each curve corresponds to a different val
of the quantity 2pUr /\vP ~see legend to the left of the curves!.
The solid line is the result for an interdot barrier that has effectiv
zero width (2pUr /\vP50). The dashed and dot-dashed curv
show the leadingf-versus-g dependence for finite barriers wit
2pUr /\vP taking on values from 0.5 to 32. The curves are e
pected to be substantially accurate at least for (12g) greater than
or equal to approximately 1023 and for values of 2pUr /\vP not
much larger than 2.
6-11
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tions with error margins of about 10% or less for the
2g) dependence and of about 20% or less for
2pUr /\vP dependence. The numerical results suggest
c2 is slightly less than 0.02.

V. CONCLUSION

This paper shows that bosonization techniques for stu
ing the behavior of one-dimensional systems need not
abandoned when finite-length barriers~or constrictions! are
introduced. The finite-length effects of those barriers can
captured to leading order by a standard perturbative
proach, albeit one that requires complicated calculations
a fair degree of care.

It should be acknowledged that the barrier model cons
ered here is still highly simplified, as it leaves out a numb
of effects that may be important in real quantum point co
tacts. In assuming a constant interaction between elect
on the same dot, we have neglected many-body effects
to electron-electron interactions specific to the barrier reg
We have also ignored possible effects due to second
higher orbital channels in the barrier region. Although n
glecting effects from such channels is valid if the confin
ment in the direction perpendicular to the channels is su
ciently strong, neglecting these effects may be question
for various actual realizations.

Despite these limitations, this paper demonstrates
bosonization techniques can still be useful when nontriv
behavior in the barrier region is at issue. The approach
sented in this paper may help investigators to distingu
between single-particle and many-particle effects from a b
rier’s finite length.

With regard to the more particular problem of the Co
lomb blockade behavior of coupled quantum dots, our res
can be summarized as follows. This paper shows that at l
for one-channel or two-channel systems, the fractional p
splitting f of two strongly coupled dots decreases, for a giv
value of the interdot conductance, as the ratio 2pUr /\vP is
increased. For one-channel systems (Nch51), the downward
correction behaves as (2pUr /\vP)/u ln(12g)u in the limit
where 2pUr /\vP&2 and (12g)!1. Thus, for Nch51,
the fractional peak splitting has the following leading-ord
functional form

f 1512c1,1A12g2c1,2

~2pUr /\vP!

u ln~12g!u
, ~43!

wherec1,2 is somewhat less than 0.05 and, as derived in p
work,11–13 c1,158eg/p2 ~about 1.44!. In two-channel sys-
tems (Nch52), and in the same limits, the downward co
rection due to the finite barrier width behaves
(2pUr /\vP)A12g$12u ln(12g)u21%, resulting in leading-
order behavior of the form

f 2512c2,1~12g!u ln~12g!u2c2,2~2pUr /\vP!

3A12gH 12
1

u ln~12g!uJ , ~44!

wherec2,2 is somewhat less than 0.04 and, as derived in p
work,11–13 c2,1516eg/p3 ~or about 0.919!. „It should be
11532
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noted that prior results indicate that, in theNch52 equation,
the next additive term independent of 2pUr /\vP will equal
2c2,3(12g), wherec2,3.0.425.13 Because this term linea
in (12g) comes from higher-order terms in the effectiv
action than those we have considered here@see, e.g., Eq.
~38!#, we have omitted it in our calculations and in th
graphs of Fig. 3 in order to have a truer comparison betw
the 2pUr /\vP-dependent terms and those they directly c
rect. If need be, the linear term is easy enough to comb
with the result expressed in Eq.~44!.…

The above results combine with an earlier study of
weak-coupling regime (g!1)14 to give a more complete un
derstanding of thef-versus-g curve when one leaves th
d-function barrier limit 2pUr /\vP→0. In particular, we
come to the nontrivial conclusion that, for the experimenta
realized values of 2pUr /\vP.1,1–3,14 the corrections to
the results derived from modeling the barrier as ad function
are not fundamentally substantial; thus, to this extent at le
earlier theoretical work using ad-function potential was cor-
rect.

In addition to confirming the essential nature of t
f-versus-g curve for 2pUr /\vP&2, this paper has helpe
us gain a better picture of what happens to thef-versus-g
curve for more general values of 2pUr /\vP . The weak-
coupling results suggested that, as 2pUr /\vP is increased,
the f-versus-g curve shifts upward for small values ofg ~i.e.,
for g!1) and becomes flatter for intermediate values ofg.
The strong-coupling results suggest~as conjectured! that, as
the same ratio is increased, thef-versus-g curve shifts down-
ward for large values ofg @i.e., for (12g)!1# and becomes
flatter for intermediate values ofg. Together, the two sets o
results suggest that, in the limit of an extremely wide, ‘‘ad
batic’’ barrier (2pUr /\vP→`), the f-versus-g curve will
be essentially flat for values ofg in an intermediate region
between 0 and 1. For such an adiabatic barrier, thef-versus-
g curve will sit at some essentially constant value off for
most of this interval and will turn sharply toward the limitin
values off 50 and f 51 at the edges.

For the moment, the intermediate value at which t
‘‘adiabatic’’ f-versus-g curve sits remains a mystery. Th
weak-coupling results displayed an antisymmetry aroung
51/2 that, if true at higher orders, might aid in solving f
the fractional peak splitting wheng takes on intermediate
values.14 Unfortunately, the strong-coupling results do n
exhibit such a simple symmetry. As Figs. 1 and 2 indica
unlike the weak-coupling results, the strong-coupling resu
do not reveal a common point of intersection for the leadin
order curves that correspond to different values
2pUr /\vP . The apparent lack of a common pivot will pre
sumably make solution of the intermediate-g problem more
difficult.
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