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Coulomb blockade of strongly coupled quantum dots studied via bosonization
of a channel with a finite barrier
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A pair of quantum dots, coupled to each other through a point contact, can exhibit Coulomb blockade effects
that reflect the presence of an oscillatory term in the dots’ total energy whose value depends on whether the
total number of electrons on the dots is even or odd. The effective energy associated with this even-odd
alternation is reduced, relative to the bare Coulomb blockade enéggpr uncoupled dots, by a factor (1
—f) that decreases as the interdot coupling is increased. When the transmission coefficient for interdot elec-
tronic motion is independent of energy and is the same for all channels within the point cevitadt are
assumed uncoupleédhe factor (1-f) takes on a universal value determined solely by the number of channels
N¢, and the dimensionless conductarg®f each individual channel. When an individual channel is fully
openedthe limitg— 1), the factor (1-f) goes to zero. When the interdot transmission coefficient varies over
energy scales of the size of the bare Coulomb blockade engggythere are corrections to this universal
behavior. Here we consider a model in which the point contact is described by a single orbital channel
containing a parabolic barrier potential, wiéhp being the harmonic oscillator frequency associated with the
inverted parabolic well. We calculate the leading correction to the facterfjifor N.,=1 (spin-spli) and
Ncn=2 (spin-degenerajgoint contacts, in the limit whergis very close to 1 and the ratiord) , /% wp is not
much greater than 1. Calculating via a generalization of the bosonization technique previously applied in the
case of a zero-thickness barrier, we find that for a given valug thfe value of (1-f) is increased relative to
its value for a zero-thickness barrier, but the absolute value of the increase is small in the region where our
calculations apply.
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[. INTRODUCTION from the Fermi energy by no more than an amount compa-
rable toU,. The energy independence of the transmission
In recent years, there have been a number of theoreticamplitude means that this characterization corresponds to a
and experimental studies of the manner in which Coulomlpotential barrier which is sufficiently thin that it can be mod-
blockade effects in a metallic particle or semiconductoreled as & function. Because the Coulomb blockade energy
quantum dot disappear when the conducting island becomeés, is much smaller than the Fermi energy, working in
more electrically connected to its environmént® Here we  this “&function barrier limit” can yield good results even
focus on a system in which two symmetric quantum dots ar¢hough the product of the barrier width and the Fermi wave
defined by applying negative voltages to gate electrodes thatectorkg is generally much greater thanWith kg being the
lie on the surface of a semiconductor heterostructure abovevalue of the Fermi wave vector in the 2DEG far from the
two-dimensional electron ga@DEG). We assume that the barries.
dots are joined by a quantum point contact containing a Nevertheless, it seems important to investigate further the
single orbital channel that is almost perfectly transmitting atconsequences of relaxing the assumption éffanction bar-
the Fermi energy, but that the dots are isolated from theirier limit. For one thing, it is possible to generate wider
respective leads by comparatively large tunnel barriers. libarriers using an appropriate gate geometry, and one would
this geometry, information about the Coulomb blockade entike to understand at what point thefunction-limit calcula-
ergy U, involved in the transfer of electrons from one dot to tions break down. Secondly, estimating the corrections due to
the other can be obtained by observing the positions of Coua barrier’s finite thickness provides a valuable check on the
lomb blockade peaks in the conductance across the entir@function-limit results.
system(from one lead to anothgwhen that conductance is Another reason for interest is that recent experiments on
plotted as a function of voltages on gates coupled to each dfansmission through quantum point contacts have shown un-
the dots:™ expected structur¢e.g., an apparent conductance plateau
Previous analyses of the disappearance of the Coulomiear 0.7(2?%/h) at intermediate temperatutéswhose ori-
blockade for two-dot systertfscontaining such a partially gin is only poorly understood. Such results suggest that
open point contact have characterized the contact by a nuntransmission through a point contact may have a nontrivial
ber N, of degenerate one-dimensioridD) channels and by energy dependence, and such a dependence could well have
the dimensionless conductangeof each channefwhere 0  an effect on the breakdown of the Coulomb blockade in the
<g=1).1"3 This characterization is complete in the limit coupled-dot geometry. With the aim of explaining such ef-
where the electronic transmission amplitude through the corfects in mind, it is a helpful first step to study theoretically
tact is independent of energy for electron energies that diffethe effects of energy dependences in a simpler situation
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where the barrier potential is known and many-body effectsier) over which the probability of transmission through the

are reduced to a bare minimum. In this vein we consider herbarrier varies substantiall§.For relatively large and shallow

a model in which the two dots are separated by a parabolidots, such as those that have been constructed in GaAs/

barrier of nonzero width and the electron-electron interactiorIGaAs heterostructures at low temperatutedthe energies

is taken to be constant for any two electrons located anyl, andWtend to be much smaller than the Fermi eneffgy

where on the same quantum dot. but much larger than both the single-particle level spaéing
This model presents challenges for “bosonization techand the thermal energsT. As a result, such systems are

niques” that characterize point-contact constrictions as onecharacterized by the following hierarchy of energy scafes:

dimensional fermionic seas whose low-energy degrees of

freedom can be expressed in terms of bosonic density and KgT,0<U,=W<Eg. (h)

phase variable®22 In such “bosonized” models, the be-

havior of incompletely opened channels is commonly studied®ecauseV is comparable in size to the intermediate energy

by introducing a zero-width-function barrier at a specific scaleU, (which acts as a kind of “excitation energy scale”

point in the one-dimensional s&&242°By way of contrast, With respect to independent-particle energiesfects from

this paper seeks to show how a bosonized model of a ondhe barrier’s finite size can be significant and deserve inves-

dimensional system can describe the single-particle effects dfgation before they are confidently discarded.

replacing as-function barrier with a barrier that more real- ~ Our prior study of the weak-coupling limit wheig<1

istically corresponds to a finite-length constriction—i.e., afound that the finiteness of the barrier leads to an upward

barrier of nonzero width and therefore nontrivial single-correction to the universdtversusg curve for ad-function

particle transmission properties. barrier. In other words, for a giveemall value of g, the
Before proceeding, we should describe more fully what isfractional peak splitting is enhanced relative to its value for

already understood about systems of two symmetric quantui@ d-function barriet:* This enhancement occurs because, in a

dots connected by a single orbital channel containing degerchannel containing a barrier with a finite energy heigig

erate spin modes. In such systems, an energy &takhar- opposed to as-function barrie), electrons can tunnel from

acterizes the energy cost of moving electronic charges be2ne dot to another through largely unreflected states that

tween different segments of the system. Moreover, théiave single-particle energies greater than the energy that cor-

system’s Coulomb blockade behavior reflects the presence #gsponds to the finite barrier's pe#k.

an energy term proportional to, that oscillates between  In order to study the correction to the univerbakrsusg

one value held when the total number of electrons on th&urve, in our prior work we made several basic assumptions

dots is even and another value held when the total electrofbout the system of two symmetric dots connected by a
number is odd:*? single orbital channel. First, we assumed that the electrons

Previous work, both experimental and theoretical, haghat enter the point contact between the dots are in the lowest
shown that as the conductance of the interdot point contact ignergy eigenstate for motion perpendicular to the channel
increased, the energy scale associated with this even-odd @nd can therefore be described by a one-dimensitifal
ternation is reduced by a factor of {1f), wheref goes to 1 ~ Schralinger equation with an effective barrier potential
when the channel is fully open. When the transmission coef¥(x). We assumed tha#(x) could be treated as parabolic,
ficient for electronic motion within this channel is indepen- with a harmonic oscillator frequenayp associated with the
dent of energy(i.e., the Sfunction barrier limil, the factor ~ inverted parabolic welkIn this case, the transmission energy
(1—f) takes on a universal value determined solely by thescaleW is given by%iwp/27.) In addition, we assumed that,
number of point contact channel, (the channels being despite the nonzero width of the barrier, the essential nature
assumed degenerate and uncouplead the dimensionless Of electron-electron interactions was still accurately repre-
conductancey of each individual channe[lf G is the total ~ sented by the standard Coulomb blockade model, in which
conductance of the point contagts G/N,(e?/h).] We refer  the interaction energy of a quantum dot is analogous to that
to the valuef in the factor (1-f) as thefractional peak Of a classical capacitor—i.e., proportional to the charge on
splitting because it has been measured by observing the rel#he dot squared. Having made these assumptions, we found
tive separation of conductance peaks in a series of Coulomtat, in the limitg— 0, the leading behavior of the enhance-
blockade experiments3!2 ment tof is roughly proportional tNc,(27U , /7 wp)/|Ing].

This paper studies the corrections fioand therefore to  For the experimental systems with which we are concerned,
(1— 1), that result when the assumption ofdunction bar- ~ WhereNg, is 1 or 2 and where 2U ,/fiwp=1, the size of
rier limit is relaxed—in other words, when the interdot bar- the enhancement is relatively sm#il.
rier is more realistically treated as having a finite height and This paper extends study of such finite-barrier corrections
nonzero width. A prior study of the effects of a nonzero-to the strong-coupling limit where (1g)<1. In doing so,
width barrier concentrated on the limit of weakly coupledwe repeat the two assumptions described above. The as-
dots(the limit g—0).2* This study revealed that, if the one- sumption of a parabolic form for the imposed barrier poten-
dimensional channels between two dots, or between a daial is likely as good as befor@:?® However, our simplistic
and a lead, contain a tunneling barrier of finite height(in  treatment of the electron-electron interactions is likely less
energy units and of nonzero widtt¢, the behavior of such firm, given that the point contact is now largely open and
systems is responsive to another energy séalehich char-  therefore much more likely to be occupied by electrons in-
acterizes the energy rangfer electrons incident on the bar- teracting in a way not reflected by the standard capacitive
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By applying this formula, we find that, consistent with our
earlier conjecturé? for bothNg,=1 andN,=2 the leading
finite-barrier correctionslecreasehe value off observed for
a given value ofg wheng is close to 1. For ZU,/fwp
=<2 and (1-g)<1, the magnitude of the decrease is propor-
tional to (27U,/fhwp)/|In(1—g)| for Niy=1 and to
(2mU, Ifiwp)V1—g {1—|In(1—g)| %} for Ng=2.
In Sec. I, we show how to use the bosonization approach
to derive an effective action that captures the Coulomb
FIG. 1. A schematic representation of the 1D model for a para-bl‘)Ck"’“_je behavior of _SUCh a system for an arbitrary number
bolic barrier between two quantum dots. The half width of the bar-Ncn Of interdot tunneling channels. In Sec. Ill, we use the
rier at half maximum isz, and the potential energy at the barrier's €ffective action of Sec. Il to solve for the leadifigersusg

peak isV,, which is less than, but comparable in size to, the Fermibehavior forNy,=1 andg=1. In Sec. IV, we do the same
energyEe . for N,=2. In Sec. V, we remark on the significance and

limitations of our results.

Coulomb blockade model. Nonetheless, because the barrier
region is still small in relation to the larger conducting basins
of the two dots, and because the effects from a combination
of the Coulomb blockade model and the interdot barrier’s
finite size are themselves sufficiently interesting and com-  To calculate the corrections due to the interdot barrier's
plex, in this initial stab at the problem of finite barriers we nonzero width, we start with a fermionic formulation of our
ignore the effects of interactions specific to the point contactgystem of two symmetric quantum dots connected by a
with the Understanding that Separate efforts to understal ng|e orbital channel Containing an arbitrary numbeﬁ of
those effects should follow. degenerate spin modes. Since this fermionic problem is ef-

Thus, the basic parameters for our strong-coupling studyectively one-dimensiondf we can apply to it a variation
are the same as those for the weak-coupling limit. ®’he  of the standard technique of bosonizatfoh.Having
degenerate spin channels are assumed to contain effectivelyosonized” the problem, we integrate out various bosonic
identical barriers, and the interdot barrier can be modeled agegrees of freedom to obtain a low-energy effective action
fully parabolic so long as we are concerned only with enerinyolving only a single set of scalar fields.
gies within a restricted range about the barrier peak. We The fermionic formulation of the problem of coupled
therefore describe the single interdot orbital channel as corquantum dots is quite straightforwatd*~*3In a basis of
taining the potential: noninteracting single-particle eigenstates, the fermionic
Hamiltonian consists of a kinetic-energy pdiy and a
charging-energy patc:

Vo Eg

x=-2"¢ |

x=27¢

II. BOSONIZATION WITH A BARRIER
OF FINITE WIDTH

V(X)=Vo(1—x22£2)  for |x|<+2¢,

for |x|=V2¢, 2

see Fig. 1. As we will later see, our ultimate results are
independent of the potential’s details away from the barrier
peak. Key aspects of the barrier potential are the “depth”
(Eg—V,) of its peak relative to the Fermi surface and the
harmonic oscillator frequencywp=+Vo/mé? associated

V(x)=0
HKZE Z§ J' dkgkala'gako'{!

Hc=U,(A—p/2)?%, 4

with the inverted parabolic welft [Note thatZwp/Er
~2(kg&) 1, which is assumed to be much less thah 1.

whereé, is the energy of the single-particle eigenstatdas
the channel index{ is the index for states incident on the

We use the single-particle eigenfunctions that correspontarrier from the left({=1) and the right({=-1), respec-

to the above potential to calculate correctiond.t®o do so,
we incorporate these eigenfunctions in a generalization of
bosonization approatii?® that was used earlier in the
Sfunction barrier limit®~*3 We first find the change in the
two-dot system’s ground state energy as the value of (
—Q) is increased from zero. This energy shiffp) is a func-
tion of (1—g) and another dimensionless quantitywhich

tively; andkg+k is the magnitude of the wave vector asso-
aiated with motion along the one-dimensional chankelié

the Fermi wave vector and| is assumed to be smaller than
kg). The operatof measures the difference between the
humber of electrons to the right of the barrier and the number
of electrons to the left of the barrier. If one letg be the
occupation number for the left dot aifid be the occupation

represents a linear combination of the gate voltages appliedumber for the right dothi=(f,—f;)/2. In order to deter-

to the two dots>*®When the total number of electrons on
the two dots is even, the fractional peak splittfig given by
the following formula:

CA(D)-A(©0)

V7]

)

mine the value of via Eg. (3), we consider the case where
the total number of electrons on the two dots is even, so that
f is an operator with integer eigenvaluégv/hen the total
number of electrons is odd, has half-integer eigenvalugs.

The operatoh can be written in terms of fermionic posi-
tion operators,bf,(x) and ¢,(x) as follows:
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1 : we express the/,.(x) in bosonized form by using the fact
h=3 > f dX[O(X)—O(=x)]¢,(X)s(X),  (5)  that the position operators consist of linear combinations of
7 the operatorsy,,. In particular, in the continuum limit,
wherey(x) consists of left-incident and right-incident parts

Po(X) = o1 (X) + . 1(X), ©) Yol )= J dk Yie(X) o (11)

and whered (x) is a Heaviside step function centered on thewhere the function¥,(x) are the single-particle eigenfunc-
dividing line between the “right” and “left” sides of the tions of the noninteracting one-dimensional systéior the
barrier atx=0. potential described by E@2), we have derived thesé,(x)

If one were bosonizing fermionic operators associatedn prior work, using the fact that there are exact solutions
with a basis of plane-wave states, one could bosonize thgparabolic cylinder functionsto the Schrdinger equation
above Hamiltonian by using the standard formula for a single particle in a parabolic potentf4l.Using the
Yy,(x), we find that, to leading order in the perturbation due
to the barrierfi equalsiy+ 8, where

el (kexg VT £05(X) + ¢4 (X)] ’ (7)

1
¢0§(X):

V2Ta -1
where 6,(x) and ¢,(x) are scalar boson fields andis a flo 4i ; Eg g“f dklf die
guantity analogous to a lattice spacing that is used to impose
an ultraviolet cutoff at energies approximatifigr / « on the %
bosonic degrees of freeddfn?3(« is ultimately meant to be
taken to zero—a limit that can be reasonably taken when L
Er>U , and the approach to modeling the double-dot system o
can be supposed to work down to length scalesvhere n=s 2;‘ f dklf dkoR(ey,€2)
hvgla is much greater than the relevant excitation scale
U,). The annihilation operators associated with the plane-
wave states would then be given by the equation

11 .
Ko—kati7 | ko—Ko—i7) erthaots

gl[D(e2) = D(eq)] :
X [ k2_ k1+ i 7 akllflakzl)',— 1

1 @~ 1[D(e2)~D(ey)] : }
= i Ckxgi VT 0500 + 64 ()] + 7 &, 19 01(" (12

Aoy 277\/Zf dx e '**%e . (8) ky—k—i7y kpom1%kqol

In terms of this plane-wave bosonization scheme, the operaaEnd the following identities hold:

tor A could be simply expressed in terms of the boson ffelds e=ertupki/wp,

~ 1 —TE —TmEY
h=—=2 6,00 ©) R(ey e))= ——o 1 © ,
™ 2J1+e ?ma1+e 27

Unfortunately, our problem is not so simple. The basis of _ I
single-particle states that appears in E4. is not a plane- D(e)=(1/2)[argl'(1/2-i€)— e+ elnle]]+C, (13
wave basis. The eigenstates are those of a one-dimensiongith C being a constant independent ef and ex=[Ef
system containing a barrier of finite height and nonzero—V(0)]/4wp being the value of at the Fermi energs?
width, and they therefore include incident, reflected, and In the above equations, the dimensionless varialles
transmitted parts. =[E;—V(0)]/hwp measure the energy distance from the

Happily, the kinetic-energy part of the Hamiltonidiy finite barrier's peak? The scale for these dimensionless en-
does not concern itself with such complications. So long agrgy measures is the harmonic oscillator enérgy , and in
the single-particle level spacing can be treated as effectiveljerms of these dimensionless measures
zero, we can proceed with regardHig just as if the single-
particle states were plane waves. Accordingly, if we focus on 1
bosonizingHy , we can bosonize the annihilation operators 1-g= m-
in Eqg. (4) in the same way as in EB). Under this bosoniza-
tion scheme, the kinetic enerdyx has the following stan- The functionsR(e;,€,) and D(€;) are associated with the
dard form: single-particle transmission properties of the barrier. Each
additive term inR(eq,€5) is a product of transmission and
reflection amplitudes, reflecting the fact that the leading con-
tributions tosh come from “overlaps” between the transmit-
ted part of an original right mover and the reflected part of an

Our next task is to find a proper bosonized form for theoriginal left mover and vice ver$aMeanwhile,D(¢;) rep-
position operators),.(x) that appear in Eq(5). Recalling resents a phase associated with the scattering of a single-
that we already have bosonized forms for the operatgys, particle wave function. Because of the exponential growth

(14)

H=2 3 [ o, 00T +100,00). (10
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(or damping of R(e;,€5), we should not be surprised to find we keep. Indeed, if we follow the calculation of the lowest-
that R(e;,€,) plays a starring role in the nature of our order contribution from these terms further, we would find
leading-order result—whereas, to first approximation, contrithat, by reasoning parallel to that used in Sec. Ill to perform
butions fromD(€;) will prove to be negligible. various wave vector integrals, these terms produce a contour
Before we proceed further, we should make three remarkintegral with no contribution from residues of the simple
about Eq.(12). First, we should note that derivation of the poles at,=k;*i# and only negligible, higher-order contri-
above equation fosi ignores contributions ta, from inte-  butions from integration around other singularities and
grating over some interior portion of the barrier region inbranch cuts.
which approximating the single-particle wave functions by Returning to Eq(12) and the process of determining the
plane waves, or at least by WKB approximations to plandractional peak splitting, we observe that if the operators
waves, is no longer valid. Hence—because the exact eigemy,, were annihilation operators for particles in plane-wave
functions in the barrier regiofparabolic cylinder functions statege.g., if there were no interdot barrief would simply
do not “explode” in amplitude as one goes further toward equalfiy. In other wordsf, bears the same relation to the
the center of the barri&t—as in our derivation of analogous bosonic fields associated with the barrier-state operaigrs
identities in the limit of weakly coupled doté,we expect thatf bears to the bosonic fields associated with the simi-
additive corrections of rough ordétto the Eq.(12) cofactors larly indexed plane-wave operators of Ef). From Eq.(9),
1/(k,—ki*=i7n). Consequently, to avoid substantial correc-it therefore follows that
tions to Eq.(12), we must be able to restrict our attention to

wave-vectork; (measured from the appropriate Fermi wave 1 2
vector in one dimensignsuch that nO_\/_; = 0,(0). (16)
kil é=1. (15 We do not have a similarly simple formula féf. Sub-

Because the exponentially variant functioR(eq,e€,) stituting for the operatoray,,, we find that

strongly favors values df; that correspond te; near 0, the
k; of most interest for calculating corrections to the universal  sp= 5 2 XmJ dXzJ dli dk,R( €, €5)
behavior are those for whickj=—wper/ve. The above (2m)°a o

restriction onk; can thus be seen to mean that we negd ei[D(fz)—D(fl)]ei(k1><1+kz><z)]

=<2E¢/V,. For systemgsuch as those this paper seeks to X i
mode) in which Er/Vy=1, the restriction then reduces ko—ki+in

(conservatively speakingo eg<1 or, equivalently, (*g) w e VT 0,0x0) + 6, (x0)] @~ INTL 0y (%2) ~ b ()] 4 H ¢
=10 3. Given that the relevant experiments with quantum e
dot systems™ have generally not resolvegi to increments (17)
of 1073, this constraint is not a serious one.

As a second point regarding E€.2), it should be noted
that, forez<1, this intermediate resu{and therefore those
that follow from it) is insensitive to details of the barrier
away from. the barrigr pea(e.g., the slope discontinuities H=HK+HQ)+H8)+H(CZ). (18)
that occur in our barrier potential at= * /2 ¢) so long ast
is large compared to the inverse Fermi wave vedtpt ~ Hi is given by Eq.(10), and the remaining terms are as
(with the Fermi wavelength itself being of the order of follows:
2mhl\2mV,, the wavelength associated with the peak bar-

Having now obtained bosonized expressions for the sepa-
rate termd1y and 8f, we express the Hamiltonian as a whole
in bosonized form

2

rigr energyV,). The conditioné> k;l is typically.true of the Hg)): U, i Z 6,(0)—pl2| |
kinds of quantum dots that have motivated these \/E o
investigations 314
A third remark about Eq(12) is that in derivingsn, we 1
have ignored a correction involving terms of the form H(cl)=U,,5ﬁ — > 6,(0)—pl2
{co$D(e&)—D(e&)]—1}/(ko—ks*=iz). We ignored similar V%
“phase-based” terms in Ref. 10. The basic reason that we 1
ignore these terms here derives from the fact that, because +U,| —= > 6,(0)—pl2|sn,
the characteristic excitation energl, is less tharfi wp, the T o
variation of the numerator of these terms over any region of
particular interest should be very small. As a result, in the H§)=Up(6ﬁ)z. (19
regions that we generally find to be most importéiiose
regions near the simple poles whekg=k;*i» and the TheH{?) term can be dropped from the leading-order cal-

magnitudes of other contributing terms tend toward infinity culation because, to second-order #fi [which due to
these phase-based terms go to zero. Thus, we have go®{e;,e,) is itself roughly proportional toyl—g at the
reason to expect that the contribution from these phase-basé@rmi surfac¢ H(Cz) contributes nothing to thep dependence
terms is small compared to the contribution from the termsf the ground-state energy. Recall from E8). that it is thep
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dependence of the ground-state energy that provides the ba- Having obtained this effective action, we introduce the
sis for calculation of the fractional peak splittifig®*3 field 6(9(7) and the auxiliary fields\,(7). We use thex

To simplify calculation of thisp dependence, we shift the fields to enforce the identity,(0,7) = 6{”(7) by adding to

0, fields by a term linear imp: 6,(x)— 6,(x)+ \/Fp/ZNch. the action the following term:
This transformation leaves us with a Hamiltonian in which

the p dependence appears only in the perturbative factors of
on. The transformedand truncated Hamiltonian has the

(23)
following form:

gzg J drik (D[ 69(7)—6,(0,7)].

Having addeds, to the action, we can substitugé®)(7) for
0,(0,7) in HY) [recall Eq.(20)].

Our next steps are to integrate out e x, ) fields and
then theA ,(7) fields. Once again, only straightforward—
albeit tedious—Gaussian integrations are required. To lead-
ing order in the perturbative factdn, the result is an effec-

" u, . . tive action dependent only on the scalar fie&ig)(r) and
H{ == ; [ 57 6,(0)+ 6,(0) 8], (200 their Fourier transform®®(w):

M2 3 [ aX(Tab, 00T+ 2,0,0017

U
HO_ ¢
c a

2
> 00(0)} :

o

where 6f is now given by the identity

1
> dxlf dxzf dklj dk,R( €7, €5)

2m)3a 7

el[D(e2) —D(en)] gi(kyxg +kaxa)

dw
K_ 200, YBO)( —
Sy ; J’2ﬂ_|w|60 ()6, (— w),
oN=

X

do (U
C_ L1900 )9O —
Si=2 2 ZW(W)eglmwaz( ®),

o1 a2
de dxlf dXzf dklf dk2

e—iqrp/Nch
Ky—kyTi7

w @~ IWTL05(x1) + o (X)) @ = INTL0,(X2) = b4 (X2)] 1 H c.

sP=2

(21 ~
With Eg. (21), we have reached the end of the road with 2U
regard to the Hamiltonian approach. To progress further, we X——LR(ey,€)A(X1,X0)
shift to an action-based, path-integral formulation. For ease \/;(277')3
of notation, we will henceforth assume that we have chosen i[D(ep)~D(en)] i (kg + ko)
units in which X[emp/wche €
ko—ki—in

h=1 (22

and drop# from subsequent intermediate calculatig@a$
though we resuscitate it in stating our final resultdaving
made this choice of units, we proceed by integrating out

% efr()z)(T)e—ifdw ha(xy X @)e” 8N w) L ¢ |

(24)

various degrees of freedom: first, thiefield degrees of free-

dom, and second, the:field degrees of freedom away from where the “mirror term”(m.t) can be obtained by complex
x=0. The result is an effective action in terms of fields conjugating both the factors that precedSé?)(r) and the
6)(7) that are equivalent to théfield degrees of freedom o, 5ential prefactdrthat precedes the inteéral over and
atx=0. This effective action, dependent only on the 0 | hare the fUNCHONEA (X ,X5), ho(Xq X0, @), hy(Xy,Xs, ),

degrees of freedom for the origindl fields, is analogous, .4 ho(X1,%,,®) are given by the following formulas:
though—significantly—not equivalent, to that previously ob-

tained for a system containing&function barrier(see Refs.
1 and 2. A ) 1

We do no more than outline the process of integrating out A(X1,X2)= 2 7 4
the ¢ fields andé fields because the methodology for doing (Xl + %zl + @) ™52xa| + @) *4(2] o + @)
so is fairly straightforward. With regard to integrating out the
¢ fields, a key point is that, in the path-integral approach, a
Lagrangian term linear id,¢(x,7)d,0(X,7) appears in the
action (just as apx term appears in going from the Hamil-
tonian for a single particle to the corresponding Lagrangian
Having accounted for this term, we eliminate thdields by
performing a standard Gaussian integration. The result is an
effective action entirely in terms of fields.

(2] x| + @) VA 2]xg] + )V 2
(IXa|+ @) (|%a] + @)

sgn(1)sgnixz)/2

(|x1]+ @) (|%a] + @)
a([Xq]+ x| + @)

ha(X1,X2, @) =h1(Xq,X2, @) —ho(X1,X5, ),
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hi(X1,Xp,) too hard to discount the singular behavioreat=0 that re-
sults from the functional form ob(e€) (see Eq.(13)). We
=sgnw) can rewriteeln|¢ as follows:
| S9x)[1— e 12l ] —sgrixy)[1—e” 1%alr]
2\m ' elnje|=eln e—ime®(—e), (28

e—\wxl|/vp+ e—\wX2|/vp

_ (25) where® (— €) is a sort of variant of the Heaviside step func-
2w tion that, in the appropriate limits, is 1 fereal and negative
and is O fore real and positive. To allow for complex values

The effective action of Eq(24) is the end result for this of e we can define®(—¢) by the formula ®(—e)
section. As promised, this action depends only on a single set Iimvﬁofr(s)dz[v/w(zervz)], where the path'(e) in the

of sialar fieIds, which are equivaLgnt to _the Origi'?aiilds h complex plane starts at= R (with R being a large and posi-
atx=0. Sections lll and IV use this action to solve for the e yeal number, ultimately taken to) and then proceeds to

fractional peak splitting in systems with one and two inter- ,q \a1yee by the shortest path that avoids the singularities at
dot channels, respectively. In both sections, the general ag._ +iy and their accompanying branch cuts. In the liit

i (0) _ oK C i . . . . .
proach is to trea$;, "= S, + S; as the unperturbed action and _, ., this definition yields the desired behavior for real val-

. ) (1
to solve perturbatively "8(9 g ues ofe. On the other hand, it does lea@ — €) with two
branch points(at e=*+iv), and to these we must add the
ll. FINITE-BARRIER RESULT FOR THE branch point ofeIn € at e=0.
ONE-CHANNEL PROBLEM Fortunately, it is not too hard to see that integrating
. . , around these singularities and associated branch cuts leads to
Here we consider the smgle-channel cadenC1), I contributions to the final result that are higher order in the
which glectrons of_only one spin haye en_ough energy to pe&éxpansion parameter 72J ,/fiwp than the contributions
etrqte |r(1£§) thE po(lsnt_cc_mtact. Startmg_ with the unperturbeq, ., he simple poles at, =k, *i75. Rough evaluation of
actionSy =S, + Sy, it is not hard to find that the higher-order contributions indicates that they are indeed
negligible in the regime where 72U ,/hwp=2, but are
probably not negligible for values of2U , /% wp approach-
ing 10.
Having discounted higher-order contributions from singu-
We use this identity to calculate the first-order correction tolarities other than the simple poles lat=k;*i», we can
the ground state energ¥(p)=(S{")/B. In particular, we perform thek, integral with ease. The integral ovkf can
find the following: then be done after the resulting fac®fe, ,€,) is expanded
in powers of e*™1 (and after it is noted that
e 1[P(e)=Dled]l=1) and the result is the following:

ho(X1,Xz, @)=

(0 1) 6 (w,)) = Slwyt+wy). (26)

T
|wq|+U, /7

A(p)Z(Z;;—g\/;f dxlf dxzf dklf dk,R(€q,€5)

2U

" g2l e 20, Ap)= = codmp)duler Uy we). (29
w

(I%a] + %2+ @) YA 2[x | + @) P4 2] + @)t

—(m2)fdw[hg(xq %0, @) e~ e/ (jw] +U 1 L . . .
x g~ (mAfdelhola X @) Te Fillol+Up ] where, once agairg is the “dimensionless Fermi energy”

e alollvg relative to the barrier peakyp is the harmonic oscillator
><J’ dw ho(Xy,Xp,0) —————— energy of the parabolic barri¢recall the discussion of Sec.
|o|+U, /7 1), and
i gime e~ i[D(€2)~D(e1)] i (kyxy +kax) f e
k2_ k1_| n s o %0
op e Upen= | ax| axecn+e(-x)
where the functiorC,(x;,x,,2U,) is defined below in Eg. x el eFepCatVEE (x) xy,U, ,wp).
(32. (30)

Before we apply standard techniques of complex analysis
to reduce the integral oves, to the contributions from the
simple poles ak,=k;=*i7, we need to show that we can As before,®(x) is the Heaviside step function ang is the
neglect the effects of the singularities in the expression foFermi velocity. Furthermore, the functidfy(x;,x,,U,,,wp)
S{H that result from the factorB( e, ,€,) andD(e). Itis not  has the formula
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o0

Fi(X1,%0,U, 0p)=| o | 3 (~1)" 2(2n+1) weC2lez b
X1,%,U, wp)=| ——— —
S N T L= [(2n+1)272+ (Xq+ %) 208 02 ](|Xe] + [Xo] + @) YA 2] x| + ) V(2] o] + @)

X e*”’zﬁdw[ho(xlvxz'w)]z[efalwllv”(“”“upl”)] J dw ho(X1,X; ,w)[e*““"|’”F/(|w| +U,/m)], (31)
where

CZ(X]_1X2!Up):Cl(xl!XZIUp)+Cl(X21Xl!Up)a

*(QUP/‘ITUF)Z

1 e
Ci(X1,%p,U,) = = f dz—————[(1—e (llmo72—sgrix;)sgrixy) (1 - e (Ul mR7)(1— e Uoalimrz) ]
0

ol % g (at|xi)(U,/mvE)z 0 bl
—2(eVelallm™E— 1)[1—sgn(x;)sgr(x,)] | dz . +(e2Vplallmr_q)
1
o @ (at2x)(U,/7vE)z w @ (atx+x) (U, /7uE)z
xf dz - —sgr(xl)sgr(xz)(eupqxl“‘X2|)’””F—1)f dz - . (32
1 1

Although the equation foA(p) may not be entirely trans- to leading order, the finite-barrier corrections in the strong-
parent, it is not hard to confirm, by taking the limitp coupling limit, where (1-g)<1, are dominated by the en-

— oo, that the result fof that follows from Eqs(3) and(29)  hanced backscattering of states near or below the barrier
agrees with that previously derived for @function peak, where reflection probabilities are on the order of 1,
barrier™ > The key is to recognize that the relatigii—g  rather than on the order afl—g as is true near the Fermi
—e T/ 1+ e 27 means that  Ji(er,U,,wp) surface. To estim.atle these corrections from strongly back-
—2e’J1—-g as 27U, /wp—0, where y is the Euler- scattered states, it is best to return to the fornA@p) that
Mascheroni constar{ty=0.577. appeared in Eq27).

The behavior for U ,/fiwp#0 can be found through
numerical integration. The results for various values of
27U, lhwp are displayed in Fig. 2. As predicted in our
study of the weak-coupling limitg— 0),%* for a given value
of g in the vicinity of 1, the fractional peak splitting is
reduced relative to that for &function barrier. This strong-
coupling depression of thieversusg curve becomes greater
for larger values of ZU ,/fiwp.

For 27U, /hwp=1, however, the downward correction
is quite small. Since earlier approximations of the barrier as
a ¢ function were designed to predict the behavior of experi-
mental systems in which2U, /i wp=1,"">our calcula-
tion confirms that those prior results were substantially cor-
rect. Figure 2 gives a sense of what the leading
2wU ,/h wp-dependent corrections look like for small and
large values of U ,/hwp, but, because of the approxima- %} 0085 % 0,995 100
tions we have made, the results are expected to be reliabl, g
accurate only for ZU ,/hwp=2.

One might wonder what analytic form the leading tio

ZWUP_/ﬁw,_:-d_ependent Corrgc_tlons take. In the Weak'channel conductance, for a one-channel connection between two
coupling limit (g_—»O), _the finiteness O.f the barrle_r was quantum dotsN.,=1). Each curve corresponds to a different value
shown to result in leading-order correclt4|ons prop_ortlonal 0ot the quantity 2rU,, /iwp (see legend to the left of the curyes
(27U, Ifiwp)l|Ing| for 27U, /hwp=2."" Corrections of  The solid line is the result for an interdot barrier that has effectively
this form arose from the fact that transitions into virtual ;ero width (27U, /wp=0). The dashed and dot-dashed curves
states with energies near or above that of the barrier peakhow the leading-versusg dependence for finite barriers with
allow for relatively free interdot movemeltivith transmis- 27U, Ihwp taking on values from 0.5 to 32. The curves are ex-
sion probabilities on the order of.1 pected to be substantially accurate at least for ¢) greater than
By reasoning analogoudut in a sense opposjtéo that  or equal to approximately 1¢ and for values of U ,/fiwp not

used in studying the weakly coupled system, we expect thatuch larger than 2.

1.00

f 0.90 |

FIG. 2. Plots of the leading (2g)—0 behavior off, the frac-
nal peak splitting, as a function of the dimensionless interdot
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Examination of thex-dependent factors in the integrand of to A(p) is proportional to (U, I wp)!|In(1—g)|. Thus, the
Eq. (27) reveals that the primary contributions for the inte- |eading finite-barrier correction to the fractional peak split-
gral come when the variables have values of rough mag- ting f may be roughly written as- ci(2mU,/hwp)/|In(1
nitude whve/2U,. In this range of x; values, the —g)|, wherec, is a small positive number. The form of this
ki-independent factors of the integrafice., all the factors correction is parallel to that found in the weak-coupling
but R(e1,€) and those enclosed in the final set of largelimit; in both cases, the leadingrJ , /% wp-dependent terms
brackets vary relatively slowly, only changing substantially are proportional to (U, /ﬁwp)/“n[(l 9)/g]l. The results
when one or both of the; values changes by an addend of displayed in Fig. 2 bear out our approximation to the analytic
ordermhvg/2U,,. Consequently, if the wave vectckshave  behavior of the leading strong-coupling corrections. The
magnitudes greater thanUg /mfivg, the ki-independent  graphed corrections for9(2mU, /fiwp)<2 agree with the
factors can, to leading order, be treated as constantg; for predicted analytic behavior, producmg errors of less than
~whve/2U,, and thex; dependence of the integrands in about 10% for the behavior as a function of{g) and of
Eqg. (27) can be assumed to be dominated by the factofess than about 20% for the behavior as a function of

e (kixatkaxa), 27U, /hwp. The graphed values suggest that the value of

The question then is whether thevalues that contribute ¢, is s||ght|y less than 0.05.
most substantially to the2U, /% wp dependence are large
enough(in magnitude for this assumption to be justified. As IV. EINITE-BARRIER RESULT
we have reasoned above, the leading contributions to FOR THE TWO-CHANNEL PROBLEM
27U, /hwp dependence are expected to come figrsuch
that energy of the corresponding eigenstate is near or below The downward shift of thef-versusg curve for one-
the barrier peak. In other words, the most significant wavechannel systemsN.,=1) is paralleled by a similar down-
vectors are expected to be ones such Hat vk <V,. ward shift of thef-versusg curve for two-channel systems
Consequently, we expect thelseto be negative and to have (Ng=2). However, the route to the two-channel result is
magnitudes approximatingo=(wp/vg)er, Where [given less straightforward than the already somewhat tortuous
Eqg. (14)] route taken for the single-channel problem, largely due to the

fact that we now have to deal with twa)®’ fields in Eq.(24),
[In(1—g)|. (33 rather than just one. The first step in dealing with this set of
F fields is to transform them to a more manageable pair—the
“charge” and “spin” fields 6c and 85, respectively—which

As noted in Sec. I, the anticipated importance of negativeyre |inear combinations of thé; and 6, fields 6= 6\

wave vectors of approximate magnitukig(which yield val- 0 and 9s=6{”— 6. The bosonic actiors then con-

ues fore; equal or near to Omeans that we must have (L gicis of the sum of separate charge and spin contributions to

—0)=10"° for our general approach to be valid. Our desire unperturbed actio®,, and a perturbative teri®;, which
to gain a more compact analytic approximation to the leadingjenends on both the charge and the spin fields. In particular,
2wU ,/h wp-dependent behavior now leads us to impose ansozsgC)+SéS) andS=S,+S,, where

other requiremenk,=2U ,/mhvg . From EQ.(33), this re-

quirement means that we needHf)<e (@MU, /hwp) C

Combining this upper bound on (1g) with our previous S'o )= f (
lower bound, we find that our general approach and the new

assumption that we propose to makieat thee™! (k11 +k2x2) & f do |o|

wp
ko= 27V

) Oc()c(— ),

W W~ ~
factors dominate the; dependence of the integrandasre Zjﬁs(w)ﬁs(—w),
both valid only if 10 3<(1—g)<e (@M@7U,/hwp)  The
new assumption therefore allows a useful analytic approxi-

mation (i.e., an approximation with a significant range gof SFLJ de Xmf dX2f dklf dk,

values in which it is valil when 27U , /A wp is not much Jm(2m)®

greater than 2. For 2U ,/fiwp values slightly over 10, on XR(€1,€2)A(Xq,X,)

the other hand, the assumption’s utility “breaks down” en- [D(ey)~ D(en)] amikyxs +koxy)

tirely, as the room between the upper and lower limits on Xleiwp,ze 2 Te e 6o )
(1—g) vanishes. Nonetheless, because we have already re- ko—ki—in c
stricted our attention to 2U ,/Awp=2, this “breakdown” s

is of no concern; for the values ofiJ , /fiwp of real inter- X @~ (112)]dw hy(xy Xz w)e™ " bc(w) 4y ¢,

est, our new assumption for the purpose of a compact ana- o

lytic approximation imposes no more restraint than our ini- x {e(i”2)/dw hz(xl,Xz,w)e"”Hs(w)Jrm_t_}, (34)

tial assumption that (1 g)<<1.
Having determined that we can assurgé!(kixitkax2) where the “mirror terms”(m.t.) can be obtained in the same

dominance, we can now proceed with estimating the correcway as for Eq(24).

tions due to wave vectors in the vicinity &f. Approxima- After integrating out the high-energy charge fields, one is
tion of the integrations based on the above assumptions Ieadﬁt with an effective spin actiors®=s{¥+s{¥, where

to the conclusion that, to first approximation, the correctlonSO is unchanged from Eq34) and where
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U B
S&S):Wf dff dxlf dxzf dklf dk,R( €1, €2)A(Xq,X,)eC201%2:2U,)/8
v mJ 0

_1/A[(|X2|+a)(|xl|+a) —sgnxq)sgnx,)/4
a(|Xq]+ x| + @)

a(2|xq|+ a) Y2 2|xo| + @) M2
(Ix1]+ @) (|xo] + @)

—a‘wl/vp
- e
¢ o= () [dolho(xy Xz, )] e” Ve (] +20U,, Im)] J et

e P dw hO(Xl,XZ,w)|a)|+2Up/7T

) @ 1[D(e2) —D(eg)] g —i(kyxg +kox2) ) o
X ie|7Tp/2 - +c.c. [e—(|/2)fdwh2(x1,x2,w)e IwT@s(w)+m.t.] (35)
Ko—ki—iz ’
|

where, as was done in the case of Nyg=1 problem, only As in prior work?3 we “refermionize” the bosonic ac-
the lowest-order perturbative term has been retained in thion S=S¢7 + S} by identifying ¢¢(0,7) as a fermionic anni-
effective action. hilation operator at the origin of a semi-infinite system,

To exploit the even-odd combinations that occur in thewhere
integrals overw, we rewrite the action in terms of the fol-

lowing “even” and “odd” fields #1(0,7)
“é(SE): e—inES(w) + eiwr’és( _ 0)), B e—(i/Z)Idmho(xl,xz,w)e*inES(w)
Aé(o)zi[e*i“”hé (w)—ei“’;és(—w)]. (36) \/277(2|x1|+ a)l/4(2|x2|+ a)1/4(|x1| n |X2|+a)1’2'

39
The nonperturbative ter8¢> then takes the form 39

This refermionization formula may look peculiar because of

S)—J ——[Q(E)(w 705 (w,7) its use of a normalization factor and an ultraviolet cutoff
[embedded inhy(x;,X,,w)] that depend on position vari-
+09Q (0,70 (w,7)]. (37)  ables, rather than mere constarftontrast the standard

bosonic representation of fermionic position operators in Eq.
- (7)]. These position-dependent factors work, in tandem with
action in terms of the{" fields. the scalar prefactorif2) for the exponentiated integral, to
The “even” fields are not to be left alone, however. In ensure the correct anticommutation relations {9(0,7),
anticipation of “refermionization,” we insert into the effec- and their use is expected to be unobjectionable so long as for
tive action a set of dummy “odd” fields—free fields that are g|| x; of real interest the resulting ultraviolet cutoff is high
entirely decoupled from the “even” fields. The nonperturba- enough to capture the behavior with which we are con-
tive, kinetic energy terms of these ne#) fields and6®)  cerned.
fields add to give a total kinetic energy of the same form as As in the single-channel problem, thx of real interest
that in Eq.(37). This total is in turn rewritten in a form satisfy |x; |~7rwa/2U [as can be seen by doing the inte-
equivalent to that OSO S in Eq. (34). Our newest, and final, grals overk; and obtamlng a result with factors analogous to
effective action then consists of the sum of t{g term and  those ofF1(x;,X;,U, ,wp) of Eq.(31)]. The ultraviolet cut-
the leading perturbative ter®), which was derived from Offs in Eq.(39) therefore characteristically correspond to en-
integrating out the original “odd” fields ergies approximating 2,/m—which is much greater than
kgT, the characteristic energy for the unperturbed spin de-

‘ U, B grees of freedom, an@s we can confirm once we rediscover
= dr Xm dXz dkl dsz(El,Gz) H 7
2m)*\wlo

After integrating out th§9(so) fields, we have a new effective

the leading order behavior produced 55/), much greater
than the energy of states characteristically brought into play

eCalxa x2.20,)/8 by the perturbatioi$; . Indeed, we have already incorporated

X(|X1| + [Xo| + @) YA 2| x| + @) YA 2|Xo| + ) 1A an assumption that ultraviolet cutoffs approximatind 2
o aloliv are valid because, in obtaining our effective action, we have
w @~ (714 dwlhg(xy Xz, @)]? [l F20,T7 only kept the leading order terms from integrating out the
charge degrees of freedom—an approximation only expected
XJ dwho(xl,xz,w)[e‘“|“’"”F/(|w| +2U,/m)] to be gooq if Fhe spin-field statesgof concern have excitation
energies significantly less thas, .
@ i[D(e)=D(en)] g=ilkyxg+kaxa) Returning to Eg. (38, we wuse the identity
x| ielP’2 P +c.c. V2 fBd ]y (0,7) + ¢ (0,7)]=[dk(f}+f) to find that our
2 0 7 refermionization scheme produces a fermionic Hamiltonian
X[ e(i/2)fdwho(xy Xz, 0)e ™ 0s(w) 4 1], (38)  H=Hy+H, that consists of the following parts:
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1.00 . ‘
_ T A
Ho— dkgkfkfk! —0 ¢
——-05 7 /I
. £/
I 4/ ,///
—_ '/; ’//
" 77 /7
H1=Z(6F,Up,wp,p)J dk(f{+f,), (40) A A,
098 | 5.0 ;7
72
where A
A 4
f o S
2 R
Z(ep,Up,a)p,p) /////// // 4
A Ry
//,' g Ry
Up 0.96 1 ,//'/// ////
_ ’ ’ rd
= —3J XmJ dXZJ dli dsz(El,Ez) /{l/fl/// ,’///
(2m)°\m 7 et
///’/;’/ /?///
eCZ(Xl X2, 2Up)/8 //‘;’ // P
X A i
/49 + )82 + )18 0.94 &7’ -~ w
(1xa] + x| + @) "4 2]x1 |+ @) 42| x| + @) 0.985 0.99 0.995 1.00
g

% @~ (T dolhg(xy Xz, @)1%[e” “lelr/(|o] +2U , 1m)]
FIG. 3. Plots of the leading (2g)— 0 behavior off, the frac-

e elolive tional peak splitting, as a function of the dimensionless interdot
XJ dwhO(Xl'XZ*w)m channel conductance, for a two-channel connection between two
) ) g quantum dotsN,=2). Each curve corresponds to a different value
_ iWplze’'[D(EZ)’D(El)]e*'("lxlﬂ‘?(?) of the quantity 27U, /fiwp (see legend to the left of the curves
xX|ie Ky—Ki—i7 +c.cl. (41D  The solid line is the result for an interdot barrier that has effectively

zero width (27U, /i wp=0). The dashed and dot-dashed curves
From prior work on the effects of &function barrier, we show the leading-versusg dependence for finite barriers with
know how to solve for the fractional peak splitting that such27U,/fiwp taking on values from 0.5 to 32. The curves are ex-
a Hamiltonian produce]sl.'lg’ The only difference from the pected to be substantially accurate at least for ¢} greater than
sfunction barrier Hamiltonian that we encountered before i<" €dual to approximately 16 and for values of ZU,, /fwp not
that a complicated prefactd(er,U, ,wp,p) replaces the much larger than 2.

simpler  &function _ barrier _prefactor Z..(er,U, .p) end of thef-versusg curve shifts downward from the zero-

=cos(mp/2)V1-gy2e’hveU,/7°, wherey is the Euler- yidth result. Once again, the corrections for the experimen-
Mascheroni constanty=0.577)*"**Thus, to find the lead- tally realized values of 2U,/fwp=1 are small, a fact
ing behavior of the fractional peak splitting as a function of which confirms that the previpous assumption af-function
(1-9) and 27U,/fiwp, we can simply substitute parriet'~4 was substantially justified, at least so long as
Z(er,U,,wp,p) for Z.(e,U,,p) in the results previously interaction effects peculiar to the barrier region can be ig-
obtained for as-function barrier. nored.

As for one-channel systems, we ultimately resort to nu-  As for the single-channel system, one might inquire about
merical integration to solve for the fractional peak splitting the nature of the leading analytic behavior of these correc-
when the barrier has a nonzero width. Needless to say, it ifons. The answer is essentially parallel, both in reasoning
gratifying that such numerical calculation confirms that, atand substance, to that found at the end of Sec. lil. The con-
least through five significant digits, the prefactor syraints on (1-g) are the same[ie., 103<(1-g)
Z(eg,U,,0p,p) converges to theéfunction quantity <e~(@m@7U,/ep)] and the leading finite-barrier corrections
Z.(€g,U,,p) in the limit 27U, /iwp—0. Consequently, in {0 7(e,U,,wp,p) are expected to be roughly proportional
the limit of a narrow barrier, we recover the same result agg (27U, /hwp)!|IN(1—g)| when 27U, /fiwp=<2. In other
for a &function barriet'"**—a good confirmation both of \yords,z( e, .U, wp,p) can be expanded as follows:
the robustness of our earlier results and of our success in
wending through the complications created by the initial as-
sumption of a nonzero-width barrier. .

The approach to performing the quadruple integral of Eq. €O mp/2)V2€"hvel [ m
(41) is very similar to that used to perform the analogous _ = -~
quadruple integral foN.,=1 and therefore will not be de- =V1=gtc(2nU,/hop)l[in(1-g)+ -, (42
scribed in depth. We first integrate ovier andk, by tech-  wherec, is a small positive number. Because, from prior
niques of complex analysis similar to those used gy, work,*~13the leading corrections to the fractional peak split-
=1, once again focusing on the simple poleskatk; ting are proportional t(Z(ﬁp,Up,wp,p)zln Z(e:,U,,0p,p)
+in, with the understanding that this imposes a constrainat p=0, the leading finite-barrier correction to the fractional
that 27U ,/hwp=2. For various values of2U ,/Awp, we  peak splitting is roughly proportional to ¢&J,/%wp)
then do the remaining integrals ovey andx, numerically. X 1—g{1—|In(1—g)|"!. The corrections shown in Fig. 3
The results are shown in Fig. 3. As for one-channel systemspllow this predicted behavior quite well: for2U /i wp
we see that as 2U,/fiwp increases, the strong-coupling <2, the analytic prediction captures the calculated correc-

Z(GFIUpleIP)
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tions with error margins of about 10% or less for the (1 noted that prior results indicate that, in tNg,=2 equation,

—g) dependence and of about 20% or less for thehe next additive term independent of® , /% wp will equal
27U ,/hwp dependence. The numerical results suggest that Coi(1-9), wherec2,320.425.13 Because this term linear

C is slightly less than 0.02. in (1—g) comes from higher-order terms in the effective
action than those we have considered higee, e.g., Eq.
V. CONCLUSION (38)], we have omitted it in our calculations and in the

. L . ygraphs of Fig. 3 in order to have a truer comparison between
This paper shows that bosonization techniques for stud the 277U, /1 wp-dependent terms and those they directly cor-

mt? tze b%ha\ﬂor ?f .ct)n(?-dmt]r(]anbsmr_]al systerps t_need not b?ect. If need be, the linear term is easy enough to combine
abandoned when finite-length barrid® constriction are with the result expressed in EG14).)

introduced. The finite-length effects of those barriers can be The above results combine with an earlier study of the

captuLed IE)O _tleadlnt% <t)rder _by a star|1_datrd q perlturlb?_tlve aF{geak-coupling regimeg<1)**to give a more complete un-
proach, albeit one that requires compiicated caicuiations an erstanding of thef-versusg curve when one leaves the

a fair degree of care. Ss-function barrier limit 27U /Aiwp—0. In ticul

. . o p—0. particular, we

erelfd Shheorzkijsbsetil{ljlﬂi(gr?lv)\// l:idrg;(ijfite?jatat??t ?:;Cz; rggtdglncl?nqz'grcome to the nontrivial conclusion tlhgt1,4for the experimentally

of effects that may be important ,in real quantum point con-reallzed valueg of &Uf’/ﬁwpz.l’ N the_correctlon_s to

tacts. In assuming a constant interaction between electro ttswe results derived from modell_ng the barrler asfanction
' e not fundamentally substantial; thus, to this extent at least,

on the same dot, we have neglected many-body effects due

. : e . . _earlier theoretical work using &function potential was cor-
to electron-electron interactions specific to the barrier region

. . fect.
We have also ignored possible effects due to second an In addition to confirming the essential nature of the

higher orbital channels in the barrier region. Although ne_f-versusg curve for 2rU,, /fiwp=2, this paper has helped

glecting effects from such channels is valid if the confine-us ain a better picture of what happens to Hv@rsus
ment in the direction perpendicular to the channels is suffi- g P bp 9

ciently strong, neglecting these effects may be questionabl%(l;Lve”rforrg;%rlfs %?Jnegsl,t\e/ghtjﬁast Oggp ; Z“’P .is-rirr:ir;v;sael;
for various actual realizations. piing 99 » aBZ, [hwp ;

Despite these limitations, this paper demonstrates thairpef—versusg curve shifts upward for small values ofii.e.,

bosonization techniques can still be useful when nontrivia Or: g<:1) and bel_comes fllftter forélrgterm_edlflte ;j/te;:utes;of
behavior in the barrier region is at issue. The approach pre- € strong-coupfing resufts suggeas conjecturedthat, as

sented in this paper may help investigators to distinguisﬁhe same ratio is increased, theersusg curve shifts down-

between single-particle and many-particle effects from a bar\—’vard for large values o [i.e., for (1—g) <1] and becomes

rier’s finite length flatter for intermediate values @f Together, the two sets of
With regard to the more particular problem of the Cou_results suggest that, in the limit of an extremely wide, “adia-

lomb blockade behavior of coupled quantum dots, our result atic” barr_|er (27U, [hwp— ), _the f-v_ersusg curve W'."
can be summarized as follows. This paper shows that at leaBf €Ssentially flat for values @fin an intermediate region
for one-channel or two-channel systems, the fractional pea etween O. anq 1. For such an e}dlabat|c barrierf-nersus-
splitting f of two strongly coupled dots decreases, for a giverd Curve will sit at some essentially constant valuef gor
value of the interdot conductance, as the ratielR, /% wp is most of this interval and will turn sharply toward the limiting
increased. For one-channel systerNs,&1), the downward values off =0 andf=1 at the edges.

correction behaves as ), /fiwp)/|In(1—g)| in the limit _OF the moment, the intermediate value at which the
where 27U /hwp=<2 and ?1—g)<1 Thus, forNg=1 adiabatic” f-versusg curve sits remains a mystery. The
P -~ . il Ci il

the fractional peak splitting has the following leadin -orderv"e""k'COUpIing results displayed an antisymmetry arognd
functional forrr? piting ¢ g =1/2 that, if true at higher orders, might aid in solving for

(27U, 1hwp) the fractional peak splitting wheg takes on intermediate
fi=1-cyV1—g—cy, P (43 values!* Unfortunately, the strong-coupling results do not
' “ |In(1-g)| exhibit such a simple symmetry. As Figs. 1 and 2 indicate,

wherec, ,is somewhat less than 0.05 and, as derived in priotNlike the weak-coupling results, the strong-coupling results
work 11-13 c,,=8e” w2 (about 1.44 In two-channel sys- do not reveal a common point of intersection for the leading-

tems (N,=2), and in the same limits, the downward cor- order curves that correspond to different values of
rection due to the finite barrier width behaves as27Y,/fiwp. The apparentlack of a common pivot will pre-
(27U, Ihwp) m{l_“n(l_gﬂ—l} resulting in leading- sumably make solution of the intermediagroblem more

order behavior of the form difficult.
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