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Binding energy of charged excitons bound to interface defects of semiconductor quantum wells
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We present a model that takes into account the interface-defects contribution to the binding energy of
charged excitongtrions). We use Gaussian defect potentials and one-particle Gaussian basis set. All the
Hamiltonian defect terms are analytically calculated for gti&e trial wave functions. The dependence of the
binding energy and of the trion size on the quantum-well width and on the defect size are investigated using a
variational method for GaAs/pkGa, -As quantum wells. We show that even in the case of strictly structural
defects the trion is more strongly affected than the exciton.
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I. INTRODUCTION trion Hamiltonian. This kind of defect is always present at
the QW interface due to the mixture of well and barrier ma-
The stability of charged exciton@grions) was firstly pro-  terials during the QW growth process. The protrusion of a
posed by LampertA charged exciton is a complex formed material with lower gap in the region with a greater one
when there is an excess of charge in a semiconductor and &fves rise to structural defects that are attractive for both
extra electron or hole is bound by the electrical dipole of a€lectrons and holes in type-1 QW's.
neutral exciton. In the first case we have a negative complex
(X7) and in the second case we have a positive ofie)( Il. MODEL

Thes_e complexes are analogous to thg |on_sd:rhd '_g n We consider a semiconductor QW, more exactly a GaAs
atomic ph_ysmg. The advantage gf working w!th S(_amlconc_juc]ayer grown between two ALGa,-As layers. The carriers
tqr ma.tenals is that Fh.e. screening _of ele_ctncal mte_rat;ﬂonsare confined in the GaAs layer. The effective-mass and
gives rise to the possibility of obtaining, with magnetic fields gy elope-function frameworks are used to describe the semi-
accessible in laboratories, cyclotron energies of the same Ofgnductor materials and the QW, respectively. We neglect the
der of the Coulomb ones while, in the'Hand H, cases, this  band bending and the effect of the excess of carriers due to
is only possible in astrophysical systems. The first trionthe doping. The QW width is in the direction (growth di-
binding-energy calculatidrshowed that its value is not large rection. The valence and conduction subbands are approxi-
enough to be experimentally detected in semiconductor bulknated by parabolic dispersions that is more severe an ap-
materials. However, this value is one order of magnitudeproximation in the case ok than in the case ok .
larger in semiconductor quantum weflsThis is a conse- We start with the assumption that the QW confinement is
quence of the carriers confinement inside the quantum wefitrong enough to maka z andx,y) separable wave function
(QW) due to the energy-gap difference between the barrief the basis-set reasonable. We_ use the_ noninteracting elec-
and well materials. The first experimental observation of dron and hole fundamental solutions for ideal QW's aszhe
trion spectrum was made by Khergal® in a I1-VI type part of the_ one-particle tn_al wave functions.
QW. In this case the trion binding energy is more than twice 1he axial symmetry will be preserved by the defect po-
the value for I1-V systems. tentl_al. This Ieads us to use polar coordinates to describe the
There has been an intense discussion in the literaturd in-plane motion in terms of center of magsM) and
about the influence of charge localization potentials on thé€lative coordinates following the classical picture of ¥ie:
trion experimental observations. Most of the theoretical@? €xciton and a distant electron bound fo its electrical
result§~® show weaker binding energies than that experi-dipole.” Furthermore, the chosen coordinates have the addi-
mentally observed® '3 This suggests that the trion may be t|ona_l ad_vantage of eliminating from the in-plane trion
trapped by some kind of QW interface defect. Eyedral ™ Ham_lltonlan the terms that are proportional to the product of
presented experimental evidencesXof localization due to  'elative coordinate linear momenta. We define
electrostatic potential fluctuations generated by the ionized L .
donors at the barrier material. Dzyubenko and SivachEnko B Me(Pe1t Pe2) + MixyPh
showed that the optical activity of thé™ triplet state can N M ’
only be possible due to a QW symmetry breaking. On the

other hand, results from time-resolved photoluminescence P1=pea—p 1)
indicate that the trion optical emission is dominated by free 1o Pel Fhe
charged exciton¥ B, R
To shed some light on this problem, we present a simple - _ = Mepert Mayypp
model to include the interface-defects contribution in the P2=Pe2 m '
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Here the electron mass is isotropic. On the other hand, the R 1 2 p?
hole dispersion is strongly nonparabolic in QW's, but, as a ¢?(p)= —— —exg — |, 4
first approximation, the off-diagonal terms of the Luttinger V2w A Aj

Hamiltonian can be neglected. In this case, the hole mass {§are) . is the variational parameter
i .

anisotropic and shows a lighter in-plane value. Using this = apajogously to the charged-exciton case, the trial wave
approximation, theX™ in-plane coordinates are easily 0b- {,nction for the neutral complex, the exciton, is given by
tained from the previous ones through the electron and hole

labels interchange. The negative trion CM mass is given by Yo=Ni ; Xo(Zn) Xo(Ze) $2(Rey) ¢,Q(p), (5)
M =my,,+2m, and m=mg+my,,. We use the same mass
values for the well and the barrier materials. where
Due to the presence of the defect, the CM is not a free - -
particle. We label the trion state through the following good B :mePe+ T MhxyPh
guantum numbers: the total angular momentum inzfa- ex m '
rection(including the CM contributiop and the total spin of (6)
the. two electronsX ™) or two holes Q(f), S. (S'z S +Sy), . P=Pe—Ph-
which allows us to separate the solutions in singlet and trip-
let states. Next, we analyze the contribution of the different terms of

The two electrongholes in the case of *) indistinguish-  the Hamiltonians.
ability leads us to use a Slater determinant basis. We assume
that the internal degrees of freedom are not strongly affected A. Exciton Hamiltonian
by the defect potentidi® Consequently, the main effect of

the interface roughness is the localization of the CM that i : e
. . : nown and it depends on the sample growth conditions. Be-
weakly coupled to the relative coordinates. This CM local- . L ? .
o ) i . cause of this and for simplicity, we simulate the interface
ization will stabilize the trion. In the absence of structural . . o
) . . - defects through a potential that displays a cylindrical sym-
defects and external fields, only the singlet trion state W|thmetr with a Gaussian shape and lateral radus)sing the
total angular momentum in thedirection equal to zero is a y b 9

bound staté® Therefore, we consider only this configuration L'e;?;'i\lls) n?:::riglcva:i[teterf_]ogsthe in-plane motion, the exciton
and the orbital part of the charged-exciton trial wave func-

tion is written as Hex=H(ze) + H(z0) + Ty + Vot Vaed(€) + Ve h), (7)

The actual shape of the interface defects is not accurately

= where
Wo=N; j mXo(Zn) X0 Ze1) Xo(Ze2) (R

<[5 B0+ S50 62p0)]. (@) e L
i\PL¥Pj\P2 i\P3/Fj\Fa/l H(Ze’h):_m,})z_zh—'—vwe'WhY §_|Ze,h| , (8
whereN; ; , is the determinant normalization,(z) is the ©
fundamental electrorte) or hole (h) ideal QW state, and w21 4 P 1 &2
d)io(ﬁ) ares-like one-particle wave functior[€qg. (4)]. When Txy=— omlR.. W( Rexﬁ) + R_2 Py
- eXx ex eX
an ideal QW is considered, the CM functi¢(R)] is a ex 7 7Re
plane wave. The coordinatgs andp, are obtained through #2119 ( P )+ 1 5 ©
the mterchange betvyeen electrons 1 and 2 in (Eg. They 21| p 9p Pap 02 96 )
are related tp, andp, through
\Y, ¢ (10
- Me. . =
Pszﬁpl‘FPza © e (ze— )t p?
, (3) ﬁ mhxya 2
> me - me_) L L ex m p
pa=|1- F pl_ﬁpz' Vdef(e)szeY(§<Ze<§+5 exp — —D )
(11)
We limit our basis to the fundamental QW states and
s-like orbitals. Although it is known that they are not suffi- . me.\?
cient for a quantitative trion descriptidfithe present choice L L Rex™ 1P
retains the main physical results of the defects influence oanef(h)=VWhY(§<zh<§+5 exp — D
the trion states. 12)

Using gaussian functions, it is possible to calculate ana-
lytically all the defect-potential contributions. Therefore, we Here the QW potential height for electrofe® and holegh)
chose this kind of variational wave function to represent thas given byVyewn, Y(2) is the step functiofY(z)=1 if z
in-plane one-particle state >0 andY(z)=0 if z<0], L is the QW width, « is the
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exciton in-plane reduced mass, ands the GaAs dielectric
constant. Sinc¥,,. andV,,, are the QW confining potentials
for electrons and holes, respectively, we are assuming attrac-
tive defects for electrons and holes. The defect parameters
are 6, the defect depth in the direction, andD, the defect
radius in thexy plane.

It is known from optical experiments that the trions have
a small binding energy. Hence, the carriers localization on
the defect should be weak. Therefore, we usel ML
=2.83 A for GaAs and~300 A ®These parameters en-
sure that the exciton or trion internal degrees of freedom are
not strongly affected by the defect. On a more quantitative
basis, our assumption states that the gain in the exciton bind-
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ing energy due to the defect presence remains small com-
pared to the distance between th® dnd 2S exciton levels

FIG. 1. X binding energy as a function of a GaAs QW width in
in an ideal QW""18

the absencésquares and presencéopen circley of interface de-
fects. The defect parameters af2=300 A, 6=1 GaAs mono-
B. Charged-exciton Hamiltonian layer.

Analogously to the exciton case, using the relative €o0r{x° plus an in-plandree electron(hole), in the X~ (X™)
dinates for the in-plane motidiEg. (1)], theX™ Hamiltonian 456 Taking the ground-state energy of these carriers as zero,

is given by one can write
Heex=H(Ze1) + H(Zep) + H(2zp) + Tyy+ Vet Vger(€1) Ep(X /X)) =E(X /X)) —E(X?). (16)
+Vaei(€2) + Vyer(h), (13 It is important to realize that the charged-exciton binding
energy is a difference between two values obtained through
where variational calculations. This means that the calculated trion
binding energy is not necessarily an upper limit of the actual
R 9 1 9 value.
=" 2m ﬁﬁ(%)*@@
Ill. RESULTS AND DISCUSSIONS
N d 1 2 : -
_ ——<p1—) + __1 Since we are considering a GaAs{AGa ;As QW, the
2| p1dpr\ T dpa)  p2 963 effective parameters used arem,=0.067n,, m,
5 5 =0.37Mg, Mpy,=0.112m,, e=13.2 for the well and bar-
_h*M ii( i)Jri_ 14 rier materials. The conductiontvalence} band offset is
2m.m| p, dp, P2 ap2)  p2 962 224.5 meV(149.6 meV. o _
Figure 1 shows thX™ binding energy as a function of the
QW width in the cases of absen¢squares and presence
v e? e? (circles of interface defects. Figure 2 shows the same calcu-
C

lations for theX™. One can see that the defect potential is

_S\/(Z —2,)%+p? : , S
el™ 4h) T P1 more important for narrow QW’s. This is a consequence of

2.2 me*z
€ (Zez_zh)+|Pz+FP1|

e? . 060 i
+ (15) %
2 o
€ e1™ Ze2 m P17 P2 > 05r © ]
CILJ [e}
and the other terms follow the definition of EF). The X™ @ . ° o
parabolic Hamiltonian is immediately obtained through the S 04t " ° o i
interchange of electron and hole labels. 5 faom o
We would like to point out that an electron or hole is g "o : o 4
weakly bound to the interface defects we are considering KSR =g

100 120 140 160 180 200 220
Quantum well width (A)

here. Comparing with the exciton case, their binding energies
are negligible. Therefore, the charged-exciton binding energy
Ey, is defined as the difference between the energy of this
trapped charged complex and the energy of a trapped exciton FIG. 2. The same as Fig. 1, but for tke
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FIG. 3. X~ (squaresandX ™ (open circlegrelative energy gain FIG. 5. X~ (squaresandX™ (open circlesrelative energy gain

as a function of QW width. Inset: probability of finding an electron as a function of the defect radius. The QW width is 200 A a@nd

(solid line) or a hole(dashed linginside the defect as a function of =1 GaAs monolayer.

QW width. The defect parameters ale=300 A, §=1 GaAs

monolayer. X* (circles relative energy gains, i.e., the binding-energy
difference between the cases with and without defect divided

the greater amplitude of the carrier wave function inside thé)y the binding energy without defect. L

defect when narrow QW's are considerédset of Fig. 3 Figures 4 and 5 show the defect-radius influence on the
Our results show that the defects play an important role anglonhbllndmg %122\93/' The lQW ngth ';’ ?OO A ?d the defehct
drastically affect the trion binding energy even in the case ONept |sAone S motr:_ogl_yer. or defect radi ggeater t an
a single monolayer fluctuation. They may also explain why”A'cl)0 (\;vef expe((:jt. a I!n llngf;energy satur%tlon scause_, In
the theoretical results have better experimental agreement € large de ect-radius limit, t e system tends to be equiva-
the wide QW limit®1° Figures 1, 2, and 3 display only the ent to an ideal QW+but _1 ML Wllder-. Letus stlress that ¥he
results obtained in a QW width range where the trion internafSduares and theX™ (circles binding energies get farther
degrees of freedom are not strongly affected by the defect@nd farther with increasing defect radius. This is again a
The criterion used was to show the points with less than 40og°nseguence of the greater electron sensitivity to the defect.
of energy gain due to the defect-potential presence. In the Figure 6 shows thf CM mean radius of excitmangles,
wide QW limit the trion CM is almost unbound and the X (Squares and X™ (circles as a function of the QW

binding energy tends to be that one in the ideal interfacdVidth. Figure 7 shows the CM mean radii but as a function
case. of the defect radius. One can see that X1eis much more

It is important to realize that th&~ is more strongly affected by the interface defects than the exciton, in other
affected by the defect than the' . This happens because the words, theX™ CM is more strongly localized by structural

. . I : 14
amplitude of the carrier wave function inside the defect isMPerfections. This is in agreement with Eytanal.™ How-
greater for electrons than for hol@aset of Fig. 3, basically ever, they attributed the or|g|n.of th_|s strong Iogahzanon qf
because the electron is lighter than the hole. This feature igharged complexes to fluctuations in the electrical potential

shown in Fig. 3, where we compare tke (squaresand the of remote ionized donors. Our results show that even for
’ strictly structural defects th&X™ is more affected than the

0.45 T T T T T exciton.
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FIG. 4. X~ (squaresandX* (open circles binding energies as

a function of the defect radius. The horizontal lines are Xe FIG. 6. CM mean radius as a function of QW width for the
(solid) and theX™ (dotted binding energies in the absence of de- exciton (up triangle$, X~ (squares and X* (open circles The
fects. The QW width is 200 A and=1 GaAs monolayer. defect parameters ar®.=300 A, §=1 GaAs monolayer.
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' ' ' A ' ' the narrow QW region where our approximations are less
;ZE 1.0 - adequate.
e o a
~ ] ]
ch 0sl N ] IV. CONCLUSION
'g . ° Y ] We have presented a simple model of the effect of the
c - ° o Ya, L] interface defects on the trion binding energy. The defects
g oer . o ] were represented by a Gaussian potential. Our results show
E " . %o, 1 that the structural imperfections are more important in the
= i "a,,_ %0000, case of narrow QW’s and that the charged excitons are more
© 04 LA LY

strongly localized than the neutral one, even in the case of
strictly structural defects. This explains why the theoretical
results have, in general, a better agreement with experiments

in the wide QW limit. Our results also show that the negative

FIG. 7. CM mean radius as a function of the defect radius foryq, js more sensitive to the structural imperfections than the
the exciton(up triangle$, X~ (squaresandX™ (open circles The

QW width is 200 A ands=1 GaAs monolayer. positive one.

200 240 280 320 360 400
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