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Quantum-dot lithium in zero magnetic field: Electronic properties, thermodynamics,
and Fermi liquid –Wigner solid crossover in the ground state

S. A. Mikhailov*
Theoretical Physics II, Institute for Physics, University of Augsburg, 86135 Augsburg, Germany

~Received 27 June 2001; revised manuscript received 2 October 2001; published 21 February 2002!

Energy spectra, electron densities, pair-correlation functions, and heat capacity of quantum-dot lithium in
zero external magnetic field~a system of three interacting two-dimensional electrons in a parabolic confine-
ment potential! are studied using the exact diagonalization approach. Particular attention is given to a Fermi
liquid-Wigner solid crossover in the ground state of the dot, induced by intradot Coulomb interaction.
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I. INTRODUCTION

Quantum dots1 are artificial electron systems~ES! realiz-
able in modern semiconductor structures. In these syst
two-dimensional~2D! electrons move in the planez50 in a
lateral confinement potentialV(x,y). The typical length
scalel 0 of the lateral confinement is usually larger than
comparable to the effective Bohr radiusaB of the host semi-
conductor. The relative strength of the electron-electron
electron-confinement interaction, given by the ratiol
[ l 0 /aB , can be varied, even experimentally, in a wi
range, so that the dots are treated as artificial atoms
tunable physical properties. Experimentally, quantum d
were intensively studied in recent years, using a variety
different techniques, including capacitance,2 transport,3

far-infrared4 and Raman spectroscopy.5

From the theoretical point of view, quantum dots are id
physical objects for studying effects of electron-electron c
relations. Different theoretical approaches, including anal
cal calculations,6–9 exact diagonalization,10–25 quantum
Monte Carlo ~QMC! methods,26–34 density-functional
theory,35–39 and other methods,40–46 were applied to study
their properties, for a recent review see Ref. 47. Until
cently most theoretical work was performed in the regime
strong magnetic fields, when all electron spins are fully p
larized. In the past three years a growing interest has de
oped in studying the quantum-dot properties in zero m
netic fieldB50.23,24,31,32,34,44,46The aim of these studies is t
investigate the Fermi liquid–Wigner solid crossover in t
dots, at varying strengths of Coulomb interaction. Detai
knowledge of the physics of such a crossover in microsco
dots could be compared with that obtained for macrosco
2D ES ~Refs. 48,49! and might shed light on the nature o
the metal-insulator transition in two dimensions.50

So far, to my best knowledge, full energy spectra of
N-electron parabolic quantum dot in zero magnetic field, a
function of the interaction parameterl, were published only
for N52 ~quantum-dot helium11!. For largerN a number of
results for the ground-state energy of the dots were repo
at separate points of thel axis. In the quantum-dot lithium
(N53) a transition from a partly to a fully spin-polarize
ground state was predicted in Refs. 31, 32, and 44, how
an exact value of the interaction parameterl at the transition
point was not found. The physical origin of this effect is al
not fully understood.
0163-1829/2002/65~11!/115312~12!/$20.00 65 1153
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In this paper I present results of a complete theoret
study of a three-electron parabolic quantum dot. Using
exact diagonalization technique, I calculate the full ene
spectrum of the dot, as a function of the interaction para
eter in the range 0<l<10. At l5lc54.343 I find a transi-
tion ~level crossing! in the ground state of the dot, accomp
nied by the change of the total-spin quantum number. I st
the densities and the pair-correlation functions in the grou
and the first excited states of the system at a number ol
points, including the vicinity oflc . I also calculate some
thermodynamic properties of the dot: the heat capacity
the volume-pressure diagram. Other experimental con
quences from predictions of this paper are also discusse

In Sec. II I briefly describe the model and the meth
used in calculations. Results of the work are presented
Sec. III. Concluding remarks can be found in Sec. IV.

II. MODEL AND METHOD

A. The Hamiltonian

I consider three 2D electrons moving in the planez50 in
a parabolic confining potentialV(r )5m* v0

2r 2/2, r5(x,y).
The Hamiltonian of the system

Ĥ5(
i 51

N S p̂i
2

2m*
1

m* v0
2r i

2

2 D 1
1

2 (
iÞ j 51

N
e2

ur i2r j u
~1!

(N53) commutes with operators of the total angular m
mentumL̂z

tot , ~squared! total spinŜtot
2 , and projection of the

total spinŜz
tot on some (z-) axis ~not necessarily coinciding

with the z axis!. This gives three conserving quantum num
bersLtot[Lz

tot , Stot , andSz
tot . No magnetic field is assume

to be applied to the system.

B. Basis set of single-particle states

A complete set of single-particle solutions of the proble

fnls~r ,s!5wnl~r !xs~s! ~2!

is the product of the Fock-Darwin orbitals51,52

wnl~r !5
1

l 0
A n!

p~n1u l u!! S r

l 0
D u l u

eil u2r 2/2l 0
2
Ln

u l u~r 2/ l 0
2! ~3!
©2002 The American Physical Society12-1
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and the spin functionsxs(s). Here l 05A\/m* v0 is the os-
cillator length, and (n,l ,s) are the radial, asimutal~angular
momentum! and spin quantum numbers of the single-parti
problem (n>0 andl are integers,s561/2). All the single-
particle states~2! can be ordered and enumerated, e.g.,f1
[(nls)15(0,0,↑), f25(0,0,↓), f35(0,1,↑), etc. The en-
ergy of the states~2! does not depend on spins,

Enls5\v0~2n1u l u11!. ~4!

C. Basis set of many-particle states

A complete set of many-particle statesCu , u51,2, . . . is
formed by placing particles in different single-particle stat
e.g., C15uf1f2f3&, C25uf1f2f4&, . . . , where
ufafbfg& are Slater determinants,

ufafbfg&5
1

A3!
detUfa~j1! fb~j1! fg~j1!

fa~j2! fb~j2! fg~j2!

fa~j3! fb~j3! fg~j3!
U , ~5!

andj i5(r i ,s i). All the many-particle statesCu can be also
arranged, e.g. in order of increasing their total single-part
energy

Eu
sp5E(nls)a

1E(nls)b
1E(nls)g

, ~6!

and enumerated.

D. Solution of the Schrödinger equation

Expanding the many-body wave function in a comple
set of many-particle states,

C~j1 ,j2 ,j3!5(
u

CuCu~j1 ,j2 ,j3!, ~7!

I get the Schro¨dinger equation in the matrix form,

(
u8

~Huu82Eduu8!Cu850. ~8!

The conservation of the total angular momentumLtot and the
projection of the total spinSz

tot allows one to chose the
many-body states for the expansion~7! under additional con-
straints

(
i 51

N

l i5Ltot , (
i 51

N

si5Sz
tot . ~9!

This reduces the size of the matrix in Eq.~8! and facilitates
calculations.

Numerically diagonalizing the eigenvalue problem~8! I
get a set of energy levels

ELtot ,S
z
tot ,m5\v0FLtot ,S

z
tot ,m~l!, ~10!

and corresponding eigenfunctions

CLtot ,S
z
tot ,m5(

u
C

u

Ltot ,Sz
tot ,m

~l!Cu , ~11!
11531
,
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as a function of the interaction parameterl5 l 0 /aB . The
numberm51,2, . . . enumerates the energy levels of the sy
tem in the subspace of levels with givenLtot andSz

tot . After
the diagonalization problem is solved, the eigenvalues of
total spin are calculated for each levelm from

Stot~Stot11!5^CLtot ,S
z
tot ,muŜtot

2 uCLtot ,S
z
tot ,m&. ~12!

All the matrix elements of the HamiltonianHuu8 and of the
operator (Ŝtot

2 )uu8 are calculated analytically.
All the energy levels with nonzeroLtot and Sz

tot are de-
generate,

ELtot ,S
z
tot5E2Ltot ,S

z
tot5ELtot ,2S

z
tot5E2Ltot ,2S

z
tot. ~13!

Presenting below results for the energy of the sta
(Ltot ,Sz

tot), I omit the corresponding signs@for instance,
(1,1/2) stands for (61,61/2) with all possible combinations
of signs#. Degeneracy of levels are calculated accounting
Eq. ~13!.

E. Properties of the states and the heat capacity

After the Schro¨dinger problem is solved and all the en
ergy levels and the eigenfunctions are found, I calculate
density of spin-up and spin-down polarized electrons in
states (Ltot ,Sz

tot ,m), and the corresponding pair-correlatio
functions. These quantities are calculated as averages o
operators

n̂s~r !5(
i 51

N

d~r2r i !dss i
~14!

and

P̂ss8~r ,r 8!5(
i 51

N

(
j 51,Þ i

N

d~r2r i !d~r 82r j !dss i
ds8s j

~15!

with the eigenfunctionsCLtot ,S
z
tot ,m . All the matrix elements

of the operators~14! and ~15! are calculated analytically.
As the method offers an opportunity to find all the ener

levels of the system, one can also calculate thermodyna
properties of the dots. I calculate the heat capacity asCl

5(]Ē/]T)l , where

Ē[Ē~l,T!5

(
n

En~l!e2En(l)/T

(
n

e2En(l)/T

, ~16!

T is the temperature, and the sum is taken over all~low-
lying! energy levels accounting for their degeneracies.

F. Convergency of the method

The number of all many-particle states in the problem
infinite, and the size of the matrixHuu8 in Eq. ~8! is infinite
too. To perform practical calculations I restrict the number
many-particle states in the expansion~7! so that the total
2-2
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QUANTUM-DOT LITHIUM IN ZERO MAGNETIC . . . PHYSICAL REVIEW B 65 115312
single-particle energy~6! of the involved many-body states
smaller than some threshold valueEth , Eu

sp<Eth . The larger
the threshold energyEth , the broader the range ofl in
which results are convergent and reliable. Typically, less t
1000 many-particle states were sufficient for all the calcu
tions presented below.

Convergency of the method is illustrated in Fig. 1, whe
the energy E(1,1/2) of the lowest state (m51) with
(Ltot ,Stot)5(1,1/2) is shown as a function ofl5 l 0 /aB for
increasing threshold energyEth . The curves are labeled b
Eth and the number of many-body quantum statesNmbs in-
volved in the expansion~7!. One sees that including abou
1000 many-body states leads to very accurate results fo
energy atl<20. Notice that below I present results for th
energy in the intervall<10, where the method is practicall
exact: atl510 I found thatE(1,1/2)/\v0517.627 891 at
Nmbs51024, and 17.627 974 atNmbs5549. The difference
comprises 4.731024%.

III. RESULTS

All the lengths in this section are measured in unitsl 0, all
the energies in units\v0, and the densities and the pa
correlation functions in units (p l 0

2)21 and (p l 0
2)22, respec-

tively.

A. Energy spectra

1. Exact results

The interaction parameter in the problem

l5
l 0

aB
5Ae2/aB

\v0
}

e2

\3/2
~17!

FIG. 1. Convergency of the energy of the lowest state w
(Ltot ,Stot)5(1,1/2). The energy unit is\v0. The curves are la-
beled by two numbers (Eth ,Nmbs), whereEth is the threshold en-
ergy ~in units \v0), andNmbs is the number of many-body state
involved in the expansion~7!.
11531
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characterizes the relative strength of classical Coulo
(;e2) and quantization (;\) effects. The limit of smalll
corresponds to a weakly interacting system (e2→0) and can
be treated exactly. The ground state in this limit is realized
the configuration@(0,0,↑)(0,0,↓)(0,1,↑)#, i.e., (Ltot ,Stot)
5(1,1/2), with the energy

lim
l→0

EGS/\v054. ~18!

The opposite casel→` corresponds to the purely clas
sical limit (\→0). In the classical ground state, electro
occupy the corners of an equilateral triangle,53,54 with the
distance

Rcl5 l cl/3
1/6 ~19!

from the origin. The ground-state energy atl5` is

EGS
cl 535/3ecl/2. ~20!

Here l cl5(e2/m* v0
2)1/3 and ecl5e2/ l cl are the classica

length and energy units. So, in the classical limit

lim
l→`

EGS/\v0535/3l2/3/2. ~21!

Equations~18! and~21! give asymptotes of the ground-sta
energy at very small and very largel.

At arbitraryl one needs numerical calculations. Figure
shows the low-lying energy levels of a three-electron pa
bolic quantum dot with the total angular momentumLtot
51. Shown are only the states which start fromE/\v0<6
at l50. The lowest-energy state~the ground state in the
subspace of levels withLtot51) corresponds~in the limit

FIG. 2. Low-lying energy levels with the total angular mome
tum Ltot51 in a three-electron quantum dot. The energy unit
\v0. The five lowest levels are labeled by their total spinStot and
the degeneracyg. The insets schematically show the structure of t
lowest-level wave function, at small~left inset! and large~right
inset! l, for details see Sec. III C.
2-3



te

ta
h
s

-

l

n

n-
is

the

m

a

er-

S. A. MIKHAILOV PHYSICAL REVIEW B 65 115312
l→0) to the configuration@(0,0,↑)(0,0,↓)(0,1,↑)#, and has
the total spinStot51/2. This state is fourfold degenera
(Ltot561/2, Sz

tot561/2).
Figure 3 shows the low-lying energy levels with the to

angular momentumLtot50. Shown are only the states whic
start fromE/\v0<7 at l50. The lowest-energy state ha
the total spin Stot53/2 and fourfold degeneracy (Sz

tot5
63/2,61/2). In the limit l→0 the state with the full spin
polarization (Stot53/2,Sz

tot513/2) corresponds to the con

FIG. 3. Low-lying energy levels with the total angular mome
tum Ltot50 in a three-electron quantum dot. The energy unit
\v0. The five lowest levels are labeled by their total spinStot and
the degeneracyg. The inset schematically shows the structure of
lowest-level wave function, for details see Sec. III C.

FIG. 4. Low-lying energy levels in a three-electron quantu
dot, for the total angular momentumLtot from 0 to 2 and for all
total-spin states. Only the one lowest-energy level is shown for e
pair of quantum numbers (Ltot ,Stot). The energy unit is\v0. The
levels are labeled by the pair of quantum numbers (Ltot ,Stot) and
the degeneracyg.
11531
l

figuration@(0,21,↑)(0,0,↑)(0,1,↑)#. The state with a partia
spin polarization (Stot53/2,Sz

tot511/2) corresponds in the
limit l→0 to the configuration (C11C21C3)/A3, where

C15@~0,21,↓ !~0,0,↑ !~0,1,↑ !#,

C25@~0,21,↑ !~0,0,↓ !~0,1,↑ !#,

C35@~0,21,↑ !~0,0,↑ !~0,1,↓ !#. ~22!

I performed similar calculations forLtot from 0 to 9 and
for all total-spin statesStot53/2 and 1/2. Results forLtot
from 0 to 2 are shown in Fig. 4.Only the lowest-energy
levels (m51) for each pair of numbers(Ltot ,Stot) are
shown in the figure@this means that, say, a~1,1/2! level with
m.1 ~not shown in the figure! may have lower energy tha
the exhibited level (2,3/2) withm51]. At some critical
value of l (l5lc54.343) one observes acrossingof the
two lowest-energy levels (1,1/2) and (0,3/2)~more clearly
seen in Fig. 5 where the energy differenceE(0,3/2)2E(1,1/2) is
plotted versusl). At the critical point the total spin of the
system in the ground state changes fromStot51/2 atl,lc

ch

FIG. 5. Energy difference between the lowest statesE(0,3/2)

2E(1,1/2) in a three-electron quantum dot as a function of the int
action parameterl5 l 0 /aB . The energy unit is\v0. The transition
occurs atl5lc'4.343.

TABLE I. Energies of the states~1,1/2! and~0,3/2! calculated in
this work ~exact diagonalization! and in Ref. 32~QMC, multilevel
blocking algorithm!.

l Stot53/2 Stot53/2 a Stot51/2 Stot51/2 a

2 8.3221 8.37~1! 8.1651 8.16~3!

4 11.0527 11.05~1! 11.0422 11.05~2!

6 13.4373 13.43~1! 13.4658 no data
8 15.5938 15.59~1! 15.6334 no data
10 17.5863 17.60~1! 17.6279 no data

aReference 32.
2-4
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QUANTUM-DOT LITHIUM IN ZERO MAGNETIC . . . PHYSICAL REVIEW B 65 115312
to Stot53/2 at l.lc . Near the critical point the gap be
tween the ground and first excited states behaves as

uE(0,3/2)2E(1,1/2)u/\v050.027 66ul2lcu, ~23!

with a jump of the derivative of the ground-state energy w
respect tol. At largel ~more exactly, atl510) the energy
difference is E(0,3/2)2E(1,1/2)'20.0416\v0. A similar
level-crossing effect is also seen atl57.397 where the lev-
els (0,1/2) and (1,3/2) intersect each other.

In Table I exact results for the energies of the sta
~1,1/2! and~0,3/2! are compared with QMC results from Re
32. One sees that the accuracy of the QMC results32 is in
general very high, but the errors are not always small~see,
e.g.,l510) compared to thedifferencebetween the energie
of the ground and excited states.

2. Approximations

The energy of the states (1,1/2) and (0,3/2) can be
proximated, in the interval 0<l<10, by the formula

E5EGS
cl 1ecl~AX1AB21C2X22B!, ~24!

where EGS
cl is the classical ground-state energy~20!, X

5\v0 /ecl , and the numbersA, B, andC for the two con-
sidered states are

~A,B,C!(1,1/2)5~3.115 36,2.930 76,0.917 954!, ~25!

~A,B,C!(0,3/2)5~2.841 71,2.445 29,2.136 33!. ~26!

For the state (1,1/2) the difference between the exact en
and the approximations~24! and ~25! is about 0.83% atl
50, does not exceed 0.22% at 0.05<l<10, and tends to
zero with growingl. For the state (0,3/2) the differenc
between the exact solution and the approximation is sma
than 0.44% in the whole range ofl. It should be noted
however, that the difference between the energies of the

FIG. 6. Heat capacity of a three-electron parabolic quantum
as a function of the temperaturekT/\v0 and the interaction param
eter l 0 /aB .
11531
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statesE(0,3/2)2E(1,1/2) is reproduced by the approximate fo
mulas~24!–~26! with substantially worse accuracy.

B. Heat capacity

Figure 6 exhibits the calculated low-temperature heat
pacity Cl as a function ofT andl. About 30 lowest-energy
levels for eachLtot from 0 to 9, with corresponding degen
eracies, were taken into account in this calculation. A p
nounced peak related to the gap between the ground and
excited states can be clearly seen in this figure. The valu
the peak temperatureTp(l) depends onl as uE(0,3/2)
2E(1,1/2)u ~compare to Fig. 5!, and disappears at the critica
point l5lc . The most dramatic variations of the heat c
pacity are cases in the rangekT&0.1\v0, which corre-
sponds, at a typical confinement of GaAs quantum d
(\v0;3 meV), to temperature of a few Kelvin.

C. Electron density and correlations

Due to rotational symmetry of the Hamiltonian~1! the
densityns

(Ltot ,Stot)(r ,u) of spin-up and spin-down polarize
electrons in the quantum-mechanical states (Ltot ,Stot) does
not depend on the angular coordinateu, and is shown below
as a function of r only. The pair-correlation functions
Pss8(r ,r 8) are plotted as a function ofr / l 0, for all orienta-
tions of spins, at the second coordinater 8 fixed at the clas-
sical distance~19! from the origin,r 85(0,2Rcl) ~thesecond
subscript corresponds to the spin of a fixed electron!.

1. The state„L tot ,Stot…Ä„0,3Õ2…

The total density of electronsn(0,3/2)(r )5n↑
(0,3/2)(r )

1n↓
(0,3/2)(r ) in the state (Ltot ,Stot)5(0,3/2) at a few values

of the interaction parameterl is shown in Fig. 7. The func-
tion n(0,3/2)(r ) also determines the densities of spin-up a
spin-down polarized electrons: in the state with the total-s

t, FIG. 7. Total electron density~spin up plus spin down! in the
state (Ltot ,Stot)5(0,3/2) at differentl. Triangles show the posi-
tions of the classical radius~19! at corresponding values ofl.
2-5
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FIG. 8. Pair-correlation func-
tion P↑↑ of the state withLtot

50, Stot53/2, andSz
tot513/2, at

l50.1, 2.0, 4.0, and 8.0, from up
to down (ur 8u/ l 05Rcl / l 050.38,
1.04, 1.32, and 1.66, respectively!.
n-
-

t
ce
al
projectionSz
tot513/2 the density of spin-up electrons coi

cides withn(0,3/2)(r ), while the density of spin-down elec
trons is zero; in theSz

tot511/2 state one hasn↑
(0,3/2,11/2)(r )

5 2
3 n(0,3/2)(r ), andn↓

(0,3/2,11/2)(r )5 1
3 n(0,3/2)(r ). One sees tha

at all l maxima of the electron density lie at a finite distan
from the origin. Atl*1 they are very close to the classic
11531
radii ~19!, shown by triangles in the figure; atl!1 ~weak
Coulomb repulsion! they are at even largerr, due to the
exchange repulsion.

Figure 8 exhibits the pair-correlation functionP↑↑(r ,r 8)
in the state (Ltot ,Stot ,Sz

tot)5(0,3/2,13/2) ~three other func-
tions in this state obviously vanish,P↑↓5P↓↑5P↓↓50; in
2-6
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QUANTUM-DOT LITHIUM IN ZERO MAGNETIC . . . PHYSICAL REVIEW B 65 115312
the state with Sz
tot511/2 one has P↑↑,↑↓,↓↑

(0,3/2,11/2)

5 1
3 P↑↑

(0,3/2,13/2) , andP↓↓
(0,3/2,11/2)50). The interaction param

eterl assumes the values 0.1, 2, 4, and 8, from up to do
At small l electron-electron interaction is weak, and t
pair-correlation function has a form of a single peak cente
opposite the fixed electron. With growingl this peak is split
into two, and this splitting becomes very pronounced
strong Coulomb interaction (l*4).

The internal structure of the state (0,3/2) thus cor
sponds to the angle-averaged classical configuration o
equilateraltriangle~see the inset to Fig. 3!. This structure is
highly symmetric and ‘‘rigid’’: the ratio of the sides of th

FIG. 9. Total electron density~spin up plus spin down! in the
state~1,1/2! at differentl. Triangles show the positions of the cla
sical radius~19! at corresponding values ofl.

FIG. 10. Density of spin-up polarized electrons in the st
~1,1/2! at differentl. Triangles show the positions of the classic
radius~19! at corresponding values ofl.
11531
n.

d
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-
an

triangle remains unchanged when the curvatureK of the con-
finement potential varies (K}l24). This state is a quantum
dot analog of the spin-polarized Wigner solid~a Wigner mol-
ecule!.

2. The state„L tot ,Stot…Ä„1,1Õ2…

In the state (1,1/2) the spatial distribution of electrons
less trivial. Now we have two sorts of particles: two ele
trons are polarized up, and one electron is polarized do
Figure 9 exhibits the total electron density~spin up plus spin
down!. One sees that at smalll electrons behave as non- o
weakly interacting particles, forming the structure with
maximum of the electron density atr 50. Such a picture is
the case up tol.2, when a weak minimum of the density a
r 50 appears. At even largerl the influence of electron-
electron interaction becomes more important: the density
electrons qualitatively looks as it does in the state~0,3/2!,
with a minimum atr 50 and maxima close to the classic
radii ~19!.

Additional and even more interesting information can
extracted from Figs. 10 and 11, which show separately
densities of spin-up and spin-down polarized electrons. O
sees that at smalll the one spin-down electron occupies t
center of the dot, while the two spin-up electrons rota
around the center with a maximum of the density at a fin
distance from the origin. Such a situation is a pecul
quantum-mechanical feature: it is not encountered in
classical picture. With growingl ~electron-electron interac
tion increases! the two spin-up electrons push the spin-dow
electron out from the center, but the structure ‘‘one~spin-
down! electron is essentially closer to the center, two~spin-
up! electrons rotate around’’ conserves up tol.2: the den-
sity of the spin-up electrons has a clear maximum at a fin
distance from the origin, while the density of the spin-dow
electron is still maximal atr 50. At even largerl (*4)
~stronger electron-electron interaction! the density maximum

e

FIG. 11. Density of spin-down polarized electrons in the st
~1,1/2! at differentl. Triangles show the positions of the classic
radius~19! at corresponding values ofl.
2-7
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FIG. 12. Pair-correlation func-
tion P↑↑ of the state withLtot

51, Stot51/2, andSz
tot511/2, at

l50.1, 2, 4, and 8, from up to
down (ur 8u/ l 05Rcl / l 050.38,
1.04, 1.32, and 1.66, respectively!.
he

hi

dis-

ion
he
of the spin-down electron is shifted to a finiter, but at anyl
it is closer to the origin than the density maximum of t
spin-up electrons.

These features can be also seen in Figs. 12–14, w
exhibit the pair-correlation functionsP↑↑ , P↓↑ , andP↑↓ in
the state (Ltot ,Stot ,Sz

tot)5(1,1/2,11/2) (P↓↓50 in this
11531
ch

state!. Compare, for instance, Figs. 12 (P↑↑) and 13 (P↓↑).
In both cases a spin-up electron is fixed at the classical
tance from the origin. Letl52 ~the second row of plots!.
One sees that the maximum of the pair-correlation funct
is about two times closer to the center of the dot for t
spin-down electron~Fig. 13! than for the spin-up electron
2-8
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FIG. 13. Pair-correlation func-
tion P↓↑ of the state withLtot

51, Stot51/2, andSz
tot511/2, at

l50.1, 2, 4, and 8, from up to
down (ur 8u/ l 05Rcl / l 050.38,
1.04, 1.32, and 1.66, respectively!.
an
ea
l-

re

and
uc-
nd

ed
n

~Fig. 12!. At l54 this difference is less pronounced but c
also be seen. In Fig. 13 one also sees that in the limit of w
Coulomb interactionl!1 the spin-down electron is loca
ized in the center, in agreement with the above analysis
the density plots.

The internal structure of the state (1,1/2) thus cor
sponds to an angle-averaged configuration of anisosceles
11531
k

of

-

triangle, with two spin-up electrons at the base corners
one spin-down electron at the top of the triangle. This str
ture is less symmetric than that of the (0,3/2) state a
‘‘soft’’: the ratio of the sides varies withl, changing from
1/2 atl50 to 1 atl5` ~see the insets to Fig. 2!. At small
l this state is a quantum-dot analog of the unpolariz
Fermi-liquid state. At largel this state has properties of a
2-9
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FIG. 14. Pair-correlation func-
tion P↑↓ of the state withLtot

51, Stot51/2, andSz
tot511/2, at

l50.1, 2, 4, and 8, from up to
down (ur 8u/ l 05Rcl / l 050.38,
1.04, 1.32, and 1.66, respectively!.
a

the
s

unpolarized~and not fully symmetric at finite\) Wigner
molecule.

3. Reconstruction of the ground state

Now, we can understand the physical reason for the tr
sition (1,1/2)↔(0,3/2) at the varying parameterl. Consider
11531
n-

what happens with the ground state of the system when
curvatureK}v0

2}l24 of the confinement potential varie
from small ~the limit of strong Coulomb interactionl→`)
to large ~the weak Coulomb-interaction regime! values. At
small K the quantization effects are negligible,\v0 /ecl

5l22/3!1, electrons are at a large~compared tol 0) distance
2-10
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from each other, and they form a quasiclassical equilate
triangle structure. In this highly symmetric structure all ele
trons should be equivalent~have the same spin!, therefore
the total spin of the dot in this limit isStot53/2. Increasing
the curvature reduces the area of the triangle. Its form h
ever first remains unchanged. Further increase of the cu
ture costs energy, and the system is reconstructed, al
5lc , to another ground state with a more compact, ‘‘so
isosceles-triangle structure. In this less symmetric struc
one electron should differ from two others, therefore t
transition to the new ground state is accompanied by
change of the total spinStot→1/2. Further increase of th
curvature changes the ratio of sides of the isosceles trian
but not its symmetry.

Exactly at the transition pointl5lc the physical proper-
ties of the dot change very sharply. Figure 15 shows
total density of electronsne(r ) at l5lc in the states
(0,3/2) and (1,1/2). When the system passes fr
the (0,3/2) to the~1,1/2! state, electrons are pushed towar
the center of the dot with a 50% increase in the den
at the pointr 50. Figure 16 shows the area of the dot

A5
1

NE drpr 2ne~r !5
p

N K CGSU(
i

r i
2UCGSL ~27!

versus the curvatureK}l24 near the critical pointl
5lc (CGS is the ground-state wave function!. As the cur-
vature of the confinement potential can be treated as ‘‘p
sure’’ acting on electrons of the dot from the confining p
tential, Fig. 16 can be considered a ‘‘volume’’-‘‘pressur
diagram. One sees that increasing the pressure leads
discontinuous jump of the volume~with d-like peculiarity in
the compressibility! at the critical pointl5lc . In a real
system the transition shown in Fig. 16 may happen w
hysteresis.

FIG. 15. Electron density in the states~1,1/2! ~the ground state
at l,lc) and ~0,3/2! ~the ground state atl.lc) at the transition
point l5lc54.343.
11531
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IV. CONCLUDING REMARKS

Thus, there are two most important quantum states in
quantum-dot lithium. The first,partly polarized state
(Ltot ,Stot)5(1,1/2) describes an uncorrelated Fermi-liqui
type state at smalll, and smoothly transforms to a correlate
Wigner-solid-type state with growingl. The second,spin-
polarized state (Ltot ,Stot)5(0,3/2) corresponds to a sym
metric Wigner molecule at largel. At l5lc54.343 a tran-
sition between the two ground states occurs with grow
intradot Coulomb interaction. This effect is similar to that
macroscopic 2D ES, where a transition from the unpolariz
Fermi liquid to the spin-polarized Wigner solid was found
varying strengths of Coulomb interaction. The critical val
of the interaction parameter in the quantum-dot lithium
however substantially smaller than in the 2D ES, a fact t
was also pointed out in Ref. 31.

The transition (1,1/2)↔(0,3/2) should be observable i
many experiments. It should manifest itself in any therm
dynamic quantity. The difference in the ground-state to
spinStot should be also seen in the orbital and spin splittin
of levels in magnetic field, both parallel and perpendicular
the plane of 2D ES, as well as in Kondo-effect experimen
The structure of levels could be also studied by Raman sp
troscopy.

The method of the paper can be used for studying syst
with more particles and/or in a nonparabolic confinem
potential.55 It can also be used for investigating other pro
erties of the system, for instance, the influence of impuriti
or response of the dot to external fields. It is seen alre
now, for instance, that an asymmetrically located impur
will qualitatively differently affect the ground state of the d

FIG. 16. A ‘‘volume’’-‘‘pressure’’ diagram,A/ l 0
2 versus (10/l)4,

for the ground state of a quantum-dot lithium in the vicinity of th
transition pointl5lc54.343 ~solid curve!. Dashed curves show
the ‘‘volume’’-‘‘pressure’’ diagrams for the states (0,3/2)~upper
curve! and (1,1/2) ~lower curve!. Insets schematically show th
distribution of electrons in the ground state on both sid
of the transition point. In a real system the solid curve may ha
hysteresis.
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at l,lc and l.lc : in the former ~the latter! case the-
ground state is degenerate~nondegenerate! with respect to
Ltot , and the impurity will result in asplitting ~a shift! of the
ground-state level.

To summarize, I have performed a complete theoret
study of electronic and some other properties of quantum
lithium—a system of three Coulomb-interacting electrons
a harmonic-oscillator potential.
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