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Quantum-dot lithium in zero magnetic field: Electronic properties, thermodynamics,
and Fermi liquid —Wigner solid crossover in the ground state
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Energy spectra, electron densities, pair-correlation functions, and heat capacity of quantum-dot lithium in
zero external magnetic fielch system of three interacting two-dimensional electrons in a parabolic confine-
ment potentigl are studied using the exact diagonalization approach. Particular attention is given to a Fermi
liquid-Wigner solid crossover in the ground state of the dot, induced by intradot Coulomb interaction.
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[. INTRODUCTION In this paper | present results of a complete theoretical
Quantum dotsare artificial electron systen(&S) realiz-  study of a three-electron parabolic quantum dot. Using an
able in modern semiconductor structures. In these systengxact diagonalization technique, | calculate the full energy
two-dimensional2D) electrons move in the plare=0 ina  spectrum of the dot, as a function of the interaction param-
lateral confinement potentia¥(x,y). The typical length €terin the range €\<10. AtA=A.=4.343 | find a transi-
scalel, of the lateral confinement is usually larger than ortion (level crossingin the ground state of the dot, accompa-
comparable to the effective Bohr radiag of the host semi- nied by the change of the total-spin quantum number. | study

conductor. The relative strength of the electron-electron an{'€ densities and the pair-correlation functions in the ground
electron-confinement interaction, given by the ratio and the first excited states of the system at a numbex of
—l,/ag, can be varied, even experimentally, in a wide PoINts, including the vicinity ofA.. | also calculate some

range, so that the dots are treated as artificial atoms Witmermodynamlc properties of the dot: the heat capacity and

tunable physical properties. Experimentall uantum dots, - volume-pressure diagram. Other experimental conse-
€ phy Properties. EXxp Y d ; Epuences from predictions of this paper are also discussed.
were intensively studied in recent years, using a variety o

giff hni includi arc 8 In Sec. Il | briefly describe the model and the method
literent  techniques, including  capacitaricelransport, —seq in calculations. Results of the work are presented in

far-infrared and Raman spectros_co%y. _ Sec. Ill. Concluding remarks can be found in Sec. IV.
From the theoretical point of view, quantum dots are ideal

physical objects for studying effects of electron-electron cor-
relations. Different theoretical approaches, including analyti-
cal calculation$® exact diagonalizatiof?~?® quantum A. The Hamiltonian

'\;'10”“;35_2?'0 g (Q'r\]/'c) mﬁtr:j%i_sij‘“ densi;[y-;unctiongl | consider three 2D electrons moving in the plae0 in
theory, and other methods, “"were applied to study o parabolic confining potentidl(r)=m* wgrz/z, r=(x,y).
their properties, for a recent review see Ref. 47. Until re- e
. ) . The Hamiltonian of the system

cently most theoretical work was performed in the regime of
strong magnetic fields, when all electron spins are fully po- N ~o . 2.2 N 2

. . . ~ pi m a)ol’i l e
larized. In the past three years a growing interest has devel- 0= E 4 O\ = - (1)
oped in studying the quantum-dot properties in zero mag- i=1\2m* 2 2if=1 |ri_rj|
netic fieldB=0.232431:3234444¢ ha aim of these studies is to _
investigate the Fermi liquid—Wigner solid crossover in the(N=3) commutes with operators of the total angular mo-

dots, at varying strengths of Coulomb interaction. DetailednentumL'®", (squaredl total spinSZ,, and projection of the

knowledge of the physics of such a crossover in microscopigotal spiné}Ot on some (-) axis (not necessarily coinciding
dots could be compared with that obtained for macroscopigith the z axis). This gives three conserving quantum num-
2D ES (Refs. 48,49 and m|ght shed ||ght on the nature of berSLtOtE LtZOt, S[O’[1 andSI{Ot_ No magnetic field is assumed
the metal-insulator transition in two dimensiatis. to be applied to the system.

So far, to my best knowledge, full energy spectra of an
N-electron parabolic quantum dot in zero magnetic field, as a
function of the interaction parametkr were published only

Il. MODEL AND METHOD

B. Basis set of single-particle states

for N=2 (quantum-dot heliudt). For largerN a number of A complete set of single-particle solutions of the problem
results for the ground-state energy of the dots were reported
at separate points of the axis. In the quantum-dot lithium Gnis(r,0) = @n (1) xs(o) 2

(N=3) a transition from a partly to a fully spin-polarized . : . . 5152
ground state was predicted in Refs. 31, 32, and 44, however the product of the Fock-Darwin orbitdfs’

an exact value of the interaction parameteat the transition

i i iqi : - 1 [ n AL ”
point was not found. The physical origin of this effect is also r=— —( _> il o—r?2g Nl r2/12y (3
not fully understood. (1) o Va(n+[I)! Ty n (1) (3)
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and the spin functiongs(o). Herely=+A/m* w, is the os- as a function of the interaction parameter|,/ag. The
cillator length, and §,1,s) are the radial, asimutdhngular numberm=1,2, ... enumerates the energy levels of the sys-
momentum and spin quantum numbers of the single-particletem in the subspace of levels with givep,; and S}‘“. After
problem (1=0 andl are integerss= *=1/2). All the single-  the diagonalization problem is solved, the eigenvalues of the
particle stateg2) can be ordered and enumerated, edg., total spin are calculated for each levelfrom
=(nls);=(0,0,), #,=(0,0,l), #3=(0,1}), etc. The en-

ergy of the state§2) does not depend on spins, Siot( Stot+ 1):<‘I’Lmt,s‘§°‘,m|§ot|‘1’Lm,sl§°t,m)- (12
Ens=fhwo(2n+]1|+1). (4)  All the matrix elements of the Hamiltoniad,,, and of the
operator Sfot)uu, are calculated analytically.
C. Basis set of many-particle states All the energy levels with nonzerby,, and " are de-
A complete set of many-particle statés,, u=1,2, ... is generate,
formed by placing particles in different single-particle states, E_ qo=E | go=FE, _qo=E_, _qot. (13)
eg., Vi=|p1¢s¢3), Vo=[d12¢s), ..., where 0 ! - v
|podpd,) are Slater determinants, Presenting below results for the energy of the states
(Liot,SP), | omit the corresponding signEfor instance,
ba(61)  bp(6)  &y(&1) (1,1/2) stands for£ 1,+ 1/2) with all possible combinations
| bubph,)= ide b (&) Pp(é2) P (&2) (5)  Of signd. Degeneracy of levels are calculated accounting for
a Y 1
B g6 dulés) 648 Eq. (13

and¢ = (r; ;). All the many-particle state¥, can be also E. Properties of the states and the heat capacity

arranged, e.g. in order of increasing their total single-particle After the Schrdinger problem is solved and all the en-
energy ergy levels and the eigenfunctions are found, | calculate the
density of spin-up and spin-down polarized electrons in the

ElP= E(nls)ﬁE(nls)B“L E(nls)y' ®  states Lo, SP',m), and the corresponding pair-correlation
and enumerated. functions. These quantities are calculated as averages of the
operators
D. Solution of the Schradinger equation
Expanding the many-body wave function in a complete ”U(r):izl 5(r_ri)5wi (14)
set of many-particle states,
and
W (é1,62,68)= 2 CuVy(é1,62.69), (7) NN
! (r(r Z E 5(r - 5(r rj ) 5rrrri 50' o
| get the Schrdinger equation in the matrix form, B (15)
S (H —E8,,)Cyr=0. ®) with the e|genfunct|onslfLm,Stgot,m. All the matrix el_ements
u’ of the operatorg14) and(15) are calculated analytically.

As the method offers an opportunity to find all the energy
levels of the system, one can also calculate thermodynamic
properties of the dots. | calculate the heat capacityCas

The conservation of the total angular momentugy and the
projection of the total spiriStgOt allows one to chose the
many-body states for the expansi@h under additional con-

straints =(9EIJT), , where
N N
E.(\ e—En()\)/T
E Lot 2 Si:Stht- 9 . ; (M)
< =1 E=E\,T)= , (16)
This reduces the size of the matrix in E8) and facilitates > e BT
calculations. n
Numerically diagonalizing the eigenvalue probléB) | T is the temperature, and the sum is taken over(lailv-
get a set of energy levels lying) energy levels accounting for their degeneracies.
E" Smt _hwof" Smt m(M), (10 F. Convergency of the method
and corresponding eigenfunctions The number of all many-particle states in the problem is
infinite, and the size of the matrid,,, in Eq. (8) is infinite
S m 2 C'—tot 7 OO, (11 too.To perform practical calculations | restrict the number of

many-particle states in the expansi6f) so that the total
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FIG. 1. Convergency of the energy of the lowest state with |G 2. Low-lying energy levels with the total angular momen-
(Liot:Stor) =(1,1/2). The energy unit i&wo. The curves are la-  ym L =1 in a three-electron quantum dot. The energy unit is
beled by two numbersH,,Nmpg, whereEy, is the threshold en- 7, The five lowest levels are labeled by their total sBig, and
ergy (in units iwg), andNpps is the number of many-body states he degeneracy. The insets schematically show the structure of the
involved in the expansiofi). lowest-level wave function, at smafleft insed and large(right
insed \, for details see Sec. Il C.
single-particle energgf) of the involved many-body states is
smaller than some threshold valig,, EJ;’<E,,. The larger characterizes the relative strength of classical Coulomb
the threshold energf,,, the broader the range of in  (~e€?) and quantization{#) effects. The limit of smalik
which results are convergent and reliable. Typically, less thagorresponds to a weakly interacting systezA-{¢0) and can
1000 many-particle states were sufficient for all the calculabe treated exactly. The ground state in this limit is realized in
tions presented below. the configuration[(0,0,7)(0,0,/)(0,1,1)1, i.e., (Lot Stor)
Convergency of the method is illustrated in Fig. 1, where=(1,1/2), with the energy
the energy E(;1,) of the lowest state j=1) with
(Liot»Stor) = (1,1/2) is shown as a function af=1,/ag for
increasing threshold enerds;,,. The curves are labeled by
Ei, and the number of many-body quantum staiks. in-
volved in the expansioli7). One sees that including about
1000 many-body states leads to very accurate results for t
energy at\ <20. Notice that below | present results for the
energy in the interval <10, where the method is practically

A—0

The opposite cask— o corresponds to the purely clas-
mical limit (£—0). In the classical ground state, electrons
occupy the corners of an equilateral trianglé? with the
distance

exact: atA=10 | found thatEj 1/5)/fiwe=17.627 891 at R.—| /316 (19
Nmps= 1024, and 17.627 974 M,,,s—549. The difference ¢l el
comprises 4. 10™“%. from the origin. The ground-state energyNat = is

Ill. RESULTS Egs= 3 /2. (20

Here | =(e?/m* 03)® and e,=e?/l, are the classical

All the lengths in this section are measured in uhjtall
length and energy units. So, in the classical limit

the energies in unitd wy, and the densities and the pair-
correlation functions in units#l (2))‘l and (wl(z))‘z, respec-

tively. lim Egs/fiog=3%3\%32.

A—oo

(21)

Equations(18) and(21) give asymptotes of the ground-state
energy at very small and very large

At arbitrary N one needs numerical calculations. Figure 2
shows the low-lying energy levels of a three-electron para-
bolic quantum dot with the total angular momentury,
2 =1. Shown are only the states which start fr&ith wo<6

A. Energy spectra
1. Exact results

The interaction parameter in the problem

lo
x:—:
ap

/ezl ag
ﬁwo

e
o
ﬁ3/2

7

at A=0. The lowest-energy statgéhe ground state in the

subspace of levels with,,;=1) correspondgin the limit

115312-3



S. A. MIKHAILOV PHYSICAL REVIEW B 65 115312

20 1 T T T T
08 | 1
15 06 | 1
S S
) @
5] 5 04f _
10
02 |
0
5 L N N L n 1 n 1 n 1 n 1 n
0 2 4 6 8 10 0 2 4 6 8 10
l/ag l/ag

FIG. 3. Low-lying energy levels with the total angular momen- ~ FIG. 5. Energy difference between the lowest stefgss),)
tum L,,;=0 in a three-electron quantum dot. The energy unit is ~ E(112) in a three-electron quantum dot as a function of the inter-
fiwo. The five lowest levels are labeled by their total sBjg and ~ @ction parametek =l,/ag . The energy unit i% wo. The transition
the degeneracy. The inset schematically shows the structure of theOCCUrs ai\ =\ ~4.343.
lowest-level wave function, for details see Sec. Il C.

figuration[ (0,—1,7)(0,0,7)(0,1,1)]. The state with a partial
\—0) to the configuratiofi(0,0:)(0,0,,)(0,1])], and has  SPin polarization §,,,=3/25°'=+1/2) corresponds in the
the total spinS,,=1/2. This state is fourfold degenerate limit \—0 to the configuration ¥ ,+W¥,+V¥3)/\/3, where
(Liot=*1/2, SP'=£1/2).

Figure 3 shows the low-lying energy levels with the total ¥,=[(0,~1,1)(0,0,7)(0,1])],
angular momenturh,,;=0. Shown are only the states which
start fromE/Awy=<7 atA=0. The lowest-energy state has ¥,=[(0,—1,1)(0,0,/)(0,1,1)1,
the total spinS,=3/2 and fourfold degeneracySf'=
+3/2,+1/2). In the limitA—0 the state with the full spin W,=[(0,—1,1)(0,0,1)(0,1,/)]. (22

polarization Go=3/2S°'=+3/2) corresponds to the con-
| performed similar calculations fdt,,; from O to 9 and

18 - for all total-spin statesS,,;=3/2 and 1/2. Results fok
# from O to 2 are shown in Fig. 40nly the lowest-energy
16 - _ levels (m=1) for each pair of numberqL;y,S.;) are
shown in the figuréthis means that, say,(@,1/2 level with
14 | i m>1 (not shown in the figupemay have lower energy than
the exhibited level (2,3/2) withm=1]. At some critical
.l | value of A (A=A.=4.343) one observes @ossingof the
= ; two lowest-energy levels (1,1/2) and (0,3/&hore clearly
§ o — (0,1/2), g=2 seen in Fig. 5 where the energy differet€@ sy~ E(1,1/2) is
10 R (0,3/2), g=4 ] plotted versus\). At the critical point the total spin of the
— g;g; 81‘ system in the ground state changes frBg=1/2 atA <\
8 ’ (R 4
- fg;ﬁg g;g TABLE I. Energies of the statgd,1/2) and(0,3/2 calculated in
6 | J this work (exact diagonalizationand in Ref. 32(QMC, multilevel
blocking algorithm.
49 > 4 6 8 0 A Se=3/2  So=32%  Sg=12  Sg=1/2°2
/s 2 8.3221 8.31) 8.1651 8.18)
FIG. 4. Low-lying energy levels in a three-electron quantum 4 11.0527 11.08) 11.0422 11.08)
dot, for the total angular momentuiry,, from 0 to 2 and for all 6 13.4373 13.4Q3) 13.4658 no data
total-spin states. Only the one lowest-energy level is shown for each 15.5938 15.54) 15.6334 no data
pair of quantum numberd (o, S;or). The energy unit idiwo. The 10 17.5863 17.6Q) 17.6279 no data
levels are labeled by the pair of quantum numbeérg;(S;,;) and
the degeneracy. aReference 32.
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FIG. 7. Total electron densitgspin up plus spin downin the

state Cior,Stor) =(0,3/2) at different\. Triangles show the posi-

tions of the classical radiud9) at corresponding values af.

t0 Si0;=3/2 at A>\. Near the critical point the gap be- StatesE(oz2)~ E(1,12)Is reproduced by the approximate for-
mulas(24)—(26) with substantially worse accuracy.

tween the ground and first excited states behaves as

|E 0,312y~ E(1,112)|/h 00=0.027 66\ — \ ¢/,

B. Heat capacity

with & jump of the derivative of the ground-state energy with  gjgre 6 exhibits the calculated low-temperature heat ca-

respect ton. At large\ (more exactly, ah = 10) the energy pacity C,
difference is E sy~ E(1,12y~ —0.0416.wo. A similar
level-crossing effect is also seen)at 7.397 where the lev-
els (0,1/2) and (1,3/2) intersect each other.

(1,1/2 and(0,3/2 are compared with QMC results from Ref.
32. One sees that the accuracy of the QMC re¥uissin
general very high, but the errors are not always srsak,
e.g.,A=10) compared to thdifferencebetween the energies

of the ground and excited states.

2. Approximations

The energy of the states (1,1/2) and (0,3/2) can be ap-
proximated, in the interval € A< 10, by the formula

E=EYs+ e (AX+ B2+ C2X?—B),

where EY; is the classical ground-state energg0), X
=hwole,, and the numbers, B, andC for the two con-

sidered states are

(A,B,C)(1.12=(3.11536,2.930 76,0.917 954 (25)

(A,B,C)(032)=(2.84171,2.44529,2.136 B3 (26)

as a function ofl andA. About 30 lowest-energy

levels for each_;,; from O to 9, with corresponding degen-
eracies, were taken into account in this calculation. A pro-

. nounced peak related to the gap between the ground and first
In Table | exact results for the energies of the stategycited states can be clearly seen in this figure. The value of
the peak temperaturd,(\) depends on\ as |E(0,3,2)
—E(1,11) (compare to Fig. b and disappears at the critical
oint \=\.. The most dramatic variations of the heat ca-
pacity are cases in the randel=<0.14w,, which corre-
sponds, at a typical confinement of GaAs quantum dots
(hwp~3 meV), to temperature of a few Kelvin.

C. Electron density and correlations

Due to rotational symmetry of the Hamiltonidd) the
densitynfTL“’t’S“’t)(r,a) of spin-up and spin-down polarized
electrons in the quantum-mechanical stateg;(S;,;) does

For the state (1,1/2) the difference between the exact energy

and the approximation&24) and (25) is about 0.83% ah
=0, does not exceed 0.22% at 0s0b<10, and tends to

not depend on the angular coordin&teand is shown below
as a function ofr only. The pair-correlation functions
P, (r,r') are plotted as a function afl,, for all orienta-
tions of spins, at the second coordinatefixed at the clas-
sical distancé19) from the origin,r’ =(0,— R) (thesecond
subscript corresponds to the spin of a fixed eledtron

1. The state(L ;o1 ,Si00) =(0,32)
The total density of electrons(®32)(r)=n{®%2)r)

zero with growing\. For the state (0,3/2) the difference +n{®*(r) in the state (o, Sio) = (0,3/2) at a few values
between the exact solution and the approximation is smalleof the interaction parameter is shown in Fig. 7. The func-

than 0.44% in the whole range of. It should be noted

tion n(®%2)(r) also determines the densities of spin-up and

however, that the difference between the energies of the twepin-down polarized electrons: in the state with the total-spin

115312-5
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projectionS‘f‘: +3/2 the density of spin-up electrons coin- radii (19), shown by triangles in the figure; at<1 (weak
cides withn(®¥2)(r), while the density of spin-down elec- Coulomb repulsion they are at even larger, due to the
trons is zero; in thes'= + 1/2 state one has{®¥>*¥?(r)  exchange repulsion.

=2n(©32)r), andn{®¥2"2(r) = 1n(®32)r). One sees that  Figure 8 exhibits the pair-correlation functidh (r,r")
at allx maxima of the electron density lie at a finite distancein the state [;o,S;ot ,Stg‘“) =(0,3/2;+ 3/2) (three other func-
from the origin. AtA\=1 they are very close to the classical tions in this state obviously vanisi®, =P ;=P =0; in

115312-6



QUANTUM-DOT LITHIUM IN ZERO MAGNETIC ... PHYSICAL REVIEW B 65 115312

2 T T 1 T T

c 0.8

§ 15 g

e 3

o

Z § 0.6

& )

z -

2 3

% £ 0.4

c =

o |53

= 2

8§ 05 @

© 0.2

0 0
r/1_0
FIG. 9. Total electron densityspin up plus spin downin the FIG. 11. Density of spin-down polarized electrons in the state

state(1,1/2 at different\. Triangles show the positions of the clas- (1,1/2 at different\. Triangles show the positions of the classical
sical radius(19) at corresponding values af. radius(19) at corresponding values af.

the state with 8‘6‘“: +1/2 one has P{$3%11?  triangle remains unchanged when the curvatui the con-

=3 P{9¥2732) "and p(3¥2* 2= 0). The interaction param- finement potential varies(>\ ~*). This state is a quantum-

eter\ assumes the values 0.1, 2, 4, and 8, from up to downdot analog of the spin-polarized Wigner solaWigner mol-

At small A electron-electron interaction is weak, and theecule.

pair-correlation function has a form of a single peak centered

opposite the fixed electron. With growingthis peak is split 2. The state(L o, Stor) = (1,/2)

into two, and this splitting becomes very pronounced at In the state (1,1/2) the spatial distribution of electrons is

strong Coulomb interactiol\&4). less trivial. Now we have two sorts of particles: two elec-
The internal structure of the state (0,3/2) thus corretrons are polarized up, and one electron is polarized down.

sponds to the angle-averaged classical configuration of ahnigure 9 exhibits the total electron dens{gpin up plus spin

equilateraltriangle (see the inset to Fig.)3This structure is down). One sees that at small electrons behave as non- or

highly symmetric and “rigid”: the ratio of the sides of the Weakly interacting particles, forming the structure with a
maximum of the electron density at=0. Such a picture is

the case up ta=2, when a weak minimum of the density at
r=0 appears. At even larger the influence of electron-
electron interaction becomes more important: the density of
electrons qualitatively looks as it does in the stéie3/2),
with a minimum atr =0 and maxima close to the classical
radii (19).

Additional and even more interesting information can be
extracted from Figs. 10 and 11, which show separately the
densities of spin-up and spin-down polarized electrons. One
sees that at small the one spin-down electron occupies the
center of the dot, while the two spin-up electrons rotate
around the center with a maximum of the density at a finite
distance from the origin. Such a situation is a peculiar
quantum-mechanical feature: it is not encountered in the
classical picture. With growing (electron-electron interac-
tion increasesthe two spin-up electrons push the spin-down
electron out from the center, but the structure “ofspin-
down) electron is essentially closer to the center, t&pin-
up) electrons rotate around” conserves up\te-2: the den-
sity of the spin-up electrons has a clear maximum at a finite

FIG. 10. Density of spin-up polarized electrons in the statedistance from the origin, while the density of the spin-down
(1,1/2 at different\. Triangles show the positions of the classical electron is still maximal at=0. At even largerx (=4)
radius(19) at corresponding values af. (stronger electron-electron interactjche density maximum

electron density, spin up
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of the spin-down electron is shifted to a finitebut at anyax statg. Compare, for instance, Figs. 1P(;) and 13 @ ;).

it is closer to the origin than the density maximum of theln both cases a spin-up electron is fixed at the classical dis-

spin-up electrons. tance from the origin. Leh =2 (the second row of plojs
These features can be also seen in Figs. 12—-14, whicOne sees that the maximum of the pair-correlation function

exhibit the pair-correlation function,;, P ;, andP; in  is about two times closer to the center of the dot for the

the state Lior,Sor,S)=(1,1/2;+1/2) (P ;=0 in this  spin-down electror{Fig. 13 than for the spin-up electron
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FIG. 13. Pair-correlation func-
4 tion P, of the state withL,
=1, St=1/2, andS?'=+1/2, at
A=0.1, 2, 4, and 8 from up to
down (r'|No=R¢ /1,=0.38,
1.04, 1.32, and 1.66, respectively
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(Fig. 12. At A =4 this difference is less pronounced but cantriangle, with two spin-up electrons at the base corners and
also be seen. In Fig. 13 one also sees that in the limit of weakne spin-down electron at the top of the triangle. This struc-
Coulomb interactiom. <1 the spin-down electron is local- ture is less symmetric than that of the (0,3/2) state and
ized in the center, in agreement with the above analysis ofsoft”: the ratio of the sides varies withx, changing from
the density plots. 1/2 atA =0 to 1 atA =<0 (see the insets to Fig,).2At small

The internal structure of the state (1,1/2) thus corre-\ this state is a quantum-dot analog of the unpolarized
sponds to an angle-averaged configuration ofismsceles Fermi-liquid state. At large\ this state has properties of an

115312-9
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FIG. 14. Pair-correlation func-
4 tion P, of the state withL,

=1, St=1/2, andS?'=+1/2, at
A=0.1, 2, 4, and 8 from up to

0490 ¢
© . : . . down  (r'|/lo=Rgy/1,=0.38,
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unpolarized(and not fully symmetric at finitéh) Wigner  what happens with the ground state of the system when the

molecule. curvatureK = w3« of the confinement potential varies
from small (the limit of strong Coulomb interactioR— =)
3. Reconstruction of the ground state to large (the weak Coulomb-interaction reginealues. At
Now, we can understand the physical reason for the transmall K the quantization effects are negligiblé.wq/e
sition (1,1/2)-(0,3/2) at the varying parametkr Consider —=\"2<1, electrons are at a largeompared td,) distance
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FIG. 15. Electron density in the statés1/2 (the ground state FIG. 16. A “volume”-“pressure” diagramA/IS versus (10§)4,
at A\<\.) and(0,3/2 (the ground state at>\.) at the transition for the ground state of a quantum-dot lithium in the vicinity of the
point A =\.=4.343. transition point\ =\.=4.343 (solid curvg. Dashed curves show
the “volume”-“pressure” diagrams for the states (0,3/2)pper
from each other, and they form a quasiclassical equilaterafurve and (1,1/2)(lower curve. Insets schematically show the
triangle structure. In this highly symmetric structure all elec-distribution of electrons in the ground state on both sides
trons should be equivalerthave the same spintherefore of the trgnsmon point. In a real system the solid curve may have
the total spin of the dot in this limit i§,,=3/2. Increasing YSteresis.
the curvature reduces the area of the triangle. Its form how-
ever first remains unchanged. Further increase of the curva- IV. CONCLUDING REMARKS
ture costs energy, and the system is reconstructed, at . .
-\ to anotherg)g/]round state ?//vith a more compact ?\soft” Thus, there are two most important quantum states in the
Cc» ] . . . .
isosceles-triangle structure. In this less symmetric structurduantum-dot lithium. The first,partly polarized state
one electron should differ from two others, therefore thelltot:Swor) =(1,1/2) describes an uncorrelated Fermi-liquid-
transition to the new ground state is accompanied by th&/Pe state at smal, and smoothly transforms to a correlated
change of the total spi,,— 1/2. Further increase of the Wigner-solid-type state with growing. The secondspin-
curvature changes the ratio of sides of the isosceles triangl@olarized state (o, S01) =(0,3/2) corresponds to a sym-
but not its symmetry. metric Wigner molecule at large. At A =\.=4.343 a tran-
Exactly at the transition point=\ the physical proper- Sition between the two ground states occurs with growing
ties of the dot change very sharply. Figure 15 shows théntradot Coulomb interaction. This effect is similar to that in
total density of electrons(r) at A=\, in the states macroscopic 2D ES, where a transition from the unpolarized
(0,3/2) and (1,1/2). When the system passes fronfermi liquid to the spin-polarized Wigner solid was found at
the (0,3/2) to the1,1/2 state, electrons are pushed towardsvarying strengths of Coulomb interaction. The critical value

the center of the dot with a 50% increase in the densityf the interaction parameter in the quantum-dot lithium is
at the pointr =0. Figure 16 shows the area of the dot however substantially smaller than in the 2D ES, a fact that

was also pointed out in Ref. 31.
The transition (1,1/2%-(0,3/2) should be observable in

many experiments. It should manifest itself in any thermo-
‘I’Gs> (27)  dynamic quantity. The difference in the ground-state total

spin S;,; should be also seen in the orbital and spin splittings

of levels in magnetic field, both parallel and perpendicular to
versus the curvaturdK=\~* near the critical point\  the plane of 2D ES, as well as in Kondo-effect experiments.
=\, (Vgsis the ground-state wave functiprAs the cur-  The structure of levels could be also studied by Raman spec-
vature of the confinement potential can be treated as “presroscopy.
sure” acting on electrons of the dot from the confining po- The method of the paper can be used for studying systems
tential, Fig. 16 can be considered a “volume”-“pressure” with more particles and/or in a nonparabolic confinement
diagram. One sees that increasing the pressure leads topatential®® It can also be used for investigating other prop-
discontinuous jump of the volumevith &-like peculiarity in  erties of the system, for instance, the influence of impurities,
the compressibility at the critical point\=\.. In a real or response of the dot to external fields. It is seen already
system the transition shown in Fig. 16 may happen withnow, for instance, that an asymmetrically located impurity
hysteresis. will qualitatively differently affect the ground state of the dot

w

1 2
A= NJ drar ne(r)=N Vs

s
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