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Local density of states and scattering matrix in quasi-one-dimensional systems
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Mathematical relations between the local density of stdtB¥DS) and the scattering matri.e., transmis-
sion and reflection amplitudefor quasi-one-dimensional systems are derived in the presence of static uniform
magnetic fields. Starting from the definition of the LDOS expressed by the Green’s function, we derive the
formulas for the LDOS in terms of the functional derivative of the scattering matrix or the Friedel phase with
respect to a scattering potential.

DOI: 10.1103/PhysRevB.65.115307 PACS nunider72.10.Bg, 03.65.Nk

I. INTRODUCTION present a brief description of the scattering problem in quasi-
one-dimensionalQ1D) systems subjected to a static uniform
The single-particle density of staté®@OS) is one of the magnetic field. Section Il consists of six subsections. After
most important and useful concepts in the study of equilibintroducing the definition of LDOS in the first subsection, we
rium thermodynamic properties of systems. Once the DOS igresent in the second and third subsections the derivation of
obtained, one can construct the thermodynamic potentidhe relation between the potential-induced deviation of the
from which any thermodynamic quantities can be derived. global DOS (GDOS and the scattering matrix, which is
Recently, the conceptual importance of DOS and its generagauivalent to the Friedel sum ruf&: This part is the
ized version has been strongly emphasized in the study ditraightforward generalization of Avishai and Band's previ-
mesoscopic physics:* It is well known that electronic trans- OUS worK to the case of multichannel conductors subjected
port phenomena in mesoscopic phase_coherent systems C&ha magnetic f|e|d The fOUrth.and f|fth subsections are the
be well described by Landauer-Biker scattering theoretical central part of this paper, dealing with the problem of how
formalism® Interestingly, the density of states and thus thethe LDOS itself is expressed in terms of the scattering ma-
thermodynamic quantities can be also described in th&ix. Inthe final subsection of Sec. Ill, we discuss the relation
framework of the scattering theory as discussed in the folamong the Friedel phase, GDOS, and LDOS. The summary
lowing pioneering works: Dashen, Ma, and Burnstdior- ~ Of results and conclusions is presented in Sec. IV.
mulated equilibrium thermodynamics in terms of the scatter-
ing matrices, and Avishai and Bahgresented the general
relation between the scattering matrix and the global DOS in

one-dimensional systems. _ _ In this section we briefly present a formal scattering
Subsequently, in the scattering theoretical formulation oftheory of an electron in a Q1D system, which gives us an
— 11 ; - . : . ' . .
ac transport, Btiiker and co-worker$'" generalized the important mathematical basis to discuss the relationship be-
concept of DOS by introducing the partial density of statesween the density of states and the scattering matrix. To be-
and the local partial density of stat@sPDOS, in which the  gin, |et us consider a perfect Q1D wire with widi sub-

use of scattering matrices is essential to extpagtial con- jected to a static uniform perpendicular magnetic field. An
tributions to the DOS. The information about the LPDOS |Se|ectr0n in such a System is described by the Hamiltonian

desirable for the description of ac or nonlinear transport

states in ordzgr 6to take into account nonequilibrium charge

distributions'?~®Also, the concept of the LPDOS is known 1 5

to be essential to describe the dwell time of a particle in Ho(r,p)= 5 [P~ aA(N*+ U(y), @
conductors’~1° Another example where the generalized
DOS is important is the theory of tunneling current flowing

through the scanning tunneling microscopeip. di ional bl 4 he ch f |
Although there is no doubt about the conceptual impor—tV\_’o' Imensional planeq= —|e| the charge of an electron
th an effective massn, and A(r) = —Bye, the vector po-

tance of those generalized densities of states, the problem &' i . . -

how to derive the scattering matrix representation of LDOStentlal d(_escnblng a static unl_form magnetic fiefiti= Bez

remains yet to be solved. Our main aim in this paper is tol Ne confinement potential (y) is zero forly|<W/2 while it

present a mathematical procedure to relate the local or globit  Otherwise(i.e., a hard-wall confinement potenialhe

DOS to scattering matrices, starting from the well-known®&genfunction of this free HamiltoniaH, can be expressed

formula for DOS expressed by the Green's funciofor 1N the form separated in variables as

completeness of our discussion, the relation between the glo-

bal density of states and the scattering matrix is also pre- 1

sented. OYO(r)= —=e"**pl (y), 2
This paper is organized as follows. In the next section we A V2w "

II. SCATTERING PROBLEM

where p= —i%(dldx,d/dy) is the momentum operator in a
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with the sign y=+(—) corresponding to the rightleft)
moving solution. Heré&=|K| is the longitudinal wave num-
ber and¢],(y) is the nth eigenfunction of the eigenvalue
equation

2

h? d? wg
+ =y Yo P+ U(Y) [ $2(Y)

2m dy2
=en(K) oY), 3

whereyo(yk)=ylék is the center of the cyclotron motion
with 1g= y%/(eB) the magnetic length, and.=eB/m the
cyclotron frequency. We assume that,(y) is normalized
such thatf/ ™z .dy| #2,(y)|?=1. Solving the eigenvalue Eq.
(3) for a given wave numbeég, one can determine the single-
particle energys,(k) (i.e., the eigenvalue oHy) and the
corresponding transverse wave functigf(y). In the ab-
sence of the confinement potential such tbldy)=0, Eq.
(3) has eigenvalues,=(n+1/2)i w. (Landau levelsinde-
pendent of the longitudinal wave numBdeand the center of
cyclotron motiony,. However the presence of the confine-
ment potentiall (y) influences the cyclotron motion near the
confinement wallgedge$ of the conductor, giving rise to the
formation of edge states. Then the energy eigenvajude-
pends on the longitudinal wave numbeallowing electrons
to have the longitudinal velocity (k)= (1/4)de, (k)/ k.
For a given electron enerdgy, we express the longitudinal
wave numbek satisfying the relatiolt = ¢ ,(k) ask,(E) for
each moddsubband index n, and the longitudinal velocity
v k=Kk,(E)] asv,(E). Hereafter we shall writ&,(E) and
v,(E) simply ask, andv,, respectively. The free scattering
state for a given energ is then expressed &bg(kggE)(r)

=0]0(r).

Let us consider the case where the scattering potential
V(r) describing impurities or any static defects is present ir\Nhere each submatris?’”’

addition to the free Hamiltoniahly(r,p): H(r,p)=Hq(r,p)
+V(r). We assume that the scattering potentiét) is re-
stricted within a central finite regionQQ=:{|x|<L/2,
|y|<WI/2}. In the presence of the scattering potentigt),
the free scattering statég(kg)(r) evolves into the full scat-

tering state @an(r) which can be expressed by the

Lippmann-Schwinger equation in terms of the retarde
Green’s functiorGS(r,r’,E) in the absence of scattering po-

~

tential along with theT matrix T(r,r’;E) given by T=V
+VGET in operator formt The full scattering stateb (1)
at particular positionsxg,y) in the right asymptotic region
(xg>L/2) and &, ,y) in the left asymptotic regionx( <
—L/2) is readily expressed by

i vl
()= 2 P06y T (B), ()
O (L) =P riP(x,y)

& |vnl

+2 @)\ T s (B) ()
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HereN, denotes the largest mode indesatisfying the con-
dition ¢,(k=0)<E for which k,(E) and v,(E) are real

numbers, and;,’r]”(E) is given by

fiN|vI(E)un(E)|

WhereT(kT"nkn(E) (v,v'=+,—) is the (k,,nk,) element
of the double Fourier-transforméldmatrix given by

St (E)= 018, + T (E),  (6)

T i ()= | ot [ ar e 010800700
%

It is noted that Eq.6) can be reduced to the Fisher-Lee
relatior* and the Baranger-Stone relatforin the absence
and the presence of magnetic fields, respectively.

It is obvious from Eqs(4) and(5) thats;," (s;,") plays
the role of the transmissiofreflection) amplitude from the
nth mode in the left asymptotic region to tht&a mode in the
right (left) asymptotic region. Similarly, the full scattering
stateCDﬁ(l(r) at those particular position(,y) and Xg,Y)

can be expressed in terms of the transmission amplijide
and the reflection amplitudes;, ™, respectively. Here
s, (sh7) is interpreted as the transmissigreflection
amplitude from the right asymptotic region to the legfght)
asymptotic region. Those transmission and reflection ampli-
tudess;,”, s, , S, , ands;,” compose a B, 2N, scat-
tering matrixS(E):

is aNpxX N, matrix whose [,n)
element is the transmission or reflection amplituﬂﬁé/ de-
fined by Eq.(6). One can prove that the scattering maiis
unitary owing to the Hermiticity of the scattering potential
V(r).

(I%efore closing this section, we emphasize that the each
scattering matrix elemem;f{f is not associated with the

s"H(E) s (E)

s "(E) s (E) ®

S(E)=(

dphase evolution due to the free propagation of an electron.

This is obvious from the fact that we hasﬁfz Oind,, in
the case oW(r)=0. Therefore, in the presence of scattering
potentials, the phas@rgument of the elements in the scat-
tering matrix plays the role of transmission or reflection
phase shifdue to the presence of the scattering potential.

Ill. DENSITY OF STATES

In the previous section we have discussed the scattering
problem of an electron in a Q1D system, and obtained the
expression for the scattering matrix at a given enekgy
in terms of theT matrix. Our purpose in this section is to
derive useful mathematical formulas for the density of states
at a given energ¥ in terms of the scattering matrix at that
energy.
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A. Definition of the local density of states the scattering potential, and is independent of the longitudi-

In the case of open infinite systems such as a Q1D wir&@l coordinatex, while Ap(r,E)=Ap(x,y;E) is the devia-
considered here, the density of states for an entire regiofion of the LDOS due to the presence of the scattering po-
becomes infinite because of the continuum energy spectrufghtial. In the absence of scattering potentials, the fact
of those systems. Thus what we should regard as a fundd{"r';E)=0 ensures the expected result, vip(r,E)
mental concept in such systems is theal density of states — Po(T,E). In the presence of scattering potentials, however,
(LDOS). The LDOS at a particular position for a given the_quar_mty_Ap(r,E) is integrated spatially over an entire
energyE is defined by using the full scattering wave function "€gion yielding
P(r) as

o W/2
w AD(E)EJ dxf dyAp(x,y,E)
—®© —W/2

©

p(nE)=2 2 | dKOR(N|*oE~eq(K) .
=——1Im THGYE)T(E)GRE)}. (15

Evaluation of this equation gives us the information on how

q the presence of scattering potentid(r) influences the

=—— ImGR(r,r;E), 9) GDOS at a given energll. As shown in the detailed calcu-
™ lation given in Appendix A, Eq(15) can be expressed in a

where we have used the formula XKi0,)=P(1k)  Simple form:
—imd(x). Here GR(r,r;E) is the diagonal elements of the

retarded Green’s function which satisfies _ i i :
AD(E)_Zwi = Tr{InS(E)}, (16)
[E—H(r,p)+i0, JGR(r,r";E)=68(r—r"). (10
. L ith
Corresponding to the fact that the total Hamiltonian is g|venWI
by H(r,p)=Hq(r,p)+V(r), the retarded Green’'s function PO A~ A
follows the Dyson-type equation S(E)=I-2mi 8(EI=Ho)T(E) (17)
the scattering operator. In E¢L6), we introduced the loga-
GR(f,f';E)=G§(r,f';E)+J drlf dr,Gg(r.ry;E) rithmic operator function by applying the formula Tr(A)
0 =—3” ,(A"n), whereA is an arbitrary operator. Equation
XT(ry,r2;,E)Go(ra,r";E), (1) (16) is an exact relation connecting a given functional form

of the scattering potentidl(r) and the change of GDOS due
to the presence of scattering potential. In order to compare
the quantityAD(E) to the scattering matriXs (and hence
the transmission and reflection amplitujesve need to
evaluate the trace of the operatorSnTo do this, let us
define an operatoX(E)=2i 8(E—H)T(E). Then, what

we need to evaluate is the quantity{lfrSi=Tr{In(i—X)}=

-3 _(Tr{X™/m). The trace of thenth power of the op-

aefratorf( is calculated as

where G{(r,r’;E) is the retarded Green’s function for the
free HamiltonianHy and T(r,r’;E) denotes th& matrix. A
set of Egs(9) and(11) is the starting point in our subsequent
discussions.

B. Deviation of the global density of states
due to scattering potential

Although the LDOS itself is an important concept, it is
also useful to know how the presence of scattering potenti
influences the DOS for an entire region. From now on, the "

DOS for an entire region is referred to as tjiebal density o m_ * Y(0)[1 < ml . 7(0)
of states(GDOS. If we substitute Eq(11) into Eq.(9), the TRIX(E)] }_,Z:O YZ’i o A7 IIXE)] D)
LDOS p(r,E) can be expressed as a sum of two terms:

Np
p(r,E)=po(r,E)+Ap(r,E), (12 ZHZO ~ {[X(E)]™ yn, yn=tr{[X(E)]™},
N1 (18)
po(rE)=2 -5 2 lenelt (3 , , _
n=1 TRUNE) y== where X(E) is a 2N,x 2N, matrix and its elements are
L given by
Ap(rE)=—— Im(r|GRE)T(E)GXE)|r), (19 _
—i ,
. . {XBE) 1 yn=——=—=——=Tk(E)nk ) (E),
where GY(E) and T(E) are operators corresponding to the T o (E)ug(E) O M®
retarded Green’s function and tAematrix, respectively. In
Eq.(12), po(r,E)=po(X,y;E) is the LDOS in the absence of (v,v'=%=, nl=1... Ny, (29
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with T,V’zlr(E);n'kn(E)(E) given by Eq.(7). In Eq.(18), the trace  quantity AD™ "~ (E) [AD*~(E)] is interpreted as a partial

: contribution toAD (E) due to those electrons incoming from
symbol tf - - - } denotes the trace oveN, propagating chan- ; . ; . )
nels, and was introduced to distinguish it from the trace sym:[he right asymptotic region and_transmﬂtér@ﬂected Into
o tpe left (right) asymptotic region. It should be noted
bol Tr which is used to trace an operator over a complete se . vy . i .
of the Hilbert space. Substituting Eq48) and(19) into Eq.  that the quantiyAD?” (E) given by Eq.(24) is certainly a

(16), we finally arrive at important results: real number.

AD(E):i. i tr{In S(E)} (208 D. Relation between the LDOS and the scattering matrix
2mi dE Having understood that the deviation of the LDOS caused
by a scattering potential is integrated spatially over a whole
:i_ tr[ S'(E) dS(E)] (20b) region to yield the energy derivative of the Friedel phase, our
2 dE next question is how the local density of states at a particular
position can be expressed in terms of the Friedel phase or the
transmission/reflection amplitudes. As seen in Ej, the
LDOS itself can be expressed in terms of the Green’s func-

tion as

1 dS(E)
- ' 7
yp tr[S (E) dE H.c.}. (200
HereS(E) =1— X(E) is the scattering matrix defined by Eq.
(8). To obtain these results, the unitarity of the scattering ~ 1 ~
matrix (S '=S") has been used several times. In deriving p(r;E{V}H=— —Im GR(r,rE{V}), (29
Eqg. (200 from Eq. (20b), we used the fact that the unitarity
of Tthe scattering matrix ensures that the quantity,herei{/} denotes the functional form of the scattering po-
tr{S'(d/dE)S} is a pure imaginary numbeisee Appendix ioniialv/(r). It should be noted that the Green's function and

B). Equations (208—(20q) are desired relations relating phence the LDOS are in general expressed by the functional
AD(E) to the transmission and reflection amplitudes. Owings the scattering potential(r).

to the unitarity ofS, one can further rewrite Eq&209—(200 In order to relate this expression to the scattering matrix,
in the form let us first express the Green’s function in the form perturba-
14 tively expanded with respect to the scattering potential
AD(E)=——=6(E), (21 as

1 GR(r,r":E{VH=(r|GRE VGREN)|r'). (26
0 (E)= - In[detS(E)], 22 ( {Vh=(rlG§(E) 2, (VGFE)r). (26
where g is called the Friedel phagé That is, the deviation AS @ Next step, we introduce the following functional:
of the global density of states caused by a scattering potential
V(r) is directly related to the energy derivative of the Friedel F(E:{V})Ef drf drlG(Ff(r,rl;E)T(rl,r;E,{V})
phase. Recently, the relation E®2) played an important

role in the study of the transmission phase in mesoscopic A A ~
systemg5-28 y P P =Tr{G§(E)T(E{VH}. (27)
By substituting theél matrix into this equation iteratively, the
C. Decomposition ofAD(E) into partial contributions functionalF(E,{\?}) can be expressed in terms@ﬁ(E) as

Recalling that the scattering mati$can be decomposed a summation over an infinite number of terms:
into four submatrices””’ [see Eq(8)], the quantityAD (E)

expressed by Eq200 can be rewritten as a sum of four ~on - ~
terms: F(E{V) =2 F(E{V)), (28
AD(E)= 2 ADY(E), (23 Fo(EAVH =T (GRE)V)). (29)

vy ==
We note that thenth functional F,,(E,{V}) corresponds to
(24) the nth-order term with respect to the scattering potential
V(r). To proceed further, let us consider the functional de-
rivative of F,, with respect to the scattering potent\(r),
which is defined by

ADW'(E)Eitr (SW’)TisW'—Hc
2qi dE T
In Eq. (24), the quantityAD**(E) [AD™ *(E)] includes
the transmissior(reflection amplitude matrixs™* (s~ ).
Thus,AD**(E) [AD™ *(E)] is naturally interpreted as a

partial contribution tAAD(E) due to those electrons incom- wz IimE[Fn(E,{\7+ €5, 1) —Fn(E{VD)].
ing from the left asymptotic region and transmittée- oV(ry) e—0€ t
flected into the right(left) asymptotic region. Similarly, the (30
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Here €5, represents the functional form of the scatteringThat is, the LDOS at a particular positiorfor those elec-

potentlaleé(r— r,1) which is localized at a particular position :Eronsl Zavmgt an efnfhrgﬁlzcag tl)e r(l-:‘valua:et?] ftrom the ];l;]nc'
r;. We note that the quantity should have the dimension of lonal derivative of the Friedel pnase at tha enckgwi
[energy<lengt], meaning that the dimension of the func- respect to the scattering potenti(r). The results[Egs.

: o A ) (358—(35¢)] obtained here are very similar to Eq20a—
tional derivativedFq(E,{V})/6V(ry) is [1/(energy<length] 50 respectively. Here the energy derivative of the scatter-

in contrast to the energy derivativer,(E,{V})/JE which  ing matrix or the Friedel phase is replaced by the functional

has the dimension dfl/energy. By substituting Eq.(29  derivative with respect to the scattering potential.
into Eq.(30), we obtain the functional derivative of the func-
tional Fy as E. Local partial density of states

6Fn(E,{\7}) o1 In Egs.(35b) and(35¢), the LDOS is expressed in terms

TN =n(rlGo(E)IVGG(E)]"'Ir). (31 of the unitary scattering matri. Therefore, one can rewrite

) . . ) ) the LDOS in terms of the transmission or reflection ampli-
Comparing this equation with the Green’s function E26),  tyde submatrices. By substituting @) into Eq. (350, the
diagonal elements of the retarded Green’s function can bgpos is expressed as a sum of partial contributions:

expressed in terms of the functiorgl(E,{V}) as

. “ 1 SF(E{V EfVH= ' (rE{V}), 3
GR(r,r;E,{V})zz ﬁ(—{)}) (32) p(r { }) 7,7’2:: P (r { }) ( 7)

If we rewrite this equation by using the expression Foy ~ Where
given by Eq.(29), we arrive at an important equation:
- Y

1 N
P (HE{Vh) =g tr] (87 P

—Hc.| (39

-6 S o-1 .
R — _ - R n
GH BV =5y T [ 2 - (GEV)
s is called the local partial density of stat@$?DOS since it is
Trin(i = GREYU)L. 33 a partial contribution to the LDOSee below. It should be
5V( ) riin(t=Go(E)V)} 33 noted that the LPDOS given by E(B8) is a real quantity.
Taking the imaginary part of this equation with the help ofPhyS|caI meaning of the LPDOS is as follows. For instance,

Eq. (A3) in Appendix A and substituting it into Eq25), we p""(r,E) [p”"(r,E)] describes the LPDOS at a particular
' position r due to those electrons incoming from the left

finally obtain asymptotic region and transmittéceflected into the right
-1 8 (left) asymptotic region. Another LPDOSp™ " (r,E)
p(rEAV}) = 201 V(D) Tr{In S(E.{V}}, (349  [p*(r,E)] is also interpreted in the same manner

for electrons incoming from the right asymptotic region.
with S the scattering operator given by EG7). In the same  In recent literaturé® a quantity =, .p"*(r;E)
procedure as used to obtain E¢®0a—(200), the trace over [2,--p” (r;E)] is called theinjectivity for those electrons
the complete set of the Hilbert space in E84) is carried  injected from the lef{right) asymptotic region. On the other
out, yielding hand,Eyzip”(r;E) [2,-+p "(r;E)] is called theemis-

sivity for those electrons emitted into the righteft)

e -1 ~ asymptotic regions. Injectivity and emissivity play important
p(NEAVD =5~ SV(r) tr{inS(E{VD} (358 rgles in the theory of ac and nonlinear transport in mesos-
copic conductors to describe the response due to local charge
-1 . 35 distributions®~*10-16
F. Role of the Friedel phase in the density of states
:__1_ tr( sf oS —H c] (350 Finally we consider the relationship between the energy
A oV(r) derivative of the Friedel phase and the functional derivative

of the Friedel phase with respect to the scattering potential.

The LDOS can be expressed in terms of the unitary scatte
P Y For this purpose, we writAD (E) from Eqs.(12) and(15) as

ing matrix (i.e., transmission and reflection amplituglele-
fined by Eq.(8). The trace symbol tr in Eq¥353—(350
denotes the trace oveNg propagating modes. Equivalently,
the LDOS can be expressed in terms of the Friedel phase
defined by Eq(22) as

AD(E)= [ drpEITD-po(nE). (@9

wherep(r,E) is the LDOS in the absence of the scattering
potential. Noting that the quantithD(E) and the LDOS

p(nEAVH =~ p(r,E) have been expressed in terms of the Friedel phase

115307-5
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[Eq. (22)] as seen in Eq21) and Eq.(36), both sides of Eq. Let us substitute this expression into EG5). Since theT
(39) can be rewritten using the Friedel phase as operator is expressed ds= VEﬁ:O[ég(E)V]”, AD(E) is
calculated as

i E—fd O G ELT— BN ELY
~SE r(E)= rm[ F(E{VH =60 (E{V]],

(40) 1 IGYE) |,
AD(E)=——=ImTrj| — T(E)

where ™ JE

~ 1 0( Do R

ONEN =7 [ drpo(r BV @D - L - e

is the first-order term in the functional expansion of the Frie- 1 -1 d AR tn
del phase with respect to the scattering potenti@l). We =-_—Im ngl - M3elGo(B)V]
note that the zeroth-order term of the Friedel phase with
respect toV(r) is given by 8°(E {V})=6:(E,{V=0}), 1 9 e
which can be chosen as 0 independent of the energy since the I Im JE T 2 —[GO(E)V]“

scattering matrix in Eq(8) does not include the phase evo-

lution due to free propagations of electrons. Equatigl) is d A AR e

an important relation connecting the energy derivative of the I Im JE Tr{In[1 —Go(E)V]}. (A2)
Friedel phase to the functional derivative of the Friedel phase

with respect to the scattering potential.
The right-hand side of this equation can be further simplified

V. CONCLUSION by the following procedure:

In conclusion, we have investigated the mathematical re-

lationship between the LDOS and the scattering matrix for —Im Tr{In[1—GRE)V]}
guasi-one-dimensional systems in the presence of static per-

pendicular magnetic fields. Starting from the definition of =—£[Tr{|n(T—éR(E)\7t)}—c q
LDOS in terms of the Green’s function, we derived the scat- 2i 0 '

tering matrix representation of the LDOS in a straightfor- 1

ward way. While the scattering potential-induced deviation = Tr{ln[(l —GAE)NI-GRE)) 1)

of the GDOS is expressed in terms of the energy derivative

of the scattering matrix, the LDOS itself is expressed in

terms of the functional derivative of the scattering matrix =5 Tr{In[I —{G (E)— G (ENT(E)]}

with respect to the scattering potential. Alternately, the

potential-induced deviation of the GDOS and the LDOS are 1

also expressed in terms of the energy derivative of the Frie- =— Tr{In[T—eri O(E— Ho)?(E)]}

del phase and the functional derivative of the Friedel phase 2i

with respect to the scattering potential, respectively. Finally, 1 .

we derived the relation between the energy derivative of the =— Tr{InS(E)}, (A3)
Friedel phase and the functional derivative of the Friedel 21

phase with respect to the scattering potential. Although our

discussion is concentrated on the densities of states in narroyy, o §(E)=1-2mi S(E—H,) is the scattering operator.
two-dimensional (2D _quantum waveguidesystems, our Subsututlng this result into EGA2), we obtain Eq(16).
theory can be generalized to three-dimensional quantum
waveguide(tube systems straightforwardly.

APPENDIX B:

APPENDIX A: DERIVATION OF EQ. (16) ) o )
The purpose of this appendix is to show that the quantity

In this appendix we present the derivation of Etf). In  tr{S'(E)(d/dE)S(E)} in Eq.(20b) is a pure imaginary num-
Eq. (18), the operator Green's function is expressed aser. Let us start from the fact that thé\gx 2N, scattering
GR(E)=((E+i0,)I—H) . Thus the trace in Eq15) can  matrix given by Eq(8) is unitary such that
be expressed by

T{GS(E)T(E)GH(E)} S'(E)S(E)=1. (B1)

. S dGR(E) .. : ot - :
_ R R _ 0 Differentiating Eq.(B1) with respect to energy and taking
THG(B)Go(B)T(B)} Tr[ dE B Ay the trace over R, propagating channels, we obtain
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d d *
[ S'(E) ES(E)] =0. (B2 tr[ ST(E)d—ES(E)] = —tr{ ST(E) S(E)] (B4)
Here the complex conjugate of the second term in the left-

hand side becomes meaning that the quantity{8'(E)(d/dE)S(E)} is a pure
d * imaginary. Therefore one can conclude that the right-hand
tr( ST(E)ES(E)] =tr H—ST(E)}S(E)] (B3)  side of EQ.(20b) is certainly areal number as expected. By
using the similar procedure, one can show that the right-hand
Thus Eq.(B2) is rewritten as side of EQ.(35b) is also a real number.

d
—sT (E) +1r

S(E)

*Present address: Quantum Functional Semiconductor Researth\. Biittiker, A. Prare, and H. Thomas, Phys. Rev. Let0, 4114

Center, Dongguk University, Seoul 100-715, Korea. (1993.
TEmail address: asuzuki@rs.kagu.sut.ac.jp 12\ Biittiker, J. Math. Phys37, 4793(1996.
1See e.g., E. N. EconomoGyeen’s Functions in Quantum Physics 2J. Wang, Q. Zheng, and H. Guo, Phys. Re\6® 9770(1997.

(Springer-Verlag, Berlin, 1979 143. Wang, Q. Zheng, and H. Guo, Phys. Re\6® 9763(1997).
2M. Bittiker, J. Phys.: Condens. Mattéy 9361(1993. 187, Wang and H. Guo, Phys. Rev.3, R11 090(1996.
3v. Gasparian, T. Christen, and M. Biker, Phys. Rev. /54, 4022 16T, Christen, Phys. Rev. B5, 7606(1997).

(1996. 7M. Biittiker, Phys. Rev. B7, 6178(1983.
4M. Brandbyge and M. Tsukada, Phys. Rev.5, R15 088 '8G. lannaccone, Phys. Rev.®, 4727(1995.

(1998. 19G. lannaccone and B. Pellegrini, Phys. Rev6® 2020(1996.
SR. Landauer, Philos. Ma@1, 863(1970. 20T, Gramespacher and M. “Biker, Phys. Rev. B56, 13 026
5M. Bittiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B (1997).

31, 6207(1985. 213. Friedel, Philos. Magd3, 153 (1952.

’S. DattaElectronic Transport in Mesoscopic Systef@sambridge  22J. S. Langer and V. Ambegaokar, Phys. RE1, 1090(1961).

University Press, Cambridge, England, 1995 ZA. Oguri, Phys. Rev. B52, 16 727(1995.
8R. Dashen, S. K. Ma, and H. J. Bernstein, Phys. R&7, 345  2%D. S. Fisher and P. A. Lee, Phys. Rev2B, 6851(1981).

(1969. 25H. U. Baranger and A. D. Stone, Phys. Rev4& 8169(1989.
%Y. Avishai and Y. B. Band, Phys. Rev. 8, 2674(1985. 26A. L. Yeyati and M. Biitiker, Phys. Rev. B52, R14 360(1995.
10\, Biittiker, H. Thomas, and A. Pre, Z. Phys. B: Condens. 27T. Taniguchi and M. Bttiker, Phys. Rev. B50, 13 814(1999.

Matter 94, 133(1994). 28A. L. Yeyati and M. Biitiker, Phys. Rev. B52, 7307 (2000.

115307-7



