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Local density of states and scattering matrix in quasi-one-dimensional systems
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Mathematical relations between the local density of states~LDOS! and the scattering matrix~i.e., transmis-
sion and reflection amplitudes! for quasi-one-dimensional systems are derived in the presence of static uniform
magnetic fields. Starting from the definition of the LDOS expressed by the Green’s function, we derive the
formulas for the LDOS in terms of the functional derivative of the scattering matrix or the Friedel phase with
respect to a scattering potential.
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I. INTRODUCTION

The single-particle density of states~DOS! is one of the
most important and useful concepts in the study of equi
rium thermodynamic properties of systems. Once the DO
obtained, one can construct the thermodynamic poten
from which any thermodynamic quantities can be derive1

Recently, the conceptual importance of DOS and its gene
ized version has been strongly emphasized in the stud
mesoscopic physics.2–4 It is well known that electronic trans
port phenomena in mesoscopic phase-coherent system
be well described by Landauer-Bu¨ttiker scattering theoretica
formalism.5–7 Interestingly, the density of states and thus t
thermodynamic quantities can be also described in
framework of the scattering theory as discussed in the
lowing pioneering works: Dashen, Ma, and Burnstein8 for-
mulated equilibrium thermodynamics in terms of the scat
ing matrices, and Avishai and Band9 presented the genera
relation between the scattering matrix and the global DOS
one-dimensional systems.

Subsequently, in the scattering theoretical formulation
ac transport, Bu¨ttiker and co-workers10,11 generalized the
concept of DOS by introducing the partial density of sta
and the local partial density of states~LPDOS!, in which the
use of scattering matrices is essential to extractpartial con-
tributions to the DOS. The information about the LPDOS
desirable for the description of ac or nonlinear transp
states in order to take into account nonequilibrium cha
distributions.12–16Also, the concept of the LPDOS is know
to be essential to describe the dwell time of a particle
conductors.17–19 Another example where the generaliz
DOS is important is the theory of tunneling current flowin
through the scanning tunneling microscope tip.20

Although there is no doubt about the conceptual imp
tance of those generalized densities of states, the proble
how to derive the scattering matrix representation of LD
remains yet to be solved. Our main aim in this paper is
present a mathematical procedure to relate the local or gl
DOS to scattering matrices, starting from the well-know
formula for DOS expressed by the Green’s function.1 For
completeness of our discussion, the relation between the
bal density of states and the scattering matrix is also p
sented.

This paper is organized as follows. In the next section
0163-1829/2002/65~11!/115307~7!/$20.00 65 1153
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present a brief description of the scattering problem in qu
one-dimensional~Q1D! systems subjected to a static unifor
magnetic field. Section III consists of six subsections. Af
introducing the definition of LDOS in the first subsection, w
present in the second and third subsections the derivatio
the relation between the potential-induced deviation of
global DOS ~GDOS! and the scattering matrix, which i
equivalent to the Friedel sum rule.21–23 This part is the
straightforward generalization of Avishai and Band’s pre
ous work9 to the case of multichannel conductors subjec
to a magnetic field. The fourth and fifth subsections are
central part of this paper, dealing with the problem of ho
the LDOS itself is expressed in terms of the scattering m
trix. In the final subsection of Sec. III, we discuss the relati
among the Friedel phase, GDOS, and LDOS. The summ
of results and conclusions is presented in Sec. IV.

II. SCATTERING PROBLEM

In this section we briefly present a formal scatteri
theory of an electron in a Q1D system, which gives us
important mathematical basis to discuss the relationship
tween the density of states and the scattering matrix. To
gin, let us consider a perfect Q1D wire with widthW sub-
jected to a static uniform perpendicular magnetic field.
electron in such a system is described by the Hamiltonia

H0~r,p!5
1

2m
@p2qA~r!#21U~y!, ~1!

wherep52 i\(]/]x,]/]y) is the momentum operator in
two-dimensional plane,q52ueu the charge of an electron
with an effective massm, andA(r)52Byex the vector po-
tential describing a static uniform magnetic fieldB5Bez .
The confinement potentialU(y) is zero foruyu<W/2 while it
is ` otherwise~i.e., a hard-wall confinement potential!. The
eigenfunction of this free HamiltonianH0 can be expressed
in the form separated in variables as

Fnk
g(0)~r!5

1

A2p
eg ikxfnk

g ~y!, ~2!
©2002 The American Physical Society07-1
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SATOFUMI SOUMA AND AKIRA SUZUKI PHYSICAL REVIEW B 65 115307
with the sign g51(2) corresponding to the right~left!
moving solution. Herek[uku is the longitudinal wave num
ber andfnk

g (y) is the nth eigenfunction of the eigenvalu
equation

H 2
\2

2m

d2

dy2
1

mvc
2

2
@y2y0~gk!#21U~y!J fnk

g ~y!

5«n~k!fnk
g ~y!, ~3!

where y0(gk)5g l B
2k is the center of the cyclotron motio

with l B5A\/(eB) the magnetic length, andvc5eB/m the
cyclotron frequency. We assume thatfnk

g (y) is normalized
such that*2W/2

W/2 dyufnk
g (y)u251. Solving the eigenvalue Eq

~3! for a given wave numberk, one can determine the single
particle energy«n(k) ~i.e., the eigenvalue ofH0) and the
corresponding transverse wave functionfnk

g (y). In the ab-
sence of the confinement potential such thatU(y)50, Eq.
~3! has eigenvalues«n5(n11/2)\vc ~Landau levels! inde-
pendent of the longitudinal wave numberk and the center of
cyclotron motiony0. However the presence of the confin
ment potentialU(y) influences the cyclotron motion near th
confinement walls~edges! of the conductor, giving rise to the
formation of edge states. Then the energy eigenvalue«n de-
pends on the longitudinal wave numberk allowing electrons
to have the longitudinal velocityvn(k)5(1/\)]«n(k)/]k.
For a given electron energyE, we express the longitudina
wave numberk satisfying the relationE5«n(k) askn(E) for
each mode~subband! index n, and the longitudinal velocity
vn@k5kn(E)# asvn(E). Hereafter we shall writekn(E) and
vn(E) simply askn andvn , respectively. The free scatterin
state for a given energyE is then expressed asFnkn(E)

g(0) (r)

[Fnkn

g(0)(r).

Let us consider the case where the scattering pote
V(r) describing impurities or any static defects is presen
addition to the free HamiltonianH0(r,p): H(r,p)5H0(r,p)
1V(r). We assume that the scattering potentialV(r) is re-
stricted within a central finite regionV5:$uxu<L/2,
uyu<W/2%. In the presence of the scattering potentialV(r),
the free scattering stateFnkn

g(0)(r) evolves into the full scat-

tering state Fnkn

g (r) which can be expressed by th

Lippmann-Schwinger equation in terms of the retard
Green’s functionG0

R(r,r8,E) in the absence of scattering po

tential along with theT matrix T(r,r8;E) given by T̂5V̂

1V̂Ĝ0
RT̂ in operator form.1 The full scattering stateFnkn

1 (r)

at particular positions (xR ,y) in the right asymptotic region
(xR@L/2) and (xL ,y) in the left asymptotic region (xL!
2L/2) is readily expressed by

Fnkn

1 ~xR ,y!5(
l 50

Np

F lkl

1(0)~xR ,y!Auvnu
uv l u

sln
11~E!, ~4!

Fnkn

1 ~xL ,y!5Fnkn

1(0)~xL ,y!

1(
l 50

Np

F lkl

2(0)~xL ,y!Auvnu
uv l u

sln
21~E!. ~5!
11530
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HereNp denotes the largest mode indexn satisfying the con-
dition «n(k50),E for which kn(E) and vn(E) are real

numbers, andsln
gg8(E) is given by

sln
gg8~E!5d lndgg81

2 i

\Auv l~E!vn~E!u
Tlkl ,nkn

gg8 ~E!, ~6!

where Tlkl ,nkn

gg8 (E) (g,g851,2) is the (lk l ,nkn) element

of the double Fourier-transformedT matrix given by

Tlkl ,nkn

gg8 ~E!5E drE dr8F lkl

g(0)* ~r!T~r,r8;E!Fnkn

g8(0)~r8!.

~7!

It is noted that Eq.~6! can be reduced to the Fisher-Le
relation24 and the Baranger-Stone relation25 in the absence
and the presence of magnetic fields, respectively.

It is obvious from Eqs.~4! and~5! thatsln
11 (sln

21) plays
the role of the transmission~reflection! amplitude from the
nth mode in the left asymptotic region to thel th mode in the
right ~left! asymptotic region. Similarly, the full scatterin
stateF lkl

2 (r) at those particular positions (xL ,y) and (xR ,y)

can be expressed in terms of the transmission amplitudesln
22

and the reflection amplitudesln
12 , respectively. Here

sln
22 (sln

12) is interpreted as the transmission~reflection!
amplitude from the right asymptotic region to the left~right!
asymptotic region. Those transmission and reflection am
tudessln

11 , sln
12 , sln

21 , andsln
22 compose a 2Np32Np scat-

tering matrixS(E):

S~E!5S s11~E! s12~E!

s21~E! s22~E!
D , ~8!

where each submatrixsgg8 is a Np3Np matrix whose (l ,n)

element is the transmission or reflection amplitudesln
gg8 de-

fined by Eq.~6!. One can prove that the scattering matrixS is
unitary owing to the Hermiticity of the scattering potenti
V(r).

Before closing this section, we emphasize that the e

scattering matrix elementsln
gg8 is not associated with the

phase evolution due to the free propagation of an elect

This is obvious from the fact that we havesln
gg85d lndgg8 in

the case ofV(r)50. Therefore, in the presence of scatteri
potentials, the phase~argument! of the elements in the scat
tering matrix plays the role of transmission or reflecti
phase shiftdue to the presence of the scattering potentia

III. DENSITY OF STATES

In the previous section we have discussed the scatte
problem of an electron in a Q1D system, and obtained
expression for the scattering matrix at a given energyE
in terms of theT matrix. Our purpose in this section is t
derive useful mathematical formulas for the density of sta
at a given energyE in terms of the scattering matrix at tha
energy.
7-2
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LOCAL DENSITY OF STATES AND SCATTERING . . . PHYSICAL REVIEW B65 115307
A. Definition of the local density of states

In the case of open infinite systems such as a Q1D w
considered here, the density of states for an entire reg
becomes infinite because of the continuum energy spec
of those systems. Thus what we should regard as a fu
mental concept in such systems is thelocal density of states
~LDOS!. The LDOS at a particular positionr for a given
energyE is defined by using the full scattering wave functio
Fnk

6 (r) as

r~r,E!5 (
n50

`

(
g56

E
0

`

dkuFnk
g ~r!u2d„E2«n~k!…

5
21

p
Im (

g,n
E

0

`

dk
Fnk

g ~r!Fnk
g* ~r!

E2«n~k!1 i01

5
21

p
Im GR~r,r;E!, ~9!

where we have used the formula 1/(x1 i01)5P(1/x)
2 ipd(x). Here GR(r,r;E) is the diagonal elements of th
retarded Green’s function which satisfies

@E2H~r,p!1 i01#GR~r,r8;E!5d~r2r8!. ~10!

Corresponding to the fact that the total Hamiltonian is giv
by H(r,p)5H0(r,p)1V(r), the retarded Green’s functio
follows the Dyson-type equation

GR~r,r8;E!5G0
R~r,r8;E!1E dr1E dr2G0

R~r,r1 ;E!

3T~r1 ,r2 ;E!G0
R~r2 ,r8;E!, ~11!

where G0
R(r,r8;E) is the retarded Green’s function for th

free HamiltonianH0 andT(r,r8;E) denotes theT matrix. A
set of Eqs.~9! and~11! is the starting point in our subseque
discussions.

B. Deviation of the global density of states
due to scattering potential

Although the LDOS itself is an important concept, it
also useful to know how the presence of scattering poten
influences the DOS for an entire region. From now on,
DOS for an entire region is referred to as theglobal density
of states~GDOS!. If we substitute Eq.~11! into Eq. ~9!, the
LDOS r(r,E) can be expressed as a sum of two terms:

r~r,E!5r0~r,E!1Dr~r,E!, ~12!

r0~r,E![ (
n51

Np 1

p\vn~E! (
g56

ufnk(E)
g ~y!u2, ~13!

Dr~r,E![2
1

p
Im^ruĜ0

R~E!T̂~E!Ĝ0
R~E!ur&, ~14!

whereĜ0
R(E) and T̂(E) are operators corresponding to th

retarded Green’s function and theT matrix, respectively. In
Eq. ~12!, r0(r,E)[r0(x,y;E) is the LDOS in the absence o
11530
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the scattering potential, and is independent of the longitu
nal coordinatex, while Dr(r,E)[Dr(x,y;E) is the devia-
tion of the LDOS due to the presence of the scattering
tential. In the absence of scattering potentials, the f
T(r,r8;E)50 ensures the expected result, viz.,r(r,E)
5r0(r,E). In the presence of scattering potentials, howev
the quantityDr(r,E) is integrated spatially over an entir
region yielding

DD~E![E
2`

`

dxE
2W/2

W/2

dyDr~x,y,E!

52
1

p
Im Tr$Ĝ0

R~E!T̂~E!Ĝ0
R~E!%. ~15!

Evaluation of this equation gives us the information on h
the presence of scattering potentialV(r) influences the
GDOS at a given energyE. As shown in the detailed calcu
lation given in Appendix A, Eq.~15! can be expressed in
simple form:

DD~E!5
1

2p i

]

]E
Tr$ ln Ŝ~E!%, ~16!

with

Ŝ~E![ Î 22p id~EÎ2Ĥ0!T̂~E! ~17!

the scattering operator. In Eq.~16!, we introduced the loga-
rithmic operator function by applying the formula ln(Î2Â)
52(n51

` (Ân/n), where Â is an arbitrary operator. Equatio
~16! is an exact relation connecting a given functional fo
of the scattering potentialV(r) and the change of GDOS du
to the presence of scattering potential. In order to comp
the quantityDD(E) to the scattering matrixS ~and hence
the transmission and reflection amplitudes!, we need to
evaluate the trace of the operator lnŜ. To do this, let us
define an operatorX̂(E)[2p id(E2Ĥ0)T̂(E). Then, what
we need to evaluate is the quantity Tr$ ln Ŝ%5Tr$ ln(Î2X̂)%5
2(m51

` (Tr$X̂m%/m). The trace of themth power of the op-

eratorX̂ is calculated as

Tr$@X̂~E!#m%5 (
n50

`

(
g56

E
0

`

dk^Fn,k
g(0)u@X̂~E!#muFn,k

g(0)&

5 (
n50

Np

(
g56

$@X~E!#m%gn,gn5:tr$@X~E!#m%,

~18!

where X(E) is a 2Np32Np matrix and its elements ar
given by

$X~E!%g l ,g8n5
2 i

\Av l~E!vn~E!
Tlkl (E),nkn(E)

gg8 ~E!,

~g,g856, n,l 51, . . . ,Np!, ~19!
7-3
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SATOFUMI SOUMA AND AKIRA SUZUKI PHYSICAL REVIEW B 65 115307
with Tl ,kl (E);n,kn(E)
gg8 (E) given by Eq.~7!. In Eq.~18!, the trace

symbol tr$•••% denotes the trace over 2Np propagating chan-
nels, and was introduced to distinguish it from the trace sy
bol Tr which is used to trace an operator over a complete
of the Hilbert space. Substituting Eqs.~18! and~19! into Eq.
~16!, we finally arrive at important results:

DD~E!5
1

2p i

d

dE
tr$ ln S~E!% ~20a!

5
1

2p i
trH S†~E!

dS~E!

dE J ~20b!

5
1

4p i
trH S†~E!

dS~E!

dE
2H.c.J . ~20c!

HereS(E)5I2X(E) is the scattering matrix defined by Eq
~8!. To obtain these results, the unitarity of the scatter
matrix (S215S†) has been used several times. In derivi
Eq. ~20c! from Eq. ~20b!, we used the fact that the unitarit
of the scattering matrix ensures that the quan
tr$S†(d/dE)S% is a pure imaginary number~see Appendix
B!. Equations ~20a!–~20c! are desired relations relatin
DD(E) to the transmission and reflection amplitudes. Ow
to the unitarity ofS, one can further rewrite Eqs.~20a!–~20c!
in the form

DD~E!5
1

p

]

]E
uF~E!, ~21!

uF~E![
1

2i
ln@detS~E!#, ~22!

whereuF is called the Friedel phase.21 That is, the deviation
of the global density of states caused by a scattering pote
V(r) is directly related to the energy derivative of the Fried
phase. Recently, the relation Eq.~22! played an important
role in the study of the transmission phase in mesosco
systems.26–28

C. Decomposition ofDD„E… into partial contributions

Recalling that the scattering matrixS can be decompose
into four submatricessgg8 @see Eq.~8!#, the quantityDD(E)
expressed by Eq.~20c! can be rewritten as a sum of fou
terms:

DD~E!5 (
g,g856

DDgg8~E!, ~23!

DDgg8~E![
1

2p i
trH ~sgg8!†

d

dE
sgg82H.c.J . ~24!

In Eq. ~24!, the quantityDD11(E) @DD21(E)# includes
the transmission~reflection! amplitude matrixs11 (s21).
Thus, DD11(E) @DD21(E)# is naturally interpreted as
partial contribution toDD(E) due to those electrons incom
ing from the left asymptotic region and transmitted~re-
flected! into the right~left! asymptotic region. Similarly, the
11530
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quantity DD22(E) @DD12(E)# is interpreted as a partia
contribution toDD(E) due to those electrons incoming from
the right asymptotic region and transmitted~reflected! into
the left ~right! asymptotic region. It should be note
that the quantityDDgg8(E) given by Eq.~24! is certainly a
real number.

D. Relation between the LDOS and the scattering matrix

Having understood that the deviation of the LDOS caus
by a scattering potential is integrated spatially over a wh
region to yield the energy derivative of the Friedel phase,
next question is how the local density of states at a partic
position can be expressed in terms of the Friedel phase o
transmission/reflection amplitudes. As seen in Eq.~9!, the
LDOS itself can be expressed in terms of the Green’s fu
tion as

r~r;E,$V̂%!52
1

p
Im GR~r,r;E,$V̂%!, ~25!

where$V̂% denotes the functional form of the scattering p
tentialV(r). It should be noted that the Green’s function a
hence the LDOS are in general expressed by the functio
of the scattering potentialV(r).

In order to relate this expression to the scattering mat
let us first express the Green’s function in the form pertur
tively expanded with respect to the scattering potentialV(r)
as

GR~r,r8;E,$V̂%!5^ruĜ0
R~E! (

n50

`

„V̂Ĝ0
R~E!…nur8&. ~26!

As a next step, we introduce the following functional:

F~E,$V̂%![E drE dr1G0
R~r,r1 ;E!T~r1 ,r;E,$V̂%!

5Tr$Ĝ0
R~E!T̂~E,$V̂%!%. ~27!

By substituting theT matrix into this equation iteratively, the
functionalF(E,$V̂%) can be expressed in terms ofĜ0

R(E) as
a summation over an infinite number of terms:

F~E,$V̂%!5 (
n51

`

Fn~E,$V̂%!, ~28!

Fn~E,$V̂%!5Tr$~Ĝ0
R~E!V̂!n%. ~29!

We note that thenth functionalFn(E,$V̂%) corresponds to
the nth-order term with respect to the scattering poten
V(r). To proceed further, let us consider the functional d
rivative of Fn with respect to the scattering potentialV(r),
which is defined by

dFn~E,$V̂%!

dV~r1!
[ lim

e→0

1

e
@Fn~E,$V̂1ed̂ r1

%!2Fn~E,$V̂%!#.

~30!
7-4
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LOCAL DENSITY OF STATES AND SCATTERING . . . PHYSICAL REVIEW B65 115307
Here ed̂ r1
represents the functional form of the scatteri

potentialed(r2r1) which is localized at a particular positio
r1. We note that the quantitye should have the dimension o
@energy3length#, meaning that the dimension of the fun
tional derivativedFn(E,$V̂%)/dV(r1) is @1/~energy3length!#
in contrast to the energy derivative]Fn(E,$V̂%)/]E which
has the dimension of@1/energy#. By substituting Eq.~29!
into Eq.~30!, we obtain the functional derivative of the func
tional Fn as

dFn~E,$V̂%!

dV~r!
5n^ruĜ0

R~E!@V̂Ĝ0
R~E!#n21ur&. ~31!

Comparing this equation with the Green’s function Eq.~26!,
diagonal elements of the retarded Green’s function can
expressed in terms of the functionalFn(E,$V̂%) as

GR~r,r;E,$V̂%!5 (
n51

`
1

n

dFn~E,$V̂%!

dV~r!
. ~32!

If we rewrite this equation by using the expression forFn
given by Eq.~29!, we arrive at an important equation:

GR~r,r;E,$V̂%!5
2d

dV~r!
TrH (

n51

`
21

n
~Ĝ0

R~E!V̂!nJ
5

2d

dV~r!
Tr$ ln~ Î 2Ĝ0

R~E!V̂!%. ~33!

Taking the imaginary part of this equation with the help
Eq. ~A3! in Appendix A and substituting it into Eq.~25!, we
finally obtain

r~r;E,$V̂%!5
21

2p i

d

dV~r!
Tr$ ln Ŝ~E,$V̂%!%, ~34!

with Ŝ the scattering operator given by Eq.~17!. In the same
procedure as used to obtain Eqs.~20a!–~20c!, the trace over
the complete set of the Hilbert space in Eq.~34! is carried
out, yielding

r~r;E,$V̂%!5
21

2p i

d

dV~r!
tr$ lnS~E,$V̂%!% ~35a!

5
21

2p i
trH S†

dS

dV~r!J ~35b!

5
21

4p i
trH S†

dS

dV~r!
2H.c.J . ~35c!

The LDOS can be expressed in terms of the unitary sca
ing matrix ~i.e., transmission and reflection amplitudes! de-
fined by Eq.~8!. The trace symbol tr in Eqs.~35a!–~35c!
denotes the trace over 2Np propagating modes. Equivalentl
the LDOS can be expressed in terms of the Friedel ph
defined by Eq.~22! as

r~r;E,$V̂%!52
1

p

d

dV~r!
uF~E,$V̂%!. ~36!
11530
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That is, the LDOS at a particular positionr for those elec-
trons having an energyE can be evaluated from the func
tional derivative of the Friedel phase at that energyE with
respect to the scattering potentialV(r). The results@Eqs.
~35a!–~35c!# obtained here are very similar to Eqs.~20a!–
~20c!, respectively. Here the energy derivative of the scat
ing matrix or the Friedel phase is replaced by the functio
derivative with respect to the scattering potential.

E. Local partial density of states

In Eqs.~35b! and ~35c!, the LDOS is expressed in term
of the unitary scattering matrixS. Therefore, one can rewrite
the LDOS in terms of the transmission or reflection amp
tude submatrices. By substituting Eq.~8! into Eq. ~35c!, the
LDOS is expressed as a sum of partial contributions:

r~r;E,$V̂%!5 (
g,g856

rgg8~r;E,$V̂%!, ~37!

where

rgg8~r;E,$V̂%!5
21

4p i
trH ~sgg8!†

dsgg8

dV~r!
2H.c.J ~38!

is called the local partial density of states~LPDOS! since it is
a partial contribution to the LDOS~see below!. It should be
noted that the LPDOS given by Eq.~38! is a real quantity.
Physical meaning of the LPDOS is as follows. For instan
r11(r,E) @r21(r,E)# describes the LPDOS at a particul
position r due to those electrons incoming from the le
asymptotic region and transmitted~reflected! into the right
~left! asymptotic region. Another LPDOSr22(r,E)
@r12(r,E)# is also interpreted in the same mann
for electrons incoming from the right asymptotic regio
In recent literature,2,3 a quantity (g56rg1(r;E)
@(g56rg2(r;E)# is called theinjectivity for those electrons
injected from the left~right! asymptotic region. On the othe
hand,(g56r1g(r;E) @(g56r2g(r;E)# is called theemis-
sivity for those electrons emitted into the right~left!
asymptotic regions. Injectivity and emissivity play importa
roles in the theory of ac and nonlinear transport in mes
copic conductors to describe the response due to local ch
distributions.2–4,10–16

F. Role of the Friedel phase in the density of states

Finally we consider the relationship between the ene
derivative of the Friedel phase and the functional derivat
of the Friedel phase with respect to the scattering poten
For this purpose, we writeDD(E) from Eqs.~12! and~15! as

DD~E!5E dr„r„r;E,$V̂%…2r0~r,E!…, ~39!

wherer0(r,E) is the LDOS in the absence of the scatteri
potential. Noting that the quantityDD(E) and the LDOS
r(r,E) have been expressed in terms of the Friedel ph
7-5
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@Eq. ~22!# as seen in Eq.~21! and Eq.~36!, both sides of Eq.
~39! can be rewritten using the Friedel phase as

2
]

]E
uF~E!5E dr

d

dV~r!
@uF~E,$V̂%!2uF

(1)~E,$V̂%!#,

~40!

where

uF
(1)~E,$V̂%!52pE drr0~r,E!V~r! ~41!

is the first-order term in the functional expansion of the Fr
del phase with respect to the scattering potentialV(r). We
note that the zeroth-order term of the Friedel phase w
respect toV(r) is given by uF

(0)(E,$V̂%)5uF(E,$V̂50%),
which can be chosen as 0 independent of the energy sinc
scattering matrix in Eq.~8! does not include the phase ev
lution due to free propagations of electrons. Equation~40! is
an important relation connecting the energy derivative of
Friedel phase to the functional derivative of the Friedel ph
with respect to the scattering potential.

IV. CONCLUSION

In conclusion, we have investigated the mathematical
lationship between the LDOS and the scattering matrix
quasi-one-dimensional systems in the presence of static
pendicular magnetic fields. Starting from the definition
LDOS in terms of the Green’s function, we derived the sc
tering matrix representation of the LDOS in a straightfo
ward way. While the scattering potential-induced deviat
of the GDOS is expressed in terms of the energy deriva
of the scattering matrix, the LDOS itself is expressed
terms of the functional derivative of the scattering mat
with respect to the scattering potential. Alternately, t
potential-induced deviation of the GDOS and the LDOS
also expressed in terms of the energy derivative of the F
del phase and the functional derivative of the Friedel ph
with respect to the scattering potential, respectively. Fina
we derived the relation between the energy derivative of
Friedel phase and the functional derivative of the Frie
phase with respect to the scattering potential. Although
discussion is concentrated on the densities of states in na
two-dimensional ~2D quantum waveguide! systems, our
theory can be generalized to three-dimensional quan
waveguide~tube! systems straightforwardly.

APPENDIX A: DERIVATION OF EQ. „16…

In this appendix we present the derivation of Eq.~16!. In
Eq. ~18!, the operator Green’s function is expressed
ĜR(E)5„(E1 i01) Î 2Ĥ…

21. Thus the trace in Eq.~15! can
be expressed by

Tr$Ĝ0
R~E!T̂~E!Ĝ0

R~E!%

5Tr$Ĝ0
R~E!Ĝ0

R~E!T̂~E!%5TrF2
dĜ0

R~E!

dE
T̂~E!G . ~A1!
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Let us substitute this expression into Eq.~15!. Since theT

operator is expressed asT̂5V̂(n50
` @Ĝ0

R(E)V̂#n, DD(E) is
calculated as

DD~E!52
1

p
Im TrH F2

]Ĝ0
R~E!

]E
G T̂~E!J

52
1

p
Im TrH 2

]Ĝ0
R~E!

]E
V̂(

n50

`

@Ĝ0
R~E!V̂#nJ

52
1

p
Im (

n51

`
21

n
TrH ]

]E
@Ĝ0

R~E!V̂#nJ
52

1

p
Im

]

]E
TrH (

n51

`
21

n
@Ĝ0

R~E!V̂#nJ
52

1

p
Im

]

]E
Tr$ ln@ Î 2Ĝ0

R~E!V̂#%. ~A2!

The right-hand side of this equation can be further simplifi
by the following procedure:

2Im Tr$ ln@ Î 2Ĝ0
R~E!V̂#%

52
1

2i
@Tr$ ln„Î 2Ĝ0

R~E!V̂t…%2c.c#

5
1

2i
Tr$ ln@„Î 2Ĝ0

A~E!V̂…„Î 2Ĝ0
R~E!V̂…21#%

5
1

2i
Tr$ ln@ Î 2$Ĝ0

A~E!2Ĝ0
R~E!%T̂~E!#%

5
1

2i
Tr$ ln@ Î 22p id~E2Ĥ0!T̂~E!#%

5
1

2i
Tr$ lnŜ~E!%, ~A3!

where Ŝ(E)[ Î 22p id(E2Ĥ0) is the scattering operator
Substituting this result into Eq.~A2!, we obtain Eq.~16!.

APPENDIX B:

The purpose of this appendix is to show that the quan
tr$S†(E)(d/dE)S(E)% in Eq. ~20b! is a pure imaginary num-
ber. Let us start from the fact that the 2Np32Np scattering
matrix given by Eq.~8! is unitary such that

S†~E!S~E!5I . ~B1!

Differentiating Eq.~B1! with respect to energy and takin
the trace over 2Np propagating channels, we obtain
7-6
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trH F d

dE
S†~E!GS~E!J 1trH S†~E!

d

dE
S~E!J 50. ~B2!

Here the complex conjugate of the second term in the le
hand side becomes

trH S†~E!
d

dE
S~E!J *

5trH F d

dE
S†~E!GS~E!J . ~B3!

Thus Eq.~B2! is rewritten as
a

s

B

11530
t-

trH S†~E!
d

dE
S~E!J *

52trH S†~E!
d

dE
S~E!J , ~B4!

meaning that the quantity tr$S†(E)(d/dE)S(E)% is a pure
imaginary. Therefore one can conclude that the right-ha
side of Eq.~20b! is certainly areal number as expected. By
using the similar procedure, one can show that the right-h
side of Eq.~35b! is also a real number.
*Present address: Quantum Functional Semiconductor Rese
Center, Dongguk University, Seoul 100-715, Korea.
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6M. Büttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev.

31, 6207~1985!.
7S. Datta,Electronic Transport in Mesoscopic Systems~Cambridge

University Press, Cambridge, England, 1995!.
8R. Dashen, S. K. Ma, and H. J. Bernstein, Phys. Rev.187, 345

~1969!.
9Y. Avishai and Y. B. Band, Phys. Rev. B32, 2674~1985!.
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