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Quantum dots in high magnetic fields: Calculation of ground-state properties
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We present a variational method for calculating ground-state properties of quantum dots in high magnetic
fields. Assuming a perfect spin alignment, we construct a many-body trial wave function in the form of a single
Slater determinant of overlapping oscillator functions from the lowest Landau level centered around some
pointsR; inside the dot. The pointR; either coincide with the classical equilibrium positions or are considered
as variational parameters to minimize the total energy of the system. Using these trial wave functions, we
analytically calculate the ground-state properties. We present ground-state energies for=uplelectrons,
compare them with available exact results for ufNte 10, and give a transparent interpretation of the results.
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[. INTRODUCTION ground-state many-body variational wave function is there-
fore searched for by using a Slater determinant formed from
Quantum dots are nanoscale structures realized in sensingle-particle wave functions centered at or near equilib-
conductor heterosystems in which electrons are confined iium positions of classical point particles. The classical con-
all three spatial directions. Because of their discrete energffgurations are calculated either analyticalfpr N<8) or
spectra and shell structure, they are frequently referred to dsing the Monte Carlo minimization. The energy and other
artificial atoms: However in contrast to natural atoms, their physical properties of the trial many-body states are then
propertiessize and shape of the confining potential, numbercalculated analytically using our method, which is applicable
N, and effective massn* of the electronscan be varied. at an arbitrary(not necessarily smalloverlap of the neigh-
This has made them an attractive system for studying effecfgoring single-particle wave functions.
of electronic correlations, which has been done with empha- In Sec. Il we describe the Hamiltonian used to model the
ses p|aced on ground-state properties both experime%ﬁa”y quantum dOt, and review the calculation of classical equilib-
and theoretically2® More recently quantum dots have also rum positions. Section Il explains the construction of the
gained increasing interest in view of future applicatiéhis®  trial wave function, and how to calculate expectation values
The possibility to measure addition spectra of quantunPf physical properties. Finally, we present our results in Sec.
dots (i.e. the energy necessary to charge an additional eledY, and compare with other methods.
tron into the dox by single electron capacitarfoer transport

spectroscop"y stimulated many ground-state calculations Il. MODEL HAMILTONIAN
based on quite different concepts. The most rigorous one is _ _ )
exact diagonalizatiotED),*® which has the additional ad- Ve consider quantum dots obtained by applying a lateral

vantage of providing whole spectra, but is typically restrictedconfining potential to a two-dimensional electron gas, which
to N< 10 because of demands in computation time. There arforms at the interface of a semiconductor heterostructure.
different types of quantum Monte Carlo(QMC) The typical situation of the lateral confining potential being
calculationsi®~16 which can be considered to be exact, butmuch weaker than the confinement at the interface allows us
require less computation time at the price of being restricted® define the system by the effective two-dimensional Hamil-
to ground-state energies. The largest electron numbers can frnian
dealt with so far within calculations basing on the density- N
functional theory(DFT).X”~%® The practical limitations of . [pi+eA(r)]?
these methods come from the not exactly known exchange- H_;l om*
correlation potential, but general experience is that DFT re-
sults are quite reliable. They contributed substantially to awherep; andr; are vectors in thex,y) plane. The vector
understanding of addition spectra. Finally we mention thepotential in symmetric gauge(r)=(B/2)(—y,x) takes into
stochastic _ variational approach and Hartree-Fock account the magnetic fielB perpendicular to the plane of
calculations}”*?* where the range of the latter method is the interface. The lateral confining potenti&r) is assumed
comparable to that of DFT, but which does not consider corto be harmonic:
relation effects.

In this paper we present a concept to calculate ground- V(r)=3m* wgr2_ 2)
state properties of quantum dots in high magnetic fields, with
application to systems with up to 40 electrons. The methodThis choice is generally accepted in the literattfrand is in
originally developed to describe quantum Hall systéfis, agreement with experimental resultee, e.g., Ref. 33The
modified here for the case of quantum dots. This approach iglectrons in the quantum dot interact via Coulomb interac-
motivated by the evidence that in high magnetic fieRls tion with a screening given by the relative dielectric
quantum dot electrons tend to form a Wigner clusléfThe  constante, :

+V(rj) | +Ez+ V¢, 1)
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1 &2 N 1 where

©)

€72 4mege, 2 -l ie

7 Xi(jL)Z‘/"O,L(ri_Rj)eXF<_2_(BXRj)'ri> ()
In addition, the Zeeman ener@Q=2iNzlg*,uBBai is taken
into account, wherer; is the projection of theéth electron are Fock-Darwin wave functiorisee Eq.(4)] with an addi-

spin upon the direction of the magnetic fiefgf; is the ef- tional phase factor caused by the magnetic translation

fective g factor andug=e#/2m, is the Bohr magneton. operato?® when shifting the electronfrom the origin toR; .
In the following we use the normalized solutions of the The integerL (negative quantum number of single-particle
single-particle problem given B/ angular momentuinand the vectorg;, ... Ry arefree pa-

rameters of the theory. They will be varied below in order to
1 n! ool a2y NIl 02 obtain the minimal estimate of the ground-state energy.
Ui (@) =\ W(Tm)!é rile T L), 4 The main difference between the approach presented here
and the Hartree-Fock method is the nonorthogonality of our
wherer = yXx“+y/\ is a polar coordinate scaled with the single-particle wave functiong{. It will result in three-
hybrid length A = VA/m* (wj+ wZ/4)~ Y, w.=eB/m* is  and four-particle contributions when calculating expectations
the cyclotron frequency, arid‘n”(rz) are associated Laguerre values with respect to the constructed trial wave function
polynomials. This so-called Fock-DarwiD) solution de- W, and thus include correlation.

pends on two quantum numberandl, wheren e Ny counts The function¥, is an eigenfunction of the operatét

the number of nodes anlde_Z is the _quantum number of —\/ with the eigenvalue E5'3L, where
angular momentum. The single-particle energy eigenvalues :

(without Zeeman energyare

Ef=lhwc/2+(2n+ 1|+ D) hJoi+(w/2)?. (5

In order to construct the trial many-body wave functi@ec. ~ Thus the ground-state energy of Hamiltonidi can be ap-
1), we will need to know the classical equilibrium configu- Proached by minimizing
rations ofN electrons in a dot. A classical systemMioint

N

N *
~ m” wq
v=i§l 5 (2r;-Ri—R)+V¢. (8)

charges in the parabolic potentfdq. (2)] is described by C(WH[WY) o (V) ©
the HamiltonianES?{r, . .. ry) =2;V(r;)+Vc. Its equi- LR (W W) O (W )
librium configuration ¢2, . .. rY) can be found by minimiz-

ing ESPS with respect to the particle positions. For few For calculating the normalization fa.CtQWLllPQ' itis suf-
ficient to know the single-particle overlap integrals

electrons symmetry considerations, Monte Carlo minimiza-, ~ ()~ ) _ o 1
tion'® as well as analytical calculations show that the chargeg_)(ak [xar’) for k, 1=1,... N. In a similar way;" expecta-

occupy the corners of a regular polygon without electrondO" values of powers of the single-particle operatgrap-

(for N<5) and with one electroffor 5<N<8) in the cen- pearing in the harmonic potential can be reduced to calculat-
R = _ i (L) (L)

ter. For higher electron numbersl&-8) the classical equi- N9 (Xak|falxar’)- . _

librium configuration is a more complex shell structure, A more demanding task is the calculation of the Coulomb

which can be found using Monte Carlo minimizatft interaction energy, which requires evaluating the matrix ele-

Due to the rotational symmetry of the confining potential, MeNts
all classical configurations are energetically degenerate with

i i - L) _ L L L L
respect to the arbitrary rotation. As our approach takes ac Vi(jk)l_< XX ———Ix J_) Xy, (10)
count of only one arbitrarily chosen classical configuration, a [ra=rol
problem concerning the rotational symmetry of the con—_l_hiS is carried out separately for the five ca i{é)SVi(ﬁj) (Har-

structed trial wave function occursee Sec. IV " .
€ B tree termy (ii) V) (exchange terms i) V(] (three-site

terms, type ), (iv) V() (three-site-terms, type)ll and (v)

Vi(ij)| (four-site-termg For each of these an exact analytical
In strong magnetic fields, electrons tend to be localizedexpression has been calculated. In a similar way expectation

around the classical equilibrium positions with their spinsvalues of other observables can be formulated analytically.

aligned along the magnetic field. Following Ref. 31 we write As one further example, we refer to the single-particle den-

the trial many-body wave functioW| in the form of a Slater  sity

determinant

Ill. APPROACH

N

X(lLl) X(le) o X(l%\l) <‘I’L|§1 S(r—r)|¥)
(O I (5 B (B (r)= (11
\I,L:i X1 X22 X2N Ledo, (6 p (W |w,)
NN - : | ’ . . .
L WL L The obtained analytical expressions are rather complex,
XN1 XN2 0 XNN and were calculated in Ref. 36. Their evaluation has to be
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done numerically. In Sec. IV, we present results for ground- T T T T T
state expectation values of the energy and density, and conr
pare with exact results.

~ 80
3
IV. RESULTS <
. . P

Our calculated ground state energigsunits ofz wg) are g8
considered to be functions of two dimensionless parameters 3°
=

lo/ag and wc/wg, Wherely=(A/m* wo)Y? is the oscillator
length, a =4meoe,i2/m*€? is the effective Bohr radius,

|
lo \/Tme . . I I
—_— g meV) s |
ag hwgl(meV) g, 1.650x 107, 12 2 3 5 6

7.

(g

4
o.'c/o.)0
m*\ 1 FIG. 1. Addition energy for the sixth electron obtained with our
(— x1.158x 1071 method (dotted and corresponding exact valu€sill dots) from
ﬁ% Me il (13) exact diagonalizationRef. 6. Both the five- and six-electron
g hwg/(MeV) (T)" ground states are spin polarized fog/wy=4. The parameters are

* * —
For typical GaAs parametersmf/m,=0.067, &,=12.9) lo/ag =232, andg™ =~ 0.44.

with a confinement strengthhwy=3 meV, we obtain

lo/a%~1.91 andw, /wy~0.58 B/(T). (and sometimes even lower thatthe QMC results at

w:./wpe=2. In this range typical relative deviations of the
total energy are 2% and less. Figure 2 shows the general
trend of an increasing accuracy of our results with increasing
The two-electron quantum dot, also referred to as quanN and/orB. At the highest magnetic fieldsvhere compari-
tum dot helium, is the simplest non-trivial problem and theson is possiblethe relative deviation is about 1% fd\
first test for our approach. Merlkdt al* calculated energies
for ground and excited states for this system using the exac* T T T T T T T
diagonalization approach. As in Ref. 4, only results for a
small range of total angular momenth{<3) were pub-
lished, we repeated this calculati@rsing a slightly modified
program of Ref. 18with extension to larger values &f;,. I
As a test we reproduced the data of Ref. 4. Calculating the 502"
expectation valu¢Eq. (9)] for L=0, with R; defined by the [
classical equilibrium positions, we find, for the special
choice of parametersy/ag=2, g*=—0.44, andm*/m, ~ 40
=0.067, that the relative deviation of the total energy calcu- 3
lated with our approach from the exact results drops from§

A. Quantum dot helium

60 =<

2.5% atw./we=3.6 t0 0.8% atw./wo=10. This result, 3 _ fo..--"""1o
which could be improved by optimizing with respect to the < L T L] ]
positionsR;, demonstrates the capability of our method for ' | 1o 1
N=2. SE S T 6
20 T .
B. Results for N<10 [0, 5 ]
Extending our tests to higher electron numbers, we show 0
first, in Fig. 1, the calculated results for the addition energy ~ 10— liiiiieeee.. . 4 y
ue=Eg— Es of the sixth electron in comparison with exact L0 3
result§ obtained with ED. The relative deviation from exact [ ]
results is less than 1% everywhere in the rangevpfwg (0] N S S S S I S S S S T S S——
=4, and only 0.2% atw./wy=6. It should be noted that, 0 2 4 6
despite this general agreement, our method cannot descrik w /o,

crossings between eigenstates of angular momentum, and is g, 2. Ground-state energigseduced byN times the hybrid
therefore not capable to reproduce the cusps seen in the eXa@ergyt =1 (w3+ w?/4)Y3 for dots with 3-10 electrons obtained
results. with our methoddotted lineg and from the QMC metho(Ref. 10

Results for a ground-state energy of 3—10 electrons argull lines). The small numbers (0,1) at the dotted lines mark the
shown in Fig. 2, in comparison with QMC results from Ref. value of w./w, beyond which the ground-state energy is obtained
10, which were obtained using lowest Landau-level trialwith ¥, (L=0,1). The parameters for GaAs are as given at the
wave functions. One sees that our results are very close taeginning of Sec. IV.
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FIG. 3. Electron densities (in units of R32)
of the seven-electron system calculated for
w:/wy=0 (left) and 6(right) using the trial wave
function ¥,. The length scale of the axes is
Ruass= (213/a%) Y andly/aj as in Fig. 2.

)

i
s
I

i
O
NN
A

<6 and even less for highdd. We take this quantitative the classical radiuRy: it varied fromR™"VRy~1.2 in small
agreementobtained without making use of the freedom to fields toR™"/Ry~1.015 in higher fields.
vary the position®;) as a clear demonstration of the useful-

ness of our method, and as a promise that it will also yield D. Results and interpretation for 10<N<40
reliable results for higheX, for which exact data do na@yet) . .
exist. Figure 4 gives calculated ground-state ener@iggor up

afo N=40 (a quantum dot zirconium where suitable exact

wave functionW for two different values of the magnetic fe“‘?fef‘ce vaIu_es were not available. With increasing mag-
field. As is clearly seen, the magnetic field shrinks the denni’ggsf,'elq we find a clear convergence B — N7« toward
sity peaks around the assumed positions, and reduces t (indicated by the dashed lines in Fig, 4o that we can

overlap of the single-particle wave functions. This ultimatelyW'ite dlass 5 5
leads to the expected Wigner cluster as the limiting case for En=ERT N Jopt (0c/2)°+ N SQ(B).  (14)

very high magnetic figldg. We should mention, however, th"’_“l’he frequencys(Q(B) is positive, almost independent b
the densmgs shown n Fig. 3 correspond to a charge-densné{nd tends to zero &— . The relative correction due to the
wave lacking the axial symmetry expected for the tru€ird term in Eq.(14) is smaller than 2% aib,/w,>6 and

2
ground state: smaller than 0.6% a./wy>18 for 10=N=<40. Equation

Figure 3 shows electron densities calculated from the tri

C. Variation of parameters i | ! I |

Our trial wave function?, depends on the set ¢free) 700 S 40 T
parameters{L,R,, ... ,Ry}. The small numbers 0 and 1 et
over the dotted lines on Fig. 2 indicate that, starting from the o
corresponding points, the trial wave functions, _, or 600F BT e
V¥ _, give the lowest energy. For up to five electrofig RO
always gives the lowest energy over the whole range of mag- N 34
netic field. For higher electron numbeis, gives lower en- 500 = = = = = = - - o TR e
ergies in a small range giveak magnetic fields. We calcu-
lated energies forL=2 and partially forL=3. These £ |- - - - oo iarn
energies were never minimal. 400 e 7

Thus the essential behavior of the system is already de< o B
scribed quite well, if onlyW, is used; however, the use of a - pelenn,
more complicated trial wave function, e.g., of a linear com- L300 - Tt @B ]
bination of 45 o and ¢y ; in Xi(jL), may improve the estimate o
of the ground-state energy at low fields. Taking into account T T T T T s e s
¥, frequently gives a substantially better approximation for ~ 200fe-l--.o 49
low fields. 1

Up to now the parameteR,, ... ,Ry were chosen ac- T T T e s e e e s
cording to a classical equilibrium configuration. Y8 100210 B it 7
we minimized the expression for the ground-state energy by B--090 g Lo 1
varying the radiusR of the outer shell. In the range 0.6 0 5 10 15 20
=w./wy=2.4, a significantly lower energy was achieved by w /o,
optimizing the radiuk. For higher fields the energies calcu-  FiG. 4. Calculated ground-state energies for 10-40 electrons
lated using the classical equilibrium radius are already verydotted lines. The horizontal dashed lines indicate the value of
close to the exact ground state, and the variatioR dfd not  classical ground-state energ{**¥% w,. The meaning of the num-
significantly change the results. The optimized shell radiusers in the plot and the parametgra} are as in Fig. 2, except that
R™"was found to be largdf‘stretched” configurationsthan ~ g*=0 here.

W)/(h )
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(14) refines the rigorous mathematical result of Ref. 22, thaproach to other observables was demonstrated by giving re-
En~E$P*% N w /2 atB—, and has a transparent physical sults for the density, which reflects the localization in strong
meaning: The quantum-mechanical ground-state energy ghagnetic fields.

the dot is a sum of the classical potential energy, the We putforward a simple interpretation of our results, stat-
quantum-mechanical kinetic energy, and the small rest ering that the quantum mechanical ground-state energy is ap-

ergy = 6Q(B), which decreases with increasiig proximately the sum of the classical potential energy and the
single-particle kinetic energy. This estimate is made exact by
V. CONCLUSION adding a rest energy term, for which we gave an upper esti-

mate in the studied range &f and magnetic field.

We have presented a variational method for calculating Further work in this field might be directed upon inclu-
ground-state properties of parabolic quantum dotéhigh)  sjon of non spin-polarized states or the treatment of more
magnetic fields. A specially designed trial many-body wavegeneral (nonparabolic, anisotropic confining potentials,
function takes into account the classical equilibrium posi-where the latter problem is quite straightforward. Another
tions of the quantum dot electrons, and has the correct symgim is to develop a method which could treat functiohgs
metry for a fermion system with fU”y polarized Spins. The with angu]ar averaging over positions of Vectchq, [Eq

expectation values of all observables can then be analytically)] so that the density shows the axial symmetry to be
calculated with this trial wave function. expected for the ground state.

Our results for the ground-state energy are upper bounds
to the exact values, and compare favorably with reference
data, but are much less demanding in terms of computation
time. As the accuracy even seems to increase with the in- This work was supported by the Deutsche Forschungsge-
creasing size of the system, an extension to higher electromeinschaft within the Graduiertenkolleg(GK 176)
numbers becomes possible, which we demonstrate by showomplexita in Festkgern One of the authorgU. R) ac-
ing results for up to 40 electrons. The extension of our apknowledges support from the Volkswagen foundation.

ACKNOWLEDGMENTS

*Present address: Institut rfuPhysik, Universita Augsburg, 7K. Hirose and N.S. Wingreen, Phys. Rev5B, 4604 (1999.

D-86 135 Augsburg, Germany, 180, steffens, U. Rssler, and M. Suhrke, Europhys. Let2, 529

:M.A. Kastner, Phys. Todag6(1), 24 (1993. _ (1998; 44, 22 (1998; Physica B256-258 147 (1998.

R.C. Ashoori, H. L. Stamer, J. S. Weiner, L. N. Pfeiffer, S. J. 197 wensauer, O. Steffens, M. Suhrke, and UsBler, Phys. Rev.
Pearton, K. W. Baldwin, and K. W. West, Phys. Rev. Lé®, B 62, 2605(2000.

3088(1992; R. C. Ashoori, H. L. Stamer, J. S. Weiner, L. N.

20 .
M. Taut, Phys. Rev. A48, 3561 (1993: J. Phys. A27, 1045
Pfeiffer, K. W. Baldwin, and K. W. Wesibid. 71, 613 (1993. y (1993 y

. 1994).
8S. Tarucha, D. G. Austing, T. Honda, R. J. van der Hage, L. PQll\/(I W:) ner. U. Merkt. and AV. Chaplik. Phvs. Rev. 45, 1951
Kouwenhoven, Phys. Rev. Left7, 3613(1996. ’ gner, U. ' o plik, FNys. B
4U. Merkt, J. Huser, and M. Wagner, Phys. Rev.48, 7320 - (1992. .
(1991). J. Yngvason, math-ph/9812009npublishedl

5P, Hawrylak and D. Pfannkuche, Phys. Rev. L@, 485(1993.  >°K. Varga, P. Navratil, J. Usukura, and Y. Suzuki, Phys. Re@3B
6S.-R.E. Yang, A.H. MacDonald, and M.D. Johnson, Phys. Rev. 205308(2003).

Lett. 71, 3194(1993. 24C.de C. Chamon and X.G Wen, Phys. Revi® 8227 (1994).
7J.J. Palacios, L. Martin-Moreno, G. Chiappe, E. Louis, C. Teje-25B. Reusch, W. Hasler, and H. Grabert, Phys. Rev.68, 113313
dor, Phys. Rev. B0, 5760(1994. (2002.

8D. Pfannkuche, V. Gudmundsson, and P.A. Maksym, Phys. Rewsc . parwin, Proc. Cambridge Philos. Sa7, 86 (1931. V.

o B 47, 2244(1993. _ Fock, Z. Phys47, 446 (1928.
S.M. Reimann, M. Koskinen, and M. Manninen, Phys. Re62B 273 \W. Park. K. S. Park. B. T. Lee. C. H. Lee. S. D. Lee. J. B. Choi

1°F81I-308It(2000.d U, Reslor Suberiatiices Microstiudd2. 139 K. H. Yoo, J. Kim, S. C. Oh, S. 1. Park, K. I. Kim, and J. J. Kim,
. Bolton an . esler, superiattices ICrostru s Appl Phys Lett.75, 566 (1999

" C(fg,a;' 20'5“';02‘:‘ dsﬁtivilgg:_rgf;'s iﬁii(lgr?‘i' rey. Log “RJ- Haug, M. Dilger, T. Schmid, R. H. Blick, K. von Kitzing,
oHe VK, 1. =gger, ' » NYS- REV-LE - and K. Eberl, Physica B27, 82 (1996.

81, 4533(1998. . .
(1999 29p. zanardi and F. Rossi, Phys. Rev5B, 8170(1999.

12p A. Maksym, Phys. Rev. B3, 10871(1996. 0 q dh h
13A. Harju, V.A. Sverdlov, and R.M. Nieminen, Europhys. Lett, S. Bandyopadhyay, Phys. Rev.@8, 13813(2000.

31 o :
407 (1998; A. Harju, V.A. Sverdiov, R.M. Nieminen, and V. .. >-A- Mikhailov, Physica B299, 6 (2003).

Halonen, Phys. Rev. B9, 5622(1999. %2, Kumar, S.E. Laux, and F. Stern, Phys. Rev® 5166(1990.
14\, Hausler, B. Reusch, R. Egger, and H. Grabert, Physica B, C- Sikorski and U. Merkt, Phys. Rev. Lefi2, 2164(1989.
284-288 1772(2000. 34y.M. Bedanov and F.M. Peeters, Phys. Rev® 2667 (1994.
15E pederiva, C.J. Umrigar, and E. Lipparini, Phys. Rev6® L. D. Landau and E. M. Lifschitzl ehrbuch der Theoretischen
8120(2000. Physik—Statistische Physik, Teil 2: Theorie des kondensierten
18A.V. Filinov, M. Bonitz, and Yu. E. Lozovik, Phys. Rev. Le8s, ZustandegAkademie Verlag, Berlin, 1992Vol. 9.
3851(2001). 383, Kainz, Master's thesis, UniversitRegensburg, 2000.

115305-5



