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Quantum dots in high magnetic fields: Calculation of ground-state properties

J. Kainz, S. A. Mikhailov,* A. Wensauer, and U. Ro¨ssler
Institut für Theoretische Physik, Universita¨t Regensburg, D-93040 Regensburg

~Received 12 July 2001; published 19 February 2002!

We present a variational method for calculating ground-state properties of quantum dots in high magnetic
fields. Assuming a perfect spin alignment, we construct a many-body trial wave function in the form of a single
Slater determinant of overlapping oscillator functions from the lowest Landau level centered around some
pointsRi inside the dot. The pointsRi either coincide with the classical equilibrium positions or are considered
as variational parameters to minimize the total energy of the system. Using these trial wave functions, we
analytically calculate the ground-state properties. We present ground-state energies for up toN540 electrons,
compare them with available exact results for up toN510, and give a transparent interpretation of the results.
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I. INTRODUCTION

Quantum dots are nanoscale structures realized in s
conductor heterosystems in which electrons are confine
all three spatial directions. Because of their discrete ene
spectra and shell structure, they are frequently referred t
artificial atoms.1 However in contrast to natural atoms, the
properties~size and shape of the confining potential, numb
N, and effective massm* of the electrons! can be varied.
This has made them an attractive system for studying eff
of electronic correlations, which has been done with emp
ses placed on ground-state properties both experimenta2,3

and theoretically.4–26 More recently quantum dots have als
gained increasing interest in view of future applications.27–30

The possibility to measure addition spectra of quant
dots ~i.e. the energy necessary to charge an additional e
tron into the dot! by single electron capacitance2 or transport
spectroscopy3 stimulated many ground-state calculatio
based on quite different concepts. The most rigorous on
exact diagonalization~ED!,4–9 which has the additional ad
vantage of providing whole spectra, but is typically restrict
to N,10 because of demands in computation time. There
different types of quantum Monte Carlo~QMC!
calculations,10–16 which can be considered to be exact, b
require less computation time at the price of being restric
to ground-state energies. The largest electron numbers ca
dealt with so far within calculations basing on the densi
functional theory~DFT!.17–19 The practical limitations of
these methods come from the not exactly known exchan
correlation potential, but general experience is that DFT
sults are quite reliable. They contributed substantially to
understanding of addition spectra. Finally we mention
stochastic variational approach23 and Hartree-Fock
calculations,8,24,25 where the range of the latter method
comparable to that of DFT, but which does not consider c
relation effects.

In this paper we present a concept to calculate grou
state properties of quantum dots in high magnetic fields, w
application to systems with up to 40 electrons. The meth
originally developed to describe quantum Hall systems,31 is
modified here for the case of quantum dots. This approac
motivated by the evidence that in high magnetic fieldsB
quantum dot electrons tend to form a Wigner cluster.10,12The
0163-1829/2002/65~11!/115305~5!/$20.00 65 1153
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ground-state many-body variational wave function is the
fore searched for by using a Slater determinant formed fr
single-particle wave functions centered at or near equi
rium positions of classical point particles. The classical co
figurations are calculated either analytically~for N<8) or
using the Monte Carlo minimization. The energy and oth
physical properties of the trial many-body states are th
calculated analytically using our method, which is applica
at an arbitrary~not necessarily small! overlap of the neigh-
boring single-particle wave functions.

In Sec. II we describe the Hamiltonian used to model
quantum dot, and review the calculation of classical equi
rium positions. Section III explains the construction of t
trial wave function, and how to calculate expectation valu
of physical properties. Finally, we present our results in S
IV, and compare with other methods.

II. MODEL HAMILTONIAN

We consider quantum dots obtained by applying a late
confining potential to a two-dimensional electron gas, wh
forms at the interface of a semiconductor heterostructu
The typical situation of the lateral confining potential bei
much weaker than the confinement at the interface allows
to define the system by the effective two-dimensional Ham
tonian

Ĥ5(
i 51

N F @pi1eA~r i !#
2

2m*
1V~r i !G1EZ1VC , ~1!

wherepi and r i are vectors in the (x,y) plane. The vector
potential in symmetric gaugeA(r )5(B/2)(2y,x) takes into
account the magnetic fieldB perpendicular to the plane o
the interface. The lateral confining potentialV(r ) is assumed
to be harmonic:

V~r !5 1
2 m* v0

2r 2. ~2!

This choice is generally accepted in the literature,32 and is in
agreement with experimental results~see, e.g., Ref. 33!. The
electrons in the quantum dot interact via Coulomb inter
tion with a screening given by the relative dielectr
constant« r :
©2002 The American Physical Society05-1
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1

2

e2

4p«0« r
(

i , j 51
iÞ j

N
1

ur i2r j u
. ~3!

In addition, the Zeeman energyEZ5( i 51
N g* mBBs i is taken

into account, wheres i is the projection of thei th electron
spin upon the direction of the magnetic field,g* is the ef-
fective g factor andmB5e\/2me is the Bohr magneton.

In the following we use the normalized solutions of t
single-particle problem given by26

cn,l~r ,w!5
1

l
A n!

p~n1u l u!!
eilwr u l ue2r 2/2Ln

u l u~r 2!, ~4!

where r 5Ax21y2/l is a polar coordinate scaled with th
hybrid length l5A\/m* (v0

21vc
2/4)21/4, vc5eB/m* is

the cyclotron frequency, andLn
u l u(r 2) are associated Laguerr

polynomials. This so-called Fock-Darwin~FD! solution de-
pends on two quantum numbersn andl, wherenPN0 counts
the number of nodes andl PZ is the quantum number o
angular momentum. The single-particle energy eigenva
~without Zeeman energy! are

En,l
FD5 l\vc /21~2n1u l u11!\Av0

21~vc/2!2. ~5!

In order to construct the trial many-body wave function~Sec.
III !, we will need to know the classical equilibrium config
rations ofN electrons in a dot. A classical system ofN point
charges in the parabolic potential@Eq. ~2!# is described by
the HamiltonianEN

class(r1 , . . . ,rN)5( iV(r i)1VC . Its equi-
librium configuration (r1

0 , . . . ,rN
0 ) can be found by minimiz-

ing EN
class with respect to the particle positions. For fe

electrons symmetry considerations, Monte Carlo minimi
tion10 as well as analytical calculations show that the char
occupy the corners of a regular polygon without electro
~for N<5) and with one electron~for 5,N<8) in the cen-
ter. For higher electron numbers (N.8) the classical equi-
librium configuration is a more complex shell structur
which can be found using Monte Carlo minimization.10,34

Due to the rotational symmetry of the confining potenti
all classical configurations are energetically degenerate
respect to the arbitrary rotation. As our approach takes
count of only one arbitrarily chosen classical configuration
problem concerning the rotational symmetry of the co
structed trial wave function occurs~see Sec. IV B!.

III. APPROACH

In strong magnetic fields, electrons tend to be localiz
around the classical equilibrium positions with their sp
aligned along the magnetic field. Following Ref. 31 we wr
the trial many-body wave functionCL in the form of a Slater
determinant

CL5
1

AN! Ux11
(L) x12

(L)
••• x1N

(L)

x21
(L) x22

(L)
••• x2N

(L)

A � A

xN1
(L) xN2

(L)
••• xNN

(L)

U , LPN0 , ~6!
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x i j
(L)5c0,2L~r i2Rj !expS 2

ie

2\
~B3Rj !•r i D ~7!

are Fock-Darwin wave functions@see Eq.~4!# with an addi-
tional phase factor caused by the magnetic transla
operator35 when shifting the electroni from the origin toRj .
The integerL ~negative quantum number of single-partic
angular momentum! and the vectorsR1 , . . . ,RN arefreepa-
rameters of the theory. They will be varied below in order
obtain the minimal estimate of the ground-state energy.

The main difference between the approach presented
and the Hartree-Fock method is the nonorthogonality of
single-particle wave functionsx i j

(L) . It will result in three-
and four-particle contributions when calculating expectatio
values with respect to the constructed trial wave funct
CL , and thus include correlation.

The functionCL is an eigenfunction of the operatorĤ

2V̂ with the eigenvalueNE0,2L
FD , where

V̂5(
i 51

N m* v0
2

2
~2r i•Ri2Ri

2!1VC . ~8!

Thus the ground-state energy of Hamiltonian~1! can be ap-
proached by minimizing

EL ,Ri
5

^CLuĤuCL&

^CLuCL&
5NE0,2L

FD 1
^CLuV̂uCL&

^CLuCL&
. ~9!

For calculating the normalization factor^CLuCL&, it is suf-
ficient to know the single-particle overlap integra
^xak

(L)uxal
(L)& for k, l 51, . . . ,N. In a similar way,31 expecta-

tion values of powers of the single-particle operatorra ap-
pearing in the harmonic potential can be reduced to calcu
ing ^xak

(L)urauxal
(L)&.

A more demanding task is the calculation of the Coulom
interaction energy, which requires evaluating the matrix e
ments

Vi jkl
(L) 5^xai

(L)xbk
(L)u

1

ura2rbu
uxa j

(L)xbl
(L)&. ~10!

This is carried out separately for the five cases:~i! Vii j j
(L) ~Har-

tree terms!, ~ii ! Vi j j i
(L) ~exchange terms!, ~iii ! Viikl

(L) ~three-site
terms, type I!, ~iv! Vi jki

(L) ~three-site-terms, type II!, and ~v!
Vi jkl

(L) ~four-site-terms!. For each of these an exact analytic
expression has been calculated. In a similar way expecta
values of other observables can be formulated analytica
As one further example, we refer to the single-particle d
sity

r~r !5

^CLu(
i 51

N

d~r2r i !uCL&

^CLuCL&
. ~11!

The obtained analytical expressions are rather comp
and were calculated in Ref. 36. Their evaluation has to
5-2
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done numerically. In Sec. IV, we present results for grou
state expectation values of the energy and density, and c
pare with exact results.

IV. RESULTS

Our calculated ground state energies~in units of\v0) are
considered to be functions of two dimensionless parame
l 0 /aB* and vc /v0, where l 05(\/m* v0)1/2 is the oscillator
length, aB* 54p«0« r\

2/m* e2 is the effective Bohr radius
and

l 0

aB*
'A m* /me

\v0 /~meV!

1

« r
31.6503102, ~12!

vc

v0
'

S m*

me
D 21

31.15831021

\v0 /~meV!

B

~T!
. ~13!

For typical GaAs parameters (m* /me50.067, « r512.9)
with a confinement strength\v053 meV, we obtain
l 0 /aB* '1.91 andvc /v0'0.58 B/(T).

A. Quantum dot helium

The two-electron quantum dot, also referred to as qu
tum dot helium, is the simplest non-trivial problem and t
first test for our approach. Merktet al.4 calculated energies
for ground and excited states for this system using the e
diagonalization approach. As in Ref. 4, only results for
small range of total angular momenta (L tot

z <3) were pub-
lished, we repeated this calculation~using a slightly modified
program of Ref. 18! with extension to larger values ofL tot

z .
As a test we reproduced the data of Ref. 4. Calculating
expectation value@Eq. ~9!# for L50, with Ri defined by the
classical equilibrium positions, we find, for the spec
choice of parametersl 0 /aB* 52, g* 520.44, andm* /me

50.067, that the relative deviation of the total energy cal
lated with our approach from the exact results drops fr
2.5% at vc /v053.6 to 0.8% atvc /v0510. This result,
which could be improved by optimizing with respect to t
positionsRi , demonstrates the capability of our method f
N52.

B. Results for NÏ10

Extending our tests to higher electron numbers, we sh
first, in Fig. 1, the calculated results for the addition ene
m65E62E5 of the sixth electron in comparison with exa
results6 obtained with ED. The relative deviation from exa
results is less than 1% everywhere in the range ofvc /v0
>4, and only 0.2% atvc /v056. It should be noted that
despite this general agreement, our method cannot des
crossings between eigenstates of angular momentum, a
therefore not capable to reproduce the cusps seen in the
results.

Results for a ground-state energy of 3–10 electrons
shown in Fig. 2, in comparison with QMC results from Re
10, which were obtained using lowest Landau-level tr
wave functions. One sees that our results are very clos
11530
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~and sometimes even lower than! the QMC results at
vc /v0*2. In this range typical relative deviations of th
total energy are 2% and less. Figure 2 shows the gen
trend of an increasing accuracy of our results with increas
N and/orB. At the highest magnetic fields~where compari-
son is possible! the relative deviation is about 1% forN

FIG. 1. Addition energy for the sixth electron obtained with o
method ~dotted! and corresponding exact values~full dots! from
exact diagonalization~Ref. 6!. Both the five- and six-electron
ground states are spin polarized forvc /v0*4. The parameters are
l 0 /aB* 52.32, andg* 520.44.

FIG. 2. Ground-state energies@reduced byN times the hybrid
energy\v5\(v0

21vc
2/4)1/2] for dots with 3–10 electrons obtaine

with our method~dotted lines! and from the QMC method~Ref. 10!
~full lines!. The small numbers (0,1) at the dotted lines mark
value ofvc /v0 beyond which the ground-state energy is obtain
with CL (L50,1). The parameters for GaAs are as given at
beginning of Sec. IV.
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FIG. 3. Electron densitiesr ~in units ofRclass
22 )

of the seven-electron system calculated f
vc /v050 ~left! and 6~right! using the trial wave
function C0. The length scale of the axes i
Rclass5(2l 0

4/aB* )1/3 and l 0 /aB* as in Fig. 2.
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<6 and even less for higherN. We take this quantitative
agreement~obtained without making use of the freedom
vary the positionsRi) as a clear demonstration of the usefu
ness of our method, and as a promise that it will also yi
reliable results for higherN, for which exact data do not~yet!
exist.

Figure 3 shows electron densities calculated from the t
wave functionC0 for two different values of the magneti
field. As is clearly seen, the magnetic field shrinks the d
sity peaks around the assumed positions, and reduces
overlap of the single-particle wave functions. This ultimate
leads to the expected Wigner cluster as the limiting case
very high magnetic fields. We should mention, however, t
the densities shown in Fig. 3 correspond to a charge-den
wave lacking the axial symmetry expected for the tr
ground state.12

C. Variation of parameters

Our trial wave functionCL depends on the set of~free!
parameters$L,R1 , . . . ,RN %. The small numbers 0 and
over the dotted lines on Fig. 2 indicate that, starting from
corresponding points, the trial wave functionsCL50 or
CL51 give the lowest energy. For up to five electronsC0
always gives the lowest energy over the whole range of m
netic field. For higher electron numbersC1 gives lower en-
ergies in a small range of~weak! magnetic fields. We calcu
lated energies forL52 and partially for L53. These
energies were never minimal.

Thus the essential behavior of the system is already
scribed quite well, if onlyC0 is used; however, the use of
more complicated trial wave function, e.g., of a linear co
bination ofc0,0 andc0,1 in x i j

(L) , may improve the estimate
of the ground-state energy at low fields. Taking into acco
C1 frequently gives a substantially better approximation
low fields.

Up to now the parametersR1 , . . . ,RN were chosen ac
cording to a classical equilibrium configuration. ForN<8
we minimized the expression for the ground-state energy
varying the radiusR of the outer shell. In the range 0.
&vc /v0&2.4, a significantly lower energy was achieved
optimizing the radiusR. For higher fields the energies calc
lated using the classical equilibrium radius are already v
close to the exact ground state, and the variation ofR did not
significantly change the results. The optimized shell rad
Rmin was found to be larger~‘‘stretched’’ configurations! than
11530
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the classical radiusR0: it varied fromRmin/R0'1.2 in small
fields toRmin/R0'1.015 in higher fields.

D. Results and interpretation for 10ÏNÏ40

Figure 4 gives calculated ground-state energiesEN for up
to N540 ~a quantum dot zirconium!, where suitable exac
reference values were not available. With increasing m
netic field we find a clear convergence ofEN2N\v toward
EN

class~indicated by the dashed lines in Fig. 4!, so that we can
write

EN5EN
class1N\Av0

21~vc/2!21N\dV~B!. ~14!

The frequencydV(B) is positive, almost independent ofN,
and tends to zero atB→`. The relative correction due to th
third term in Eq.~14! is smaller than 2% atvc /v0.6 and
smaller than 0.6% atvc /v0.18 for 10<N<40. Equation

FIG. 4. Calculated ground-state energies for 10–40 electr
~dotted lines!. The horizontal dashed lines indicate the value
classical ground-state energyEN

class/\v0. The meaning of the num-
bers in the plot and the parameterl 0 /aB* are as in Fig. 2, except tha
g* 50 here.
5-4
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~14! refines the rigorous mathematical result of Ref. 22, t
EN;EN

class1N\vc/2 atB→`, and has a transparent physic
meaning: The quantum-mechanical ground-state energ
the dot is a sum of the classical potential energy,
quantum-mechanical kinetic energy, and the small rest
ergy }dV(B), which decreases with increasingB.

V. CONCLUSION

We have presented a variational method for calculat
ground-state properties of parabolic quantum dots in~high!
magnetic fields. A specially designed trial many-body wa
function takes into account the classical equilibrium po
tions of the quantum dot electrons, and has the correct s
metry for a fermion system with fully polarized spins. Th
expectation values of all observables can then be analytic
calculated with this trial wave function.

Our results for the ground-state energy are upper bou
to the exact values, and compare favorably with refere
data, but are much less demanding in terms of computa
time. As the accuracy even seems to increase with the
creasing size of the system, an extension to higher elec
numbers becomes possible, which we demonstrate by sh
ing results for up to 40 electrons. The extension of our
.
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proach to other observables was demonstrated by giving
sults for the density, which reflects the localization in stro
magnetic fields.

We put forward a simple interpretation of our results, st
ing that the quantum mechanical ground-state energy is
proximately the sum of the classical potential energy and
single-particle kinetic energy. This estimate is made exac
adding a rest energy term, for which we gave an upper e
mate in the studied range ofN and magnetic field.

Further work in this field might be directed upon incl
sion of non spin-polarized states or the treatment of m
general ~nonparabolic, anisotropic! confining potentials,
where the latter problem is quite straightforward. Anoth
aim is to develop a method which could treat functionsCL
with angular averaging over positions of vectorsRj @Eq.
~6!#, so that the density shows the axial symmetry to
expected for the ground state.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungs
meinschaft within the Graduiertenkolleg~GK 176!
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