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Dephasing time of disordered two-dimensional electron gas in modulated magnetic fields
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The dephasing time of disordered two-dimensional electron gas in modulated magneticHfield
={0,0H/cosH[(x—xy)/ 8]} is studied. In the weak inhomogeneity limit whetds much larger than the linear
size of the sampla;;l is proportional taH. In the strong inhomogeneity limit, it is shown that the dependence
is quadratic,r;1= D(e/fc)?H?8%. In the intermediate regime, a crossover between these two limits occurs at
H.=(%clde)s 2. It is demonstrated that the origin of the dependencer pfon H lies in the nature of
corresponding single-particle motion. A semiclassical Monte Carlo algorithm is developed to study the dephas-
ing time, which is of a qualitative nature but efficient in uncovering the dependencgaf H for arbitrarily
complicated magnetic-field modulation. Computer simulations support analytical results. The crossover from
linear to quadratic dependence is then generalized to the situation with magnetic field modulated periodically
in one direction with zero mean, and it is argued that this crossover can be expected for a large class of
modulated magnetic fields.
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[. INTRODUCTION channel exposed to a periodically modulated magnetic field.
Gumbs and Zharlg developed a magnetotransport theory
Dephasing is one of the key elements in the study ofor the magnetoconductivity of a square lattice in a periodi-
quantum coherent phenomena in mesoscopic systems. Cotglly modulated magnetic field, and predicted some anoma-
pling with the environment suppresses the quantum interfefies due to commensurability effects. Recently Matulis and
ence of electrons. The phase-breaking time, or dephasirﬁeeteré4 studied semiclassical magnetoresistance in Weakly
time, is the characteristic time beyond which the phase comodulated magnetic fields. They considered the case when
herence is lost. Although a static magnetic field does nothe field is periodic in one dimension with zero mean. In the
destroy all quantum effects, it may introduce a cutoff to thelimit of small magnetic-field amplitude, it is shown that the
interference effect. Dephasing of disordered electron gas bgontribution of the magnetic modulation to magnetoresis-
coupling with a uniform magnetic field has been studidd tance increases & in the diffusive limit, while increases
in the early stage of weak-localization theory. In the absencénearly in B in the ballistic limit.
of spin-orbit scattering, the magnetic field suppresses the The magnetoresistance in the diffusive limit is well de-
weak-localization effect and leads to a positive magnetoconscribed by standard weak-localization theory. It arises from
ductance, which has been observin a review, see Ref.)4  the suppression of magnetic field on the cooperon propagator
The dephasing rate due to coupling with uniform field turnswhich represents the interference of time-reversal trajecto-
out to be proportional to the field amplitude. These resultgies. Taking the magnetic field into consideration, the coop-
can also be established by qualitative considerations accor@0n propagator satisfies
ing to Khmelnitskii®
In recent years there has been increasing infenedty- , ) 2e 2 1
brid semiconductor systems both for the fundamental under- | ~1®@+D —|V—?A(r)> }C(”'?“’): —o(r=r’),
standing and the potentiality of enhancing the functionality (1)
of the devices. The disposition of superconductiray
magneti€ microstructures on the surface of heterostructuresvhich may be viewed as an imaginary-time Sclinger
with a two-dimensional electron gd2DEG) may produce equation with parameters properly replaced. For the uniform
inhomogeneous magnetic field which influences electrorfield situation, the solution of the corresponding Sclimger
motion locally. Some interesting consequences of the moduequation is the well-known Landau levels. The dephasing
lated magnetic fields have already been reported. It wasme was found to b3
showr! that the effect of electron-electron umklapp scatter-
ing can be observed in a 2DEG at a GaAs/G&Al,As in-
terface by imposing a spatially alternating magnetic field = 2
normal to the 2DEG plane. Kubrait all° fabricated a few ry,  he
different types of hybrid ferromagnetic-semiconductor de-
vices, which allowed them to study how these differentwhere the superscript represents result for uniform field.
modulated magnetic fields influence the transport properties In this paper we first study the dephasing time of disor-
of 2DEG. And magnetoresistance oscillations due to the indered 2DEG due to coupling with the following modulated
ternal Landau band structure of a 2D electron system in pehagnetic field:
riodic magnetic field have been obsenfédTheoretically,
Pend? calculated the transport properties in a parabolic H={0,0H/cosH[(x—xo)/5]}. ©)]
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The corresponding Schidinger equation has been solved ex- A={0H StanH (x—xq)/ 51,0}, (5)
actly by Hud&,'® where it was shown that a proper transfor- L _ _

mation converts the equation into a form solved earlier byih€ Schrdinger equation can be written as

Morse and Feshbacfi.Making use of this solution, we con-

2 —x\ 12
struct the cooperon propagator and calculate the dephasingi _ﬁzd_Jr py—e—Hétam-(X Xo () =Ex(x),
time of a disordered 2DEG in this modulated field. We find 2m dx? c g

in the weak inhomogeneity limity>L, whereL is the linear (6)
size of the samplefr(;1 is proportional toH, as in the uni-

) ) = 2T where we have separated variables
form field case. In the strong inhomogeneity limit, it is

shown that P(x,y)=elMPyYy(x). (7)
1 e \2 This Schralinger equation describes the motion of a par-
— D(— H2s2. (4)  ticle in the potentiaV(x),
T¢ hC

2 P \2[ pyolt X—Xo\ \?
Ip Fhe_ intermediate regime, a crossoverik;etween these two V(X)= ome? 27T¢TO 27 DD, —tan 5 ,
limits is expected to occur &i.= (A cl/4e) 5 <. The dephas-

. o . . (8)
ing rate dependence on the magnetic-field amplitude is

shown to be related to the nature of corresponding singlewhere®,=hc/e is the flux quantum, ant=H 5° is a mea-
particle motion. Bound states lead to linear dependencesure of the magnetic flux by the external field. Introducing
while nearly free motion results in quadratic. A semiclassical

Monte Carlo algorithm is developed to study the dephasing F=2w3

time, which is of a qualitative nature but efficient in uncov- (OFS

ering the dependence af; on H for arbitrarily complicated

magnetic-field modulation. Computer simulations support P=—pydlt,

analytical results. The considerations are then generalized to

the situation where the modulated magnetic field is periodic z=(X—Xg)/ 6, 9

in one direction with zero mean, and it is argued that thise potential may be written as

crossover between linear and quadratic dependencies can be

expected for a large class of modulated magnetic fields. h2F2
Before going to quantitative calculations, let's see how V(z)=

qualitative considerations of Khmelnitskican predict Eq. 2

(4). Let the magnetic field be nonzero only in a stripe of Forp 0, this potential is an asymmetric well, with differ-

width 6. Consider a large loop of ardar; we are interested ent [imiting values ofV(+%) and V(—«). Hud&"® ob-

in the flux piercing it. Whens is small, the effective area seryved that the transformation

where the field is nonzero i$\JDr. Requiring the phase

2

E +tanhz

(10

mé?

change due to this loop to be of order ®B/#c)H&\(Dr, vcost2u=P?+F?,
~1, one immediately obtains E¢4). In subsequent quanti- _
tative calculations, we will see that understanding the origin vsintf2u=2FP (11)

of this dependence allows us to generalize the result to morg,, convert the Schdinger equation into a form that was

complicated situations. ___solved by Morse and Feshbaéfearlier:
This paper is organized as follows. In Sec. Il, the solution

of the Schrdinger equation by Hud&® is briefly outlined. d2x(2)

The construction of the cooperon propagator and calculatior———~

of dephasing time is presented in Sec. lIl. Section IV con- d

tains a description of the numerical algorithm and the simu-

lation results. The generalization to the situation with modu- ) costf i

lated magnetic field periodic in one direction is presented in *| &~ ¥ €osh 2u—vsinh 2 tanhz+ v cosliz x(2)=0,
Sec. V. Conclusions are given in Sec. VI. (12)

. wheree =2mé&%E/#2.
Il. SOLUTION OF THE SCHRO DINGER EQUATION One may distinguish situations betwe®<F and|P|
IN H ={0,0H/cosH[ (x—xo)/ 8]} >F. In the former case, there is a discrete part in the energy
spectrum as well as a continuous one, while the latter leads

For completeness, the solution of the Sclinger equa- | pd
P g ] to only a continuous part. The solutioris as follows. If

tion in the modulated magnetic fieldl={0,0H/cosH[(x

—Xg)/ 6]} is briefly outlined in this section. Interested readers < _ 2

are referred to the original article of Huda and the book of [PI<F(F=[PD% (13

Morse and Feshbachi. then the energy spectrum for the motion in thelirection
Under the Landau gauge contains a discrete part given by
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5 r

=—|1—
M (VR (n+ 1)

En(py)

72 1 2
+ FP=| \/F?+=——(n+3)| |,
2mé? 4
(14)
with n=0,1, ... [Ny, and
11
Nmax= F2+ Z_E_ \/|P|F- (15

The corresponding eigenfunction is
xn(2)=Npexp —a,z)(e ?+e?) Pn
XF(—n,2\F2+1/4—n,a,+b,+1e % (e 2+€?),
(16)

where

|PIF

an= L}
F2+i—(n+3)

1
b,=\/F%+ Z—(n+%).
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This wave function vanishes exponentially for- when
py<0, and is bound from above when- —. For p,>0,
the opposite is true. The inequalit¥8) is equivalent to

0<k2<4|P|F. (22)

If the parameters are such that the inequalgy) is re-
placed by

k?=4|P|F, (22)

then there is another type of continuous energy spectrum.
The wave functions are nonvanishing but boundxas-.
They describe overbarrier motion. The energy is still given
by Eg.(19), but the corresponding wave functions are

XE,py(z)= N p exiliz(k, —k)/2] (e *+ g?)!(ktk.)/2

XF[(—i(k+k)+1-2y)/2(—i(k+k,)+1
+2y)2,1—ik, ,e ‘(e *+€%)], (23

[ 1
y=\F+ g k., =k°—4F|P|.

The above results are valid foP|<F. When|P|>F, an
analytical continuation can be perform&dnd it was found
that there is no discrete part in the spectrum; the wave func-

where

HereF(a,B,7,0) denotes the hypergeometric function, andtjons and energy are of the same form as that®=F, but

N, is a normalization constant.
Thus there is discrete part if

1 / 1
|P|<Pd(F)=F+ﬁ_ 1+E (17)

now valid for this region of parameters.

I1l. DEPHASING TIME

In the weak inhomogeneity limit>L, wherelL is the
linear size of the sample, ark>1 for not very weak field.

The continuous spectrum may be divided into two parts.Then the potential wellgiven by Eq.(8)] is deep enough to

For

(F—|P])2<e<(F+|P])? (18)

fik
5

where k is the momentum in thec direction, andp(F)
=F#/éS. The corresponding wave function is

the energy is given by

1 2
E(kpy)= 5

+[|pyl—p(F)]2}, (19

X’pr(z) =Ny p €Xp(— az)(e ?+e) P

XF(b—y+3,b+y+3 K. +1e (e *+¢€),
(20
with

a=(k, +ik)/2,

[ 1
y= F2+Z, k.= AF|P|— K.

b=(k, —ik)/2,

host many discrete levels, which are reminiscent of the Lan-
dau levels. Recall that low-energy states dominate in the
cooperon propagator, and the continuous paith energies
higher than the barrier heighgives a negligible contribu-
tion, thus only the discrete part of the spectrum is important
in the cooperon. It can be shown that in this limit, inhomo-
geneity brings a correction of ord€x(1/F) to the usual uni-
form field weak-localization magnetoresistance. And the
dephasing time has the same form as the situation of a uni-
form field. The opposite limit-<1, which we will focus on,

is more interesting.

Assuming the field described by E@) can be realized in
experiment, let's show that for realistic parameters it is pos-
sible to have the discrete part of the spectrum absent in the
strong inhomogeneity limit. Fos~100 nm, F~H 6%/ ®,,
~10H if His in Tesla, thus up tél~100 G, one can take
as a small quantity. Then we check if the discrete part of the
spectrum exists in this limit. The criterion for its existence is
P=p,8/i<F%<10°%. Since p,>#/L,, one has P
=py 6> 5IL . For a system with. ,<10* nm, this gives
P=p,8/fi>10° nm/10" nm~10"2. Thus the inequality for
the existence of discrete levels does not hold in this situation.
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One therefore concludes there is no discrete part in the spec- C(*L,y)=C(x,=L)=0. (29
trum. In this limit,

The boundary condition in the direction can be taken care
[p2+(|p |- F)?] (24) of in the same way as_in the uniform field case, _Where the
x y ’ plane-wave wave functions are replaced by their linear com-
binations, andp, takes only some discrete allowed values.
The boundary condition in the direction can be dealt with
in the same manner. We note that from EtP) the eigen-

2

E:
2més?

and the cooperon propagator is

Cr 1’ )= ak do.d Vo p, %Y ¥p, o, (XY states withk and —k are degenerate, thus a linear combina-
(rrio)= S Px0 Py r ' tion of them is also an eigenstate. The new eigenstate can be
—ilwr+ g[pf+(|py| -F)?] constructed as
(25
‘pﬁfpy(x) -ax S;E,;py”L BXé’EX Py (29)

where the integral should be done under the constraint

which are required to satisfy the boundary condition

Dt ) )
?[px—{_dpyl_F) 1<1, (26)
A,B _ 4AB _ —
. U5, (L) =45 (—L)=0. (30)
52 As in the case of uniform field, only some discretewill be
pi+(|p,|—F)?<0?, q2=D—, (270 allowed. Thus the continuous part of the spectrum becomes
T again discrete in this boundary condition. The integration
as it is a condition for perturbation theory. over momentum will be replaced by summation over these

Before proceeding, we need to discuss the boundary cortliscrete allowed values. We note that the dispersion relation
dition. If we use the wave functions Eq&0) and (23) in is not altered in the construction, E@Q9).
their present form, then the cooperon propagator constructed Introducing the dimensionless momengg=p,/F, q,
naively in Eq. (25 does not satisfy the zero amplitude =p,/F, q'=q/F, andP'=P/F, and going to a time do-
boundary condition main, we find

2F2

' ’ h * AN DF2 2 2 ’
C(r,r';t,t")= Va,.q,(%Y) ¥, q, (XY )EX _?[qx+(|qy|_1) J(t'=1)

T gi+(la-1)?<q’?

ﬁZFZ
= { 2 Ut (XU o (X Y)F 2 ¢3:,qy<x,y>wsx,qy<x',y')}

2
O°T | <alp'| a2=4/p’|

g+ (layl-1)2<q’?

DF2 2 2 ’
X ex _?[qx+(|qy|_1) 1t =t). (3D

We see that the magnetic field results in a characteristic timaccommodate many bound states with discrete lgvetich
scale beyond which the cooperon propagator or the interferare reminiscent of Landau lev&ld he dominant contribution
ence effect is no longer important. Therefore to the cooperon is from these low-lying levels which results
in linear dependence. In contrastHfis small, the potential
well can be so shallow that a discrete level does not appear,

2
ks = E (320  and the particle executes overbarrier motion which is nearly
Ty S free with a continuous spectrum. When this part of the spec-
trum is dominant in the cooperon, the dephasing rate is a
which leads to Eq(4). quadratic function of the field amplitude. The quadratic de-

Thus the dephasing rate depends quadratically on the fieljdendence implies that the electrons are more slowly
amplitude in the strong inhomogeneity limit. In this calcula- dephased compared with the uniform field case, where the
tion, we see that the dependence of 1on H is a result of  dependence is linear. Physically this is because for a given
the nature of corresponding single-particle motion. From Eqdiffusion time, electrons in this regime can visit a larger area
(8), whenF is large, the potential well is deep enough to than the constrained motion. Since the magnetic field is non-
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zero only in a limited region, the phase change accumulated
during this time is smaller than that of the uniform case. So b= ¢, (36)
the electron has to wander for a longer time before it gets '
dephased. Therefore the constrained motion of the single paghose average is zero since the loop has an equal possibility
ticle leads to a linear dephasing rate dependence on fielg) he clockwise or counterclockwise. Then
amplitude, and nearly free overbarrier motion to quadratic.

Equation(4) is obtained in the limit of smalF, which
may be realized with tinys and smallH. More realistic for (362 =(dH)=2 &7 (37)
experimental observation is the situation with mode#atkn '
this case, one expects a crossover from lifgaiform limit)  The random walk stops as soon as
to quadratic(inhomogeneity limit dependence. This point
can be illustrated in the following way. Consider the electron (6¢%)=1, (38)
which has diffused for a time. If D7< 62, the inhomoge-
neity is not noticed by the electron. If during this time the and we specify the timéthe total number of random-walk
electron has already been dephaggdﬁ;, whererg isthe steps that has been spent to reach this as the dephasing time.
dephasing time in the uniform fiel@iven by Eq.(2)], then ~ An ensemble of such walks is performed and the dephasing
the inhomogeneity is not important at all. Whens beyond  time is averaged. In the simulations, the mean free pattu
this time scale, the inhomogeneity effect enters. Thus, for &e flux quantumd, have been set to 1, so that
given 4, there is a crossover field implied by

=2, Hi, 39
DT:L: 52, (33) d)l 2 ] ( )
which yields wherej runs over all the inner points in the dual lattice of
loopi.
he Several features make this simulation of a qualitative na-
=g (34) ture. First, the criterion, Eq38), is a qualitative one. Sec-
4es ond, in the simulation, the impurities are assumed to be on

o ) ) ) ) regular lattice sites, with the mean free path as the lattice
This is equivalent to saying that the inhomogeneity effectconsiant. Third, sometimes we choose the field that is not

enters wherF~1. _ _ _ necessarily the original one, but is qualitatively the same.
On the other hand, if we can adjust the widththen for  However, essential physics is not lost despite its qualitative

a givenH, there is a crossover length scalg, nature, and this simulation is very efficient in uncovering
dependencef the dephasing time on the field amplitude,

hc which is particularly appropriate for situations where the

Sc= AeH’ (39 field modulation is complicated so that it is difficult to make

progress with analytical approaches.
which is the magnetic length for a uniform field. As a check of the algorithm, we have simulated the uni-

Before proceeding, let's mention that from Eg1) one  form field case. Excellent linearity in the plot of the dephas-
can see that the magnetoconductance is proportiondf83  ing rate againsti is observed, in agreement with E@). For
in this smallF limit. In the largeF limit, a logarithmic de- ~comparison with the modulated field we studied in the pre-
pendence is expected as in the uniform field case. These cafpus section, the simulation is performed with the following
also be established by the qualitative argument ofield:
Khmelnitskii®

H, |x|<34,
H(x)=

. (40
IV. MONTE CARLO SIMULATION 0, otherwise,

A Monte Carlo algorithm has been developed to simulatevhich is qualitatively the same as E@). The results plotted
the dephasing process. In order to be consistent with than Fig. 1 show a clear linear dependence for laggend a
implied by Eq.(1), the simulations will be semiclassical in crossover from linear to quadratic dependence for moderate
nature. Trajectories will be used and the only quantum-6. The boundary is set dat=5000 in this simulation. Tra-
mechanical effect will be in the phases. In this approach, gectories which touch the boundary are excluded. The results
particle performs a random walk in a square lattice. Theare obtained by averaging over*li@ndom walks. When the
value of the perpendicular field is assigned to a dual latticeinhomogeneity effect enters, fluctuations become significant
We trace all the closed loops that are formed. Once a loop ig the result. This is because there are extreme trajectories
formed, all the inner points are picked (jpr technical de- that wander for a long time in the zero-field region. How-
tails, see Ref. 1)7 and we calculate and record the phaseever, by recording not only the average but also the standard
changeg; due to this loop. Then the trajectory of this loop is deviation, we are able to get an estimation®2@01 for the
erased, and the particle continues the random walk. Thexponent in the inhomogeneous limit, in agreement with Eq.
phase accumulated this way is (4). Thus the numerics support analytical results.
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0.01 ————— T ) However some insight can be gained by analyzing the struc-
ture of the energy spectrum. In general, if the magnetic field
- is[0,0H(x)], in the Landau gaug&=[0,A(x),0]. Separat-
0é = 100 ing variables in the wave function, the electron motion in the
e 5 = 200! ] x direction is described by a Schiinger equation with

0.001 6 = 10001 o 4 potential

2
: (41)

e
V(Xypy) =|Py— EA(X)
which is also a periodic function. For givey, this potential
1 is bound from above as that described by 8. The profile
of this potential is a series of potential wells joining each
other. The energy spectra of electrons in a family of such
modulated magnetic fields are calculated by Ibrahim and
Peeters? For electron energy less than the barrier height, the
] wave functions in neighboring wells overlap and spread. So
1 the discrete levels in single wells now form minibands due to
; the periodic structure. WheH and § are large, the barrier
L ' can be quite high, and states in these minibands dominate in
00001 0.001 001 %1 the cooperon propagator. According to the experience in
H dealing with the previous case, the dephasing rate is ex-
FIG. 1. Simulation results for the dephasing time in the modu-P&cted to be a linear function éf. WhenH and & are small,
lated magnetic field, E40). The data are obtained by averaging however, the potential well is not deep enough to support
over 10 random walks. The three curves are #+ 1000, 20d, these minibands, and the dominant contribution is expected
and 100, respectively. The boundary is=5000. The straight from nearly free overbarrier motion, which leads to quadratic
line is a fit to linear dependence, the dotted line that of quadraticlependence.
dependence. To examine these considerations, computer simulations
are performed for the following field:

e

=

=3

S

=2
T

le-05

V. GENERALIZATION TO MODULATED MAGNETIC
FIELD, PERIODIC IN ONE DIRECTION H, 2né=x<(2n+1)4,

WITH ZERO MEAN HOO=1 _h, (2n-1)s=x<2ns. 42

The qualitative feature of the results, linear dependence iThe results are shown in Fig. 2. The curves show much re-
the weak inhomogeneity limit and quadratic in the strongsemblance to that in Fig. 1, and a crossover from linear to
inhomogeneity limit, may be more general. Consider theguadratic dependence is evident. There are also some differ-
situation with magnetic field modulated periodically in one ences which will be noted here. First, for a givén the
direction with zero mean. While the weak inhomogeneitycrossover fieltH, is smaller in the field42) than the field in
limit is easy to understand, we shall focus on the oppositeq. (40), which suggests wheH is small, an electron in the
limit to discuss possible quadratic dependence of bhH.  field (42) is more quickly dephased than in the figl0).

Assume the magnetic-field profile is such that nearestThis may look strange at first sight, since the fid@ has
neighbor stripes of widthy have the same magnitude but zero mean; one may expect that the electrons in this field are
opposite sign. Consider the phase change of a closed logfore slowly dephased. However, this result can be under-
due to this magnetic field. Since the field is periodic withstood by noticing what enters is the variance of the phase
zero mean, what is important for the magnetic flux is theinstead of the average, and the fi¢lt) is nonzero every-
ratio of the linear size of the loop with the width of one where in the plane. Another difference is that in the figlid)
stripe, VD 74/ 6. If this ratio is an even integer, then the net there is broader crossover region. This is associated with the
flux is zero. If it is an odd integer, then the flux is equal tofact that, in the periodic situation, states with energy lower
that piercing through a single stripe. In general this ratio mayhan the barrier height are not really bound states. They share
fluctuate, however it is clear that the average flux is proporsome feature of the plane waves according to Bloch’s theo-
tional to VD 74H 6. Demanding the phase change due to thisrem. As discussed previously, this feature has the tendency to
flux to be 1, one obtains E@4), with probably an additional lead to quadratic dependence. Wh&is moderate, the bar-
numerical coefficient. rier is not very high for many values @f, . Then these states

For a general magnetic field periodic in one direction, thecan be dominant in the cooperon, resulting in a broad cross-
corresponding Schdinger equation is often difficult to solve over region.
analytically. For example, foH=[0,0H sin(</d)], one can Numerical experiments are also performed for situations
chooseA=[0,—H&cosi/5),0]. Then the resulting Schvro with some other magnetic-field modulations, for example,
dinger equation is a Whittaker-Hill equation whose solutionthat with circular symmetry, or periodic in both directions.
may be reduced to three-term recurrence relatfBisit an  Similar crossover behaviors have been observed. These
explicit analytical result for the spectrum is not known. simulations as well as the qualitative understanding of the
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s VI. CONCLUSIONS

We have studied the dephasing time of disordered two-
5 dimensional electron gas in modulated magnetic field
={0,0H/cosH[(x—xo)/5]}. It is shown that in the weak in-
homogeneity limit,5>L, wherelL is the linear size of the
sample,{/)l is proportional toH. This happens when the
g bound states with a discrete spectrum of the corresponding
1 Schralinger equation dominate in the cooperon propagator.
While in the strong inhomogeneity limit, the dependence is
quadratic,r, '=D(e/fic)?H?82. In this case, the nearly free
overbarrier motion gives the dominant contribution to the
cooperon. In the intermediate regime, a crossover between
these two limiting situations occurs &= (fc/4e)d 2. A
semiclassical Monte Carlo algorithm has been developed to
study the dephasing time, which is of a qualitative nature but
efficient in uncovering the dependence f on H for arbi-
trarily complicated magnetic-field modulations. Computer
B Y e simulations support analytical results. These considerations
1e-05 0.0001 0.001 0.01 0.1 are generalized to the situation with magnetic field modu-
H lated periodically in one direction with zero mean, where a
, , L similar crossover is observed. We believe this crossover be-
|atelj?ﬁazg.n§tl::l:ileaiﬂoge:i)s dL:gSinf%rnthiii?ig?lsg?\?ef‘lln;?l gtg'i&c’du'tween linear and quadratic dependencies can be expected for
; ) : a large class of modulated magnetic fields where the corre-
data are obtained by averaging over an ensemble dfrdidom - - . S
sponding single particle potential is bound from above, so

walks. The three curves are fér=400, 40, and 20, respectively. . o
The straight line is a fit to linear dependence, the dotted line that 0}hat the motion exhibits both bound and free natures depend-
Ing on parameters.

quadratic dependence.

0.001 -

ol

=1

=1

S

=
T

1e-05 -

1e-06 -
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