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Dephasing time of disordered two-dimensional electron gas in modulated magnetic fields
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The dephasing time of disordered two-dimensional electron gas in modulated magnetic fieldH
5$0,0,H/cosh2@(x2x0)/d#% is studied. In the weak inhomogeneity limit whered is much larger than the linear
size of the sample,tf

21 is proportional toH. In the strong inhomogeneity limit, it is shown that the dependence
is quadratic,tf

215D(e/\c)2H2d2. In the intermediate regime, a crossover between these two limits occurs at
Hc5(\c/4e)d22. It is demonstrated that the origin of the dependence oftf on H lies in the nature of
corresponding single-particle motion. A semiclassical Monte Carlo algorithm is developed to study the dephas-
ing time, which is of a qualitative nature but efficient in uncovering the dependence oftf on H for arbitrarily
complicated magnetic-field modulation. Computer simulations support analytical results. The crossover from
linear to quadratic dependence is then generalized to the situation with magnetic field modulated periodically
in one direction with zero mean, and it is argued that this crossover can be expected for a large class of
modulated magnetic fields.
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I. INTRODUCTION

Dephasing is one of the key elements in the study
quantum coherent phenomena in mesoscopic systems.
pling with the environment suppresses the quantum inter
ence of electrons. The phase-breaking time, or depha
time, is the characteristic time beyond which the phase
herence is lost. Although a static magnetic field does
destroy all quantum effects, it may introduce a cutoff to t
interference effect. Dephasing of disordered electron gas
coupling with a uniform magnetic field has been studied1–3

in the early stage of weak-localization theory. In the abse
of spin-orbit scattering, the magnetic field suppresses
weak-localization effect and leads to a positive magnetoc
ductance, which has been observed~for a review, see Ref. 4!.
The dephasing rate due to coupling with uniform field tur
out to be proportional to the field amplitude. These resu
can also be established by qualitative considerations acc
ing to Khmelnitskii.5

In recent years there has been increasing interest6 in hy-
brid semiconductor systems both for the fundamental un
standing and the potentiality of enhancing the functiona
of the devices. The disposition of superconducting7 or
magnetic8 microstructures on the surface of heterostructu
with a two-dimensional electron gas~2DEG! may produce
inhomogeneous magnetic field which influences elect
motion locally. Some interesting consequences of the mo
lated magnetic fields have already been reported. It
shown9 that the effect of electron-electron umklapp scatt
ing can be observed in a 2DEG at a GaAs/Ga12xAl xAs in-
terface by imposing a spatially alternating magnetic fi
normal to the 2DEG plane. Kubraket al.10 fabricated a few
different types of hybrid ferromagnetic-semiconductor d
vices, which allowed them to study how these differe
modulated magnetic fields influence the transport proper
of 2DEG. And magnetoresistance oscillations due to the
ternal Landau band structure of a 2D electron system in
riodic magnetic field have been observed.11 Theoretically,
Peng12 calculated the transport properties in a parabo
0163-1829/2002/65~11!/115303~7!/$20.00 65 1153
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channel exposed to a periodically modulated magnetic fi
Gumbs and Zhang13 developed a magnetotransport theo
for the magnetoconductivity of a square lattice in a perio
cally modulated magnetic field, and predicted some ano
lies due to commensurability effects. Recently Matulis a
Peeters14 studied semiclassical magnetoresistance in wea
modulated magnetic fields. They considered the case w
the field is periodic in one dimension with zero mean. In t
limit of small magnetic-field amplitude, it is shown that th
contribution of the magnetic modulation to magnetores
tance increases asB3/2 in the diffusive limit, while increases
linearly in B in the ballistic limit.

The magnetoresistance in the diffusive limit is well d
scribed by standard weak-localization theory. It arises fr
the suppression of magnetic field on the cooperon propag
which represents the interference of time-reversal traje
ries. Taking the magnetic field into consideration, the co
eron propagator satisfies1

F2 iv1DS 2 i¹2
2e

c
A~r ! D 2GC~r ,r 8;v!5

1

t
d~r2r 8!,

~1!

which may be viewed as an imaginary-time Schro¨dinger
equation with parameters properly replaced. For the unifo
field situation, the solution of the corresponding Schro¨dinger
equation is the well-known Landau levels. The dephas
time was found to be1–3

1

tf
u

5
4DeH

\c
, ~2!

where the superscriptu represents result for uniform field.
In this paper we first study the dephasing time of dis

dered 2DEG due to coupling with the following modulate
magnetic field:

H5$0,0,H/cosh2@~x2x0!/d#%. ~3!
©2002 The American Physical Society03-1
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XIAO-BING WANG PHYSICAL REVIEW B 65 115303
The corresponding Schro¨dinger equation has been solved e
actly by Hudák,15 where it was shown that a proper transfo
mation converts the equation into a form solved earlier
Morse and Feshbach.16 Making use of this solution, we con
struct the cooperon propagator and calculate the depha
time of a disordered 2DEG in this modulated field. We fi
in the weak inhomogeneity limit,d@L, whereL is the linear
size of the sample,tf

21 is proportional toH, as in the uni-
form field case. In the strong inhomogeneity limit, it
shown that

1

tf
5DS e

\cD 2

H2d2. ~4!

In the intermediate regime, a crossover between these
limits is expected to occur atHc5(\c/4e)d22. The dephas-
ing rate dependence on the magnetic-field amplitude
shown to be related to the nature of corresponding sin
particle motion. Bound states lead to linear dependen
while nearly free motion results in quadratic. A semiclassi
Monte Carlo algorithm is developed to study the dephas
time, which is of a qualitative nature but efficient in unco
ering the dependence oftf on H for arbitrarily complicated
magnetic-field modulation. Computer simulations supp
analytical results. The considerations are then generalize
the situation where the modulated magnetic field is perio
in one direction with zero mean, and it is argued that t
crossover between linear and quadratic dependencies ca
expected for a large class of modulated magnetic fields.

Before going to quantitative calculations, let’s see h
qualitative considerations of Khmelnitskii5 can predict Eq.
~4!. Let the magnetic field be nonzero only in a stripe
width d. Consider a large loop of areaDt; we are interested
in the flux piercing it. Whend is small, the effective area
where the field is nonzero isdADt. Requiring the phase
change due to this loop to be of order 1, (e/\c)HdADtf
;1, one immediately obtains Eq.~4!. In subsequent quanti
tative calculations, we will see that understanding the ori
of this dependence allows us to generalize the result to m
complicated situations.

This paper is organized as follows. In Sec. II, the solut
of the Schro¨dinger equation by Huda´k15 is briefly outlined.
The construction of the cooperon propagator and calcula
of dephasing time is presented in Sec. III. Section IV co
tains a description of the numerical algorithm and the sim
lation results. The generalization to the situation with mod
lated magnetic field periodic in one direction is presented
Sec. V. Conclusions are given in Sec. VI.

II. SOLUTION OF THE SCHRÖ DINGER EQUATION
IN HÄˆ0,0,H Õcosh2

†„xÀx0…Õd‡‰

For completeness, the solution of the Schro¨dinger equa-
tion in the modulated magnetic fieldH5$0,0,H/cosh2@(x
2x0)/d#% is briefly outlined in this section. Interested reade
are referred to the original article of Huda´k15 and the book of
Morse and Feshbach.16

Under the Landau gauge
11530
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A5$0,H d tanh@~x2x0!/d#,0%, ~5!

the Schro¨dinger equation can be written as

1

2mF2\2
d2

dx2
1Fpy2

eHd

c
tanhS x2x0

d D G2Gx~x!5Ex~x!,

~6!

where we have separated variables

c~x,y!5e( i /\)pyyx~x!. ~7!

This Schro¨dinger equation describes the motion of a p
ticle in the potentialV(x),

V~x!5
\2

2md2 S 2p
F

F0
D 2S pyd/\

2pF/F0
2tanhS x2x0

d D D 2

,

~8!

whereF05hc/e is the flux quantum, andF5Hd2 is a mea-
sure of the magnetic flux by the external field. Introducin

F52p
F

F0
,

P52pyd/\,

z5~x2x0!/d, ~9!

the potential may be written as

V~z!5
\2F2

2md2 S P

F
1tanhzD 2

. ~10!

For pyÞ0, this potential is an asymmetric well, with differ
ent limiting values ofV(1`) and V(2`). Hudák15 ob-
served that the transformation

n cosh22m5P21F2,

n sinh22m52FP ~11!

can convert the Schro¨dinger equation into a form that wa
solved by Morse and Feshbach16 earlier:

d2x~z!

dz2

1S «2n cosh 2m2n sinh 2m tanhz1n
cosh2m

cosh2z
D x~z!50,

~12!

where«52md2E/\2.
One may distinguish situations betweenuPu<F and uPu

.F. In the former case, there is a discrete part in the ene
spectrum as well as a continuous one, while the latter le
to only a continuous part. The solution15 is as follows. If

uPu,F~F2uPu!2, ~13!

then the energy spectrum for the motion in thex direction
contains a discrete part given by
3-2
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En~py!5
py

2

2mF 12
F2

~AF21 1
4 2~n1 1

2 !!2G
1

\2

2md2
FF22SAF21

1

4
2~n1 1

2 !D 2G ,

~14!

with n50,1, . . . ,@nmax#, and

nmax5AF21
1

4
2

1

2
2AuPuF. ~15!

The corresponding eigenfunction is

xn~z!5Nnexp~2anz!~e2z1ez!2bn

3F„2n,2AF211/42n,an1bn11,e2z/~e2z1ez!…,

~16!

where

an5
uPuF

AF21 1
4 2~n1 1

2 !

,

bn5AF21
1

4
2~n1 1

2 !.

HereF(a,b,g,d) denotes the hypergeometric function, a
Nn is a normalization constant.

Thus there is discrete part if

uPu,Pd~F !5F1
1

2F
2A11

1

4F2
. ~17!

The continuous spectrum may be divided into two pa
For

~F2uPu!2,«,~F1uPu!2, ~18!

the energy is given by

E~k,py!5
1

2m F S \k

d D 2

1@ upyu2p~F !#2G , ~19!

where k is the momentum in thex direction, andp(F)
5F\/d. The corresponding wave function is

xk,py

A ~z!5Nk,py
exp~2az!~e2z1ez!2b

3F„b2g1 1
2 ,b1g1 1

2 ,K111,e2z/~e2z1ez!…,

~20!

with

a5~k11 ik !/2, b5~k12 ik !/2,

g5AF21
1

4
, k15A4FuPu2k2.
11530
.

This wave function vanishes exponentially forx→` when
py,0, and is bound from above whenx→2`. For py.0,
the opposite is true. The inequality~18! is equivalent to

0,k2,4uPuF. ~21!

If the parameters are such that the inequality~21! is re-
placed by

k2>4uPuF, ~22!

then there is another type of continuous energy spectr
The wave functions are nonvanishing but bound asuxu→`.
They describe overbarrier motion. The energy is still giv
by Eq. ~19!, but the corresponding wave functions are

xk,py

B ~z!5Nk,py
exp@ iz~k12k!/2#~e2z1ez! i (k1k1) /2

3F@„2 i ~k1k1!1122g…/2,„2 i ~k1k1!11

12g…/2,12 ik1 ,e2z/~e2z1ez!#, ~23!

where

g5AF21
1

4
, k15Ak224FuPu.

The above results are valid foruPu<F. WhenuPu.F, an
analytical continuation can be performed.15 And it was found
that there is no discrete part in the spectrum; the wave fu
tions and energy are of the same form as that foruPu<F, but
now valid for this region of parameters.

III. DEPHASING TIME

In the weak inhomogeneity limitd@L, where L is the
linear size of the sample, andF@1 for not very weak field.
Then the potential well@given by Eq.~8!# is deep enough to
host many discrete levels, which are reminiscent of the L
dau levels. Recall that low-energy states dominate in
cooperon propagator, and the continuous part~with energies
higher than the barrier height! gives a negligible contribu-
tion, thus only the discrete part of the spectrum is import
in the cooperon. It can be shown that in this limit, inhom
geneity brings a correction of orderO(1/F) to the usual uni-
form field weak-localization magnetoresistance. And t
dephasing time has the same form as the situation of a
form field. The opposite limit,F!1, which we will focus on,
is more interesting.

Assuming the field described by Eq.~3! can be realized in
experiment, let’s show that for realistic parameters it is p
sible to have the discrete part of the spectrum absent in
strong inhomogeneity limit. Ford;100 nm, F;Hd2/F0
;10H if H is in Tesla, thus up toH;100 G, one can takeF
as a small quantity. Then we check if the discrete part of
spectrum exists in this limit. The criterion for its existence
P5pyd/\,F3,1023. Since py.\/Lf , one has P
5pyd/\.d/Lf . For a system withLf,104 nm, this gives
P5pyd/\.102 nm/104 nm;1022. Thus the inequality for
the existence of discrete levels does not hold in this situat
3-3
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XIAO-BING WANG PHYSICAL REVIEW B 65 115303
One therefore concludes there is no discrete part in the s
trum. In this limit,

E5
\2

2md2
@px

21~ upyu2F !2#, ~24!

and the cooperon propagator is

C~r ,r 8;v!5S \

d D 2E dpxdpy

cpx ,py
* ~x,y!cpx ,py

~x8,y8!

2 ivt1
Dt

d2
@px

21~ upyu2F !2#

,

~25!

where the integral should be done under the constraint

Dt

d2
@px

21~ upyu2F !2#!1, ~26!

or

px
21~ upyu2F !2!q2, q25

d2

Dt
, ~27!

as it is a condition for perturbation theory.
Before proceeding, we need to discuss the boundary c

dition. If we use the wave functions Eqs.~20! and ~23! in
their present form, then the cooperon propagator constru
naively in Eq. ~25! does not satisfy the zero amplitud
boundary condition
im
fe

fie
a-

Eq
to

11530
c-
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C~6L,y!5C~x,6L !50. ~28!

The boundary condition in they direction can be taken car
of in the same way as in the uniform field case, where
plane-wave wave functions are replaced by their linear co
binations, andpy takes only some discrete allowed value
The boundary condition in thex direction can be dealt with
in the same manner. We note that from Eq.~19! the eigen-
states withk and2k are degenerate, thus a linear combin
tion of them is also an eigenstate. The new eigenstate ca
constructed as

cpx ,py

A,B ~x!5axpx ,py

A,B 1bx2px ,py

A,B , ~29!

which are required to satisfy the boundary condition

cpx ,py

A,B ~L !5cpx ,py

A,B ~2L !50. ~30!

As in the case of uniform field, only some discretepx will be
allowed. Thus the continuous part of the spectrum becom
again discrete in this boundary condition. The integrat
over momentum will be replaced by summation over the
discrete allowed values. We note that the dispersion rela
is not altered in the construction, Eq.~29!.

Introducing the dimensionless momentaqx5px /F, qy
5py /F, q85q/F, and P85P/F, and going to a time do-
main, we find
C~r ,r 8;t,t8!5
\2F2

d2t
(

qx
2
1(uqyu21)2<q82

cqx ,qy
* ~x,y!cqx ,qy

~x8,y8!expH 2
DF2

d2
@qx

21~ uqyu21!2#~ t82t !J
5

\2F2

d2t H (
qx

2
,4uP8u

cqx ,qy

A* ~x,y!cqx ,qy

A ~x8,y8!1 (
qx

2>4uP8u
cqx ,qy

B* ~x,y!cqx ,qy

B ~x8,y8!J
q

x
21(uqyu21)2<q82

3expH 2
DF2

d2
@qx

21~ uqyu21!2#~ t82t !J . ~31!
lts

ear,
rly
ec-
s a
e-

wly
the
ven
ea
on-
We see that the magnetic field results in a characteristic t
scale beyond which the cooperon propagator or the inter
ence effect is no longer important. Therefore

1

tf
5

DF2

d2
, ~32!

which leads to Eq.~4!.
Thus the dephasing rate depends quadratically on the

amplitude in the strong inhomogeneity limit. In this calcul
tion, we see that the dependence of 1/tf on H is a result of
the nature of corresponding single-particle motion. From
~8!, when F is large, the potential well is deep enough
e
r-

ld

.

accommodate many bound states with discrete levels~which
are reminiscent of Landau levels!. The dominant contribution
to the cooperon is from these low-lying levels which resu
in linear dependence. In contrast, ifF is small, the potential
well can be so shallow that a discrete level does not app
and the particle executes overbarrier motion which is nea
free with a continuous spectrum. When this part of the sp
trum is dominant in the cooperon, the dephasing rate i
quadratic function of the field amplitude. The quadratic d
pendence implies that the electrons are more slo
dephased compared with the uniform field case, where
dependence is linear. Physically this is because for a gi
diffusion time, electrons in this regime can visit a larger ar
than the constrained motion. Since the magnetic field is n
3-4
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zero only in a limited region, the phase change accumula
during this time is smaller than that of the uniform case.
the electron has to wander for a longer time before it g
dephased. Therefore the constrained motion of the single
ticle leads to a linear dephasing rate dependence on
amplitude, and nearly free overbarrier motion to quadrat

Equation~4! is obtained in the limit of smallF, which
may be realized with tinyd and smallH. More realistic for
experimental observation is the situation with moderated. In
this case, one expects a crossover from linear~uniform limit!
to quadratic~inhomogeneity limit! dependence. This poin
can be illustrated in the following way. Consider the electr
which has diffused for a timet. If Dt,d2, the inhomoge-
neity is not noticed by the electron. If during this time th
electron has already been dephased,t.tf

u , wheretf
u is the

dephasing time in the uniform field@given by Eq.~2!#, then
the inhomogeneity is not important at all. Whent is beyond
this time scale, the inhomogeneity effect enters. Thus, fo
given d, there is a crossover field implied by

Dtf
u 5d2, ~33!

which yields

Hc5
\c

4ed2
. ~34!

This is equivalent to saying that the inhomogeneity eff
enters whenF;1.

On the other hand, if we can adjust the widthd, then for
a givenH, there is a crossover length scaledc ,

dc5A \c

4eH
, ~35!

which is the magnetic length for a uniform field.
Before proceeding, let’s mention that from Eq.~31! one

can see that the magnetoconductance is proportional toH2d2

in this smallF limit. In the largeF limit, a logarithmic de-
pendence is expected as in the uniform field case. These
also be established by the qualitative argument
Khmelnitskii.5

IV. MONTE CARLO SIMULATION

A Monte Carlo algorithm has been developed to simul
the dephasing process. In order to be consistent with
implied by Eq.~1!, the simulations will be semiclassical i
nature. Trajectories will be used and the only quantu
mechanical effect will be in the phases. In this approach
particle performs a random walk in a square lattice. T
value of the perpendicular field is assigned to a dual latt
We trace all the closed loops that are formed. Once a loo
formed, all the inner points are picked up~for technical de-
tails, see Ref. 17!, and we calculate and record the pha
changef i due to this loop. Then the trajectory of this loop
erased, and the particle continues the random walk.
phase accumulated this way is
11530
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e

f5(
i

f i , ~36!

whose average is zero since the loop has an equal possi
to be clockwise or counterclockwise. Then

^df2&5^f2&5(
i

f i
2 . ~37!

The random walk stops as soon as

^df2&>1, ~38!

and we specify the time~the total number of random-walk
steps! that has been spent to reach this as the dephasing t
An ensemble of such walks is performed and the depha
time is averaged. In the simulations, the mean free pathl and
the flux quantumF0 have been set to 1, so that

f i5(
j

H j , ~39!

where j runs over all the inner points in the dual lattice
loop i.

Several features make this simulation of a qualitative
ture. First, the criterion, Eq.~38!, is a qualitative one. Sec
ond, in the simulation, the impurities are assumed to be
regular lattice sites, with the mean free path as the lat
constant. Third, sometimes we choose the field that is
necessarily the original one, but is qualitatively the sam
However, essential physics is not lost despite its qualita
nature, and this simulation is very efficient in uncoveri
dependenceof the dephasing time on the field amplitud
which is particularly appropriate for situations where t
field modulation is complicated so that it is difficult to mak
progress with analytical approaches.

As a check of the algorithm, we have simulated the u
form field case. Excellent linearity in the plot of the depha
ing rate againstH is observed, in agreement with Eq.~2!. For
comparison with the modulated field we studied in the p
vious section, the simulation is performed with the followin
field:

H~x!5H H, uxu<d,

0, otherwise,
~40!

which is qualitatively the same as Eq.~1!. The results plotted
in Fig. 1 show a clear linear dependence for larged, and a
crossover from linear to quadratic dependence for mode
d. The boundary is set atL55000l in this simulation. Tra-
jectories which touch the boundary are excluded. The res
are obtained by averaging over 104 random walks. When the
inhomogeneity effect enters, fluctuations become signific
in the result. This is because there are extreme trajecto
that wander for a long time in the zero-field region. How
ever, by recording not only the average but also the stand
deviation, we are able to get an estimation 2.060.1 for the
exponent in the inhomogeneous limit, in agreement with
~4!. Thus the numerics support analytical results.
3-5
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XIAO-BING WANG PHYSICAL REVIEW B 65 115303
V. GENERALIZATION TO MODULATED MAGNETIC
FIELD, PERIODIC IN ONE DIRECTION

WITH ZERO MEAN

The qualitative feature of the results, linear dependenc
the weak inhomogeneity limit and quadratic in the stro
inhomogeneity limit, may be more general. Consider
situation with magnetic field modulated periodically in o
direction with zero mean. While the weak inhomogene
limit is easy to understand, we shall focus on the oppo
limit to discuss possible quadratic dependence of 1/tf on H.

Assume the magnetic-field profile is such that neare
neighbor stripes of widthd have the same magnitude b
opposite sign. Consider the phase change of a closed
due to this magnetic field. Since the field is periodic w
zero mean, what is important for the magnetic flux is t
ratio of the linear size of the loop with the width of on
stripe,ADtf/d. If this ratio is an even integer, then the n
flux is zero. If it is an odd integer, then the flux is equal
that piercing through a single stripe. In general this ratio m
fluctuate, however it is clear that the average flux is prop
tional toADtfHd. Demanding the phase change due to t
flux to be 1, one obtains Eq.~4!, with probably an additiona
numerical coefficient.

For a general magnetic field periodic in one direction,
corresponding Schro¨dinger equation is often difficult to solv
analytically. For example, forH5@0,0,H sin(x/d)#, one can
chooseA5@0,2Hd cos(x/d),0#. Then the resulting Schro¨-
dinger equation is a Whittaker-Hill equation whose soluti
may be reduced to three-term recurrence relations,18 but an
explicit analytical result for the spectrum is not know

FIG. 1. Simulation results for the dephasing time in the mo
lated magnetic field, Eq.~40!. The data are obtained by averagin
over 104 random walks. The three curves are ford51000l , 200l ,
and 100l , respectively. The boundary isL55000l . The straight
line is a fit to linear dependence, the dotted line that of quadr
dependence.
11530
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However some insight can be gained by analyzing the st
ture of the energy spectrum. In general, if the magnetic fi
is @0,0,H(x)#, in the Landau gaugeA5@0,A(x),0#. Separat-
ing variables in the wave function, the electron motion in t
x direction is described by a Schro¨dinger equation with
potential

V~x,py!5Fpy2
e

c
A~x!G2

, ~41!

which is also a periodic function. For givenpy , this potential
is bound from above as that described by Eq.~8!. The profile
of this potential is a series of potential wells joining ea
other. The energy spectra of electrons in a family of su
modulated magnetic fields are calculated by Ibrahim a
Peeters.19 For electron energy less than the barrier height,
wave functions in neighboring wells overlap and spread.
the discrete levels in single wells now form minibands due
the periodic structure. WhenH and d are large, the barrier
can be quite high, and states in these minibands domina
the cooperon propagator. According to the experience
dealing with the previous case, the dephasing rate is
pected to be a linear function ofH. WhenH andd are small,
however, the potential well is not deep enough to supp
these minibands, and the dominant contribution is expec
from nearly free overbarrier motion, which leads to quadra
dependence.

To examine these considerations, computer simulati
are performed for the following field:

H~x!5H H, 2nd<x,~2n11!d,

2H, ~2n21!d<x,2nd.
~42!

The results are shown in Fig. 2. The curves show much
semblance to that in Fig. 1, and a crossover from linea
quadratic dependence is evident. There are also some d
ences which will be noted here. First, for a givend, the
crossover fieldHc is smaller in the field~42! than the field in
Eq. ~40!, which suggests whenH is small, an electron in the
field ~42! is more quickly dephased than in the field~40!.
This may look strange at first sight, since the field~42! has
zero mean; one may expect that the electrons in this field
more slowly dephased. However, this result can be und
stood by noticing what enters is the variance of the ph
instead of the average, and the field~42! is nonzero every-
where in the plane. Another difference is that in the field~42!
there is broader crossover region. This is associated with
fact that, in the periodic situation, states with energy low
than the barrier height are not really bound states. They s
some feature of the plane waves according to Bloch’s th
rem. As discussed previously, this feature has the tendenc
lead to quadratic dependence. Whend is moderate, the bar
rier is not very high for many values ofpy . Then these state
can be dominant in the cooperon, resulting in a broad cro
over region.

Numerical experiments are also performed for situatio
with some other magnetic-field modulations, for examp
that with circular symmetry, or periodic in both direction
Similar crossover behaviors have been observed. Th
simulations as well as the qualitative understanding of
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origin of the dependencies suggest that the crossover f
linear to quadratic dependence in the dephasing rate on
amplitude can be quite general. For situations where the
responding single-particle potential is bound from above,
particle motion can exhibit both bound and free natur
leading to a crossover from linear to quadratic dependen

FIG. 2. Simulation results for the dephasing time in the mo
lated magnetic field periodic in one direction given by Eq.~42!. The
data are obtained by averaging over an ensemble of 103 random
walks. The three curves are ford5400l , 40l , and 20l , respectively.
The straight line is a fit to linear dependence, the dotted line tha
quadratic dependence.
.
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VI. CONCLUSIONS

We have studied the dephasing time of disordered tw
dimensional electron gas in modulated magnetic fieldH
5$0,0,H/cosh2@(x2x0)/d#%. It is shown that in the weak in-
homogeneity limit,d@L, whereL is the linear size of the
sample,tf

21 is proportional toH. This happens when the
bound states with a discrete spectrum of the correspon
Schrödinger equation dominate in the cooperon propaga
While in the strong inhomogeneity limit, the dependence
quadratic,tf

215D(e/\c)2H2d2. In this case, the nearly fre
overbarrier motion gives the dominant contribution to t
cooperon. In the intermediate regime, a crossover betw
these two limiting situations occurs atHc5(\c/4e)d22. A
semiclassical Monte Carlo algorithm has been develope
study the dephasing time, which is of a qualitative nature
efficient in uncovering the dependence oftf on H for arbi-
trarily complicated magnetic-field modulations. Compu
simulations support analytical results. These considerat
are generalized to the situation with magnetic field mod
lated periodically in one direction with zero mean, where
similar crossover is observed. We believe this crossover
tween linear and quadratic dependencies can be expecte
a large class of modulated magnetic fields where the co
sponding single particle potential is bound from above,
that the motion exhibits both bound and free natures depe
ing on parameters.
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